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Then Jesus said to them, little while longer the light is with you.
Walk while you have the light, lest the darkness overtake you; he
who walks in the darkness does not know where he is going. While
you have the light, believe in the light, that you may become sons

of light.

John 12:35-36




Abstract

The concept and applications of spatio-temporal optical computing are pro-
posed. This concept introduces ordinary spatial optical computing techniques
using Fraunhofer and Fresnel diffraction into time domain.

The concept is classified in three phases. The first phase employs spatio-
temporal duality of light. In this thesis a new algorithm to analyze low coherence
interferograms is proposed in this phase.

The second phase employs spatio-temporal conversion. In this phase we
construct a femtosecond pulse separation measurement system which determines
the pulse separation in the accuracy of 12.4 fs. Furthermore, by employing
the conversion technique, a less scanning dimension and all optical spectral
interferometric optical coherence system is constructed. This system determines
the surface profiles of specular and rough surface samples.

The third phase employs spatio-temporal coupling effects. We numerically
investigate on the spatio-temporal coupling behavior of light in a pulse shaper,
spatio-temporal coupled pulse shaper and time-domain microscope by employ-
ing the spatio-temporal Wigner distribution function. Some conditions which
induces the coupling are shown.
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Chapter 1

Introduction

Large mount of techniques in the field of optical computing, employing the high
spatial parallelism and high information-carrier-capability of light, have been
studied. These optical computing techniques are classified to two large cate-
gories. One is non-diffractive, geometric optical computing, such as an optical
neural network, and the other is diffractive versions, such as a joint transform
correlator, matched filter, holograms. Almost all of the diffractive versions are
based on the Fraunhofer diffraction[1], and pseudo Fraunhofer diffraction de-
veloped by a 2-f optical setup[l]. By the spatial Fourier transform, the spatial
image is decomposed to its spatial spectral components and the components are
spread spatially.

In the field of laser mode-locking techniques, many femtosecond pulse laser
systems have been developed. Because some of them demand very easy opera-
tion and low economical cost, these lasers have been widely applied in many
physical and industrial field, such as optical communication, industrial and
biomedical measurement or ultrafast control of physical and chemical properties
of materials. To achieve such applications, we have to control such ultrafast light
pulses with high temporal accuracy. In most cases, the high accuracy-control
is achieved by employing a spectral modulating pulse shaper(2, 3, 4, 5, 6]. The
pulse shaper decomposes the temporal spectrum components of a ultrafast light
pulse spatially by a grating-lens pair, modulates the spectrum, and then recon-
structs a temporally modulated light pulse by another grating-lens pair[5].

These techniques in the two fields have theoretical relationships. Because
the spatial and temporal behaviors of light are expressed by similar equations.
Furthermore, both the two techniques employ the spatial or temporal optical
Fourier transform.

In parallel with the progress of the optical computing and ultrafast op-
tics, large numbers of optical measurement techniques have been studied. Op-
tical profilometry techniques are classified in two large categories; one em-
ploys spatial signal processing, and the other employs temporal signal pro-
cessing techniques. The spatial versions are represented by Fourier transform
profilometry(7], project grating image methods(8|, and large numbers of spa-
tial interference fringe analysis techniques. The temporal versions are repre-
sented by low coherence or white light inteferometory, and optical coherence
tomography[9, 10, 11]. By conventional classification, these methods are also
classified in spatial version. However, we classify these techniques in spatial ver-
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6 CHAPTER 1. INTRODUCTION

sion, because these techniques encodes the profile information of a test object
in the temporal complex profile of light electric fields. Although the techniques
are in spatial and temporal domains, all of the techniques have large analogies.
Almost all these measurement techniques encode the profile of a test object
by the phase modulation of a spatial or a temporal fringe. In spatial version,
the fringe is an interference fringe, and in temporal version, the fringe is an
interferogram.

Large numbers of fringe analyzing techniques have been proposed and most
of them employ Fourier transform. Hence optical computing techniques can
be applied to optical measurement, and some studies have been reported. But
these studies are only for spatial optical measurement.

Based on the spatio-temporal analogy and duality, we explore the field of
spatio-temporal optical computing. At first, we classify the spatio-temporal
optical computing techniques into three phases.

The first phase is based on spatio-temporal duality. Spatial optical comput-
ing techniques are applied to temporal signals, and temporal signal processing
techniques are applied to spatial images employing the spatio-temporal duality.

The second phase is based on the techniques of spatio-temporal conversion
employing the spatio-temporal duality. Using the analogy between spatial op-
tical computing techniques and a temporal ultrafast pulse shaper, we construct
a time-to-space or space-to-time optical signal converter. We can treat optical
temporal signals by a spatial optical computing system by using the converter,
so that we can introduce the spatial optical computing techniques to time do-
main.

The third phase is based on spatio-temporal coupling phenomena. The spa-
tial state of an electric field is not determined only by the ex- spatial state of
the field but also the temporal one. Its temporal state is also determined as
the same. The phenomenon is called spatio-temporal coupling. In conventional
optical systems, such as a spectrometer or a pulse shaper, the spatio-temporal
coupling is not desired, but unavoidable. We have intend to reduce the coupling
effect. The spatio-temporal effect is unavoidable but easy to reduce. However,
we can also aliply the effect positively. In the third phase of spatio-temporal
optical computing, we enhance the coupling effect and apply it actively.

In this thesis, we investigate the detail of the concept and applications of
the spatio-temporal optical computing. In chapter 2, we propose a new signal
processing algorithm to analyze low coherence interferograms, named a phase-
resolved correlation method employing the spatio-temporal duality. The algo-
rithm improves the sensitivity and the resolution of a low coherence interferom-
eter.

In chapter 3, we construct a time-space converter, a spatio-temporal joint
transform correlator (ST-JTC), employing the spatio-temporal duality and the
principle of a conventional spatial joint transform correlator[l] and a pulse-
shaper|2, 3]. This system superimposes the temporal profile of a femtosecond
pulse shape on a spatial plane.

In chapter 4, we invent an all optical, less scanning optical coherence tomog-
raphy system, spectral interferometric joint transform optical coherence tomog-
raphy system (SIJT-OCT) employing the principle of the spatio-temporal joint
transform correlator. The system includes a super luminescent diode (SLD)
light source, and determines the three-dimensional surface of a test object with
one-dimensional mechanical scanning operation.

In chapters 5, 6, and 7, we investigate the spatio-temporal behavior of some
optical systems in which the spatio-temporal coupling effects are occurred. In
each chapter, a conventional pulse shaper, a spatio-temporally coupled pulse
shaper (STCPS), and a time-domain microscope are investigated. The spatio-
temporally coupled pulse shaper proposed by us is one of the improved pulse
shapers to simultaneously control the spatial and temporal profile of an ultrafast
light pulse by one-dimensional spatial light modulation employing enhanced
spatio-temporal coupling.
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Figure 1.1: The relationship of spatio-temporal optical computing and measure-

ment techniques.
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We find a number of dualities and analogies between the spatial and temporal

properties of light. The Fresnel diffraction in space domain is very similar to
linear dispersion in time domain[12], and interference fringes in space domain
have some similar properties with an interferogram in time domain. By using
the duality and analogies, many spatial signal processing techniques are applied
to analyze temporal signals and many temporal techniques are applied to spatial
signals.

In some case, such applying is, however, have less performance, because the
spatial and temporal signals also have a few different properties. By under-
standing the difference precisely, and modifying the techniques, the application
will have a good performance.

In this part, we propose a new signal processing algorithm, phase-resolved
correlation algorithm. This algorithm is originally based on the spatial phase
oriented fringe analysis techniques, such as Fourier transform profilometry|7] or
phase shifting method (8], but modified to apply to the temporal interferogram.




Chapter 2

Phase-Resolved Correlation
Method

In this chapter,a new signal processing technique is proposed, involving a phase-
resolved correlation method which can be used to determine the phase distri-
bution of low coherence interferograms. This method improves the sensitivity
and selectivity of low coherence interferometers. The depth structure of an alu-
minum oxide coated aluminum mirror was determined using a low coherence
interferometer by employing this method. Three signal peaks were successfully
extracted from a noisy interferogram.

2.1 Introduction

A number of phase-oriented signal processing methods have been widely inves-
tigated for signals with carrier-frequency, including the use of moiré images,
interference fringes and interferograms. The phase-shifting method and Fourier
transform profilometry[7] are among the most commonly used methods applied
to this kind of analysis, since they can extract the carrier-phase-distribution
from a signal and thus improve its signal-to-noise ratio (SNR).

Non-destructive, high-sensitivity profilometry techniques, such as white light
interferometry and optical coherence tomography (OCT) have been applied to
various fields, including industrial processing and biomedical applications[13,
14, 9]. Many signal processing methods and advanced techniques for gaining
better SNR of interferograms have been applied to interferometers[15, 10, 11].
However, phase-oriented signal processing methods have seldom been employed,
although they clearly have potential for developing good SNR. The reason is
that the phase shifting method demands carrier phase shifting with respect
to its envelope. On the other hand, in most cases of interferogram analysis,
Fourier transform profilometry does not give good results due to the model
assumed for the interferogram. Fourier transform profilometry assumes that
the analyzed signal has only one phase-modulated carrier, although in reality,
an interferogram represents the sum of several independent signals, each with a
different carrier phase.

We introduce a novel signal processing method for analyzing interferograms,
based on phase-resolved correlation, in which a one-dimensional interferogram

13




14 CHAPTER 2. PHASE-RESOLVED CORRELATION METHOD

is resolved into a three-dimensional intensity distribution in position-frequency-
phase space. Each independent signal peak in one interferogram has a different
carrier phase, allowing the signal peaks to be separated along the phase axis.
Furthermore, this method can separate the important signals from background
noise according to their frequency characteristics. In the following section, we
will describe an experimental demonstration in which three peaks, otherwise
masked by noise, are extracted from a low SNR. interferogram.

2.2 Principle

We assume the analyzed signal to be f(z). The phase-resolved correlation
method separates the important signal and the noise in f(z) by calculating
the discrete correlation between a reference wavelet and the analyzed signal.
The reference wavelet is assumed to be

h(z,¢,v) = he(2) X he(z, ¢, v) (2.1)

where he(z) is the envelope of the reference wavelet and h.(z, ¢, v), the carrier
of the reference wavelet, are assumed to be

he(z,¢,v) = sin (2nvz + ¢) (2.2)

where v is the carrier frequency and ¢ is the phase-bias variable. For application
to interferogram analysis, the envelope is assumed to be a Gaussian shape in

= exp{~7r(z/ﬁ)2} (2.3)

where § denotes the width of the envelope. The reason is that the temporal
coherence function of a white light or low coherence light source is in most cases
a Gaussian function.

The phase-resolved correlation function of f(z) is defined as

r+00
W(n./v,¢,v) = / Wz —n./v,¢,v)f(z)dz (2.4)
YR e e P i W [
¢ : [=m 4]
v @ [0,+c0]

where n, is an integer, making W a spatial discrete function whose spatial
sampling period is 1/v. The one-dimensional signal f(z) is expressed as a
three-dimensional, discrete-position, phase and frequency intensity distribution
according to the correlation function.
Now we calculate the phase-resolved correlation of the signal shown in Fig. 2.1.
In this case, to simplify the example, our investigation involves only one fre-
quency. The carrier frequency of the signal is determined by its discrete Fourier-
transformed spectrum. The important signals are localized near the carrier fre-
quency, and so the two-dimensional correlation includes all the signals except
for the noise. We use a Gaussian wavelet with a carrier frequency of 2.3x10°
m~! and width of =7x10"? as shown in Fig. 2.2. This algorithm which is im-
plemented in programming language C on 800MHz PentiumIII processor takes
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Figure 2.1: Analyzed fringe signal. Three peaks which have separate carrier-
phases are present in the signal.
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Figure 2.2: A reference wavelet for correlation. The envelope is a Gaussian
function and its width is determined as the coherence length of the light source
of the interferometer.
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Figure 2.3: The phase-resolved correlation of the signal in Fig. 2.1. We can
confirm that the three peaks have different carrier phases.
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Figure 2.4: The schematic setup of an optical coherence tomography system
which is applied to obtain the interferograms. SLD is a super luminescent
diode, SM a stepping motor, Ls lenses, M a mirror, BS a beam splitter, PIN
a pin-hole, and Detector is an avelantie photo detector. The beam funded out
from the SLD is collimated by L1 and splitter to two paths by BS. One of
the beam is reflected by M as a reference beam and the other is reflected by a
test sample as a probe beam, and then these two beams are interfered on the
detector.

600 ms to calculate a phase-resolved correlation. Figure 2.3 shows the result
of the phase-resolved correlation. The three peaks (a), (b) and (c¢) shown in
Fig. 2.3 correspond to those in Fig. 2.1. Three peaks appear to be caused by
the different beams which are reflected by different depths in the sample because
each has a different carrier phase, as shown in Fig. 2.3. To take the opposite
example, these peaks would have the same carrier phase if the peaks were re-
flected at the same point on the sample and subsequently separated by noise or
inaccuracy in the measuring system. The resolution of this method is limited by
the broader one of the coherence length of the light source or the width of the
reference wavelet. The sampling period of the interferogram must be shorter
than the half of the carrier wavelength, because of the Nyquist theorem.

As we can see in the example, phase-resolved correlation can separate the
peaks in a one-dimensional signal into peaks with a three-dimensional distribu-
tion, thus allowing their easier identification. Furthermore, the calculation of
the correlation has the additional effect of spectral filtering. Hence, the corre-
lation separates the important signals from the unwanted noise.

2.3 Demonstration

As a more practical example, we analyzed a low coherence interferogram with
low SNR. The measured sample was an aluminum mirror coated with an alu-
minum oxide layer 18 pum thick. Figures 2.4 and 2.5 are respectively the
schematic diagrams of the interferometer and the measured sample we used,
which includes a super luminescent diode (SLD) light source with a central
wavelength of 850 nm and 12 nm spectral width. This interferometer contains a
confocal optical setup with lenses L3 and L4, and a pin hall to improve the SNR
of interferograms and selectivity of measurement. The SLD beam is split into
two optical paths by the beam splitter(BS). One beam is reflected by a plane
mirror and acts as the reference beam, and the object beam is reflected and
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Figure 2.5: The scheme of the measured sample, the an aluminum-oxide coated
aluminum mirror. The thickness of the aluminum-oxide layer is 18 mm. The
incident beam is reflected in three path; (a) surface reflection, (b) border reflec-
tion, and (c) multiple reflection.
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Figure 2.6: Unprocessed low coherence interferogram of the aluminum mirror.
Although three signal peaks, (a), (b) and (c) are in fact present, they are masked
by noise.

scattered by the measured sample. These two beams are interfered at the photo
detector. By scanning the path length difference between these two beams using
a stepping motor, we can obtain an low coherence interferogram which contains
the depth information of the sample as shown in Fig. 2.6.

This interferogram contains the three peaks which are caused by (a) surface
refraction; (b) border refraction between aluminum mirror surface and the alu-
minum oxide layer; and (c) multiple reflection, but we cannot identify them by
means of conventional analysis. This is due to the low SNR and the close prox-
imity of the peaks. The phase-resolved correlation method is able to improve
both selectivity and accuracy of identification. In this case, we analyzed the in-
terferogram at only its carrier frequency for the same reason as in the last case,
so that the interferogram can be converted to a two-dimensional distribution on
a phase(m)-position(z) plane as shown in Fig. 2.7, where positive and negative
correlation peak-pairs, such as (b) and (b’) can be confirmed. Two peaks in a
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-100 -80 -40 -20 O 20 40 80 100
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Figure 2.7: The phase-resolved correlation of the signal of Fig. 2.6. The raw
signal is spread into a three two-dimensional distribution, ¢ phase, z position.

peak-pair which are separated by 7 rad. should have the same shape except for
their sign, we will discuss only the positive peak here.

We can identify a peak (b) in the center of the plot, and two additional
small peaks (a) and (c) to its right and left, all of which have different carrier
phases. Hence, we can conclude that there are three separate signals which are
caused by different reflections in the sample. Signal (a) represents the surface
reflection, signal (b) represents the border reflection and signal (c) represents
the multiple reflection. This operation allows us to extract three signal peaks
previously masked by noise.

2.4 Summary

We have proposed a new signal analysis method named which we call the ‘phase-
resolved correlation method’. Most methods which have up to now been applied
to interferogram analysis to improve the SNR can separate signals from noise,
but are not able to separate independent signals. However, using the phase-
resolved correlation method that we propose here, we can clearly identify indi-
vidual signals. In an experimental demonstration, the method shows its ability
to identify a thickness of 18 pum and noise-masked interferogram signal peaks.
We have confirmed that this method is very effective for analyzing low coherence
interferograms.

Part 11

Spatio-Temporal
Conversion
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As we mentioned in part I, there are some analogies and duality between the
temporal and spatial behavior of electric field. The principle of joint trasnform
correlator|1] which is one of the most well employed spatial optical computing
techniques and a spactral modulating pulse shaper[2, 3] which is one of the
most well employed ultrafast pulse controlling techiniques have some analogies.
Both of the techiniques modulate the spectrum of an input signal, and the both
spectrums are projected spatially. By using the analogy, we can joint these
two techniques and the joint system superimposes the auto-correlation of the
temporla profile of an input temporal optical signal spatially.

We propose a time-space conversion system, spatio-temporal joint transform
correlator in chapter 3. This system projects the auto-correlation of the tempo-
ral profile of a femtosecond light pulse spatially. In experimental demonstration,
we measure the pulse separations of some picosecond-separated femtosecond
twin pulses.

In chapter 4, a spactral interferometric optical coherence tomography system
is investigated as a more practical application of spatio-temporal joint transform
optical coherence tomography system. This system is an all-optical, less spatial
scanning optical coherence tomography system, which determines the three di-
mensional profile of a test object with an one-dimensional mechanical scanning
operation.




Chapter 3

Spatio-Temporal Joint
Transform Correlatior

3.1 Introduction

In recent years, large numbers of demonstrations and applications in the field of
optical computing based on the high parallelism, high processing speed and high
capacity of light have been studied. These techniques can be classified into two
broad categories. One is spatially discrete optical computing represented by an
optical neural network technique or the like[16, 17]. Although these techniques
are based on the parallelism of light, diffraction and interference, the fundamen-
tal properties of light are not availed. The other is a group of techniques which
are based on optical Fourier transform of Fraunhofer diffraction[1]. In these
techniques, which are represented by a joint transform correlator (JTC)[18] or
optical matched filtering[1], the two-dimensional spatial spectrum of an image
is spread spatially by the Fourier transform ability of a lens and is modulated,
and so the original image is manipulated indirectly.

