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Part I 

Introduction 



81ectric circuits which arC' cOllsidC'rC'd as a t.ypical C'xampiC' oi' il cOllvC'l)t.iollal signill 

processing model , arr. COll'lposC'd of indllctors cilpacitors, ilnd rC'sist.ors. I':ach component. 

corrcsponds to a difFcrC'nt.iill op('riltor intC'gral OpC'l"ilt.or, ilnd nlttiLiplicat.i n, I' spC'ct.ivdy. 

The convr.ntional rl1ilthcmilticil,1 tl1oc\C'1 for signill procC'ssing hilS \)('C'n hilSC'c\ on t.hC'sC' op

erators. This rneans that convC'ntional signal processing is charactC'rizC'c\ hy C'xponential 

functions whicb are the eigr.nfunctions of difi'C'rC'ntial opC'rilt.ol' and int.C'grill opC'I'at.or. 'I his 

is why exponential functions havr. b('en uscd for rcprC'sC'ntaLion of signals and tlw conven

tional 111athe1l1atical 1110del for digital signal processing consist.s of a. difi'el'C'lltial OpC'l'n,tOl', 

integral opcrator, and Illultiplication in band-limit,C'd signill spacC'. In hallci - limiLC'd sig

nal space, thc ll1utual relation betw('cn conLinuolls tinw signill ilnd discl'C'(.C' t.inw signal is 

expressed by the sa.mpling theOrel11 of \Vhittakcr[10L]-Soll1C'Yil[I02]- Shannon[IO:~]. This 

theoren1 is an orthonormal expansion forn1tda us i ng si nc fu nction , and t.hC' C'xpansion 

coefficients are identical to the sample valucs of signals. 

Since ba,nd-lill1ited signals arc continuously difFcrentiable at any t.ilnC' , thC'ir wavC'f'orJllS 

can be detenni ned ill a.1l doma i ns by llsi ng only a function valuC' and all h iglwr dC'riva tives 

at one point. Hovv'evcr, in general, signals in nature do not satisfy thosC' on liti JllS thcn 

band-lin1ited signal space is not always suited for the 1110deling of signals. 

l\IIodeling of signals by finite timcs continuously difFcrentiable fun 1.ions was studied 

in the \"'isdolll Systems Laboriltory of which the iluthor is il 111C'1111)C'r. Thc functions 

of n-tin1CS continuously diffc[,C'lltiablc , and not (71. + i)-times, has been considered as an 

approach to the probletl1. Supposc that those fllnctions I elonging to thr. a\)ovC' class arc 
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nallled D'I1 then the convolution of two functions (f E J) IL an I h E J) m b('comC's (\ function 

c(t) = 100 

a( T )b( t - T )dT. 

And functions in D n
, (n = -1,0, 1, 2, ... ) arC' systC'mat.iullly gC'nC'ra tC'c\ by rC'pC'(\,t i ng thC' 

convolution operation with starting from a fllnction in f)-I of discontinllolls functions. it 

has been decided to caJl these flucncy functions. ThC'y arc not. rational flln tions. Th 

non-rational property lnakes it possiblC' to approxirnatC' somC' norl-r(\t,ion(\1 rlll1cLiol1s wC'11. 

This is one of approachC's to provide effect.ivC' methods for thC' (\,I1(\lysis or some (omplex 

systen1s with l1ori-rational transfer functions. When f)-I is st.qnvise functions, the gener

ated functions beC0l11e piecewise polyno111ials vvith finitC' times continllolls dif!'e(,C'I1t.iability 

[105]. In this case, thc generated functions (\rc identical with spline funct.ions. 1('ml)<:rs 

of the \Visdom Systems Laboratory have c!<:rivecl a sampling basis f)1' splirw function 

spaces to characterize then1[111, 112, 1I!}]. Signal spa,ces composC'd of splinC' fllnct.ims 

generalize band-lin1ited signal space because" band-limit<:c1 signals can he represented by 

spline functions when convolution is p<:rformed infinitC'ly [lIG]. So the most suitable' sig

nal space for the purpose can he picked out from those flexible signal spaces. 1cmhC'l's of 

the Wisdom Systen1S Laboratory have also deriv<:d an orthonormal basis Lo cha.ract.erize 

operators[113, 115]. This corresponds to the cxponcntial functions in band-limi C'd signal 

space. The operator whose eigenfunctions arC' th(' exponential fllnctions is a differ nee 

operator. Integral operation h(\s the role of increasing Lh(' degree of flll1ctions, 



The aim of the-' pr('sent dissertC1t.ion is to hC1rC1ct.erize iiuenty signal spC1ces which con

nect the signal space of stq),vYise funct.ions with FOllri('r's bC1nd limited signC11 spa e b) 

a sel.lnpling theorell1 c=tnd apply them to the fI('xible signed processing C1nd C111C1lysis of 

complr.x SystclllS. \Vith this aim, the" fH('scnt thesis deC1ls with the t,heoret.i(C't1 C111C1lysis of 

signal spaces conlposed of fluency functions, cspe-'cially spline flln t.iol1s in the C1Sp ct of 

sanlpling forrl1u]as and exp('rilnentC11 inv('stigC1tion C1pplying t.he theord,i( C11 r suits to real 

fields . 

The tlworct.icC11 analysis is composed of four kinds of discussion. The fir's!' is d rivaLiol1 

and ana lysis of the sC1mpling t.heorem for periodic spline signC11 spaces. The clC1ss of spline 

functions is linlited to th~ finite closed dOL11C1in with periodic condit.ion. 011(' of the spline 

functions is a quad rati c one, quad ratic s pI inc fllnct ion bei ng the least degree to retain 

slnoothness. Then the class of periodic spline functions is extended Lo arbit.rary degrees 

to generalize Cahn's sampling theor~nl. rJ he derived san1pling Lheore1l1 is i ienti al with 

Cahn's sanlpling theorem when the degree tends to infinity. 

The second aspect of the theoretical analysis is the derivation C1ncl analysis of the sam

pling thcorem for non-periodic spline signal spC1ces. 'l'h(' class of spline fun tions is limiLed 

to the infinite open do/nain. The degree of spline fUIH~tions is arbitra.ry. The deriv('d salll

piing theorenl is identical with Whittaker-Someya-Shc=tnnon's sampling theorem when the 

degree tends to infinity. 

The third aspect of t.he theoretical discussion consists of the derivC1 tion of t.he rei /'0-

ducing kernel for 'piine functions. The dC1SS of splin(' functions is limited to the infinite 



open c\ornain. 

The fourth aspect of the t\worcticn\ nnn\ysis proposes the renl-till1e <1pproximation 

lllcthod and its numeric<1\ an<1\ysis. The cl<1sS of spline funct.ions is limit.ed t.o the in-

finite open dOll1nin. 

Experimental investigation is composed of <1n imm<:dinte spline approxim<1tion methoc! 

and FIR filt<:r design method. 