Meanwhile due to the progress of solid state lasers and mode-locking tech-
niques, some pulse laser sources with very short temporal duration have been
available that do not demand high costs or difficult operation. In accordance
with the uncertainty of Fourier transform, such pulses have very broad wave-
length spectra, in contrast to their very short temporal duration. Therefore
spectral filtering methods have been used to control the temporal profiles of
such short pulses[5, 19, 6, 20]. In the methods, the broad wavelength spectrum
of the pulse is spread spatially by a grating-lens pair and modulated by some
kind of modulating devices, for instance a liquid crystal spatial light modula-
tor (LC-SLM), an acousto-optic (AO) crystal, a photorefractive crystal or the
like. Then the modulated spectrum is converted to a temporal pulse by another
grating-lens pair. As a result the temporal profile of the light pulse can be con-
trolled arbitrarily but indirectly, although its temporal duration is too short to
be controlled directly.

In the above discussion, we can find much similarity between the two tech-
niques, an optical computing technique and a spectral filtering method. The
similarity is that both of the input signals, a two-dimensional optical image in
the optical computing method and a temporal pulse in the spectral filtering
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Figure 3.1: The schematic setup of conventional JTC. L1, L2 are nlens, F.T
Fourier transform, and OA-SLM optically addressed spatial light modulator.
The auto-correration of an input image is observed on an output plane.

method, are Fourier transformed by a Fourier transform lens or a grating-lens
pair, and the spatial or wavelength spectrum is spread spatially. Then the
spectrum is modulated and transformed again to the original domain.

By using the similarity, we can achieve time-space conversion. In the above
methods, both the temporal spectrum and the spatial spectrum are spread
spatially. Hence we can connect these two methods at the spectral plane. For
instance, Nuss et al.[21] demonstrated that when the spatially spread power
spectrum of an input pulse was recorded on a photo-refractive device spatially,
then the spatial pattern was able to be read out and Fourier transformed by a
lens and cw-laser. As a result, the temporal profile of the pulse was projected
spatially. For another example, Ema et al.[22] demonstrated another method.
In this method, the phase term of the spatially spread spectrum of an input
pulse which rapidly changes temporally is canceled out by a reference beam on
a non-linear crystal. Hence, we can get the temporal profile of an input pulse
spatially by a grating-lens pair and a Fourier transform lens.

In this paper, by using the similarity more directlly, we propose and demon-
strate a spatio-temporal joint transform correlator (ST-JTC)[23] which spatially
projects the cross-correlation of pulses which propagate on the same longitudi-
nal axis. In this system, the wavelength spectrum is spatially distributed by a
grating-lens pair, which is the technique of a spectral filtering method. Then the
distributed spectrum is converted to a spatially one-dimensionally distributed
power spectrum by an optically addressed spatial light modulator (OA-SLM)
and spatially Fourier transformed by a lens and cw-laser, which is the tech-
nique of a conventional spatial JTC. As a result, we can obtain the temporal
auto-correlation of the input pulse spatially on an output plane. To sum up the
system, it is a conventional JTC except that the first spatial Fourier transform
is replaced with temporal Fourier transform by a grating-lens pair. Therefore,
it is a JTC which accepts a temporal signal as an input and puts out a spatial
signal as an output.
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3.2 Principle

First, we would describe a conventional spatial JTC which has already been
widely investigated. A typical setup of a JTC system is shown in Fig. 3.1. We
assume that the field amplitude of a two-dimensional image on the input plane
in Fig. 3.1 is expressed as Fi(z,y), and consider the process of obtaining its
auto-correlation by a JTC. In the first step, the image Fi(z,y) is decomposed
to its spatial spectrum by cw-laser and a Fourier transform lens. The field
amplitude on the focal plane of the lens L;becomes

exp (i§) exp (—i2kfa) » (T > :
: = = P —, 371
Bisy Mo S EYAFT i
where F}(u,v) is the Fourier transform of F(z,y) which is defined as
’ (o ]
Fi(p,v) = // Fy(z,y) exp {27 (zp + yv)} dz dy, (3.2)
=0

) and k are the wavelength and the wave number of the laser, f, the focal
length of the lens, L; and u, v spatial frequency. In the next step, the spectrum
is converted to its intensity, the power spectrum of Fi(z,y) by an OA-SLM or
a CCD camera and an SLM.

.
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Here Fl* means the complex conjugate of Fy. Finally, the power spectrum is
Fourier transformed again by another lens. As a result, the field amplitude on
an output plane is expressed as
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where f, is the focal length of the lens Ly, and ® correlation operator. Note
that the phase term has dropped out, because we detect only the intensity
of F;. From this equation, we can confirm that the output, Fj becomes the
auto-correlation of Fy (—fa/fo®, — fa/ foy)-

Next, we explain our novel optical system, ST-JTC, which is the subject
of this chapter. The schematic setup of the system is shown in Fig. 3.2. The
system is a conventional JTC except that the lens for spatial Fourier transform
is replaced by a grating-lens pair for temporal Fourier transform. The temporal
and spatial Fourier transform in Fig. 3.2 correspond to first and second Fourier
transform in Fig. 3.1, respectively. When the profile of an input pulse just before
the grating is given by Ei(z,t) = S(z)T'(t), where S(z), T(t) are the spatial

R

(3.4)
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Figure 3.2: The schematic setup of a spatio-temporal JTC. CL cylindrical lens,
BS beam splitter, OA-SLM optically addressed spatial light modulator, He-Ne
laser is 632.8-nm wavelength cw-lasercw-laser and Ti:Sapphire Laser is 800.0-nm
wavelength and 120-fs FWHM mode-locked pulse laser, and F. T. means Fourier
Transform. The temporal power spectrum of input pulses are spread on the left
side of the OA-SLM spatially, then the spectrum are read out by cw He-Ne laser
then Fourier transformed by CL2. Therefore, the temporal correlation of the
input pulses are appeared on the CCD spatially.

and temporal profiles of the pulse respectively and z and t are transverse spatial
axis and temporal axis, the field amplitude after the grating is given by

Es(z,2=0,t) = S(az)T(t — Bz)exp <i27r)\it> (3.5)

w

where o = cos0;/cosy, B = A\yN/cosby. 0; and 6, are the incident angle
and diffraction angle of the grating, N the grating constant, )\, the central
wavelength of the input pulse and ¢ the velocity of light. Then Ej is Fourier
transformed by a lens and spread on the left side, the writing side, of an OA-
SLM as

5 o ~ « A (e}
E3 el (/\wfw T) e (—mfb) ST <—m’£) (36)

where f, is the focal length of CL;[24]. The approximation is made when the
spatial extent of the pulse is much larger than its temporal duration, and the
phase terms are ignored to simplify the expression. From this equation, we can
confirm that the temporal Fourier transform of the pulse is spread spatially on
the plane. Then the field amplitude is converted to its intensity, the power
spectrum, by the OA-SLM.
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Figure 3.3: The auto-correlations of twin pulses with 1.02-ps (a), 1.38-ps (b)
and 1.53-ps (c) separations, which are measured by the spatio-temporal JTC.
We can confirm that the correlation peaks are shifting with the separation of
the input pulses.

Finally, the power spectrum is read out with A, wavelength cw-laser and spa-
tially Fourier transformed by a f, focal length lens, C'Ly. Hence the field am-
plitude on the output plane is expressed as

A‘LU w /\IU w .
Es xT <—i)\rj; r) T <Ai/\,§’rr T) . (3.8)

This equation states that the temporal auto-correlation of the input pulse is
spread spatially on the output plane.

3.3 Experimental Demonstration

We have demonstrated the ST-JTC. In the demonstration, we use twin pulses
which are synthesized by a Michelson interferometer as an input pulse signal.
A parallel-aligned nematic liquid crystal spatial light modulator (PAL-SLM)
manufactured by HAMAMATSU([25] is used as an OA-SLM, and the output-
correlation image is detected by a CCD camera. The schematic setup has been
in Fig. 3.2; the focal length of CL1 and CL2 is 130 mm and 200 mm, respectively,
the grating constant of the grating is 2000 lp/mm and the cw-laser source is
a He-Ne laser with 632.8-nm wavelength. We placed an objective lens in front
of the CCD camera to magnify the correlation image. Auto-correlations of the
twin pulses which were observed in the experiment are shown in Fig. 3.3. The
pulse separation of the input twin pulses are 1.02 ps, 1.38 ps and 1.53 ps. Their
auto correlations are respectively shown in peaks (a), (b) and (c¢). Hence we can
confirm that the separation between the +1st order peaks of the correlations
are in proportion to the separations of the pulses. In the figure, although the
longitudinal axis is calibrated to a temporal scale, it originally means the spatial
scale on the CCD camera.

On the other hand, in Fig. 3.4, the separations between +1st correlation
peaks on the CCD camera are plotted against the displacement of an arm of
the Michelson interferometer which corresponds to the separations of input twin
pulses. According to the plot, the root-mean-squared error of the ST-JTC is
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Figure 3.4: +1st order peak separation on the CCD versus the displacement of
the arm of the Michelson interferometer. The displacement is in proportion to
the separation of separations of the input twin pulses.

determined as 29.8 um on the CCD camera, or 12.4 fs in the temporal domain.

3.4 Summary

We have proposed and demonstrated a novel optical system, a spatio-temporal
joint transform correlator (ST-JTC). The system based on similarity between a
conventional spatial joint transform correlator, which is one of the most popular
optical computing technique and a spectral filtering method, which is one of the
most popular method of controling the temporal profile of an ultrafast light
pulse. Our system is a hybrid of these two methods. In the demonstration, we
determined the pulse separations of twin pulses which were synthesized by a
Michelson interferometer. According to the result, we have confirmed that the
experimental system has 12.4 fs temporal accuracy in determining the positions
of input pulses.

As eq. 3.8 describes, the correlation which derived here is not an intensity
one but a complex correlation which includes information on the phase of the
pulse. The ST-JTC does not depend on nonlinearity which depends on the high
peak intensity of a pulse. This means that, we can use a super luminescent
diode (SLD) or any other broad band light source as the input light source.
With such light sources, the spatial output becomes the temporal coherence
function of the input light source. Although in the demonstration presented in
this paper the input signal was generated by a Michelson interferometer, if the
signal is generated by surface reflection or the like, the system could work as a
white light interferometer without scanning operation. Based on the idea, we are
now constructing a non-scanning and all-optical optical coherence tomography
system to measure the in vivo structure of human skin(26].

As mentioned in the introduction, the ST-JTC is based on the idea of a spa-
tial JTC. So, almost all techniques of conventional JTC can be applied to the
ST-JTC, such as nonlinear thresholding to increase the S/N ratio[27] or signal
retrieval from rough phase noise[28]. Such unification of pulse control and con-
ventional optical computing should yeild a breakthrough in optical computing.
Computational long distance communication and computational measurement

3.4. SUMMARY

should thus become possible.




Chapter 4

Spectral Interferometric
Joint Transform Optical
Coherence Tomography

4.1 Introduction

Optical coherence tomography (OCT) or a white light interferometer is one of
the most commonly adopted methods for three-dimensional profile measurement
and uses a broad-band, low coherence light source. The object to be measured
is placed on the end of one arm of the Michelson interferometer. The scattered
light from the object and a reference beam which passes through the other arm
make an interference fringe on a photodetector. The interferogram can be used
to analyze the depth information of the sample object to an accuracy determined
by the temporal coherence length of the light source[29, 30, 31].

Use of a confocal optical setup or an optical fiber interferometer makes the
OCT system most suited to measuring light-scattering objects. This system is
widely used in the biomedical field in in vivo measurements(13, 32, 14]. How-
ever, the use of a confocal setup sacrifices one advantage of optical measurement,
namely the spatial parallelism of light. Without this advantage, to determine
an object three-dimensionally, the system requires a three-dimensional scanning
process which includes one-dimensional arm-length scanning using the Michel-
son interferometer to determine depth information at one point on the measured
object, and additional two-dimensional perpendicular scanning operations to
determine the depth information two-dimensionally. This type of mechanical
scanning operation is very time-consuming, making it impractical for measur-
ing the structure of in vivo objects.

To remove the one-dimensional depth scanning and to avoid this long mea-
surement time, a spectral interferometer technique has been introduced to some
OCT systems[33, 34]. Usually, this type of OCT setup includes a Michelson
interferometer as part of the conventional OCT setup. In systems such as this,
the temporally encoded depth information is not decoded by scanning the path-
length of the Michelson interferometer as would be done using an ordinary OCT
system. Instead, it is decoded by a spectrometer. The output light of a Michel-

31
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son interferometer is temporally Fourier transformed by means of a grating-lens
pair. Since the spatially spread spectrum includes the depth information, the
depth structure of the object can be derived by Fourier transforming the spec-
trogram. This process does not demand mechanical scanning, and therefore, the
three-dimensional scanning operation is reduced to a two-dimensional version.
We have presented a spatio-temporal joint transform correlator (ST-JTC)[35],

which is based on the principle of femtosecond pulse shaping by spectral modulation|[2,

3, 36, 37] and a joint transform correlator, one of the most commonly used
spatially optical computing techniques[l]. In the spatio- temporal JTC, the
temporal information of an ultrafast light pulse or a pulse train is spatially
spread into its spectrum by a grating-lens pair. The spectrum is then spatially
Fourier transformed by an optically addressed spatial light modulator (OA-
SLM) and a cylindrical lens. This makes it possible to obtain the temporal
correlation of the input pulse as a spatial image. In this case, the correlation
is not an intensity correlation but a phase correlation. Hence, when continuous
wave (cw) broadband light is incident to the system, we are able to obtain its
coherence function on the output plane. The spatio-temporal JTC may also
be regarded as an all-optical spectral interferometer. Furthermore, the system
can be spatially one-dimensionally multiplexed due to the spatial parallelism of
light. So the scanning dimension in OCT can be reduced to one dimension if
the spatio-temporal JTC technique is introduced to the spectral interferometric
OCT system.

In this chapter, we apply the spectral interferometry to an OCT system to
avoid the depth directed scanning operation, and also apply the spatio-temporal
JTC technique to reduce one more scanning dimension and to carry out optical
Fourier transform. This system does not demand electronic computation to
obtain the object image, and so it can be implemented as an all-optical setup,
thus allowing the measurement time to be dramatically shortened.

4.2 Principle of Spectral Interferometric OCT

An OCT system which uses a white light interferometer encodes the depth in-
formation of a measured object in the temporal complex amplitude profile of
the reflected beam. When few micrometer depth information is encoded to the
reflected beam, the temporal profile changes very rapidly because a depth of 1
pm is encoded in 6.6 fs, furthermore when we use a cw broadband light source,
the depth information is encoded in the phase of the light, not intensity. This
means that the depth profile of an object is not measured directly even if a photo
detector has enough high response speed. In an ordinary OCT system, to detect
the fast signal by a slow detector and measure the invisible phase changing, the
reference beam and the object beam are interfered by the Michelson interfer-
ometer to obtain the correlation signal which contains the depth information of
the object. One-dimensional scanning operation of one arm of the Michelson
interferometer is required to obtain depth information on the object.

To avoid the need for mechanical scanning, we applied the principle of spec-
tral interference and a joint transform correlator to an OCT system. The
schematic setup of the system of the non-scanning spectral interferometer is
shown in Fig. 4.1. The optical system is in three parts. The first part is a
signal generator, which uses light nto encode the three-dimensional shape of
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Figure 4.1: Schematic setup of the spectral interferometric joint transform OCT
system. SLD super luminescent diode, L lens, XCL and YCL z and y oriented
cylindrical lenses, BS beam splitter, M mirror, G grating, A/2 half-wavelength
plate, pol. polarizer and anl. analyzer.

the sample object. We used the Michelson interferometer with its arm-length
shifted several hundred micrometers from its zero point. In a spectrometer,
the temporally encoded depth information is spread along the spatial axis as
a spectral interferogram. The last part of the Fourier transform, the spatially
spread spectral interferogram is Fourier transformed spatially. As a result, the
sectional image of the surface under test is obtained by CCD2.

First, we assume the spectral profile of the broadband light source to be

2
BY(v) = exp {—w (%) }exp{w(u)} (41)

where v is temporal frequency and « is a constant which is determined by the
temporally spectral width. The first term of exp{—w(u/v)Q} represents the
Gaussian spectral intensity profile, and the second term exp {i¢(v)} is the phase
of the spectrum. In the experiments, we use a super luminescent diode (SLD)
as the light source, and so ¢(v) should be a random function of . The central
wave length and FWHM of the spectrum are 851 nm and 12 nm, respectively.
Hence, v = 5.37 x 10'2. The inverse-Fourier transform of the electric field, the
temporal profile of the light source is expressed as

E}(t) = yexp {—m (1) }  @(¢) (4.2)

where ®(t) is the inverse-Fourier transform of exp {i¢(v)} and * denotes con-
volution. ®(t) has a temporally constant intensity profile which is based on
the randomness of ¢(v). Hence Ef(t) also has a temporally constant intensity
profile.

Let us consider the electric field after the signal generator, the first part of the
optical system. Assuming the difference of the arm-length of the interferometer
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to be [, the complex amplitude profile of point (a) in Fig. 4.1 is

Bi(t) = ~exp [4 {v(t+ g—ﬁ)ﬂ

*
4.3)
Iy 5 o0 (
+v exp [wx {v(t-%)} } x®(t— L)
where c is speed of light. By eq. (4.3), we can confirm that the depth information
of the measured object is encoded in the temporal optical signal as a signal-delay.
After the spectrometer section of the optical system, the intensity field profile
on CCD1 is described as

= 2
E3 ()|

2
x exp{—?ﬂr <c—"f%7r) }
vyl
{1 + cos (QWEEIf—;’Em)}

where vy is the central frequency of the SLD, f; is the focal length of XCL2
and a and /3 are constants determined by the grating, G as a = cos#6; /6, and
3 = N/(v1 cosfy). The electric field have temporally constant intensity profile,
so that the expression is temporally integrated. The angles 6; and 64 are the
incident and diffraction angle of the grating and IV is the grating constant|[24,
38, 39, 40]. The first term of eq. (4.4) expresses the spectral intensity profile
of the SLD, the light source. The second term forms a sinusoidal wave with its
frequency in proportion to the path length difference of the interferometer.

The intensity profile detected by CCD1 is written on a spatial light modu-
lator (SLM) and read out by a cw-He-Ne laser and spatially one-dimensionally
Fourier transformed by a cylindrical lens, XCL3. As a result, an E$(z) is ob-
tained on CCD2.

Ei(zx) o« exp {—27T (%71)2}
{38 (%o - ¥immt) +9 (222) (4.5)
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where v5 is the central frequency of the He-Ne laser. Using eq. (4.5), we can
confirm that the positions of the delta functions on CCD2 represent the path
length difference of the interferometer. The position of the delta functions
represent the depth of the sample object, enabling the depth structure of the
object to be determined by this system.

4.3 Experiments

We have measured the path length difference of the Michelson interferometer
and three-dimensional profiles of two objects by a spectral interferometric joint
transform OCT system, shown in Fig 4.1. In the experiment, an SLD with a
central wavelength 850 nm and 12 nm FWHM of spectrum is used as a cw broad
band light source and a PAL-SLM|41, 42, 43], parallel aligned nematic liquid
crystal SLM is used as the SLM.

First, to calibrate the system, we measured the path length difference of a
the Michelson interferometer. In this case, plane mirrors are placed on the ends
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Figure 4.2: Output image of the OCT system. Correlation peaks which
correspond to the path length difference of the two arms of a Michelson-
interferometer.
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Figure 4.3: Schematic figure of the sample object used in the second experiment.
Nail varnish has been used to adhere together the glass sheets, and the surface
is coated with aluminum.

of the two arms of the interferometer. The two cylindrical lenses, XCL1 and
YCL1 which are shown in Fig. 4.1 are removed.

The results are shown in Fig. 4.2. In Fig. 4.2-(a), we can see an auto-
correlation peak of an input signal (Oth order peak), halation noise and 1st
order cross correlation peak on the left side of the Oth order peak, indicated by
the white arrow. The position of the 1st order peak represents the path length
difference. In the case of Fig. 4.2-(b), one arm-length is 400 um longer than in
the case of (a). Hence, the 1st order peak shifts in proportion to the arm-length
shift. From these results, we calculated the coefficient between the arm-length
difference and the spatial position on CCD2 as 16 um/pixel. Thus the coefficient
gives the measurement accuracy of this system. According the FWHM of the
auto-correlation peaks, the depth resolution of the system is determined as 70
pm. And, according to the numerical apertures of cylindrical lenses and the
central wavelength of the SLD light source, the z-resolution and y-resolution
are estimated as 2 pm and 4pm, respectively.

In the next experiment, we measured the sample object with a stepped
surface shown in Fig. 4.3. The sample is constructed of a cover glass and a glass
slide covered by aluminum. The optical system included the two cylindrical
lenses which had been removed in the first experiment. Using XCL1, the light
is focused on the measured sample, improving the resolution in the z-direction.
Furthermore, XCL1 corrects the direction of the reflected light, presumably
leading to reduced light power loss. The image of the object surface is formated
on CCD1 by the YCL1, resulting in improved resolution in the y-direction. In
this system, the scanning operation along the z-axis runs in parallel with spectral
interferometry. Hence, we have to carry out only one-dimensional scanning in
the z-direction to measure the three-dimensional profile of the object In this
experiment, we scanned 50 points and reconstructed the object surface as shown
in Fig. 4.4. The stepped surface of the object can be observed.

In the next experiment, we measured the surface of the Japanese ten-yen-coin
shown in Fig. 4.5. The coin is made from copper with a rough surface and the
probe light is scattered by the surface. The measured and reconstructed surface
image is shown in Fig. 4.6. The measured area is cropped into a rectangle in
Fig. 4.5. Figure 4.6 shows the reconstructed surface shape as a topographic
image in which bright points indicate higher points and dark points indicate
lower points. This example indicates that we can confirm that this system has
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Figure 4.4: The Measured three-dimensional surface of the sample shown in
Fig. 4.3.

Figure 4.5: Photograph of the sample object used in the third experiment, a
Japanese 10 yen coin. The area which is cropped to a rectangle is measured
using the system.

the ability to measure the shape of an rough surface.

4.4 Summary

We have constructed a spectral interferometric three-dimensional surface-measurement

system with only one-dimensional scanning operation and without the need for
electronic computation.

In this chapter, we measured three samples to a depth-accuracy of 16 yum and
depth-resolution of 70 pum. One is the path length difference of the Michelson
interferometer, another is the surface of an aluminum coated sample and the
last is the rough surface of a coin. Although the last sample is a highly light-
scattering object, the system has demonstrated its ability to measure minute
changes in the height of a sample surface.
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Part I11

Spatio-Temporal Coupling
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Figure 4.6: The measured surface image of a 10 yen coin. Although the signal-
to-noise ratio is not ideal, we can identify a part of the Japanese character “+”
(ten).
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In some diffractive optical systems, such as a spectrometer or a pulse shaper,
spatio-temporal coupling is induced. By the coupling effect, the spatial state of
an electric field is determined by not only its ex-spatial state, but also its ex-
tempral state. As the same, the temporal state of the electric field is determined
by its ex- temporal and spatial profile.

In the most cases, such coupling effect causes the decreasing of accuracy of
spectroscopy or pulse control. Such non-demanded phenomena are not avoidable
but easily redusable, so that in many case the effects are ignored.

We can, however, activelly apply the effect to achive more higher order
spatio-temporal computing. Employing the effect, for example, we can con-
trol the spatial and temporla profile of a femtosecond light pulse by a one-
dimensional spatial light modulator.

In this part, we investigate the applications of spatio-temporal coupling.
The spatio-temporal Wigner distribution function is introduced to analyze the
spatio-temporal properties of an optical system with less amount of numerical
calculation. In chapter 5, we analyze the spatio-temporal coupling effect of
conventional pulse shaper. In chapter 6, an improved pulse shaper, spatio-
temporally coupled pulse shaper is introduced, and analyzed numerically. The
pulse shaper controls the spatial and temporal profile of a femtosecond light
pulse at the same time. In chapter 7, the spatio-temporal properties of a time-
domain microscope is numerically analyzed.




Chapter 5

Spatio-Temporal Coupling
in Pulse Shaper

5.1 Introduction

Improvements in laser techniques have made it easier to apply high precision
femtosecond lasers to many fields, including communications, medical equip-
ment, optical measurements and industrial fabrication [44, 4, 45, 46]. Such ap-
plications demand detectors or modulators which work at femtosecond speeds,
but such devices have yet to be created. Instead, pulse-shapers are widely
applied to control ultrafast light pulses. A pulse-shaper spatially spreads the
spectral components of an ultrafast light pulse using a grating-lens pair, mod-
ulates the spectrum by means of a spatial light modulator (SLM) or the like,
then reconstructs the temporal pulse from the modulated spectrum by means
of another grating-lens pair. Using a pulse-shaper makes it possible to control
the temporal profile of an ultrafast light pulse without the need for high speed
devices.

In a pulse-shaper or a spectrometer, spatio-temporal coupling effect [47][48]
are unavoidable. As a result of diffraction, the temporal profile of an electric
field is influenced by its previous spatial profile, and the spatial profile of an
electric field is influenced its previous temporal profile. In some applications,
the spatio-temporal coupling creates problems, such as spatial and/or tempo-
ral defocus or spatial and/or temporal chirp, but it is possible to reduce this
effect by simple means. For example, in a pulse-shaper or a spectrometer, we
can ignore the coupling if the spatial beam shape is sufficiently wider than its
temporal version[49]. On the other hand, it is also possible to apply actively the
spatio-temporal coupling by understanding the behavior of the coupling both
intuitively and quantitatively.

Payne et al. analyzed the property of a pulse-shaper using the Wigner
distribution function. Although, in his paper, he analyzed an ideal pulse-shaper,
without any misalignment or defocus, it is likely that spatio-temporal coupling
will occur in a non-ideal pulse-shaper.

In this paper, we analyze the spatio-temporal properties of a pulse-shaper in
which we take into account defocus of lenses, grating pairs with different grating
constants, lenses with different focal lengths and combinations of these factors
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by using the Wigner distribution function.

5.2 Principle of the Wigner Distribution Func-
tion

The Wigner distribution function was originally introduced to quantum dy-
namics to represent position-momentum intensity distribution containing uncer-
tainty due to having been Fourier transformed|[50]. By introducing this function
to light waves, we can obtain the space-to-spatial frequency or time-to-temporal
frequency distribution of photons, although the physical quantities have un-
certainty with respect to each other due to Fourier transform. The Wigner
expression of spatial and temporal electric field amplitude E(z,t) is defined as

WoT (z,¢,t, w) =

1 OO : / f// ‘/,/ t/
7-// E<2I+Ai,tF‘—>E*<.’I:~1‘—,1‘,—>
or J] o g g R
x exp{i(—€z’ + wt')} dz'dt’ (5.1)

where z is the spatial position, £ is the spatial frequency, ¢ is the time and w is
the temporal frequency. This distribution function represents the intensity dis-
tribution of complex light amplitude in four-dimensional (z,€,t,w) space, so that
we can arbitrarily obtain the one to four-dimensional distribution by integrating
Eq. (5.1) along z, £, t and/or w. By representing the input and output field
intensity of a linear optical setup using the Wigner function, the property of
the optical setup is expressed as a linear coordinate transformation[51]. When
a phase modulating optical element, such as a lens, phase-modulator, disper-
sion medium or spatial diffraction is described as a four-dimensional function,
P(z, €, t,w), its partial differentiation 8 /dz, 0 /0¢, 0P /Ot and 0P /0w reveals
the group velocity delay of €, z, w and t, respectively. Hence, the output four-
dimensional coordinate is expressed by subtracting the group delay from the
input coordinate. For example the coorndinate transform matries represent a
lens, Fresnel diffraction and diffraction grating are

Lo 1 ik 0% 0 i
| [P . ) A 0 S & .
to | v ealagll t | (5.2)
Wo 0 ¢ I R Wy
T5 L i=zifkye 102 R0)
[Pl 10 1 0 0 & s
i s EE0) 0 1 0 KL e (5.3)
Wo 0o @ ale| ok
and

Bs o 0 0 0 Ts

So 0 l/a 0 —B/a &

"U 7»/3 U l () ’L (54)
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The conversion rule allows us to intuitively understand the behavior of the
optical setup.

The coordinate transform of a complex optical setup is calculated as a cross-
product of the transform matrixes of its elements. For example, a transform ma-
trix of a 2- f spatial Fourier transform setup, which is constructed from f-Fresnel
diffraction, a lens whose focal length is f and another f-Fresnel diffraction is
expressed as

o 0 -£ 007 [
G o (9.0 0D & (5.5)
A R S SR A 1 ti
Wo 0 0 161 | Wi

where (z, &, ti,w;) and (2o, &, to,w,) are the input and output coordinates,
ko is the transverse wave number which is determined as 2m/Ag and Ag is the
wavelength of the light.

The 3-3, 3-4, 4-3 and 4-4 elements of Eq. (5.5), the temporal partial matrix
form a unit matrix, so that it does not change the temporal profile of the electric
field. On the other hand, according to the 1-1, 1-2, 2-1 and 2-2 elements of
Eq. (5.5), the spatial partial matrix, the spatial and spatial-frequency profile of
the electric field are swapped. This means that the optical setup can be Fourier
transformed, spatially.

The transform matrix of a spectrometer, which is constructed from a 2-f
Fourier transform setup and a diffraction grating, is expressed as

To ,? —%f 0 0@ T4
to o & 1 0 ti
Wo 0 0 0 1 Wi

where o = cos 0;/ cos0a, B = 2mp/(wod cosby), 0; and 6, are the incident and
diffraction angle to the grating, respectively, p is the diffraction order and wy is
the central frequency of the light. We can confirm the £-w and ¢-§ coupling in
the spectrometer by means of Eq. (5.6).

5.3 Analysis of the Spatio-Temporal Properties
of Pulse-Shapers

In this section, we numerically analyze the spatio-temporal properties of several
pulse-shapers. The first model is an ideal pulse-shaper, and others are mis-
aligned, have input and output gratings with different grating constants, have
lenses with different focal lengths, and have different grating constants and focal

lengths.

5.3.1 An Ideal Pulse-Shaper

We numerically analyzed the spatio-temporal property of a pulse-shaper schemat-
ically illustrated in Fig. 5.1. In this system, we ignore the dispersion caused by
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Figure 5.1: The schematic set up of a pulse shaper. CL;, CL32; cylindrical lens,
G; grating, 0;; incident angle, 4; diffraction angle.

the atmosphere during propagation, and gratings are placed in the Littrow con-
figuration (a = 1).

The assumed spatial profile of the input pulse is Gaussian with FWHM of 1
mm, and the central wavelength is 749.4 nm. Although, the light pulse generated
by Ti:Sapphire laser has a sech?-temporal profile, to reduce the computation
time, we assumed a Gaussian profile with FWHM of 100 fs. The Gaussian
and sech? profile differ imperceptibly as long as a nonlinear phenomenon does
not intervene. An output Wigner distribution function is a four-dimensional
(z,&,t,w) distribution, thus by two-dimensionally integration, we can obtain
an arbitrary two-dimensional profile of an output pulse on non-integrated axes.
For numerical calculation, we used 64 sampling points along the integrated axes
and 32 sampling points along the displayed axes.

The Wigner transform matrix of an ideal pulse-shaper, without any mis-
alignment, is

Z, S I ({9 ) z;
A T (=L (I () &
A e 0 (0 Sy {0 t; (5.7)
Wo 0ROl 09 w;

where we assume that A= B =C =D = f = 500 mm and G; = G2 = 600
Ip/mm. The spatial component (the elements of 1-1, 1-2, 2-1 and 2-2) of the
transform matrix of Eq. (5.7) create a negative unit matrix, and the temporal
component (the elements of 3-3, 3-4, 4-3 and 4-4) create a positive unit matrix,
so that the output electric field intensity profile equals the input profile, except
that the spatial profile is inverted.

The numerically calculated output profile is shown in Fig. 5.2. In this Figure,
the brighter and darker points represent higher and lower intensity. It is clear
from Fig. 5.2 and Eq. (5.7) that spatio-temporal coupling is not induced by the
ideal pulse-shaper.

5.3.2 A Pulse-Shaper with Defocused lenses

In this section, we consider a pulse-shaper with misalignment, whose the dis-
tance from CLg to Gy is shorter than focal length of CLy, and then the Wigner
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Figure 5.2: Output field intensity profile of 4f system. A=B=C=D = f =
500 mm

transform matrix is

50 508
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£ o ¥ 106 & L
& 50 5082 : (5.8)
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Wo 0 0 O 1 Wy

where we assume that A = B = C = f = 500 mm , D = 450 mm and G;
= Gy is 600 lp/mm. In Eq. (5.8), & and w, are transformed to —§; and w;,
respectively, z, and ¢, include &;-w; coupling in addition to z; and t;. We expect
the spatio-temporal coupling effect occurs. The numerically calculated output
profile is shown in Fig. 5.3. We can find that the temporal delay is induced on
the z-t and w-t plot, by comparing Fig. 5.2 and Fig. 5.3.

In the temporal profile, the FWHM of the output pulse is 4.0 times longer
than that of the input pulse. We can confirm that the spatio-temporal coupling
induces the temporal chirp in the é-t, z-t and w-t plot. According to Eq. (5.8),
the spatial chirp is induced by the spatio-temporal coupling effect, although
the z-¢ plot of Fig. 5.2 and Fig. 5.3 are the same. This result means that the
influences of &; and w; cancel each other out, so that the spatial profile does not
come under the influence of the spatio-temporal coupling effect.

In the same way, when the distance from CLj to G is longer than the focal
length of CLy (that is D > f, if we assume that A = B = C = f = 500 mm,
D = 550 mm and G; = Gg is 600lp/mm), the Wigner transform matrix is
represented by Eq. (5.9). In this case, the numerically calculated output profile
is opposite to Fig. 5.3 with respect to the direction of the temporal chirp. The
chirp direction corresponds to the sign of the elements 3-2 and 3-4 in Eq. (5.8)
and Eq. (5.9).
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Figure 5.3: Output field intensity profilee. A = B = C = f = 500mm,D =
450 mm.
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As shown in Fig. 5.4 by comparing the intensity profile of cases D < f and
D > f, the z-t plot is the same and the t-w plot varies its inclination. The
former case shows that the chirp direction of the temporal and spatial profile
are inverted by the spatio-temporal coupling effect, and the latter case shows
the direction of the temporal chirp to be inverted. Therefore, we can find that
high frequency components are forwarded in the case of D < f whereas in the
other case the low frequency components are forwarded.

5.3.3 A Pulse-Shaper with Different Grating Constants

In this section, we consider a pulse-shaper whose input and output grating
have different grating constants, without misalignment. The Wigner transform
matrix is then

To =1 0 0 0 i
So | _ 0 -1 0 Bi—pBs z ,

L | T 1B~ 1 0 ‘ (5.10)
Wo 0 0 0 1 w;

where we assume that A = B = C' = D = 500mm, G; is 600 lp/mm and G, is
1200 lp/mm, £y = 27/(d1wo cos bq,) and fa = 27/(dawg cos By,) are defined by
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Figure 5.4: Output field intensity profile. (a) D = 450 mm; (b) D = 500 mm;
(¢) D = 550 mm.
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Figure 5.5: Output field intensity profile. (A = B = C = D = f = 500 mm,
G1 : 600 1p/mm, Gy : 1200 Ilp/mm)
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Figure 5.6: Output field intensity profile. (A = B = C = D = f = 500 mm,
G : 600 lp/mm, G2 : 1800 lp/mm)

several grating constants d; = 1/600 mm and dy = 1/1200 mm. In Eq. (5.10),
z, and w, are transformed to —z; and wj;, respectively, &, and t, include &;-w;
and t;-z; coupling in addition to &; and t;. We can see that the spatio-temporal
coupling effect induces the chirp at the spatial frequency and temporal profile.
In this case, the numerically calculated output profile is shown in Fig. 5.5. As
compared with Fig. 5.7, we can see that the spatio-temporal coupling induces
the temporal chirp in the z-t plot. In the temporal and spatial frequency profile,
the FWHM of the output pulse stretches 15.4 and 8.8 times longer respectively
as a result of this chirp. Also, we have confirmed that the light pulse shifts from
upward to downward.

In addition, by reducing the output grating constant (d; = 1/600 mm.
dy = 1/1800 mm), the numerically calculated output profile varies as shown
in Fig. 5.6. The FWHM of the temporal and spatial frequency profile stretches
44 and 20 times the input respectively. We have confirmed that the quantity of
the chirp increases when reducing the grating constant.