In Chaptcr 1, a salnpling th orcm for the qundratir spline sign<11 sp<1ce in the nnite 

closed dornain is derived and an a.l yz<:d [1 18]. Thc impulse and freqllency respons s ar . 

derived to chara.cteriz(' quadratic sp lir1<: approximation for <1 finite closed ciomnin. It IS 

clarified tha.t quadratic spline npprOXilllation h<1s strong locality in the Lime domain. 

In Cha.pter 2, a san1pling theorem for splin<: signal SpnC(> of arbitrary d~gr(>e in the finit<: 

closed domain is derived and analyzed[l] in a lnanner sin1ilar to that in Chapt<:r 1. The 

degree of spline functions are extended to arbitrary degr~<: to g<:nct'nlize Cnhn's sampling 

theOre111. 

In Chapter 3, a probl<:111 of the generalization of bandlimited signnl SP<1C<: <1nd the signal 

space of stepwise functions is accomplishcd by deriving the sn mpling theorem for spline 

signal space of arbitral'y degrc<: in the infinite open domain[S]. It is proven t.hnt the splin<: 

signal space is identical with thc space of st<:pwis<: fllllctiol1s wh<:n the degrc<: is z(,ro , 

and that it converges to the bancllimited signal space when the ciegree t<:nds to innnity. 

The derived sarnpling theorem is considered to b(> a generalization of Whittaker-Someya.

Shannon's san1pling theoreln. 



In Chnpter 4, the re'producing kernel for spline signal SpnCe' is c1eri\"ed. The reprodllcing 

kernel is considered to be dc1ul function \vith some cont.inuolls diffet'ent.inl,ilit.y in spline' 

signal space. The uniform convergence of spline npproximat.ion is ensily prO\'en hy lIsing 

the reprod lIcing kernel. 

In Chapter 5, the renl-time spline Clpproxil1lntion vvith hiort.hononl1cl1 expnnsion /"ormlIin 

is derived. The approximat.ion error is estimated in t.he prnct.icnl lise of spline: npproxi-

Ination for digit.al signal proc('ssing. An exampl~ of the renl-time approxilllat.ion shows 

the effectiveness of the approximation tnethod for the implementat.ion 0(' flexible signnl 

processing wit.h spline fu nctions. 

In Chapter G, a design technique of linear phase FIR filters using spline' functions is 

presented. The filters are represented by C-splinc functions. The 11lethod is based on 

Renlez exchange 111ethocl to npproximatc frequency characteristics in the sense of equi-

ripple error. 

In Chapt.er 7, computational complexity of polynolllini interpolCltion for Relllcz cx

change method is evaluated [-1-, 9]. The Renlez exchange Illetho I is "viele'ly lItilized to 

design digit.at filt.ers in t.he sense of equi-ripple npproximntion. For the Helllez e'xcilange 

method, Newton's polynolllial interpolation is two tim s faster than the' conventional 

polynom ial i nterpoiation. 

Finally, scientific and technical point.s derived fronl the t.heoretical conside't'ations in 

Chapter 1 through 4 and the applications in Chapter 5 thro Igh 7 cHe' sII111marized . 

Problems beyond the scope of the present study arc also pointed out. 

G 



Part II 

Biorthonormal Expansion Formulas for 

Periodic Fluency Signal Spaces 
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In Part II, the san1pling theoreln for periodic spline signal spaces is c0111pleted by 

deriving biorthonormal expansion for111ula. The class of spline functions are lilllited to 

the finite closed domain with periodic condition. 

In Chapter 1, a sampling theorern for the quadratic splin signal space in th finite 

closed domain is completed by deriving biorthonornnal expansion forllllt!as. The ilnpulse 

and frequency responses are derived to characterize quadratic spline approximation for 

the finite closed domain. It is clarified that quadratic spline approxilnatioll has strong 

locality in the tin1e d01l1ain. 

Next, in Chapter 2, the class of periodic spline functions is extended to arbitrary d gr e. 

The sampling theorem for spline signal space of arbitrary degree in the finite closed don1ain 

is completed in the similar Inanner in Chapter l. It is identical with the Cahn's salnpling 

theorem [104] when the degree tends to infinity, and the sampling theorem fir the space 

of staircase functions when the degree is zero. 

8 



Chapter 1 

Biorthonormal Expansion Formula for 

Quadratic Spline Signal Space in Fin ite 

Closed Domain 

1.1 Introduction 

In this chapter, we shall cOlnplete a Fourier-like expansion fonnula in the signal space 

composed of spline functions, with the sample value sequence of the signal as the xpansion 

coefficients, where the domain is a finite closed interval and the boundary condition is 

periodic. It is empirically known that quadratic spline functions achieve short as well as 

smooth interpolation. We shall adopt the quadratic ones in this chapter. 

One of the signal representations, which is useful for signal processing, is th Fourier

like expansion formula with the san1ple value sequence as the expansion coefficients[122]. 

This expansion formula is con1posed of the pair of the following fonnulas. 

(i) The representation of the signal in the form of linear COIn bination of the salnpling 

basis with the sample value sequence of the signal as the coefficients. 
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(ii) T e i 1 tecrrai 'n: 0 '1 1 xpre -S101 obt in tl - 111p e \" Iue ~eql enc~, \\'i ieh i - the 

expan ion coefficient:, fr01n the -i nal. 

In he ~ pline ignal pac, h .::anlpling ba i - ha - aIr ady n \ - I 11:_ ] . H \ \' \' r t h 

an1pli g b i no a y~ en1 of or honornl 1 function , Th n , h F uri r-lik xpan IOn 

formula \\'ith he ample yalue equence a the xpan Ion 0 ffici nt i not 111pl ,In 

rder 0 deri\-e he c0111ple e expan ion fonnula, the int bral k rn I to p cif\' th int gral 

tran form expre ion nlU t ne\\'ly be deriyed. 

In hi chapter. \\'e hall deri\-e the integral kernel of th int grailr n fonn whi h obtain 

sample yalue fronl periodic quadratic piine [unction on th fini do d Inaln and 

conlple e a ampling heore111 for the ignal pace pann db' periodic quadratic plin 

functions with equidistantly spaced knots. 

This expression formula is the sill1plest signal representation, providing the basis for 

utilizing the periodic quadratic spline signal space in the signal processing. 

1.2 Preliminaries 

This section prepares the signal space cOlnposed of the periodic quadratic spline func

tions which is the object of the analysis in this paper. 

In general, the signal waveform, which is actually handled as the object of signal pro

cessing, is considered to be defined on a finite observation interval. The energy is assumed 

as finite. Let the observation interval be [0, T], the set of all such signals can be considered 

as a typical Hilbert space[lll] 



wi th the inner product 

1 (T -
(u,v) = T Jo u(t)v(t)dt 

Based on this formulation, the signal space cornposed of periodic quadratic spline 

functions[108] shall be considered in this paper as a subspace of above L 2 [0, T]. This 

signal space is called the periodic quadratic spline signal space, and is wri Lt n as 35 N. H 

is defined as[108] 

3 L:::. [3 N] N-1 
5 N = [B]1fk k=O 

using the system of periodic quadratic B-spline functions 

3 "I,N(t)~~ ~ {sin7rp/N}3 j27rp(t/T-k/N) k=0,1, ... ,N-1 (1.1) 
[B]lf'k N p~oo 7rp/N e , 

as the basis . 

The periodic quadratic B-spline function is the piecewise polynomial give by 

3 "I,N 
[B] If' k 

(t - a)~ 

where h is the interval (h = T / N) between knots. The systelu of functions {[B]1ft'}~=-Ol 

is called the periodic quadratic B-spline function. Figure 1.1 shows an exaluple of the 

functions composed of the periodic quadratic B-spline function. 

11 
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Figure 1.1: An exalTlple of periodic quadra.tic B-spline function (v = [H]'1/) ~ 1 (l)) . 

The coordinate systenl 3<p [B] defined as follows is introduced in 3 S N . The seL of all 

vectors, COITlposed of the expansion coefficients of s E 3 S N by the periodic quadratic 

B-spline basis 

N-l 

S = L '\k [B]1/J': ) 
k=O 

fornls the N dinlensional Hilbert space with the inner product 

Then, the coordinate sysLen1 3<p[B] is defined as the 111c pplng to derive th expanSIOn 

coefficient vector A fronl an arbitra.ry S E 3 S N. The coordinate systel11 3<p[B] is a bijection, 

wi th the dOlnain 3 S N and the range and the range 3 ]([B]' 

This section constructed the periodic qua.dratic spline signal space 3 SN. 



1.3 Formulation 

This section formulates the Fourier-like expansion formula to be deriv d in this paper. 

When there exists a sanlpling basis in the periodic quadratic spline signal space 3 S N, 

any signal waveform s E 3 S N is represented by a linear combination o[ the sanlpling basis 

with the sample value sequence as the expansion coefficients. Let the salnpling basis be 

{[S]'l/Jt}~=-Ol, the above linear conlbination expression is written, [or any ignal waveform 

N-l 

S = I:: J-lk[S]'l/Jt , J-lk = S( td, tk = kh. ( 1.2) 
k=O 

The sampling basis has the feature that the result of interpolation is directly giv n by the 

linear combination expression, using the given sample value sequence as the coefficients. 

This means that sampling basis represents the impulse response o[ the data interpolation 

operator. If there exists a sanlpling basis in the signal space, it is unique. 

The linear cornbination expression of the salnpling basis is to construct the signal wave-

form, under the premises that the sanlple value sequence as the expansion coefficients 

has already given. The inverse operation is to derive the salnple value s qucllce [roin 

the signal waveform. This operation has been considered as a technical probl In in A-D 

conversion circuits such as sanlple-and-hold. Consequently, no [ornlula has becn derived 

for this operation. If, however, there is no formula to derive thc sample value sequence 

from the signal waveform, the isomorphism between the signal waveform and the sample 

value sequence can not be discussed. 

13 



From such a viewpoint, a fundan1ental equation is needed, which represents the cor-

respondence between the continuous tin1e signal and the san1pl value sequ nc . Repre-

senting this fundamental equation is the form of the integral quation, as in the as of 

the Fourier series expansion of the function, it is given 

(1.3) 

k=O,l,···,N-1. 

{ }
N-l 

This integral kernel is deten11ined when its integral k rnel [s.l~f k=O is detennin d. If 

this integral kernel is an element of the signal space 3 S N, the integral k rnel is called the 

biorthonormal basis for the sarnpling basis[122, 123,). Thus, the biorthononnal basis is 

the characterization of the sampling operation, which derives the sample value sequence 

from the signal, as the impulse response. 

Consider 

(i) The linear combination expreSSIon of the salnpling basis, which deriv s th signal 

wavefonn frOln the sarnpled value sequence, and 

(ii) The integral transform expression, which derives the sample value sequence as the 

inner product of the signal waveform and the biorthonormal basis. 

They form the Fourier-like expanSIon formula with the sample value sequence as the 

expansion coefficients[122, 123]. Especially, when a signal waveform U IS gIven, which 

14 



does not belong to the signal space 3 S N, the signal 8 obtained by 

N-l 

S L J-lk[S]'l/J1( 
k=O 

has the engineering implication that it is the least-square approxinlation of u in 3SN [123]. 

This section fornlulated the Fourier-like expansion formula to be derived in this paper. 

In the following, The sampling basis is derived in section 1.4. Section 1.5 d rives the 

biorthonormal basis, concluding the derivation of the Fourier-like expansion formula. 

1.4 Derivation of sampling basis 

This section derives the saillpling basis in the signal space 3 S N COlllposed of periodic 

quadratic spline functions. This basis characterizes the correspondence from th sampled 

value sequence to the signal waveform. 

As the first step, the coordinate systelll corresponding to the sanlpling basis is intro-

duced into 3 S N for deriving the saillpling basis. Let the vector C0111posed of the salnple 

value sequence of the signal wavefonn s E 3 S N be 

The set of all such vector J1 is wri t ten as 31([5]. Then, the coordinate system 3cp[S] : 3 S N ---+ 

31([5] for the saillpling basis is defined as the mapping which satisfies 



As the next step, the coordinate transformation rnatrix 3 A fronl 3<p[B] to 3<p[S] is intro-

duced, in order to represent the relation between 3<p[B] and 3<p[S]' 

As in the case of eq.(A.1) of proposition 1 in [Ill], it is defin d as th oordinate 

transformation matrix fron1 31([B] to 31([s] , 

3 3 3 -1 
A = <P[S] <P[B] . 

It is an N-th order square 111atrix 

3 A = [3<p[S]([B]V;~), 3<p[S]([B]V;~)"", 3<p[S]([B]V;Z_1)] 

[B]V;b' (to) [B]V;t' (to) [B]V;t-1(lo) 

[B]V;~(t1) [B]V;i"(t 1) [B]V;Z-l(td 

[B) <t't -1 (tN-I) 

Figure 1.2 shows the relations among 3<p[B], 3<p[S] , and 3 A. 

The following proposi tion is to utilize coordinate systems 3<p[B] , 3<p[S] , and n1atrix 3 A, 

to derive the sampling basis in the periodic quadratic spline signal space 3 S N as a linear 

combination of the periodic quadratic spline basis. 

Proposition 1 The sampling basis 3 S N in the periodic quadratic spline signal space 

{
3 N}N-1 
[S]V;k k=O is given by 

N-1 
3 ~/.N "" 3 3 ~ /.N 
[5] \fIk = L all-kl[B] \fie , 

(=0 

where the coefficients {3ae}~(/ are given by 

1 N-1 1 
_ "" _ej2nfp/ N 
N2 L 3t 

p=O ':,p 

16 
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s 

3 
<P[SJ 

J.L 

3K[S] 

Fjgure 1.2: NluLual relations between 3cp[Bj, 3cp[S] and 3 A. 
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f= [sin(7r(-p/N+r))]3 
r=-(X) 7r(-p/N+1') 

(Proof) 

From eq.(1.1), the system of B-spline functions has the invarianc against th shift 

[B j7fJ':(t) = [Bj7fJ6'(t - kh), k = 0,1,2,,,·,N-1. 