5.3.4 Pulse-Shaper with different focal length lens pair

In this section, we consider a pulse-shaper with a different focal length lens
pair in which the focal length of CL; is longer than that of CLy. The Wigner
transform matrix then takes the form of

T, -2 0 00 T
& 0o -2 0 2|4

= ‘ : 5.11
to ~& 0 1 0tk S8
Wo 0 0 0 1 wy
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Figure 5.7: Output field intensity profile. A = B = 500 mm, C' = D = 400 mm.

where A = B = 500 mm, C = D = 400 mm and G; = G2 = 600 lp/mm. In
Eq. (5.11), w, and z, are transformed to w; and —4z;/5, respectively, & and
t; include &;-w; and t;-z; in addition to & and t¢;. The numerically calculated
output profile is shown in Fig. 5.7. As compared with Fig. 5.2, the &-t, w-t
and w-£ plot are spread by the chirp of the temporal and spatial frequency
profile. In the z-t and w-£ plot, both the temporal and temporal frequency
chirp are induced by the spatio-temporal chirp. The light pulse is moved along
the spatial axis by the temporal chirp. The FWHM of the temporal and spatial
profile stretch 3.2 and 4.0 times the input pulse respectively. On the other hand,
the FWHM of the spatial profile is compressed by a factor of 0.8 times since
T, is in proportion to the focal length ratio and is smaller than z;, as shown in
Eq. (5.11).

In the same way, when the focal length of CL5 is longer than CL; (we assume
A = B = 500 mm and C = D = 600 mm, that is, A < C'), the Wigner transform
matrix is

T, -2 0 0 o0 s
€ 0 -2 0 -% &

= 5.12
to £ LD t e
Wo 0 0 0 1 wi

According to Eq. (5.12), the sign of the element of 2-4 and 3-1 differs from that
in Eq. (5.11). We can see that the direction of the chirp is reversed. In this
case, the numerically calculated output profile is shown in Fig. 5.8. We can
confirm that the direction of the chirp is opposite to case A > C by comparing
Fig. 5.7 and Fig. 5.8. The inclination of the z-t and w-£ plot are also varied by
the spatio-temporal chirp. The FWHM of the temporal, spatial frequency and
spatial profile stretch 3.2, 2.7 and 1.2 times of the input pulse, respectively. The
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Figure 5.8: Output field intensity profile. A = B = 500 mm, C = D = 600 mm.

FWHM of spatial frequency profile is narrower than the case A > C, because
the element of 2-2, the in proportion to &; is smaller than 1.

A comparison of cases A > C and A < C shows that the FWHM of the
spatial profile is proportional to the focal length ratio. The magnification of the
FWHM is decided by the focal length ratio, that is, A/C. The chirp direction of
¢ and t are inverted by the magnification, and the inclination of the z-t and w-£
plot also vary. The FWHM of the spatial frequency profile is changed by the
spatio-temporal chirp, although the FWHM of the temporal profile remains the
same. According to Eq. (5.12), the absolute value of elements 3-1 and 3-3 is the
same, although elements 2-2 and 2-4 is different, so that the spatial frequency
profile is changed. As a result of the temporal chirp, the top and tail of the
pulse arrive at different places. When the focal length ratio is smaller than 1,
we can confirm the light pulse moves along the spatial axis.

5.3.5 Pulse-Shaper with different grating constants and
focal length lens pair

In this section, we consider a pulse-shaper with different grating constants and
focal length lens pair whose the Wigner transform matrix is

T, —g 0 0 0 Ty

& | _ 0 -2 0 281—P &i T
1T | $-8 0 1 0 ti id3)
Wo 0 0 O 1 w;

where A = B = 500 mm, C = D = 600 mm, G; is 600 lp/mm and G4 is 1200
Ip/mm. As compared with Eq. (5.12), the quantity of the chirp is a function
of the grating constant ratio of the grating-pair. The numerically calculated
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Figure 5.9: Output field intensity profile. (4 = B = 500 mm,C = D = 600 mm,
G1 : 600 Ip/mm, G : 1200 Ip/mm)

output profile is shown in Fig. 5.9. A comparison of Fig. 5.9 with Fig. 5.8 shows
the direction of the spatio-temporal chirp to be opposite in the = -t and/or w-§
plot. The FWHM of the temporal and spatial frequency profile of the output
pulse are stretched to 15.1 and 6 times respectively that of the input pulse by
the spatio-temporal chirp.

For the above result, the spatial profile can be controlled by the focal length
ratio, and the direction of the spatio-temporal chirp is possible to be controlled
by the addition of grating-pairs with different grating constants.

5.4 Summanry

In this chapter, we numerically analyzed the spatio-temporal properties of sev-
eral pulse-shapers, specifically an ideal pulse-shaper, a pulse-shaper with lens
defocus, with a grating-pair with different grating constant, with a lens-pair with
different focal lengths and combinations of these using the Wigner distribution
function.

In the case of lens defocus, we have confirmed that the spatio-temporal cou-
pling effect induces a temporal chirp, and the velocity of the temporal frequency
component is varied by the chirp. In addition, if the displacement of the dis-
tance from CLs to G is the same, the spatio-temporal distribution is the same
and not dependent on the distance. In the case with different grating con-
stants, the degree of both the temporal and spatial frequency chirp is varied by
combination of different grating constants, and the light pulse is moved on the
spatial axis by the temporal chirp. In the case of different focal length lenses,
the FWHM of the spatial profile is in proportion to focal length ratio, and the
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light pulse arrives at different place of the top and tail of the pulse induced
by the temporal chirp. In the case with a different grating constant and focal
length, the direction of the temporal and spatial frequency chirp is varied by
the combination of the grating constant.

The quantization of the spatio-temporal coupling effect, as described above,
suggests a number of practical applications which take advantage of the effects
of specific temporal frequency on arbitrary spatial position which enable changes
to be made to the beam direction of a light pulse. These applications will have
potential for controlling the properties of high speed solid state components.

Chapter 6

Spatio-Temporal Coupling
in Spatio-Temporal
Coupled Pulse Shaper

An improved pulse shaper is proposed which is able to control both the spatial
and temporal profile of femtosecond light pulses. Our pulse shaper exploits
the spatio-temporal coupling effect seen in pulse shapers. Its properties are
numerically analyzed by application of the Wigner distribution function. We
confirm that the spatio-temporal output pulse track dictates the differentiation
of the phase mask; that the degree of spatio-temporal coupling is determined
by the focal length ratio of the lenses in the pulse shaper; and that space to
spatial-frequency chirp results from misalignment of lenses.

6.1 Introduction

A femtosecond light pulse has a number of interesting and useful properties
which result from its short temporal duration. Many potential applications of
these properties, such as the control and measurement of the ultrafast prop-
erties of materials, and high capacity, high speed communications have been
studied[44, 4, 45].

To realize these applications, the key issue is how to control the temporal
profile of a femtosecond light pulse with high accuracy; and to realize such
control, spectral modulating pulse shaping techniques are being intensively
studied[2, 36]. In this method, the broad temporal spectrum of a femtosec-
ond light pulse is spread spatially by means of a grating-lens pair and then
modulated using a spatial light modulator (SLM) or the like. The spectrum is
then re-Fourier transformed into a temporal signal using another grating-lens
pair. The optical setup for this operation is called a pulse shaper.

In a pulse shaper or a spectrometer, it is impossible to avoid spatio-temporal
coupling effects as mentioned in chapter 547, 48]. As a result of diffraction, the
temporal profile of an electric field is influenced by its former spatial profile.
Similarly, the spatial profile of an electric field is influenced by its previous tem-
poral profile. In some applications, spatio-temporal coupling creates a number

95
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Figure 6.1: The schematic setup of a conventional pulse shaper. CL denotes
cylindrical lens, and G grating.

of problems, such as spatial and/or temporal defocus or spatial and/or tem-
poral chirp. For example, in a pulse shaper or a spectrometer, this coupling
can be ignored if the spatial beam shape is sufficiently wider than its temporal
version[49).

On the other hand, if a convoluted spatio-temporal axis can be generated
by coupling, employing this axis makes it possible to simultaneously control
the temporal and spatial axis of a femtosecond light pulse by means of one-
dimensional modulation. Some pulse shapers, however, apply coupling and
control pulses both spatially and temporally, but use only spontaneous spatio-
temporal coupling. We have proposed a spatio-temporally coupled pulse shaper
(STCPS), which artificially enhances spatio-temporal coupling and controls the
temporal and spatial profile of a femtosecond light pulse simultaneously by
means of a one-dimensional spatial light modulator (SLM)[50].

In this chapter, we analyze the STCPS by using the spatio-temporal Wigner
distribution function[51, 52]. This approach allows the entire optical system to
be described as one simple coordinate transform matrix, dramatically reducing
the amount of calculation required for numerical analysis.

6.2 Spatio-Temporally Coupled Pulse Shaper

The schematic setup of a conventional pulse shaper is shown in Fig. 6.1. The
spectrum of an input light pulse is spatially spread by means of a grating-lens
pair, G1-CL1, then modulated by a mask, which may be a liquid crystal SLM or
the like. Finally, the temporal light pulse is reconstructed by another grating-
lens pair, G2-CL2. This setup enables the rapidly varying temporal profile of
the pulse to be controlled in spite of the use of a slow-response modulating
device.
The field amplitude of the input pulse is assumed to be Ey(zg,to):

Eo(zo0, to) = E (z0) Eq (to) (6.1)

where Ej(z¢) and E{(to) are the temporal and spatial profile of Eq(zo,to),
respectively and x¢ and ¢y are spatial and temporal variables on the input
plane. The input pulse is Fourier transformed by the grating-lens pair, and the
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Figure 6.2: The schematic setup of a spatio-temporally coupled pulse-shaper.
CL1 CL4 denote spatio-temporal coupling lenses with focal length of f,. CL2
and CL4 denotes shaper-lenses with focal length of f;. G is grating.

field amplitude on the mask plane is expressed as
Ei(z1,t1) = E5 (z1) * EX (t1) (6.2)

where E‘()g and E~g are the spatial and temporal Fourier transforms of Ej ()
and E (to), respectively. According to this equation, the field amplitude on
the mask plane is a convolution of the temporal Fourier transform of Ef (t)
and the spatial Fourier transform of Ey(zg). This convolution takes the form of
spatio-temporal coupling. In most cases, the temporal duration of the pulse is
sufficiently shorter than the spatial duration, as in

W [ Bowo,wo)| >> W [E§ (6, t0)] (6.3)

where W [f(11)] corresponds to the width of f(u); Eo(zg,wo) and Eg(&o, to) are
the temporal and spatial Fourier transforms of Ey(zo, to), respectively; and &,
and wo are the spatial and temporal frequency on the input plane. We can regard
E§ as a delta function, thus allowing spatio-temporal coupling to be ignored.
Hence, the spatial pulse profile on the mask equals its temporal spectral profile.

On the other hand, our STCPS enhances spatio-temporal coupling, and
employs coupling to simultaneously control both the temporal and spatial profile
of the light pulse. Figure Figure 6.2 shows the schematic setup of the STCPS.
CL1 and CL4 are spatio-temporal coupling lenses which induce spatio-temporal
coupling and whose focal lengths are represented by fc; and CL2 and CL3
are pulse shaper lenses of focal length fs. In this system, the input pulse is
spatially Fourier transformed by CL1 before the grating G1. The condition
shown in eq. (6.3) thus cannot be satisfied. The electric field profile on the
mask plane is determined as the convolution of the spatial profile and temporal
spectral profile of the input light pulse. We will explain the properties of the
system quantitatively and numerically by use of the Wigner function later, but
we will explain it here intuitively and geometrically.

Light beams which pass along the dashed beam line and the solid beam
lines in Fig. 6.2 have different incident angles to the grating, with the result
that their spectral components are spread on different areas on the mask. By
taking advantage of this property, we can modulate the temporal profiles of
the beams independently using one-dimensional SLM; in other words, we can
simultaneously control the spatial and temporal profile of the pulse.
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In accordance with the shift-law of Fourier transforms, when the temporal
spectrum FE(w) is modulated by a linear phase bias, the temporal profile is
shifted in proportion to the inclination of the phase as in

FlE(w) exp(i2naw)] = E(t + a), (6.4)

where F refers to Fourier transform. When we use a phase-only mask in STCPS,
the output light pulse will shift in proportion to the phase inclination of the
small part of the mask at which the spectrum is modulated. Hence, the spatial
differentiation pattern of the phase-mask appears on the output spatio-temporal
plane([53].

6.3 Wigner Expression of Spatio-Temporally Cou-

pled Pulse-Shaper

The STCPS is constructed of elements which are described by eq. (5.2), eq. (5.3)
and eq. (5.4) and a phase-mask. The transform matrix of the STCPS can thus
be obtained as the crossproducts of element-matrixes. The transform matrix
between the input plane and the phase-mask plane of the STCPS is

—fs/(afe) 0 0 Bfs/(ako)

0 —afe/fs O 0
0 Bffko 1 0 %
0 0 0 1
On the other hand, the same matrix for a conventional pulse shaper is
0 _fs/(akO) 0 ﬁfs/(ako)
akO/fs 0 0 0
_3 0 1 0 (6.6)
0 0 0 1

The first rows of eq. (6.5) and (6.6) represent the effect of the input pulse
profile on the output spatial = profile. In eq. (6.6), the case of an ordinary pulse
shaper, element 1-1 is 0 and element 1-2 is — fs /(akq), so that the spatial output
profile is determined by the £ and w profile of the input pulse. The spatial profile
on the mask plane is a convolution of the ¢ and w profile of the input, and in
most cases the & profile can be regarded as a delta function, meaning that the
spatial profile can be regarded for practical purposes as a profile of the input
pulse.

On the other hand, in the case of the STCPS described in eq. (6.5), the
spatial profile on the mask plane is determined by the z and w profile of the
input. Normally, the width of the = profile is much greater than that of £, so
we should regard the spatial profile on the mask plane as the convolution of the
2 and w profile of the input. This convolution causes spatio-temporal coupling,
and the significance of the coupling is controllable by changing the focal length
ratio of fs and f., because element 1-1 of the matrix is — fs(—afe).

6.4 Numerical Analysis

In this section, we numerically analyze the behavior of the STCPS with a number
of phase-masks. We base our calculations on the optical setup illustrated in
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Figure 6.3: Spatio-temporal profile of output light pulse of STCPS with
quadratic phase-masks.

Fig. 6.2. The spatial and temporal FWHM of the input light pulse are 100 fs
and 2.0 mm, respectively, and its central wavelength is 775 nm.

6.4.1 STCPS with Quadratic Phase-Mask

The phase mask is assumed to be a cylindrical lens which can also be regarded
as a quadratic phase mask. We assume all the focal lengths of CL1, CL2, CL3
and CL4 to be 50 mm and the grating constant of G1 and G2 to be 2000 lp/mm.
First, we analytically calculated the transform matrix of the optical setup, then
numerically calculated the output light profiles in 32x32 pixel squares as shown
in Fig. 6.3. The focal lengths of the cylindrical lenses for the phase masks f; are
-1000 mm, -500 mm, 500 mm and 1000 mm. The output spatio-temporal pulse
profile should thus be a derivative of the phase mask, putting the time-space
inclinations of the output pulses in proportion to the focal length of the mask-
lenses. Their temporal FWHMs are 500 fs, 500 fs, 900 fs and 900 fs, respectively,
and are in inverse proportion to the focal length of the mask-lenses.

6.4.2 STCPS with Cubic Phase Mask

Now we assume cubic phase masks as shown in Fig. 6.4; (a) ¢(z) = 4.5 x 1078z,
(b) ¢(z) = 3.5 x 1073z and (c) ¢(z) = 2.5 x 10~3z, where z mm is spatial
position on the phase-mask and ¢ radian is phase-modulated by the phase-
mask. We assume that the focal lengths of CL1 and CL4 are 20 mm and those
of CL2 and CL3 are 130 mm, respectively, and the grating constants of G1 and
G2 are 2000 lp/mm. It can be confirmed that the output spatio-temporal pulse
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Figure 6.4: Cubic phase masks, (a) ¢(z) = 4.5 x 1078z, (b) ¢(x) = 3.5 x 1078z
and (c) ¢(z) = 2.5 x 1078z, where the unit of z is milimeter and unit of ¢ is
radian.
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Figure 6.5: Spatio-temporal profiles of output light pulse. It can be confirm
that the spatio-temporal peak tracks forms quadratic curves.

profiles form quadratic curves as in

T(z) = 0.41 x 107322 (6.7)
T(z) = 1.01 x 10~ 322 (6.8)
Tlz) = 1.90 x 107 z? (6.9)

by Fig. 6.5, where T'(z) means the temporal position of the output pulse peak
on each z. Equation (6.7), (6.8) and (6.9) correspond to the cases of (a), (b) and
(c) in Figs. 6.4 and 6.5. These equation are calculated using the least squares
method, from the numerically analyzed results. The root-mean-squared errors
(RMS) of (a), (b) and (c) are 0.19x1073 ps, 3.67x1072 ps and 12.52x1073 ps,
respectively. A larger curvature of the phase-mask results in a larger RMS, with
the errors localized in the spatial outer side of the output pulse.

6.4.3 Effect of Focal Length Ratio between Coupling and
Shaping Lens

Equation (6.6) indicates that the coefficient of spatio-temporal coupling of STCPS
is determined by the focal length-ratio of the spatio-temporal coupling lenses
CL1 and CL4 to that of the pulse shaper lenses CL2 and CL3. We numer-
ically calculated several output pulse profiles using different combinations of
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Figure 6.6: Spatio-temporal profile of output light pulse with come combination
of focal length ratio of spatio-temporal coupling lenses, f. to pulse-shaper lens,

s

focal lengths, as shown in Fig. 6.6. A larger focal length ratio f. of the coupling
lens to that of the shaper lens fs creates a higher degree of spatio-temporal
coupling. Although in the cases of (b) and (c), the focal length ratio is the
same, fs/f. = 4.3, the output pulses have a different curvature. This is because
eq. (6.6) dictates that the spatio-temporal coupling effect is determined by both
the focal length ratio and the fs; to the central wavelength ratio, as shown in
the 1-4 element in eq. (6.6).

6.4.4 Effect of Defocus of Coupling Lens

Figure 6.7 shows the output pulse profiles in the case of an STCPS with de-
focused CL1. Columns (a), (b) and (c) show, respectively, cases where the
distance between CL1 and G1 is 20% shorter than the focal length of CL1; is at
the focal length; and is 20% longer than the focal length. The pictures on the
second row show that the spatio-temporal intensity profile is the same on the
output plane, although &-z chirp is present in proportion to the degree of defo-
cus. Due to the effects of chirp, the spatio-temporal profiles are developed into
different forms with spatial propagation. After 8 cm propagation, the spatial
profiles of (a) and (c) are respectively broader and narrower than that of (b).

6.5 Summary

In this chapter, we have proposed a spatio-temporally coupled pulse shaper
(STCPS) for simultaneous spatial and temporal control of ultra fast light pulses
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Figure 6.7: Spatio-temporal profile of output light pulse with misalignment of
a coupling lens. The distance between CL1 and G1 is (a) 20% shorter than
the focal length of CL1, (b) the focal length and (c) 20% longer than the focal
length. The first line shows the -z distributions on output plane, and others
shows t-z distributions.

by means of one-dimensional spatial light modulation.