Then, 3 A is a circular matrix. Let the eigenvalue of rnatrix 3 A be 3~k, and the eigenvector 

be X k / N, they are represented [135] as 

t[1 j27rk/N ej47rk/N ... e j27r(N-1)k/N] , e , " , 

Let matrix V and 3:=: be defined as 

V 

d · (3"-' 3..-. 3,.....,) 
'I, a g '::'0, .::, 1 , . . . , .::, N -1 . 

Then, 3 A is decomposed as 

The eigenvalue of matrix 3 A is calculated as 

N-1 

3:=:k L [Bj7fJ1( (to)e-j27rlk/N 

l=O 
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Thus, 

3........ 0 
':::::"k > , 

I=1 ~ f [{ Sill 7rp/ N}3 e-j21rPfIN] e-j27rfkl 

£=0 N p=-oo 7rp/ N 

f N[Sill7r(-k/N+t)]3 
r=-oo 7r(-k/N+T) 

k = O,l,···,N - 1 

is derived. Consequently, n1atrix 3 A is regular. 

By the defini tions for the coordinate syste1ns 3'P[S] and 3'P[B] as w 11 as the coordinate 

transformation n1atrix 3 A 

3 3A3 
'P[S] = 'P[B], 

3 -1 3 3-1 
'P[S] = 'P[B] A . 

Then 3'P[S) is a bijection. Thus, there exists the sampling basis. 

In the same way as in the derivation of eq.(A.5) in the proof of Proposition 1 of Ref. 

{ }
N-1 

[111], the sampling basis (s)'0f k=O in the periodic quadratic spline signal space 3SN is 

represented as 

(1.5 ) 

Since 1natrix 3 A is regular, 3 A-I is represented, using V and 3~, as 

Then, 
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The (f, k) element of 3 A-1 is given by 

X* o 

X* 1 

1 N-1 1 
_ '" _ j27r(e-k)p/N 
N2 ~ 3'::' e . 

p=O '--'p 

Thus 3 A -1 is represented by the symmetrical matrix 

3
00 

3
01 

3 
ON-1 

3 -1 A = 
3
01 

3
00 

3
0N

_
2 

3
0N

_
1 

3
0N

_
2 

3
00 

with 

1 N-1 1 
3 __ '" _ j27r(e-k)p/N 
°le-kl - N2 ~ 3'::' e 

p=O '--'p 

as the element. By substituting eq.(1.6)into eq.(1.5), eq.(1.4) is obtained. 

(1.6) 

• 
Figure 1.3 shows the exan1ple of the functions rSJ~t' cornposing the sampling basis. 

This section derived the sampling basis in the signal space 3 S N cOlnposed of the p riodic 

quadratic spline functions, which constructs the linear combination expression to represent 

the signal waveform from the salnple value sequence. The expression characterizes the 

20 



V 

2 

1 

o 

Figure 1.3: An exan1ple of functions C0111posing the san1pling basis [or 3 SN (v = [Sl~; 1 (t)). 
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operation to derive the p riodic quadratic spline functions that interpolate the sample 

value sequence. The inverse operation is to derive the salnple value sequ nc fronl the 

given periodic quadratic spline functions. This operation is not characterized by the 

sampling basis. In order to characterize the both operations, the biorthononnal basis is 

required. This problem is discussed in the next section. 

1.5 Derivation of biorthonormal basis 

This section derives the biorthonor111al basis corresponding to the saInpling basis, in the 

signal space c0111posed of the periodic spline functions. This basis characteriz s the corre-

spondence from the signal wavefor111 to the salnpled value sequence. The biorthollonnal 

basis is obtained as a solution of the integral equation which represents the funcialnental 

equation to derive the salnple value sequence froln the signal waveform. 1.5.1 shows the 

unique existence of the biorthonor111al basis, and 1.5.2 derives the biorthononnal basis. 

1.5.1 Unique existence of biorthonormal basis 

This subsection shows the unique existence of the biorthonormal basis {rs.]~t'}~=-ol in 

3 S N. As the first step, as a 111eans to show the unique exist nce of the biorthonormal 

basis, a mapping 3cp[S.] and a 111atrix 3G are introduced. Then, by showing the r gularity 

of the matrix 3G, the unique existence of the biorthonormal basis is shown. 

A mapping 3cp[S.] is introduced, which obtains the inner product of the signal sand 

{ }
N-l 

the sampling basis rS]~t' k=O for an arbi trary s E 3 SN. Let the v ctor composed of the 
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inner product of the signal s and the sampling basis {[S] ~k } k=-Ol a 

TJk (s,[S]~t') 

~ { s( t)fSj1/Jf:'(t)dt, k = 0,1" .. ,N - 1, 

where each component is written as 

the Inapping satisfying 

for any s E 3SN . 

As the next step, the transfornlation matrix 3G froln 3<p[S] to 3<p[S.] is introduced. It is 

defined as the transformation Inatrix from 3 J([S] to 3 J([s.] 

3 3 3 -1 
G = <P[S·] <P[S] . 

It is an N -th order square Inatrix 

([5] ~b" , [5] ~b") 
([S]~b", [S]~~) 

([5] 1fJ i" , [5] 1fJ b" ) 
([5] 1fJ i" , [5] ~ i" ) 

([S]1fJ~-I' [S]1fJ{/) 
([5] ~~ -1' [S]1fJi") 

Figure 1.4 shows the relations anl0ng 3<p[S], 3<p[S.], and 3G. 
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3 

I{ [s*] 

Figure 1.4: Mutual relations between 3<p[.)]l 3<p[S +] and 30. 
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In the following, the relations among 3<p[S], 3<p[S.], and 3G are us d to discus th unIque 

existence of the biorthonorn1al basis. The following lemn1a gives the r lation b tw en the 

mapping 3<p[S*] and the unique existence of the biorthononnal basis. 

Lenl111a 1 The following t.wo condilions are equivalent. 

(i) The mapping 3<p[S.] is a bijection. 

{ }
N-1 

(ii) The1'e exists unique bio1'ihono1"mal basis [s·]'lfJf k=O. 

(Proof) 

It is shown first (ii) follows from (i). Let the mapping 3<p[S.] is a bijection. D fin the 

3 -1 ( ) Uk = <P[s·] ek, k = 0,1,··· ,IV - 1 

where ek is a vector with the k-th components being 1 and others being zero. Then, 

function Uk satisfies the following relation for any signal s E 3 S N 

(~ /le(s]'if;f, 3""]S<]-1 (ek) ) 

N-1 

L J.1e ([s]'lfJf, 3<p[S.]-1 (ed) 
e=o 
N-1 

L J.1e (3<p[S.J -1 (ek), [SJ'lfJf) 
e=o 
N-1 

L J.1e tc / (3<p[S.J3<p[S*] -1 (ek) ) 
e=o 
N-l 

L J.1e6ke 
e=o 
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f.1b k = 0,1,2,···,N-1. 

Consequently, it is the function in 3 S N satisfying the condi tion [or the biorthonormal 

basis. The symbol bkf. is Kronecker's delta. 

Assume that a function Vk E 3 S N which is different from Uk also satisfies the condi tion 

of the biorthonormal basis. Then, by the definition, [unctions Uk and Vk satisfy 

for any 's E 3 S N . Consequently, 

° 
and 

Thus, there exists the unique biorthonormal basis. 

Next, it is shown that (i) follows from (ii). Assume that there exists unique biorthonor-

mal basis. By definition, the mapping 3<p[S.] is a bijection. By assumption, any signal 

s E 3 S N can be represented in the form 

N-l 

S L f.1k[S]~t, 
k=O 
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J-lk = (s,[s.]~f), k = O,l,···,N-1. 

Consequently, for the signals sl, s2 E 3SN satisfying the relation 

there must hold 

N-I 

L (Sl - s2, [s.]~f) ([s]~f, [s]~f) = 0, e = 0,1,·· ., N - 1. 
k=O 

Since functions [~.]~f, (k = 0,1,2, ... , N - 1) are not identically zero, til re holds 

sl = s2. 

Consequently, 3<p[S*] is a bijection. 

Therefore, Lemlna 1 holds good. • 
By Lemma 1, there exists unique biorthonormal basis if and only if 3<p[S.] is a bijection. 

The following lemlna indicates the relation between 3<p[S.] and 3G. 

Lemllla 2 The following two conditions are equivalent. 

(i) The mapping 3<p[S.] is a bijection. 

(ii) The matrix 3G is regular. 

(Proof) 

It is shown first (ii) follows from (i). By the definitions of mapping 3<p[S.] and matrix 3G, 

3G and 3G- 1 are represented as 
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3 3 3 -1 3 -1 3 3 -1 
G = 't/[S-] <P[S] , G = 't/[S] 't/[S-] , 

respectively. Since mapping 3't/[S] is a bijection, 3G is regular if 3't/[S.] is a bij ction. 

Next, it is shown that (i) follows from (ii). By the d finition of n1apping 3't/[ .] and 

matrix 3G, 3't/[S_] and 3't/[S_]-1 are, respectively, as 

3 3G3 
't/[S-] = 't/[S], 

3 -1 3 -13-1 
't/[S-] = 't/[S] G . 

Since 3't/[S] is a bijection, 3<p[S.] is a bijection if 3G is regular. 

Therefore, Lemma 2 holds good. • 

By Lemma 2, the bijection property of 3't/[S.] and the regularity of 3G ar qUlva-

lent. The following property indicates the relation beLwe n Lhe unique existence of the 

biorthonormal basis and the regularity of 3G . 

Proposition 2 The following two conditions are eq7J,ivalent. 

(i) The matrix 3G is regular. 

{ }
N-1 

(ii) There exists the unique biorthonoTmal basis [s·]1/J,t' k=O' 

(Proof) 

By Le1nma 1 and Len1ma 2, the regularity of 3G and the unique existence of the biorthonor-

mal basis are equivalent. 

Therefore Proposition 2 holds good. • 
By Proposition 2, the biorthononnal basis uniquely exists if aud only if 3G is regular. 

The following lemma indicates the regularity of 3G. 
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Lemn1a 3 The matrix 3G is regular. 

(Proof) 

As it seen from eq.(1.4), the sanlpling basis has the invarianc against the shin. 

[5] ~~ ( t) = [5] ~r: (t - k h) , k = 0, 1, 2, ... , ]V -- 1 

Then, the matrix 3G represented by eq.(1.7) is a circular nlatrix. COIlS qucntly, the 

eigenvalue 3()k of 3G is given [135] by 

N-l 
3() _ '" (3 q/,N 3 q/,N) e - j27rekj N 

k - ~ [5]\f-"(, [5]\f-"0 , k = 0,1,···,]V - 1. 
(=0 

The inner product in the right-hand side of the above expression is calculated as 

(~3aIP_ll{BJ1/J,;', ~ 3alql[BJ1/J~ ) 
N-l N-l 

L L 3alp_el3alql ([B]~:' [~]~~) . 
p=O q=O 

Consequently, the eigenvalue 3()k is given by 
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f [sin7rp/N]
6 
/N S { f [sin7r(--k/N + 7.)] 3}2 

p=-oo 7rp/ N 7"=-00 7r( -k/ N + 7') 

Thus 

3(h > 0, k = 0,1,···,N-1 

is derived. Therefore, all eigenvalues are positive, and the Inatrix 3G is regular. • 

By Lemma 3, 3G is regular. By Proposition 2 and Len1ma 3, the uniqu cxi tence of 

the biorthonormal basis is given by the following theorem. 

TheorelTI 1 In the signal space 3 S N composed of per£odic quadratic spline functions} the're 

, {}N-l 
exists the unique biorthonoT'Tnal basis [s·l~f k=O' 

(Proof) 

By Lelnma 3, 3G is regular. Consequently, there exists the unique biorthononnal basis, 

by Proposition 2. Therefore, theoreln 1 holds good. • 
Theorem 1 indicates that there exists the unique biorthononnal basis. This subsection 

showed the unique existence of the biorthonormal basis in the periodic quadratic spline 

signal space 3 S N. The next subsection derives the biorthononnal basis using the 11atrix 

1.5.2 Derivation of biorthonorIl1al basis 

This subsection derives the biorthonormal basis in 3 S N. 

The following proposition indicates that the biorthonormal basis {[s.]~f}~=-Ol can be 

represented by matrix 3G-1 and the sampling basis. 
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Proposition 3 The bioTthononnal basis {[s.]7jJ~}~=~l is Tepresented) u ing 3C-1) as 

where ek is the N-dimensional vectoT) with only the k-th cornponent being 1 and other 

components being zero. 

(Proof) 

By Lemma 1 and Len1111a 2, 3<p[S.] is a bijection. Con seq uentiy, [or any signal s E 3 S N, 

there holds 

(

N-1 ) 
~ pf(SJ,pf, 3'P[S'] -1 (ed 

N-1 

L J.L/ee e<p[S·l3<p[s·l-1(e k )) 

e=o 
N-1 

L J.Lebke 
£=0 

J.Lk, k = O,l,···,N-1. 

{ }
N-1 

Then the biorthonormal basis [s.l1fJ.t' k=O is represented as 

(
3 -13 -1) ( ) 'P[Sl C ek 

N-1 
"" t 3C-1 

3 ,,/,N L....J e£ ek[Sllf'£ , k = 0,1"" ,N - 1. 
£=0 

• 
Proposition 3 provides the representation for the biorthonormal basis, using matrix 

3C- 1
. The following lemn1a gives detailed form of the matrix 3C- 1

. 
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Lemma 4 The matrix 3C- 1 is repTesented as 

3 
gN-l 

3 
gN-2 

3g 3g 3
g0 N-l N-2 

where the coefficients {3 ge } ~~l are given by 

(Proof) . 