We have numerically analyzed the spatio-temporally coupled pulse shaper
(STCPS) using the Wigner distribution function, which affords a dramatic re-
duction in the amount of calculation required to describe spatio-temporal cou-
pling in comparison with the ordinary method based on complex amplitude.
Several behaviors of the STCPS were confirmed. Quadratic phase modulation
by means of a lens causes the spatio-temporal pulse track to form a line whose
inclination is in proportion to the focal length of the modulating lens. Cubic
phase modulation results in the spatio-temporal pulse track forming a curve of
second degree whose second order coefficient is in proportion to the third or-
der coefficient of the phase-mask. The influence of spatio-temporal coupling is
controlled by the focal length ratio of coupling lenses to shaper lenses and the
wavelength of the light source to the focal length of the shaper lens. z-£ chirp
occurs as a result of defocusing the coupling lens, although the z-t intensity
profile on the output plane remains constant.

Chapter 7

Time-Domain Microscope

7.1 Introduction

Direct measurement of ultrafast light pulse is currently limited to several hun-
dread femtosecond resolution based on the performance of state-of-art photode-
tectors, oscilloscopes, and streak cameras. To extend the direct measurement
capability, Bennett et al. have developped a technique of a time-microscope(55].
Based on the anologies between dispersion and freespace diffraction, and quadratic
phase modulation and a lens[12], the time-microscope achives in the time do-
main what microscopes achive in space.

In this chapter, we numerically analyze the the spatio-temporal property of
a time-microcope by using Wigner distribution function.

7.2 Priciple of Time-Domain Microscope
The schematic setup of temporal imaging system is shown in Fig. 7.1. An input

pulse enters the time-microscope and is dispersed by an input grating pair by
spectral quadratic phase

B 5 2
Es(w) = B1(w) X exp <7'ﬁ“21 w2> (7.1

=5
ai ko

where E; and E; are temporal Fourier transform of input pulse £;(¢) and output
pulse E5(t) of the grating-pair, a1; and 17 the parameter of the gratings which
are defined as a1 = cos 11/ cosbq, f11 = 2mrmN/(wg cosby) when 6; and 6, are
incident and diffraction angle of the first grating (G11), Nlp/mm is the grating
constant, m is diffraction-order and wy is the central frequency of the pulse.
The second grating (G12) is placed as aj2 = 1/aq; and Bis = Br1/a11. The
pulse next encounters a temporal puadratic phase modulation process, in some
implementations, which is apploximatelly achived by co-sinusoidal modulation.

E3(t) = Ea(t) x exp </)w/0f“'> (7.2)
Zjr

where fr is focal time. Finally, the pulse is dispersed again by the second
grating-pair as the same of eq. (7.1).
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Figure 7.1: Schematic setup of (a) temporal and (b) spatial imaging system.
Input and output grating pairs in (a) make spectral dispersion which accordance
with the free-space dispersion in (b), and quadratic phase modulator act as a

time-lens.

The spatial one-dimensional Fresnel diffraction is expressed as

Boua(€) = Bun(e) x oxp (~iZL¢?) (7.9
0

where £ is spatial frequency, z; is propagation distance. Equation (7.1) and

eq. (7.3) have the same form, so that the dispersion of the grating pair can be

regard as temporal Fresnel diffraction whose diffraction length is

T = B2,21/02,. (7.4)

The effect of a spatial one-dimensional lens is expressed as

B g y
Bt (@) = B (@) X exp <'L———:L‘“> (7.5)
2fs
Equation (7.2) and eq. (7.5) have the same shape, so that the temporal quadratic
phase modulation can be regard as temporal lens that is sometime called time
lens, and fr is sometime called focal time[12].

These analogies provide a temporal imaging condition as

1
71

+— = (7.6)

1 1
T2 fr

where 75 is the temporal Fresnel diffraction distance of the second grating-pair.
When eq. (7.6) is satisfied, the time-microscope expands the temporal input
signal by a magnification factor
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7.3 Wigner Expression of Time-Microscope

The time-microscope is constructed by elements which expressed by eq. (5.2),
eq. (5.3) and eq. (5.4), so that its tranform matrix is calculated by the crossprod-
ucts of the element-matrixes as

[ 1-M 2fr(1-M) |
2M o 1 0 3 ﬂ 7 Tﬁku
48%ko 2 1 T 28ke __2B(1+M)
fr M " fr M
................................................. (7.8)
2f(M-1) 2fr(M—1)*
—-2B8(M +1) — fMﬁk., . M fr/Wkn
_ 2Bko M—1 : ko 1
L fr BM 3 fr M A

where 8 = (311 = [21, and assuming the retrow configuration, ay; = a9 =
1. The four elements on the right-up side of eq. (7.8) express time-to-space
coupling, and four elements in left-low side express space-to-time coupling in
the time-microscope.

To simplify the matter, we disscuss about the condition M = 1. The trans-
form matrix is

1. 0 0 0
4ﬁ2k0/f7‘ 1 —2Bko/fr —4P (7.9)
—4p 0 1 0 y
—2Bko/fr 0  ko/fr 1

The 1-3 element of eq. (7.9) is —4/3, not 0, so that the output spatial profile is
influenced by the input temporal profile, even though the magnification M is
1. In the following section, we numrically investigate the effect of the spatio-
temporal coupling.

7.4 Numerical Analysis

In this section, we numerically analyze the behavior of the time-domain micro-
scope with some a number of phase-masks. We base our calculations on the
optical setup illustrated in Fig. 7.2. The amplitude of the co-sinusoidal phase
modulation is 7 rad, its frequency is 18.9 KHz, the separation of the gratings of
a grating pair is 15.0 cm, grating constant is 2000 lp/mm, incident angle of the
grating is 50.8 deg, and these gratings are set in Littrow configuration. The in-
put pulses have temporal and spatial FWHM of 100 fs and 1.0 mm, respectively.

7.4.1 Spatio-Temporal Coupling Induced by Magnifica-
tion Changing

At the first analysis, we investigate about the spatio-temporal coupling induced
by changing the magnitude of the time-domain microscope. The Wigner trans-
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Figure 7.2: The schematic setup of analyzed time-domain microscope. The
amplitude of the co-sinusoidal phase modulation is 7 rad, its frequency is 18.9
KHz, the separation of the gratings of a grating pair is 15.0 cm, grating constant
is 2000 lp/mm, incident angle of the grating is 50.8 deg, and these gratings are
set in Littrow configuration. The input pulses have temporal and spatial FWHM
of 100 fs and 1.0 mm, respectively.
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Figure 7.3: Spatio-temporal coupling indeuced by maginification changing. The
magnifications are (a) M = 0.98, (b) M = 0.99, (¢) M = 1.00, (d) M =
1.01, and (e) M = 1.02. Spatio-temporal coupling which is in propotion to the
magnification is found in output spatio-temporal pulse profiles.

form matrix is

oM —1 0 (L) el A
To 2 2 i
43%ko 2 _ 2Bko _2p(1+M)
|0 ;o M fr M &i
fo) Tl _2fr(M=1) 5 r2fr(M—1) t;
2B8(M +1) 7\’[5’\‘0 M TMk” i
Wo __2Bko M-1 ko il Wi
fr BM fr M

(7.10)

Its 1-3 and 1-4 elements, which represent spatio-temporal coupling are 0 when
M = 1, however, M # 1, the elements are not 0. Thet means that the spatio-
temporal coupling occurs with M # 1. The numerically calculated output
spatio-temporal profiles are shown in Fig. 7.3. The magnifications are (a) x0.98,
(b) x0.99, (¢) x1.0, (d) x1.01, and (e) x1.02. We find spatio-temporal coupling
which are in propotion to the magnification, M.
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Figure 7.4: Spatio-temporal copuling induced by focal time error. The magini-
fication M is 1.0, the frequency of the phase modulation, a time lens, w,, is 18.9
Hz, and the ideal amplitude of modulation Ag is 1.07 rad. The errors are (a)

-2%, (b) -1%, (c) 0%, (d) +1%, and (e) +2%.

7.4.2 Spatio-Temporal Coupling Induced by Focal Time
Error

We investigate about the spatio-temporal copuling in the case of the focal time
of a time lens, the amplitude of phase modulation of a phase modulator Ag,
changes. The situation corresponds to the case of focal length miss-alignment
of a spatial imaging system. By the focal time error, spatio-temporal coupling
is induced even if the magnification M=1.0. The numerically calculated out-
put pulse profiles are shown in Fig. 7.4. In this case, the ideal amplitude of
phase modulation is determined as 7 rad, and the phase modulation frequency
wm=18.9 Hz. In the calculation, -2% to +2% errors, (a) Ap = 0.987 rad, (b) Ag
= 0.997 rad, (c) Ag = 1.007 rad, (d) A = 1.017 rad, and (e) Ag = 1.02p: rad,
are appliyed to the modulation. We confirm that the degree of spatio-temporal
coupling is in proportion to the quantity of the focal time error.

7.4.3 Spatio-Temporal Coupling Induced by Propagation
Time Error

As same as the case of focal time error, shown in section 7.4.2, spatio-temporal
coupling is induced by the propagation time error of the first grating-lens pair,
even if the magnification M = 1.0. The numerically calculated spatio-temporal
output profiles in this case are shown in Fig. 7.5. The calculated conditions
are, Ag = 1.0m, w,, = 18.9 KHz, and the ideal separation of a grating-lens pair
is 150.2 mm, grating constant is 2000 lp/mm, and the gratings are aligned in
Littrow configuration. And the grating separations are (a) 147.2 mm, (b) 148.7
mm, (c) 150.2 mm, (d) 151.7 mm, and (e) 153.2 mm, and the error ratios are (a)
-2.0%, (b) -1.0 %, (c) 0.0 %, (d) +1.0%, and (e) +1.2%. By the calculation, the
spatio-temporal coupling which is in proportion to the propagation time error
is confirmed.
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Figure 7.5: Spatio-temporal copuling induced by focal time error. The maginifi-
cation M is 1.0, the amplitude, Ag, and frequency, w,,, of the phase modulation,
a time lens, are 1.0m rad and 18.9 Hz, respectively. The ideal separation of a
grating-lens pair is 150.2 mm, grating constant is 2000 lp/mm, and the gratings
are aligned in Littrow configuration. The errors are (a) -2%, (b) -1%, (c) 0%,
(d) +1%, and (e) +2%, and the grating separations of each case are (a) 147.2
mm, (b) 148.7 mm, (c) 150.2 mm, (d) 151.7 mm, and (e) 153.2 mm

7.4.4 Spatio-Temporal Coupling Induced by Grating An-
gle Error

The grating angle error also induces spatio-temporal coupling. We calculat
spatio-temporal output profiles with grating errors of G1 and G3 of Fig. 7.2.
The parameters of the calculation are, A = 1.0m, w,, = 18.9 KHz, and the
separation of a grating pair is 150.2 mm, grating constant is 2000 lp/mm, the
gratings are aligned in Littrow configuration, and the ideal incident angle of the
grating G1 and G3 are 50.8 deg. The output profiles are shown if Fig. 7.6. The
each grating angle error induces spatio-temporal coupling independently, and
the direction of the coupling is depend on the direction of the angle error. In
the case of the error of G1 and G2 is the same, the spatio-temporal coupling is
disappered by counteract.

7.5 Summary

We have analyzed the spatio-temporal behavior of time microscope by using the
spatio-temporal Wigner distribution function. The spatio-temporal coupling is
induced by magnification changing, focal time error, propagation time error
and grating angle error. The spatio-temporal profile of the ouptput pulse is
very sensitive to these errors, even if the errors are less than few percents, the
spatio-temporal copuling is critically large. However, the spatio-temporal cou-
pling shall be counteractivelly reduced by combination of these spatio-temporla
couplings.
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Figure 7.6: Spatio-temporal copuling induced by grating angle error. The mag-
inification M is 1.0, the amplitude, Ag, and frequency, w,,, of the phase modu-
lation, a time lens, are 1.0 rad and 18.9 Hz, respectively. The separation of a
grating-lens pair is 150 mm, grating constant is 2000 lp/mm, and the gratings
are aligned in Littrow configuration. Angle-errors are induced on G1 and G3,
in the range of -1.0 deg to +1.0 deg.




Chapter 8

Conclusions

The concept of spatio-temporal optical computing has been introduced in this
thesis. In the chapter of introduction, we classified the concepts of spatio-
temporal optical computing into three phases.

In the fist phase, by employing spatio-temporal duality, we have proposed
a new signal analysis method which we name the phase-resolved correlation
method. Most methods which have up to now been applied to interferogram
analysis to improve the SNR can separate signals from noise, but are not able
to separate independent signals. However, using the phase-resolved correlation
method, we can clearly identify individual signals. In an experimental demon-
stration, the method shows its ability to identify a thickness of 18 pm and
noise-masked interferogram signal peaks. We have confirmed that this method
is very effective for analyzing low coherence interferograms.

In the second phase, we have employed a spatio-temporal conversion tech-
nique which is based on spatio-temporal analogy. As the first application of
the second phase, we have proposed and demonstrated a spatio-temporal joint
transform correlator (ST-JTC). The system based on similarity between a con-
ventional spatial joint transform correlator, which is one of the most popular
optical computing technique and a spectral filtering method, which is one of the
most popular methods of controlling the temporal profile of an ultrafast light
pulse. Our system is a hybrid of these two methods. In the demonstration, we
determined the pulse separations of twin pulses which were synthesized by a
Michelson interferometer. According to the result, we have confirmed that the
experimental system has 12.4 fs temporal accuracy in determining the positions
of input pulses.

As mentioned in the introduction, the ST-JTC is based on the idea of a
spatial JTC. Almost all techniques of conventional JTC can be applied to the
ST-JTC, such as nonlinear thresholding to increase the S/N ratio[27] or signal
retrieval from rough phase noise[28]. Such unification of pulse control and con-
ventional optical computing should yield a breakthrough in optical computing.
Computational long distance communication and computational measurement
should thus become possible.

As the second application of the second phase of the spatio-temporal optical
computing, we have constructed a spectral interferometric three-dimensional
surface-measurement system with only one-dimensional scanning operation and
without the need for electronic computation.
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The correlation which derived by the ST-JTC is not an intensity one but
a complex correlation which includes information on the phase of the pulse.
The ST-JTC does not depend on nonlinearity which depends on the high peak
intensity of a pulse. This means that, we can use a super luminescent diode
(SLD) or any other broad band light source as the input light source. With such
light sources, the spatial output becomes the temporal coherence function of the
input light source. Hence, we connected a conventional Michelson interferomter-
based optical coherence tomography system and ST-JTC.

By the tomography system, we measured three samples to a depth-accuracy
of 16 pum and depth-resolution of 70 pum. One is the path length difference
of the Michelson interferometer, another is the surface of an aluminum coated
sample and the last is the rough surface of a coin. Although the last sample
is a highly light-scattering object, the system has demonstrated its ability to
measure minute changes in the height of a sample surface.

In the third phase, we intended to apply spatio-temporal coupling into op-
tical computing. As the first steps of the third phase spatio-temporal optical
computing, we numerically investigate the spatio-temporal couplings in some
diffractive optical components, a conventional pulse shaper, a spatio-temporal
coupling pulse shaper, and a time-domain microscope. By employing the spatio-
temporal Wigner distribution function, we reduced the amount of the numerical
calculation of the spatio-temporal analysis.

In the first analysis, we numerically analyzed the spatio-temporal properties
of several conventional pulse-shapers, specifically an ideal pulse-shaper, a pulse-
shaper with lens defocus, with a grating-pair with different grating constant,
with a lens-pair with different focal lengths and combinations of these using the
Wigner distribution function.

In the case of lens defocus, we have confirmed that the spatio-temporal cou-
pling effect induces a temporal chirp, and the velocity of the temporal frequency
component is varied by the chirp. In the case with different grating constants,
the degree of both the temporal and spatial frequency chirp is varied by com-
bination of different grating constants, and the light pulse is moved on the
spatial axis by the temporal chirp. In the case of different focal length lenses,
the FWHM of the spatial profile is in proportion to focal length ratio, and the
light pulse arrives at different place of the top and tail of the pulse induced
by the temporal chirp. In the case with a different grating constant and focal
length, the direction of the temporal and spatial frequency chirp is varied by
the combination of the grating constant.

The quantization of the spatio-temporal coupling effect, as described above,
suggests a number of practical applications which take advantage of the effects
of specific temporal frequency on arbitrary spatial position which enable changes
to be made to the beam direction of a light pulse. These applications will have
potential for controlling the properties of high speed solid state components.

Next, we have proposed a spatio-temporally coupled pulse shaper (STCPS)
for simultaneous spatial and temporal control of ultra fast light pulses by means
of one-dimensional spatial light modulation. This system is the first endaevour
to employ the spatio-temporal coupling. We have numerically analyzed the
spatio-temporally coupled pulse shaper (STCPS) using the Wigner distribution
function. Several behaviors of the STCPS were confirmed. Quadratic phase
modulation by means of a lens causes the spatio-temporal pulse track to form a
line whose inclination is in proportion to the focal length of the modulating lens.
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Cubic phase modulation results in the spatio-temporal pulse track forming a
curve of second degree whose second order coefficient is in proportion to the third
order coefficient of the phase-mask. The influence of spatio-temporal coupling
is controlled by the focal length ratio of coupling lenses to shaper lenses and the
wavelength of the light source to the focal length of the shaper lens. z-£ chirp
occurs as a result of defocusing the coupling lens, although the z-t intensity
profile on the output plane remains constant.

In the last analysis, we have analyzed the spatio-temporal behavior of time
microscope by using the spatio-temporal Wigner distribution function. The
spatio-temporal coupling is induced by magnification changing, focal time error,
propagation time error and grating angle error. The spatio-temporal profile of
the output pulse is very sensitive to these errors, even if the errors are less
than few percents, the spatio-temporal coupling is critically large. However, the
spatio-temporal coupling shall be counteractivelly reduced by combination of
these spatio-temporal couplings.

In this thesis, we have introduced the concept of the spatio-temporal optical
computing. We have confirmed that it is very effective to introduce conventional
optical computing techiniques to time- and spatio-temporal domain employing
spatio-temporal duality for improve the sensitivity and availability of optical
measurement system. The concept is also effective to control ultrafast light
pulse in higher dimmension.

The spatio-temporal optical computing will take more important place in
the field of optical measurement and optical communication.