1 N-l 1 
_ '" _ej2rdp/N 
N2 ~ 30 

p=O p 

f {sin~k/N}6/NS{ f [sin7r( __ P/N~r)]3}2 
k=-(X) 7rk/N r=-(X) 7r(-p/N+1) 

Since the sampling basis is shift-invariant, the matrix 3G is a circular Inatrix. Then 

diagonal matrix 38 composed of the eigenvalues of 3C and the matrix U cOlnposed of the 

eigenvectors of 3C are given by 

U 

t[l ej27rk/N ej47rk/N ... e j27r (N-l)k/N] , , " , 
N-l '" (3 ~/.N 3 ~/.N) e-j27rek/N 
~ [5) If/e ,(5) If/o 
(=0 

I=l {sin 7rp/ N}6 
p=-(X) 7rp/ N 

/NS{ f [sin7r(-k/N+r)]3}2 
r=-(X) 7r(-k/N+r) 

Using those expressions, 3C is represented by 
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Then, 3C-1 is given by 

~2[XD,Xl"" ,XN-d 

d · (38-1 38-1 38-1 ) lag -0' -1"'" -N-1 

The (f, k) element of 3C- 1 is calculated as 

1 N-1 

"""' t (X X*38- 1 
) N2 ~ ee p p - p e k 

p=O 

Let coefficients 3gk be 

1 N-1 1 
3 - """' j27rkp/N k - 0 2 N 
gk - N2 ~ 38 e ,-,1, ,"', - 1, 

p=O p 

the (f, k) element of 3C-
1 

is represented by 3gle_kl' 

Therefore, Lem1na 4 holds good. 

X* o 

X* N-1 

• 
Using 3C-1 

obtained by Lemlna 4, the biorthonorrnal basis in the periodic quadratic 

spline signal space is derived by the following theorern. 
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Theorenl 2 The bioTthononnal basis {[S.j~t'}~=-Ol in the signal pace 3SN cOJrLposed of 

periodic quadratic spline functions is represented as 

N-l 
3 ,,/,N "'" 3 3 ,,/,N 
[S·jlf'k = ~ 9Ie-kl[Sjlf'£ 

£=0 

where the coefficients {3ge}~(/ aTe given by 

(Proof) 

1 N-l 1 
_ "'" _ ej27r£p/ N 
N2 ~ 3(} p=O p 

t {Sil17rk/N}6 /Ns { t [sin7r(--p/N + r)]3}2 
k=-oo 7rk/N r=-oo 7r(-p/N + r) 

(1.8) 

By substituting 3c.p[S.j-l derived by Lerruna 4 for 3C-1 in Proposition 3, the biorthonormal 

basis [s.l~f is represented as 

N-l 
"'" t 3c-1 3 ,,/,N 
~ e( ek[Sjlf'( , k=O,l,···, .N-l 
(=0 

N-l 
"'" t 3 ,,/,N 
~ 91(-kl[Sjlf'( . 
(=0 

where the coefficients {39(}~(/ are given by 

t {sin7rk/N}6/N5 { t [sin7r(_p/N+r)]3}2 
k=-oo 7rk/N r=-oo 7r(-p/N+r) 

Therefore, Theorem 2 holds good. • 
Figure 1.5 shows an exanlple of the function [s.l~t' composing the biorthonormal basis. 
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V 
2 

1 

o 
t->J 
17=1 

Figure 1.5: An exanlple o[ [unctions C0111POSll1g the biorthonOl'lllal basis [or 3 S N 

(v = [S.l~~l(t)). 
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This subsection derived th biorthononnal basis, which C01l1poses the integral transfonn 

expression to derive the san1ple value sequence froln the signal wavefofln, ill the spline 

signal space 3 S N. 

This section derived the biorthonon11al basis for the sampling basis in th splinc signal 

space 3SN . The operation to derive the sample value sequence from the signal' in the 

spline signal space is characterized. By this biorthonormal basis and the sanlpling basis 

derived in section 1.4, the Fourier-like expansion formula for the sall1pling basis in th 

periodic quadratic spline signal space 3 S N is cOll1pleted. 

The derived Fou'rier-like expansion formula is sUll1111arized as follows. 

N-l 

S L J1k[Sj'l/J':, J1k = s( tk), tk = kh 
k=O 

/.'k ~foTs(t)rS'J,p{;'(t)dt, k=O,l,···,N-l. 

1.6 Summary 

We adopted the quadratic spline functions. Then we dealt with the repres ntation 

problem of signals. We defined the spline signal space as the totality of thc quadratic 

spline functions with equidistantly spaced knots. Then the sampling theorel11 for periodic 

quadratic spline functions was derived. The sampling theorem was characterizes spline 

approximation. By the sampling basis and its biorthonormal basis, it was shown that 

the approximation is a uniform operation to every point and that it achieves a local 

approximation. 
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Chapter 2 

Biorthonorlllal Expansion ~Forlllulas for 

Spline Signal Spaces of Arbitrary Degree in 

Finite Closed DOlllain 

2.1 Iritroduction 

In this chapter, we shall cOlnplete Fourier-like expansion forn1u las in the signal spaces 

composed of periodic spline functions, with the sample value sequence of the signal as t he 

expansion coefficients, where the domain is a fini te closed interval. 

The signal space composed of spline functions has the following features [115, 113]: 

1 The continuous differentiability changes with the order. 

2 When the order is zero, the space agree with the discontinuous staircase signal space. 

3 In the limit where the order tends to infinity, the space agre with the bandlimit d 

signal space with infini te differen tiabili ty. 

In this sense, the spline signal space is a generalization of the band-limi ted signal space 

with the continuous differentiability as the parameter. The Fouri r-like expansion formula 
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derived in this paper IS a generalization of the Cahn's sanlpling theorenl in th band

limited signal spaces. 

This expansion formula is C0111posed of the pair of the following for111ula . 

(i) The representation of the signal in the form of Linear cOl11bination of th sanlpling 

basis with the sample value sequence of the signal as the coeffici nts. 

(ii) The integral transfornl expression to obtain the sanlple valu sequence, which is the 

expansion coefficients, [1'0111 the signal. 

Since the band limited signal space can be considered as the lilnit of the spline signal 

space where the order tends to infinity, the expansion formulas in the bandlimit cl signal 

space have already given as follows: 

(a) Cahn's sampling theoreln[104], for the case where the d0111ain of th signal is a finite 

closed interval and the periodicity is posed as the boundary condition. 

(b) Whittaker[101 ]-Someya[102]- Shannon's[103] sampling theoreln, for the case where 

the domain of the signal is the infinite open interval. 

In those two kind of sampling theorems, the sampling basis forms a system o[ orthonormal 

functions. Then, the integral transform expression to derive the sample valu sequence 

from the signal is identical wi th the sampling basis. 

In the spline signal space, the sampling basis has already derived [112J. However the 

sampling basis is not a system of orthonormal functions. Then, he Fourier-like expansion 
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formula with the sampl value sequence as the expansion co fficient is not c0111plet . In 

order to derive the c0111plete expansion forrnula, the integral kern 1 to specify tIt iutegral 

transform expression must newly be derived. 

The integral kernel derived in this paper completes the ljouri r-like expansion fonnula 

with the sample values sequence as the expansion coefficients, in th spline signal space, 

with the domain as the finite closed interval and the periodicity as the boundary condi-

tion. This expression fonl1ula is the si111plest signal representatioll, providing th basis 

for utilizing the spline signal space in the signal processing. 

2.2 Preliminaries 

This section prepares the signal space composed of the periodic spline functions which 

is the object of the analysis in this paper. 

In general, the signal wavefonn, which is actually handled as the object of signal pro-

cessing, is considered to be defined on a finite observation interval. The energy is assumed 

as finite. Let the observation interval be [0, T], the set of all such signals can b consider d 

as a typical I-Iilbert space[lll] 

with the inner product 

1 {T -
(u,v) = T io u(t)v(t)dt 

Based on this formulation, the signal space composed of periodic spline functions of 
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degree (m - 1) [108] shall be considered in this paper as a sub pac of abov L2 [0, T]. This 

signal space is called the periodic spline signal space of degree (rn - 1), and is wri tten as 

msN . It is defined as[108] 

using the system of periodic B-spline functions 

m ,,1.N(t) ~ ~ ~ {sin 7rpl N}m j27rp(t/T-k/N) k = 0, 1" ", N - 1 
[B]O/k N ~ IN e , 

p=-oo 7rp 

as the basis. 

The periodic B-spline function is the piecewise polynornial give by 

{ 

(t_a)m-l, t>a 

0, t :::; a 

(2.1) 

{ }
N-l 

where h is the interval (h = TIN) between knots. The systen1 of functions [B]?jJf k=O 

is called the periodic B-spline function. Figure 2.1 shows an exalnple of the functions 

composed of the periodic B-spline function. 

The coordinate system m<.p[B] defined as follows is introduced in m S N. The set of all 

vectors, composed of the expansion coefficients of s Ems N by the periodic B-splin basis 

N-l 

S = L Ak[B]?jJ~, 
k=O 

forms the N dimensional I-Iilbert space with the inner product 
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v 

1 
o 

I I 

h 
I>t 

T 

Figure 2.1: An exan1ple of periodic B-spline function (v = (B]1pg 1 (t)) . 

Then, the coordinate systcn1 1H<P[B] is dcfined as the Inapplng to derivc thc expanSIon 

coefficient vector A horn an arbi trary s E 1rL S N. The coordi natc SystC111 m<p[BJ is a bijc tion, 

wi th the d0111ain m SN and the range and the range m ]{[B] . 

This section constructed the periodic spline signal space m S'N. 

2.3 Formulation 

This section forl1lltlates the Fourier-like expansion [orl11ula to be derived in this pap r. 

When there exists a sa111pling basis in the periodic splin signal space 171. SN, auy signal 

waveforln s Ems N is represented by a linear c0111bination of the sa111pling basis with the 

{ }
N-l 

san1ple value sequence as the expansion coefficients. L t the salDlling basis be [S]?/Jr: k=O' 

the above linear cOl11bination expression is written, [or any signal wave[orn1 s E m SN, as 
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N-l 

S = L I1krs]?jJ~, 11k = S( td, tk = kh. (2.2) 
k=O 

The sampling basis has the feature that the result of interpolation is directly giv n by the 

linear combination expression, using the given sample value sequence as the coefficients. 

This means that sampling basis represents the impulse response of the data int rpolation 

operator. If there exists a san1pling basis in the signal space, it is uniqu . 

The linear cOlnbination expression of the sampling basis is to construct th signal wave-

form, under the premises that the san1ple value sequence as the expansion 0 ffici nts 

has already given .. The inverse operation is to derive the sanlple value sequence froin 

the signal, wavefonn. This operation has been considered as a t chnical probleln in A-D 

conversion circuits such as san1ple-and-hold. Consequently, no forn1ula has been d riv d 

for this operation. If, however, there is no formula to derive the salnple value sequence 

from the signal waveform, the isomorphism between the signal wavefonn and the sample 

value sequence can not be discussed. 

From such a viewpoint, a fundalnental equation is needed, which represents the cor-

respondence between the continuous tilDe signal and the sample value sequenc . R pre-

senting this fundamental equation is the form of the integral equation, as in the cas of 

the Fourier series expansion of the function, it is given 

k = 0,1"" ,iV - 1. 
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This integral kernel is determined when its integral kernel {t +j 'l/Jk } k=-Ol is deternlined. If 

this integral kernel is an elenlent of the signal space m 8 N, the integral k rnel is call d the 

biorthonormal basis for the sanlpling basis[122, 123]. Thus, the biorthononnal basis is 

the characterization of the sanlpling operation, which derives the sanlple value s quenc 

from the signal, as the inlPulse response. 

Consider 

(i) The linear conlbination expreSSIOn of the sampling basis, which d nv s th signal 

waveform from the sampled value sequence, and 

(ii) The integral transfornl expression, which derives the sanlple value s qu n e as the 

inner product of the signal wavefonn and the biorthonornlal basis. 

They form the Fourier-like expanSIOn fornlula with the sanlple value sequence as th 

expansIon coefficients[122, 123]. Especially, when a signal wavefonn U IS glV n, which 

does not belong to the signal space m S N, the signal S obtained by 

N-l 

S L Ji-k[S)'l/J1( 
k=O 

has the engineering ilnplication that it is the least-square approxinlation of U in mSN[123]. 

This section formulated the Fourier-like expansion formula to be derived in this paper. 

In the following, The sampling basis is derived in section 2.4. Section 2.5 derives the 

biorthonormal basis, concluding the derivation of the Fourier-like expansion formula. 
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2.4 Derivation of sampling basis 

This section derives the sanlpling basis in the signal spac m S N COinpos d of p riodic 

spline functions. This basis characterizes the correspondenc froin the sanlI led value 

sequence to the signal wave[onn. 

As the first step, the coordinate system corresponding to the sanlpling basis is intro-

duced into m S N for deriving the salnpling basis. Let the vector cOlnposed of the sample 

value sequence of the signal waveforrn s Ems N be 

The set of all such vector J-L is written as m J{[S]. Then, the coordinate sy t m m<p[S] 

m S N ~ m J([5] for the sanlpling basis is defined as the nlap ping which satisfies 

for any s E msN . 

As the next step, the coordinate transformation 11latrix m A from m<p[B] to m<p[S] IS 

introduced, in order to represent the relation between m<p[B] and m<p[S]. 

As in the case of eq.(A.1) of proposition 1 in [Ill], it is defined as the coordinate 

transformation matrix froll1 m J([B] to m J([S] , 

mA m m -1 = <P[S] <P[B] • 

It is an N-th order square Inatrix 
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Figure 2.2: 1uLua.l relaLions between nl<P[Bj) m<p[.sj and m A. 

fB] ?jJt ( La) m 'lpN (t ) [B] 1 0 [B]11~ -1 (La) 

[B]?jJt (td fB]~)f' (Ld fB]?jJ~-l(Ld 

fB]?jJt (tN-d [BflPi" ( t N - d m?jJN ( ) [B] N-l tN-l 

Figure 2.2 shows the relations al1long m<p[B]) m<p[S]) and m A. 