We have also investigated the applications of spatio-temporal optical com-
puting techniques in the thesis. The main field of the application mentioned
in this thesis is the field of optical measurement, however, the spatio-temporal
optical computing techniques can be introduced into more wide field of optoelec-
tronics, such as optical communications, optical memory or signal processing.
The introduction shall extend the dimension of these fields into spatio-temporal
domain, and achieve more intelligent and higher functional optoelectronics.




Appendix A

Program Sources

A.1 Phase-Resolved Correlation Method

The phase-resolved correlation method was implemented in Gnu Ocvtave and C-
language. Although, the Gnu Octave version is the and an experimental proto-
type implementation, is more intuitively and methematically. The C version are
written for Gnu Compiler Collection on Kondara MNU/Linux 1.2 and works
with glibc 2.1.3 and FFTW library.

A.1.1 Gnu Octave implementation
Main Routine (prcm.m)

VA A A A N A A S A S A A A A A A A
%

% Analyze the correlation signal

YA of
% White Lingt Interferometer
b by

% Phase Resolved Wavelet Transform

%  Written for Gnu Octave 2.0.16

T Yoshiaki YASUNO
% <yasuno@optlab2.bk.tsukuba.ac.jp>
/A May 25th, 2000 -

b
bW ToToToToToToTo o T Toto oo ot 1o o oo o oo Tt 1o 1o o oo o

Sosaye sy List of Variables: 47 Llhhlhlls
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% ORIG : original correlation data.

% INP : correlation data without bias term.

% SPC : spectrum of INP.
% MW : mother wavelet
clear():;
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fig = 1;

%%% Read the data
load data.txt; %% The data file is a \n-separated single column text.
ORIG = INP = data;

%%% The number of the data.
N = size(INP,1)

%%/ Plot the original data.
figure(fig); fig = fig +1;
plot (INP);

%)kt remove the bias form the original data
SPC = fft(INP);

RemovePoint = [1 2 3 N-1 N];
SPC(RemovePoint) = 0;

%INP = real(ifft(SPC));

%k’ plot the spectrum of input data
figure(fig); fig = fig + 1;
plot(abs(SPC));

%%% find the maximun frequency
spc_max_value = max(SPC);
spc_max_point = 0;
for j = 1:size(SPC,1)

if( SPC(j) == spc_max_value )

spc_max_point = j

endif

endfor

%hle calculate the correlation between
%%’ the mother wavelet and input signel
fig ++; fig phase = fig;

fig ++; fig_mother = fig;

%kl the frequency and wavelength of mother wavelet
mw_f = (spc_max_point -1 ) / N;

J%mw_f = (spc_max_point -2 ) / N;

mw_wavelength = 1 / mw_f;

%%% make X axis

for j .= 1N
%% 0.85 means 0.85 um, the %jwavelength of light source
realwavelength = 0.85;
X(j) = j * mw_f * realwavelength;

endfor
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~
wJ

X =X - max(X)/2;

phase_resolution = 32;
phase_range = 1.6 * pi;
phase_bias = 1.6 * pi;
for k = 1:phase_resolution;
mw_phase = (k-1)/phase_resolution * phase_range - phase_bias;
mw_shift = 0;
for" j = 1:N
%%/ Generate the Motherwavelet
mwishifh =t =01
mw_envelope = shift(gauss( (1:N)’-N/2, 0.2*N), mw_shift + N/2 );

MW = sin(mw_f * 2 * pi .* (1:N)’ + mw_phase) .* mw_envelope;
PRWLT (k,j) = sum( MW .% INP );
endfor

%%kl make Y axis for plotting the results
Y(k) = (mw_phase + phase_bias)/pi;
k

endfor

TMP = PRWLT;
TMP = TMP + min(min(TMP)) ;

TMP = TMP ./ max(max(TMP)) ;
TMP = TMP * 128;
colormap(gray(128));

figure (fig); fig ++;

gset contour surface

figure (fip); Fig +4;

gset nogrid

gset xlabel ’Position [um]’

gset ylabel ’Phase [prad]’

gset size 1,1

contour (rot90(rot90(rot90((PRWLT)))) , 30, X, Y);
%% print out the contour plot in tgif file

gset terminal tgif

gset output ’contour.obj’
gset size 0.57,0.57
replot

gset output

gset terminal X

figure(1)

plot(X, INP ./ max(INP));

gset nogrid

gset size 0.57,0.57

gset terminal tgif

gset output ’inputsignal.obj’
gset ylabel ’Intensity [a.u.]’
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replot
gset output
gset terminal X

figure(2)

mw_envelope = gauss( (1:N)’-N/2, 0.03%N);
MW = sin(mw_f * 2 * pi .x (1:N)’) .* mw_envelope;
plot(X, MW ./ max(MW));

gset nogrid

gset size 0.57,0.57

gset terminal tgif

gset output ’mother.obj’

gset ylabel ’Intensity [a.u.]’

replot

gset output

gset terminal X

save prwlt.octave PRWLT;

Gaussian Function (gauss.m)

TololoTato o ToToTo o To o To o o To 1o o o o o oo o o To T ole o Toola oo fote o o o oo oo oo to oo To oo oo o o o
%» Gaussian Function
Toloto oo To o To oo oo o o ot o o o ota o To o aToloTo o Tolo oo Tote oo ote oo ot To o to o ot to o oo o o e
/A
% t: Time
% b: Dispersion
function result = gauss(t,b)
result = exp(-pi*(t/b)."2);
endfunction

A.1.2 C Language Implementation

/3 ok ook ok o koo ok ok ok sk ok o sk sk sk ok ok sk ok sk sk ok sk ok Sk ok ok Kok ok o K ok ok o o
Phase-Resolved Corerlation Algorithm
Version 1.00.c

Programed by Yoshiaki Yasuno
<yasunoQoptlab2.bk.tsukuba.ac.jp>
Written for GCC Ver. 2.95
of Linux 2.2.17prel4, Kondara/MNU Linux 2.0
with FFTW
Sep. 26th, 2000

$Id: c_program.tex,v 1.3 2001/01/24 03:52:29 yasuno Exp $

**************************************************/

#include <stdio.h>
#include <math.h>
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#include <string.h>
#include <fftw.h>

/* Definition of Scientific Constants */
#define Pi 3.141592

/* The fdouble must be double or float. */
typedef double fdouble;

/* If you would not to use these features,
do not define these macros. */

#define INLINE inline

#define REGISTER register

/* Prototypes of Function */
int read_data_from_file (char *input_file_name,

int number_of_data, fdouble *interferogram);

int get_number_of_data (char *input_file_name);

int search_spectrum_peak (int number_of_data, fdouble *interferogram) ;

INLINE fdouble *make_envelope_array (fdouble width, int number_of_data,
fdouble *envelope, int shift_value);

fdouble *make_carrer_array (int spectrum_peak_position, fdouble phase_bias,

int number_of_data, fdouble *carrer);
INLINE fdouble gauss(fdouble width, fdouble x);

INLINE fdouble #*shift (int number_of_data, fdouble *array, int shift_value);
INLINE fdouble *mult_arry_elements(fdouble *result, fdouble *operandl,
fdouble *operand2, int number_of_data);

INLINE fdouble #mult_three_arry_elements(fdouble *result, fdouble *operandl,
fdouble *operand2, fdouble *operand3,

int number_of_data) ;

INLINE int prc_coordinates (int phase, int shift, int number_of_data) ;
INLINE fdouble sigma_array(fdouble *array, int number_of_data);

[k ok ok ok ok sk ok sk ok sk ok ok o ok sk ko sk sk ok ok sk ok ok ko
* Start of main function

sk sk sk sk ok o o ok KoK oK oK oK o K ok ok oK oK ok ook K Kok ok o o koK ok ok ok ok /
/* The arguments have no sence yet. */
int main (int argc, char *argv([])

{

/3 Kok ok ok sk ok ok ok sk sk ek sk ok skok sk sk sk sk ok o ko sk ok ok ok ok ok
* Decralation of Variables
stk ok ok o o o KoK oK o o K sk ok ok Kok ok sk sk sk sk ok ok ok o Kok ok Kok ok /
/* The text file name, which contains the interferogram data
in the format of TABed or CRed data array. */
char *input_file_name = argv[i];
/* The size of array data. */

const int number_of_data = get_number_of_data(input_file_name) ;

/* Data arrays for original interferogram,

carrier sinusoidal wave, the envelope of mother wavelet and

interferogram .* motherwavelet. */
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fdouble *interferogram = calloc(sizeof (fdouble), number_of_data);
fdouble *carrer = calloc(sizeof (fdouble), number_of_data);
fdouble *envelope = calloc(sizeof (fdouble), number_of_data);
fdouble *correlated_interferogram
= calloc(sizeof (fdouble), number_of_data);

/* Width of the mother wave let, that is

the coefficient of Gaussian function */
fdouble width = 0.07 * number_of_data;
/* Analysing phase range and its bias.

The analysis is started from phase_range_bias. */
fdouble phase_range = 1.6 * Pi;
fdouble phase_range_bias = 1.6 * Pi;
/* Pahse_variable for calculation of mother wavelet. */
fdouble phase_bias = 0.0;
/* The number of Sampling points in phase axis */
int phase_resolution = 256;
/* Result matrix in Phase-Shift(Position) plane:

Phase-Resolved Correlation */
fdouble *prc = calloc(sizeof (fdouble),

number_of_data * phase_resolution);

/* Variable of iteration index */
int spectrum_peak_position;
int mother_shift;
int mother_shift_period = 5;
AN
int status;

/KK koK sk ok ok skook ok o ok ok ok ok 3 ok sk ok ok sk ok K 3k ok ok ok ok ok koK ok
* The start of PRCM process
oK KoK KoK oK oK K KoK KoK oK koK oK oK oK sk ok oK oK sk sk Kok ok ok /
/* Read the data form file x*/
status = read_data_from_file (input_file_name,
number_of_data, interferogram);
if ( status != 0 )
{
fprintf (stderr, "Usage: ’%s filename\n", argv([0]);
exit (1);
i
/* Seach the position of the spectrum peak
which is the carrier frequency */
spectrum_peak_position
= search_spectrum_peak (number_of_data, interferogram);
/* Shift the original interferogram to adjust
the position of the result, PRC to make it much visible. */
shift( number_of_data, interferogram, number_of_data/2);

/************************************************************

* The start of Phase-Resolved Correlation Algorhysm
stk sk sk sk ok sk ok stk kR ek stk sk sk ko ok sk sk skokokskok ko sk ko kol sk ok ok ok ok /

/* The outer loop is for scanning on phase axis. */
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for ( i=0; i<phase_resolution ; i++)
{
phase_bias = phase_range / phase_resolution
* (fdouble)i - phase_range_bias;
make_carrer_array (spectrum_peak_position,
phase_bias, number_of_data, carrer);
for (mother_shift=0; mother_shift<number_of_data;
mother_shift += mother_shift_period)
{
make_envelope_array (width, number_of_data, envelope, mother_shift);
mult_three_arry_elements(correlated_interferogram, envelope, carrer,
interferogram, number_of_data);
prc[ prc_coordinates (i, mother_shift, number_of_data) ]
= sigma_array(correlated_interferogram, number_of_data);

}

fprintf (stderr,"The max position of the spectrum is %d.\n",
spectrum_peak_position);

for ( i=0; i<phase_resolution ; i++)
-
for (mother_shift=0; mother_shift<number_of_data;
mother_shift += mother_shift_period)

{

printf ("%f", prc[ prc_coordinates (i, mother_shift, number_of_data) ]);

printf ((mother_shift != number_of_data-1)?" ":"");
}

printEl (isnlh)s
}

axit (0)%

47

/KK ok ok ok ok sk ok sk ok ok sk ok ok sk oksk ok ok ok ok ok ok okok ok ok ok ok ok Kok K ok
* Multiplication of each element of array
sk sk ok ok ok ok ok o ok sk ok sk ok o ok ok ok o ok Kok sk ok o ok ok ok sk oK oK ok sk Kok ok o /
INLINE fdouble *mult_arry_elements(fdouble *result, fdouble *operandi,
fdouble *operand2, int number_of_data)
{
int 13
for (i=0; i<number_of_data; i++)
result[i] = operandi[i] #* operand2[i];

return(result) ;

¥

[k kK ok ok R R Rk ok kR sk sk ko o ok ok K K K KKK oK ok ok oK
* Multiplication of each element of three arrays
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sk ok ok ok oK Kok KoK KoK KKK Ko R o ok ok ok Kok Sk kR ok ook ok ok ok ok /

INLINE fdouble *mult_three_arry_elements(fdouble *result,
fdouble *operandl,
fdouble *operand2,
fdouble *operand3,
int number_of_data)

REGISTER int i;
for (i=0; i<number_of_data; i++)
result[i] = operandi[i] * operand2[i] * operand3[i];

return(result);

}

INLINE int prc_coordinates (int phase, int shift, int number_of_data)
1
return (phase * number_of_data + shift);

}

[ skkok ok ok sk ok ok ok skok ok ko sk sk sk ok s sk ok sk ok sksksk sk ok ok

* Read the 1-D data from text file

K o ok ok ok ok o ok ok ok ok ok ko sk ok ok skok sk ok ok Kok ok s ok ok ok ok ok /
/* This function overwrite the 1-D array interferogram,

and returns the pointer which points the array, interferogram. */
int read_data_from_file (char *input_file_name, int number_of_data,
fdouble *interferogram)

{

float tmp_float;

oy A T

FILE *ifp; /* Input file pointer */

ifp = fopen(input_file_name,"r");

if ( ifp == NULL ){
fprintf (stderr, "Can not open the file; %s.\n", input_file_name);
=k A

}

for ( i=0; 1<1100 ; i++)
{
fscanf (ifp, "%e", &tmp_float);
interferogram[i] = (fdouble)tmp_float;
}
fclose(ifp);

return (0);

int get_number_of_data (char *input_file_name){
int number_of_data = 1;
filoat. nuld

oo
<o
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FILE *ifp; /* Input file pointer */
ifp = fopen(input_file_name,"r");

if ( ifp == NULL ){
fprintf (stderr, "Can not open the file; %s.\n", input_file_name);
exit (1);

iF

while ( fscanf (ifp, "%e", &null) !'= EOF ){
/* fprintf (stderr,"%d: %f\n", i, tmp_float); */
number_of_data ++;
}
number_of_data --;
return (number_of_data);
1
/ 3k sk ok ok ok ok Kok ok o KoK oK K ok ok o ok sk ok ok ok ok sk o ks sk ok sk ok
* Find the peak position of the spectrum
stk ok sk ok o Kok ok o KoK R ok KKK koK ok KoK KoK ok ks Kok Kk ok /
/* This function returns the postion of the peak */
/* The function demands FFTW library.

http://wuw.fftw.org/ */
int search_spectrum_peak (int number_of_data, fdouble *interferogram)
{

int: a4}

fdouble max_value = 0.0;
fdouble power;
int max_point = 0;

fftw_complex in[number_of_data], out[number_of_data];
fftw_plan plan;

for ( i=0; i<number_of_data; i++)

{

I

interferogram([i];
0503

c_re(in[il)
c_im(in[i])

plan = fftw_create_plan (number_of_data, FFTW_FORWARD, FFTW_ESTIMATE);
fftw_one (plan, in, out);
fftw_destroy_plan (plan);

for ( i=2; i<number_of_data/2; i++)
af
power = c_re(out[i])*c_re(out[i])+c_im(out [i])*c_im(out[i]);
if ( power > max_value ){
max_point = 1ij;
max_value = power;

}
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¥
return (max_point);
}
INLINE fdouble fftwy_power(fftw_complex ftc)
' return( c_re(ftc)*c_re(ftc)+c_im(ftc)*c_im(ftc));
}

/] 3% sk sk ok sk sk sk ok ok ok sk ok ok ok 3 ok sk ok ok K ok ok 3 ok ok 3k 3k 3k ok ok ko ok 3 ok K
* Make carrer frequency array
ok o o ok ok ok ok ok o ok 3 ok o ok ok ok ok ok ok ok ok ok ok ok sk ok ok ok ok sk ok ok k ok k /
fdouble *make_carrer_array (int spectrum_peak_position,
fdouble phase_bias,
int number_of_data,
fdouble *carrer)

{
St 49
fdouble frequency = (fdouble)spectrum_peak_position
/ (fdouble)number_of_data;
fdouble x;
/* MW = sin(mw_f * 2 * pi .* (1:N)’ + mw_phase) .* mw_envelope; */
for (i=0; i<number_of_data; i++)
{
x = (fdouble)i;
carrer[i] = sin (frequency * 2.0 * Pi * x + phase_bias);
)
return (carrer);
i

/3 ok sk ok ok sk ok ok e ok ok s ok ok e ke ok sk ok ok ok ok ok ok ok ok ok ok sk ok ok sk ok ok sk ok
* Make Gaussian envelope
sk sk ok 3k ok ok s ok ook ook 3 ok o okeok sk ok sk okok ok ok ok ok sk ok ok ok ok ok sk ok sk ok sk k /
INLINE fdouble *make_envelope_array (fdouble width,
int number_of_data,
fdouble *envelope,
int shift_value)

REGISTER int 1i;
fdouble x;

REGISTER fdouble n_of_data_devided_by_2 = (fdouble)number_of_data/2.0;

for ( i=0; i<number_of_data; i++)
{
x = (fdouble)i - n_of_data_devided_by_2;
envelope[i] = gauss(width, x);
/% fprintf (stdout,"%e\n",envelope[i]); */

A
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oo
o

shift (number_of_data, envelope, shift_value);
return(envelope) ;

/* mw_envelope = shift(gauss( (1:N)’-N/2, 0.2%N), mw_shift + N/2 ); */

INLINE fdouble gauss(fdouble width, fdouble x){

3

INLINE fdouble *shift (int number_of_data, fdouble *array, int shift_value)

{

fdouble x_devided_by_width = x/width;
return ( exp(-Pi*(x_devided_by_width)*(x_devided_by_width)) );

REGISTER int 1i;
int shift_position;
fdouble *result_array = calloc (sizeof (fdouble), number_of_data);

#ifdef SAFETY

while( shift_value > number_of_data )
shift_value -= number_of_data;

while( shift_value < 0 )
shift_value += number_of_data;

#endif

}

for ( i=0; i<number_of_data; it++)
{
shift_position = i+shift_value;
result_array[i] = arrayl
(shift_position < number_of_data)
7?7 shift_position
shift_position-number_of_data ];

3

memcpy (array, result_array, sizeof (fdouble)*number_of_data);
free (result_array);

return (array);

INLINE fdouble sigma_array(fdouble *array, int number_of_data)

3

X

REGISTER int i;
fdouble sum = 0.0;

for (i=0; i<number_of_data; i++)
sum += arrayl[i];

return (sum);
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A.2 Wigner Analysis

A.2.1 Makefile

i

# Makefile for Numerical Analysis of Time Domain Microscope
#

# Programmed by Yoshiaki Yasuno

# <yasuno@optlab2.bk.tsuukba.ac.jp>

i

OPT=-0T

CFLAGS=-Wall

wigner : main.o calc_results.o

g++ ${0PT} -o $@ main.o calc_results.o

main.o : main.cpp parameters.h coordinate_transform.h WinST.h CtoA.h
g++ ${0PT} $(CF1AGS) -c main.cpp

calc_results.o : calc_results.cpp CtoA.h Ns.h parameters.h

g+tt+ ${0PT} $(CF1AGS) -c calc_results.cpp

A.2.2 main.cpp

L S R T Lt
Wigner Distribution Function (ZX %

SV A D WRZE R fRAT
Oct. 19th, 1999-

Yoshiaki YASUNO
yasuno@optlab2.bk.tsukuba.ac. jp
stk ok ko ok sk sk sk ok ki sk sk ok ok sk sk sk ok sk sk sk skok ok sk sk sk ok Kok ok skok ok ok ok /

#include<iostream.h>
#include<fstream.h>
#include<math.h>

#include"parameters.h"
#include"coordinate_transform.h"
#include"WinST.h"
#include"CtoA.h"
#include"calc_results.h"
#include"Ns.h"

/] 33k sk ok sk ok o ok ok K ok oK Kok ok oK ok ok K 3K K o oK 3 oK 3 oK Kok 3k K K

* Start of the main function
s ok ok ook ok ok ok K oK ok ok oK o ok o ok Kok 3ok 3 koK sk ok ok oKk ok ok /

int main (void){
int i_x, i_xi, i_t, i_om; // loop-index of x, xi, t and omega.
Ns N (NX,NXI,NT,NOM); // Structure Ns, which contains the size of a
// result 4-D matrix.
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[ KRk kR ok ok K oK ok Kok sk o ok sk ok kK koK
* Print out the parameters

* (for debug)

stk ok ok oK ok oK ok ok ok Kk ok R ko ok ok skok ok sk ok /

cout << "alpha = " << alpha << "\n";
cout << "beta = " << beta << "\n";
cout << "alphal = " << alphal << "\n";

It << betial << "\n";
<< zH1 % (beta * bheta) << "\n4
It g< ot e (bata * beta) << "\nYy

cout << "betal
cout << "ztlbb =
cout << "zt2bb

comtas<SHbft = I et fe M\nll

cout << "mom = " << mom << "\n";
cout << "theta = " << theta << "\n';
couti<s [k =l i s FaatiNgilt .

/] 3k Kk ok sk sk ok ok ok ok sk ok skokok ok s ko sk ok sk skok ko ok koK ok ok ok kK
* Calculate the Spatio-Temporal
* Winger Distribution Function
sk sk sk oK ok sk Kok ok ok sk sk ki Kok ok sk ok o o o o ok ok ok ok ok Kok Kok sk ok o ok /
float *Wst; // Result matrix
Wst = new float[N.total_size()];

for( 18x=0 : i X< NX S5t ik
PO Ltaxa=03 T SN s i
foxl dst=0 : itk < NT ; 2utts)d
for( i_om=0 ; i_om < NOM ; i_om++){
coordinate xt( (double(i_x) - double(NX/2))*dx,
(double(i_xi) - double(NXI/2))x*dxi,
(double(i_t) - double(NT/2))*dt,
(double(i_om) - double(NOM/2))*dom
iy
£k
* Coordinate transform routines.
* Select on of them.
*/
//xt = TImaging (xt, alphal, betal, k, ztl, zt2, pw2);
xt = TImagingVG (xt, alphal, betal, alpha2, beta2,
alpha3, beta3, alpha4, beta4, k, ztl, zt2, pv2);

//xt = TImagingUnion (xt, beta, k, pw2, ztm);
//xt = TImagingFT (xt, alpha, beta, k, ztl, zt2, pw2, ftf);
//xt = TImagingPropagation (xt, alpha, beta, k, ztl, zt2, pw2, az);

//xt = TImagingDefocus2 (xt, alpha, beta,
L k, ztl, zt2, pw2, alpha_defocus);

Wst[N.CtoA(i_x,i_xi,i_t,i_om)] = WinSTdouble( xt );

}
}

cerr << i_x+1 << "/" << NX << " dome.\n";
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/] ok sk ok ok ok sk ok o ok ok ke sk s sk o ok sk ok sk okok ok o s sk o e kok sk sk ok sk sk sk sk sk sk sk sk ok sk ok
* Calculate and output the result electric
¥ field distributions to files.
s sk ok ok ok ok ok o K sk Kok ok s Kok ok ko sk ok sk ok o sk sk ok sk sk ok sk ok sk ok ok /
calc_ixit(Wst, N);
calc_ixt(Wst, N);
calc_ixxi(Wst, N);
calc_iomx(Wst, N);
calc_iomt(Wst, N);
calc_iomxi(Wst, N);
calc_ix(Wst, N);
calc_ixi(Wst, N);
calc_it(Wst, N);
calc_iom(Wst, N);

delete[] Wst;

exit (0);

A.2.3 calc_results.h

[ Ak ok sk okok ko o koK ok ook ok ok ok ok ok skokok o ok sk ok o ok ok ko ok ok ok
* Prototypes for calc_results.cpp
stk o stk sk ok sk sk sk s ok stk stk kok sk ok sk skok sk ok ko ok ok sk ok k ok /
#ifndef __calc_results_h__

#tdefine __calc_results_h__
#include"Ns.h"

void calc_ixit(float *Wst, Ns N);
void calc_ixt(float *Wst, Ns N);
void calc_ixxi(float *Wst, Ns N);
void calc_iomx(float *Wst, Ns N);
void calc_iomt(float *Wst, Ns N);
void calc_iomxi(float *Wst, Ns N);

void calc_ix (float *Wst, Ns N);
void calc_ixi (float *Wst, Ns N);
void calc_it(float *Wst, Ns N);

void calc_iom (float *Wst, Ns N);

#endif // __calc_results h _

A.2.4 calc_results.cpp

#include <fstream.h>
#include <math.h>
#include "CtoA.h"
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#include "Ns.h"
#include "parameters.h"

/ ks sk s ok ok sk sk sk ok ok o ok sk ok ok ok ok kR ok ok K ok

* JECe B2

sk sk sk ok ok o o ok sk sk sk ok sk ok sk kR sk sk ok sk sk sk ok ok ok /
void calc_ixit (float *Wst, Ns N)
{

0 1050 (5 Qs L s W= (i, AU (5
// Initialize result matrix
float Exit2[N.XIJ[N.T];
For Cilati=0" s Nl X <N T 7 it i)
Tor(m se=00: G C<NLT 3 1 tah)
EBxdt2 (iaxi } [15t]) = 10.0;

Fort 5 =0 g NEX T ebt)
o (e e i=0R e i i<NLXT o A 2it)
Eox ( SnsE=0" 5 S E<NET o i tti)
for( i_om=0 ; i_om<N.OM ; i_om++)
Exit2[i_xi][i_t] += Wst[N.CtoA(i_x,i_xi,i_t,i_om)];

// File output
ofstream Ixit("Ixit.mtx");
Fori i exa=00 A xi<N. XL ;5 doxadeh)
flor (el sb=0 3 FsB<N.T & otk
Tt <SS Exdt 2l - sedlie e Bl
if¢ it !'= N.T-1 ){ Ixit <<"\t"; Yelse{ Ixit<<"\m"; }
i
Ixit.close();

}

[ sk skt ok sk ko ok Kok o sk ok ok ok sk ok ok ok Kok ok ok

* |E(x,t) |72

Kk sk sk ok sk sk ok ki sk sk sk ok ok kR ok kKK KKKk KK /
void calc_ixt (float *Wst, Ns N)

150 v R @ 1 <L B U ey (o)1

// Initialize result matrix
float Ext2[N.X][N.T];
for( Siex=0' Ex<N. X s i)
fior(eaet=0 o 5 E<N. T = igtin)
Boeh2 i) i tihe=100403

o

fortidux=0 « d_ <N t+)
for (RIsb=0, ;i s t<N -t i)
for( texi=0 3 EEci<N KIS swi _Xit+)
for( i_om=0 ; i_om<N.OM ; i_om++)
Ext2[i_x][i_t] += Wst[N.CtoA(i_x,i xi,i_t,i_om)];




90 APPENDIX A. PROGRAM SOURCES

// File output
ofstream Ixt("Ixt.mtx");
for( i_x=0 ; i_x<N.X ; i_x++)
for( I 6205 d t<NuT pd e {
e <<IExt2 it axhiliat]s
AF6 30 1= N, 71 ){ Ixt <<"\t's JeTsef Txb<<!\nlts F
3

Ixt.close();

/Ko sk ok ok skok ok ok Kok o ok sk ok ok ok Kok ok ok ok

* |Eéxaxi) =2

stk ok s ok ok ok ok ok o KKKk KKk ok sk ko ok ok /
void calc_ixxi (float *Wst, Ns N)
{

G0 R R T e e 2 Gt MR e oS )

float Exxi2[N.X] [N.XI];

// Initialization of Exxi?2

foré i .x=0. Qex<NX 3" 4 ottt)

for( i _xi=0" ) i _xi<N.XT 5 i xitt)
Exxi2 (i x| [41.xi] 0.0;

// Integration along t and omega
For (Rgex=0w: dex<NI X i o)
foré Laxi=0rsoioxi<NeTe 30 Gl i)
for( A.t=00 ; A0G<N. T ;" a_t++)
for( i_om=0 ; i_om<N.OM ; i_om++)
Paxpa2fd x| [ xi] += WstIN.CtoA(i x i xiji t,5 om)ils

// file output
ofstream Ixxi("Ixxi.mtx");
forhisz=0rs e T <N X phd Xai=k)
for( i_xi=0 ; i_xi<N.XI ; i_xi+#){
Txxi=ahErri 2P ienilE el

L aseen =t NoX T8 i yeeinc< NG SR et gaf sanci< <t nlhe )

¥

Ixxi.close();

}

/oK ok ok ok ok ok ok ok o ok ok ok ok 3 sk ok ok ok ook ok ok oK

* |E(x,om)|"2

¥ ok ok ok oKk ok KoK ok ok Kok ok ok ok K K sk Kok ok /
void calc_iomx (float *Wst, Ns N)

{

it 3oy deatt= ey s Ao ome

float Eomx2[N.OM][N.X];

// Initialization of Exom2

for( i_om=0 ; i_om<N.OM ; i_om++)
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for( i_x=0 ; i_x<N.X ; i_x++)
Eomx2[i_om] [i_x] = 0.0;

// Integration
for( i_om=0 ; i_om<N.OM ; i_om++)
for( i_x=0 ; i_x<N.X ; i_x++){
for( i xi=0 ;i Ri<NXT ; i_xit+)d
forRitE=08 81 CESNGTE SO d)
Eomx2[i_om] [i_x] += Wst[N.CtoA(i_x,i_xi,i_t,i_om)];
&
Eomx2[i_om] [i_x] *= (1.0/2.0%Pi);
}

// file output
ofstream Iomx("Iomx.mtx");
for( i_om=0 ; i_om<N.OM ; i_om++)
for( 10%=0 3 3. x<N.X ; i x++){
Tomx << Eomx2[i_om] [i_x];

if( i.x t= N.X=1 ){ Iomx <<"\t"; }else{ Iomx<<"\n"; }

}

Iomx.close();

/s sk ok ok kiR ok ok o koK kKoK K K K Kok ok ok
* |E(t,om)|"2
sk ok ok ok ok o ok 3k o ok 3K ok ok 3 ok koK Kok kK Kok ok ok ok k ok /
void calc_iomt (float *Wst, Ns N)
ft
ARt T el gt s o
float Eomt2[N.OM][N.T];

// Initialazation of Etom2
for( i_om=0 ; i_om<N.OM ; i_om++){
for( 4.t=0 5 1. .t<NaT 5 i_t+H){
Eomt2[i_om] [i_t] = 0.0;
¥
bk

// Integration
for € i x=00s A <N X '+ A )
for( i_xi=0 ; i_xi<N.XI ; i_xi++)
for( i_om=0 ; i_om<N.OM ; i_om++)
For (b =0NaEa RN T s Stk
Eomt2[i_om] [i_t] += Wst[N.CtoA(i_x,i_xi,i_t,i_om)];

ofstream Iomt("Iomt.mtx");
for( i_om=0 ; i_om<N.OM ; i_om++)
for(Part=00s 1 t<N. T ittt D
Iomt << Eomt2[i_om] [i_t];

if( i_t != N.T-1 ){ Iomt <<"\t"; }else{ Iomt<<"\n"; }
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}

Iomt.close();

}

/s ok o o ok sk ok ok o ok ok ok sk sk ok ok ok ok K KoK ok K K oK
* |E(om,xi)|"2
sk sk sk ok sk sk ok koK Kk oK R ok ok o o ok ok ok ok ok /
void calc_iomxi (float *Wst, Ns N)
i
5 s vl 1 (s 5 T 0 13 OGRS 10 7O (o)1 W
float Eomxi2[N.OM] [N.XI];

// Initialazation of Etom2
for( i_om=0 ; i_om<N.OM ; i_om++){
for( i xi=0 ; i xi<N.XI ; i_xi++){
Eomxi2[i_om] [i_xi] = 0.0;

// Integration
for( i_x=0 ; i_x<N.X ; i_x++)
for( $oxi=0 & 1.1 <N, XF 35 1 -Zi++)
for( L t=0"+ i t<N.T & i_t++)
for( i_om=0 ; i_om<N.OM ; i_om++)
Eomxi2[i_om] [i_xi] += Wst[N.CtoA(i_x,i_xi,i_t,i_om)];

ofstream Iomxi("Iomxi.mtx");
for( i_om=0 ; i_om<N.OM ; i_om++)
for(-d xi=0 s iexd<N. XL - Soxits )Y
Tomxi << Eomxi2[i_om] [i_xi];

if( i xi l= N.XT-1 ){ Tomxi << "\t"; l}else{ Iomzi << "\n";

}

Iomxi.close();

¥

/ ek kok ok ok Kok Kok sk Rk sk ok ok kK ok ok sk ok Kok ok kK
I BGE=2
sk ok ok ok ok ok ok ok sk ok ok o ok ok o skok o sk ok ok ok ok ok skok ok /
void calc_ix (float *Wst, Ns N)
{
S0t Ao G il T om:
float Ex2[N.X];

// Initialazation of Eit2
for( i_x=0 ; i _x<N.X ; i_x++)
ExPli «] = 0.0%

// Integration
for( i %x=0 3 i x<N;X 3 1oxt+)
for( i_xi=0 ; i_xi<N.XI ; i_xi++)

}
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For( A _t=0 3 AHE<NIT it +)
for( i_om=0 ; i_om<N.OM ; i_om++)
Ex2[is=x] += WstIN.CtoA@E x,i xi,i.6,4i.0m)] ;

ofstream Ix("Ix.mtx");

for(dex=0": I g<NCX ¢ F-xbs )
TS RE2 T [ e pins
Ix.closel);

/K ok sk ok ok ok s sk ok ok ok sk ok 3 oKk s ok koK sk ok Kok kK
* |E(xi) -2
stk sk stk kR ok ok o ok sk ok sk ok Kok ok Kok ok kokok ok /
void calc_ixi (float *Wst, Ns N)
{
aarte PeEatt wis dts tioom:
float Exi2[N.XI];

// Initialazation of Eit2
116 3 6 1 I > 3 e O B - (50 12,61 KIS 15 1
Exi2[i_xi] = 0.0;

// Integration
for(hd =0 s el 4 oekt)
fOE bR T=00 MR <N KT il S te)
for( i_t=0 ; i_t<N.T ; i_t++)
for( i_om=0 ; i_om<N.OM ; i_om++)

Exi2[i_xi] += Wst[N.CtoA(i_x,i xi,i_t,i_om)];

ofstream Ixi("Ixi.mtx");

fortaiiti=00 S S i <NART ¥ il it )
Triscs Fri2 Fiaxils<s "Nl
Ixi.close();

}

/% ok s ok ok ok ok ok o ok ok ok ok Kok ok ok ok Kok ok oK
* |E(t) |72
sk sk sk ok ok ok ok ok ok ok ok ok ok ok o ok ok ok ok ok ok ok K ok ok /
void calc_it (float *Wst, Ns N)
{
it IeseEiaEixly asts Joom;
float Et2([N.T];

// Initialazation of Eit2
SorGeitisans 1 B<NITRUEEEE)
Et2[i_t] = 0.0;

// Integration
for( 1.x=0 3 i_x<N. X diix++)
for( i0xi=0 ; 1. xi<N-Xhey daxits)
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Fort Jot=00¢ AE<N.T & G15+E)
for( i_om=0 ; i_om<N.OM ; i_om++)
Et2[i_t] += Wst[N.CtoA(G x,i xi,i t,i_om)];

ofstream It("It.mtx");

for( A t=0. ; 1 _6<N.T : i_t+t )
It &< Bt2[1_t]) << \ns
It.close();

/K KKk kKK K ok ok ok sk ok sk ok ok o KoK K K
* |E(om) |~2
sk ok ok Kok sk ok ok o Kok ok ok kR sk ok sk ok ko ok ok /
void calc_iom (float *Wst, Ns N)
{
i b sl A S T Ky i A o) 1 iy
float Eom2[N.OM];

// Initialazation of Eit2
for( i_om=0 ; i_om<N.OM ; i_om++)
Eom2[i_om] = 0.0;

// Integration
for( i_x=0 ; i_x<N.X ; i_x++)
for( A xi=0 : 4 Xi<NXL ;" i8xi+ts)
for€ 4 t=0 3 I-t<N.T & a-trt)
for( i_om=0 ; i_om<N.OM ; i_om++)
Eom2[i_om] += Wst[N.CtoA(i_x,i_xi,i_t,i_om)];

ofstream Iom("Iom.mtx");
for( i_om=0 ; i_om<N.OM ; i_om++ )
Iom << Eom2[i_om] << "\n";
Iom.close();

A.2.5 parameters.h

#

# parameters.h

#

# In this file, we define the parameters
# of the numerical analysis

#include <math.h>
const double Pi = asin(1.0)*2.0;
const double C = 3e8;

/****************************************

* Parameters which you can change.
stk sk ok ok sk sk ok o stk sk ok sk o ok sk o ok ok ok o Kok ok Kok ok k kK /
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const double lambda = 775e-9; // Wavelength [m]

const int NX = 32;

const int NXI =.32:

const int NTM 85 K

const int NT = 32%NTM;

const int NOM = 32;

const double wx = 2.0e-3; // FWHM of x = 2[mm] for sinusoidal

const double wt = 100.0e-15; // FWHM of y = 100[fs]

const double dx = 0.1e-3; // Sampling period of x = 0.1 [mm]

const double dxi = Pi/(double(NXI)*0.1e-3); // Sampling period of xi[rad/m]
const double dt = 50.0e-15; // Sampling period of t[s]

const double dom = 2.0%Pi/(double(NOM)*dt) ; // Sampling period of omega[rad/s]
const double alpha = 1.0; // Parameter of grating

const double f = 60e-3; // focus length of lens[m]

const double k = 8.3841e6; // wave vector[rad/m]

const double d = 1.0e-3/2000.0;

const double theta = asin(lambda/(2%*d));

const double beta = 2.0%Pi/(d*cos(theta)*(2*¥Pi*C/lambda));

const double f_d = 130e-3; // focal length of incident lens

const double defocusi 0.8

const double defocus2 i 01

const double apl = 00e-3; //Length of after propergation

const double cv = 500%Pi/(2e-2%2e-2) * -0.7 * 5; // curve of square
const double ff=700e-3; // focal length of pahse filter lens of devia
const double shift = 0.0;

Il

]

/oo ok kok skok sk ok ok sk ok Kok ok ok sk ok o ok sk ok s ok ok ok ok ok
* calculated alpha and beta
sk ok ok ok ok 3k ok ok 3 ok ok ok ok ok ok 3 ok 3k 3K ok kK o ok ok ok ok ok ok ko ok sk ok ok k k ok ok /
#define diford 1.0 // diffraction order
const double thetail = 51.805 / 360.0 * 2 * Pi; /* incident angle [rad] =/
const double thetadl = asin( diford * lambda / d - sin( thetail) );
const double alphal = cos(thetail) / cos(thetadl);
const double betal = lambda * diford / (d * C * cos(thetadl));
#undef diford

#define diford 1.0 // diffraction order

const double thetai2 = 50.805 / 360.0 * 2 * Pi; /* incident angle [rad] */
const double thetad2 = asin( diford * lambda / d - sin( thetai2) );

const double alpha2 = cos(thetai2) / cos(thetad?2);

const double beta2 = lambda * diford / (d * C * cos(thetad2));

#undef diford

#define diford 1.0 // diffraction order

const double thetai3d = 51.805 / 360.0 * 2 * Pi; /* incident angle [rad] */
const double thetad3 = asin( diford * lambda / d - sin( thetai3) );

const double alpha3 = cos(thetail) / cos(thetad3);

const double beta3 = lambda * diford / (d * C * cos(thetad3));

#undef diford
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#define diford 1.0 // diffraction order

const double thetai4 = 50.805 / 360.0 * 2 * Pi; /* incident angle [rad] */
const double thetad4 = asin( diford * lambda / d - sin( thetai4) );

const double alphad4 = cos(thetai4) / cos(thetad4);

const double beta4 = lambda * diford / (d * C * cos(thetad4));

#undef diford

/%3 sk ok ook s sk ok ok ok ok ok ok sk ok ok sk sk sk o ok ok ok ok ok ok ok ok ok ok ok ok ok ok
* Temporal Imaging System
st o ok sk ok o o ok oK ok oK oK KoK oK K KK KK KK K K ok oK KoK ok kK ok ok /
const double mpm = Pi * 1.0; // Amplitude of the phase modulation
const double mom = 3.0e3 * 2.0 * Pi; // Frequency of the phase modulation
const double ft = k / (mpm * mom * mom);
const double ztm = 1.00; // Magnitude of Time Microscope
const double ztl = (alpha2 * alpha2)
/ (beta2 * beta2) * ft * ( 1.0 + (1.0 / ztm) );
const double zt2 = (alpha4 * alpha4) / (beta4 * betad) * ft * ( 1.0 + ztm );
const double pw2 = k / ft * 1.00;
const double az = 100.0e-3; // Propagation after imaging [m]
const double ftf = 000.0e-3; // Last FT lens
const double alpha_defocus = -0.00;

Il

//kdokok koo ok ok ok kb koo sk sk ok ok ok s ok ok sk ok koK ok Kok ok ok ok ok
* Temporal 2-f Imaging
ok ok sk ok ok ok ok ok ook ok ok ok sk ook ok sk sk sk okok sk ok ok skeok ok sk ok ok sk ok k /
const double ftl = ft;
const double ft2 = ft;
const double pw2_1
const double pw2_2 =

=k / fti;
k JOFt2
/K kKo ok ok koK KoK Kok o ok sk ok ok ok sk ok sk sk sk ko sk ko sk sk ok sk ok sk sk ok ok koK
* Don’t change the parameters.
* They are calculated by the above parameters.
sk o ok KoK R KR oK o KoK ok oK oK koK oK o KK Kk ok ok koK sk sk o Kok ok ok sk skok sk ok ok ok /
const double a = 1.0/2.0%*sqrt(2.0/log(2.0))*wx;
const double b = 1.0/2.0%*sqrt(2.0/log(2.0))*wt;
const double w_bias = axb/(2.0%Pi);
const double w_x = -(2.0/(a*xa));
const double w_xi = -(a*xa/2.0);

const double w_t = -(2.0/(bxb));
const double w_om = -(b*b/2.0);

A.2.6 coordinate_transform.h

/*******************************************************

The definition of class for 4 valuables coordinate
class coordinate
and
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Functions for coordinate transform
ok o ok ok ok o ok ok ok ok o skok ok ok ok ok ok o ok ok ok ok ok oK ok 3K oK oK 3K oK KoK K KK K K K ok ok sk ok K KKk ok /

/33K ok sk ok ok ok ok ok ok ok ok o ok ok o sk ok ok ok ok sk ok ok ok ok ok 3k oK Kok 3k ok ok 3k ok koK
* Definition of class coordinate
stk ok sk ok ok ok e ok ok ook ok ok ok ok ok sk sk ok R ok ok KRk sk Kok ok o ok Kk k ok /
#include<math.h>
class coordinateq
public:
doublie e ek, "t oms
inline coordinate(){
o100, 0.0, 0.0, 0.0):
}
inline coordinate(double x, double xi, double t, double om){
sati(ars Wi h Somi
it
inline void set(double x, double xi, double t, double om){
this—->x = X7
this—>x1 = xi;
Lhis=2t. = b
this->om = om;
}
i

/3 3k ok sk ok ok ok ok sk 3 ok 3k kK oK sk Kok sk 3k oK 3K ok s oK K Kok ok sk ok sk ok sk ok sk ok ok ok sk ok sk ok ok

* Functions for coordinate transform
sk ok ok ok o ok ok ok ok ok ok ok o ok ok o 3k ok ok K sk ok ok ok sk ok ok ok ok ok ok ok 3k ok ok ok ok ok ok ok ok ok ok ok /

/*
* Do nothing
*5
inline coordinate Vacuum(coordinate org){
return(org) ;
¥
/*
* Spatial Lens
*/

97

inline coordinate SpatialLens(coordinate org, double f, double k){

return( coordinate( org.x,
k/f * org.x + org.xi,
org.t,
org.om ) );

/*
* Propagation in Dispersion Medium

%/

inline coordinate Propagation(coordinate org, // The original coordinate

double z, // Propagation Distance
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double k, // Transversive Wave Vector
double gd) // Group Delay (d~2k/kom~2)

i

return( coordinate( org.x - z/k *org.xi,
org.xi,
org.t - gd*z*org.om,
org.om ));

}

/*

* Input Grating

*/

inline coordinate GratingIn(coordinate org, // The original coordinate
double alpha, // Parameter of Grating
double beta) // Parameter of Grating

{

return( coordinate( double(alpha * org.x),

double(org.xi/alpha) - double(beta/alpha * org.om),
double(org.t) - double(betakorg.x),
double(org.om) )

)3
}
/%
* Output Grating
*/
inline coordinate GratingQOut(coordinate org, // The original coordinate
double alpha_orig, // Parameter of Grating
double beta_orig) // Parameter of Grating
{

double alpha = 1.0 / alpha_orig;
double beta = 1.0 * (beta_orig / alpha_orig);
return(GratingIn(org, alpha, beta));

}

/*

* Spectrometer

*/

inline coordinate Spectrometer(coordinate org, // The original coordinate
double alpha, // Parameter of Grating

double beta, // Parameter of Grating
double f, // Focal Length of Lens
double k) // Transversive Wave Vector

i
return( coordinate( -alpha*f/k*org.xi,
k/(alpha*f)*org.x - beta/alpha*org.om,
org.t+betaxf/k*org.xi,
org.om )

s
}
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/*
* 2-f system (Spatial Fourier Transform)
*/
inline coordinate TwoFsystem(coordinate org, // The original coordinate
double f, // Focal Length of Lens
double k) // Transversive Wave Vector
i
return( coordinate( -f/k¥org.xi,
k/f*org.x,
org.t,
org.om )
i
ik
/*
* Temporal Fresnel Diffraction
*/

inline coordinate TFresnel (coordinate org,
double alpha,
double beta,
double k,
double zt // diffraction time
)

double z;
coordinate xt;

Zz = 24U

xt = org;

xt = GratingOut (xt, alpha, beta);
xt = Propagation (xt, z, k, 0.0);
xt = GratingIn (xt, alpha, beta);

return (xt);

/*
* Temporal Fresnel Diffraction Reversal Setup
*/
inline coordinate TFresnelR (coordinate org,
double alpha,
double beta,
double k,
double zt // diffraction time

)

double z;
coordinate xt;
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zZ = zZt;

xt = org;

xt = GratingOut (xt, alpha, -beta);
xt = Propagation (xt, z, k, 0.0);
xt = GratingIn (xt, alpha, beta);

return (xt);

/ *

* Temporal Fresnel Diffraction with Defocus

*/

inline coordinate TFresnelDefocus (coordinate org,
double alpha,
double beta,

A.2. WIGNER ANALYSIS

* Temporal Imaging System

*/

inline coordinate TImaging (coordinate org,

double alpha,
double beta,
double k,
double zt1l,
double zt2,
double pw2

)

coordinate xt;

Xt = org:

xt = TFresnel (xt, alpha, beta, k, zt2);
xt = TimeLens (xt, pw2);

xt = TFresnel (xt, alpha, beta, k, ztl);

return (xt);

double k,
double zt, // diffraction time
double alpha_defocus
)
{
double z;

double dalpha
coordinate xt;

= alpha * (1.0 -alpha_defocus);

i

* Temporal Imaging with variout Gratings

%/

inline coordinate TImagingVG (coordinate org,

Z. = 2L
xt = org;
xt = GratingOut (xt, alpha, beta);
xt = Propagation (xt, z, k, 0.0);

xt = GratingIn (xt, dalpha, beta);

return (xt);

/*

* Time-Lens

*/

inline coordinate TimeLens (coordinate org,
double pw2 // pw2: PhiW"2

)
{
return( coordinate( org.x,
O g . X
org.t,
org.t * pw2 + org.om ));
}

/*

double alphal,
double betal,
double alpha2,
double beta?2,
double alpha3,
double beta3,
double alpha4,
double beta4,
double k,
double zt1,
double zt2,
double pw2

)

coordinate xt;

xt = org;

xt = GratingOut (xt, alpha4, beta4d);
xt = Propagation (xt, zt2, k, 0.0);
xt = GratingIn (xt, alpha3, beta3);

xt = TimeLens (xt, pw2);

xt = GratingOut (xt, alpha2, beta2);

101
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xt
xt
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Propagation (xt, ztl, k, 0.0);
GratingIn (xt, alphal, betal);

return (xt);

inline coordinate TImagingFT (coordinate org,

alpha,
beta,
k,
01,

A
pw2,
i

.6 e

TwoFsystem(xt, ftf, k);

TFresnel (xt, alpha, beta, k, zt2);
TimeLens (xt, pw2);

TFresnel (xt, alpha, beta, k, ztl);

}
/*
* Temporal Imaging
*/
double
double
double
double
double
double
double
)
i,
coordinate
xt = org;
Xt =
xC =
Xt =
xt =
return (xt);
+
/%

* Temporal Imaging Union
* (Represented by one coordinate transformation)

*/

inline coordinate TImagingUnion (coordinate org,

double beta,

double k,
double pw2,
double mt

)
{

return( coordinate(
(2.0 * mt -1.0)*org.x
+ (1.0-mt) /beta * org.t
+ 2.0%pw2x(1.0-mt)/(beta * k) * org.om,

4.0 * beta * beta * k / pw2 * org.x
+ (2.0/mt -1) * org.xi
- 2.0 * beta * k / pw2 * org.t
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- 2.0 * beta * (1.0 + mt) / mt * org.om,

-2.0 * beta * (mt+1.0) * org.x

+2.0 * pw2 * (mt - 1.0) / (mt * beta * k) * org.xi

+ mt * org.t

+ 2.0 * pw2 * (mt - 1.0) * (mt - 1.0) / (mt * k) * org.om,

- 2.0 * beta * k / pw2 * org.x

+ (mt - 1.0) / (beta * mt) * org.xi
+ k / pw2 * org.t

+ 100 o/ mt sk sorg dom ) )’

/*
* Temporal Imaging with After Propagation
*/
inline coordinate TImagingPropagation (coordinate org,
double alpha,
double beta,
double k,
double ztil,
double zt2,
double pw2,
double az

)
coordinate xt;
Xt = org;

xt = Propagation (xt, az, k, 0);
Xt TImaging (xt, alpha, beta, k, ztl, zt2, pw2);

return (xt);

/*
* Temporal imaging with first grating tilt
*/
inline coordinate TImagingDefocusl (coordinate org,
double alpha,
double beta,
double k,
double ztl,
double zt2,
double pw2,
double alpha_defocus // [%]
)

coordinate xt;
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xt = org,;
xt
Xt
xt
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TFresnel (xt, alpha, beta, k, zt2);
TimeLens (xt, pw2);
TFresnelDefocus (xt, alpha, beta, k, ztl, alpha_defocus);

return (xt);

VE

* Temporal imaging with second grating tilt

*/

inline coordinate TImagingDefocus2 (coordinate org,
double alpha,
double beta,

double k,

double zt1l,
double zt2,
double pw2,
double alpha_defocus // [ 1/100 %]

)
{
coordinate
Xt = org;
xt =
Xt =
Xt =

X6

TFresnelDefocus (xt, alpha, beta, k, ztl, alpha_defocus);
TimeLens (xt, pw2);
TFresnel (xt, alpha, beta, k, zt2);

return (xt);

/*

* Temporal 4-f Imaging
* (not verified)

*/

inline coordinate T4fImaging (coordinate org,

double
double
double
double
double
double
double
)

coordinate

xt org;

]

xt

alpha,
beta,
ka
ttl,
ft2,
pw2_1,
pw2_2

Xt;

TFresnel (xt, alpha, beta, k, ft2);

A.2. WIGNER ANALYSIS

xt = TimeLens (xt, pw2_2);
xt
xt = TimeLens (xt, pw2_1);
B TFresnel (xt, alpha, beta, k, ftl);

return (xt);

A.2.7 WinST.h

/) 3k sk sk sk ok ok sk sk ok sk ok 3 ok K ok Kok ok ok sk o ok ok ok o o koK 3k ok 3 skok 3K ok 3k ok ok 3 ok 3 skok 3k K

*
* The mathematical function of
* Wigner distribution function.

* The temporal and spatial profiles of the

* pulse are Gaussian profiles.
*

sk ok ok o ok ok Sk 3k ok ok ok 3 ok o ok 3 ok kK ok ok ok oK 3K K oK ok 3K ok K ok o sk ke sk sk sk ok ok ok sk ok ok /

#include <math.h>

/*
* Wigner distribution function of
* singlet pulse.
*/
inline float WinSTsingle(coordinate xt)<{
double result = (
w_bias
* exp(w_x * Xt.x*xt.Xx)
* exp(w_xi * xt.xi*xt.xi)
* exp(w_t * xt.t*xt.t)
* exp(w_om * xt.om*xt.om) );
return( float(result) );

}

/*

* Wigner distribution function of

* doublet pulse

*/

inline float WinSTdouble(coordinate xt)

{

const double tau = 150e-15; // separation of twin plus [fs]

double result = (
w_bias
* exp(W_x * xt.x*xt.X%)
exp(w_xi * xt.xi*xt.xi)

*
* (exp(w_t * pow((xt.t - tau),2.0)) + exp(w_t * pow((xt.t + tau),2.0)))
* exp(w_om * xt.om*xt.om) * pow(cos(xt.om * tau),2.0)

Py
return( float(result) );

}

TFresnel (xt, alpha, beta, k, ft2 + ft1);
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/ *
* Wrapper function for above two function.
* You have to select one of them.
*/
inline float WinST(coordinate xt)
{
// return( WinSTdouble(xt) ); // for singlet
return( WinSTsingle(xt) ); // for doublet
¥

A28 CtoALh
/*

* Return the index of memory on
* result Wigner matrix, Wst from
* a coordinate index (i_x,i_xi,i_t,i_om).
*/
inline dintCtoflint d X, dnt i xig dnt 3 €, dntld oms
int NX, int NXI, int NT, int NOM){
// N: The size of Wigner matrix.
return( i_x*NXI*NT*NOM + i_xi*NT*NOM + i_t*NOM + i_om);
}

A.2.9 Ns.h

#ifndef __Ns_h__
#define __Ns_h__

[/ koK ok ok ok ok ok ok ok sk ok sk sk sk sk sk sk sksk sk ok sk ok ok sk kokok sk sk ok ok ok koK

* Class containing the size of

* Wigner matrix.

sk sk sk ok kK ok ok Kok Kok oK oK oK oK o o sk o sk ok sk sk sk ok sk sk sk skok o e kok sk sk ok ok /
class Ns{
public:

a T 1y 0, OO 4 OV (R | [
/KK ok ok sk ok ok sk ok ok sk ok ok sk o sk k ok ok sokok sk sk skok /
Ns(int Nx, int Nxi, int Nt, int Nom){

X = Nx;
XI = Nxi;
T = Nt;
OM = Nom;

}
/K ok ok ok ok ok ok s ok ok ok ok KoK KoK oK KK KKk Kk k ok /
inline int total_size(void){ return(X*XI*T*0M); }
/3K ok ok ok ok ok sk sokok ok ook ok kok ok sk ok kok /
/%

* Return the index of memory on

* result Wigner matrix, Wst from

* a coordinate index (i_x,i_xi,i_t,i_om).

A.2. WIGNER ANALYSIS

*/
inline int CtoA(int i_x, int i_xi, int i_t, int i_om){
return( i_x*XI*T*0OM + i_xi*T*0M + i_t*OM + i_om);
}
i

#endif //__Ns_h__
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