The following proposition is Lo utilize coordinate syst IllS m'P[Bj) 71Lc.p[S]) and 111atrix m A, 

to derive the sa.ll1pling basis in the periodic spline signal spa.ce m SN as a linear conlbination 

of the periodic spline basis. 

is given by 
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N-1 
m ,,/,N "'"' m m ,,/,N 
[5] 'fIk = ~ all-kl[B] 'fie , (2.4 ) 

£=0 

where the coefficients {mae }~(/ aTe given by 

1 N-1 1 - L _ej27rep/N 

N2 p=O m~p 

f= [sin(7r(-p/N+r))]m 
r=-oo 7r(-p/N+r) 

(Proof) 

From eq.(2.1), the systeln of B-spline functions has the invariance against the shift 

[8] 7fJf ( t) = [8] 7fJ6' (t - k h ), k = 0, 1, 2, ... , N - l. 

Then, m A is a circular matrix. Let the eigenvalue of Inatrix m A be m~k, and the igenvector 

be X k / N, they are represented [135] as 

t [1 e j27rk / N e j47rk / N ... ej27r (N -1)k/ N] , , " , 

Let matrix V and m~ be defined as 

v 

d · (m .......... m""""" m""""") zag '::'0, '::'1,"', '::'N-l' 

Then, m A is decomposed as 
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m A = vm=:v*. 

The eigenvalue of matrix m A is calculated as 

N-1 

m3k L [B]'l/JI((to)e- j21r
f.k/N 

(=0 

1=1 ~ f [{ sin 7rpl N}m e-j27rp( /N] e--j27r(k/N 

(=0 N p=- oo 7rpl N 

f N [sin 7r ( - kiN + r) 1 m 

r=-oo 7r( -kiN + r) 

Thus, 

m3k > 0, k = 0,1"", N - 1 

is derived. -Consequently, l11atl-ix m A is regular. 

By the definitions for the coordinate systems m<p[S] and m<p[B] as well as the coordinate 

transformation lnatrix m A 

m mAm 
<P[S] = <P[B] , 

m -1 m mA-1 
<P[SJ = <P[B] . 

Then m<p[SJ is a bijection. Thus, there exists the san1pling basis. 

In the same way as in the derivation of eq.(A.5) in the proof of Proposition 1 of Ref. 

{ }
N-1 

[Ill], the sampling basis [S]'l/Jf k=O in the periodic spline signal space m SN is rep res nted 

as 

m "I.N m -1 ( ) m -lmA-1 
[S] o/k = <P[S] ek = <P[B] ek· (2.5 ) 

Since matrix m A is regular, m A-I is represented, using V and m 3, as 

m A-I = V m 3-1V*. 
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Then, 

The (£, k) element of mA-
1 is given by 

X* o 

X* N-l 

1 N-1 1 N-1 1 
_ "'" te (X x*m::,-l e . ) = _ "'" __ ej27r (e.-k)p/N N2 L.J e p p '-'p k N2 L.J m::' . 

p=o p=o '-'p 

Thus m A -1 is represented by the sY111metricai matrix 

mao mal m
aN

_
1 

mA-1 = 
mal mao m aN_

2 

m
aN

_
1 

m
aN

_
2 mao 

with 

as the element. By substituting eq.(2.6)into eq.(2.5), eq.(2.4) is obtained. 

(2.6) 

• 
Figure 2.3 shows the exan1ple of the functions fSl ~f composing the sampling basis. 
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Figure 2.3: Exan1ples of functions C0111posing the salnpling ba.sis for m SN (v = [sl~il (l)). 
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This section derived the san1pling basis in the signal space m C0111posed of th p riodic 

spline functions, which constructs the linear cOlnbination expression to repr s nt th signal 

waveform from the sample value sequence. The expression characteriz s th op ration to 

derive the periodic spline functions of order (m - 1) that interpolate the sanlpl valu 

sequence. The inverse operation is to derive the sample value sequenc from the giv n 

periodic spline functions of degree (rn - 1). This operation is not characteriz 1 by the 

sampling basis. In order to characterize the both operations, the biorthonorn1al basis is 

required. This problem is discussed in the next section .. 

2.5 Derivation of biorthonormal basis 

This section derives the biorLhonor111al basis corresponding to the sa111pling basis, in the 

signal space composed of the periodic spline functions. This basis characterizes the corre

spondence from the signal waveforn1 to the salnpled value sequence. The biorthonormal 

basis is obtained as a solution of the integral equation which represents the fundamental 

equation to derive the sainple value sequence froin the signal waveforn1. 2.5.1 shows the 

unique existence of the biorthononnal basis, and 2.5.2 derives the biorthonormal basis. 

2.5.1 Unique existence of biorthonorn1al basis 

This subsection shows the unique existence of the biorthonor111al basis {fS.(t/Jf} ~=-OI in 

m S N. As the first step, as a 111eans to show the unique exist nee of the biorthonormal 

basis, a mapping m<p[s.] and a 111atrix me are introduced .. Then, by showing the regularity 
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of the matrix mG, the unique existence of the biorthononnal ba i i shown. 

A mapping m<p[s*] is introduced, which obtains the inner product o[ the signal sand 

{ }
N-1 

the sampling basis fS]~f k=O [or an arbi trary s Ems N. Let th vector COlllposed o[ the 

{ }
N-1 

inner product of the signal s and the salllpling basis fS]~f k=O a 

1 rT 

T Jo s(t)rs]~f(t)dl, k=O,l,···,N-l, 

where each component is written as 

The set of all such vector 1] is wri t ten as m ]([s*]. Then, m<p[s.] : m SN ~ m ]([s*] defined as 

the mapping satisfying 

for any s E msN . 

As the next step, the transfonnation Inatrix mG frOlTl m<p[S] to m<p[s.] is introduced. It 

is defined as the transfonnation matrix from m ]([5] to m ]([s*J 

mG m m -1 
= <P[S·] <P[sJ . 

It isanN-th order square lllatrix 

(
m ~/.N m ~/.N) 
[S] If'O , [SJ If'o 

(
m ~/.N m. ~/.N) 
[5] If'o , [SJ If'1 
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s 

Figure 2.4: lVlutual relations between 7n(P[S] , nt'P[s .] a.llci mG. 

Figure 2.4 shows the rela,Lions an10ng 1H'P[S], m<p[s.], and mG. 

In the following, the relaLions aillong 1H'P[s], 11L'P[s.] , and mG are used Lo discllss the 

unique existence of the biorthol1or111al basis. The following le111111a gives the relation 

between the Inapping nt'P[s.] and the unique existence of the biorthonol'lnal basis. 

Lel11111a 5 The following two cond£tions are efj'll£valent.. 

(i) The 7napp£ng nt'P[s.] £s a b(iecbon. 

{ }

N-l 
(ii) There ex£sts unique biorlho no 1"lnal basis fS·]?pt' 1.=:0' 
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(Proof) 

It is shown first (ii) follows fro111 (i). Let the lnapping m<p[S_] is a bij ection. Define th 

function Uk Ems N by 

k = 0,1"" ,iV - 1 

where ek is a vector with the k-th cOlnponents being 1 and others being zero. Then, 

function Uk satisfies the following relation for any signal s Ems N 

(S,Uk) = (%" 11e'ISJ1/Jf,mcp[S.J-1(€k)) 

N-l 

L J-Le (fSJ?fJf, m<p[S_]-l(ek)) 
f=O 

N-l 

L J-l e ( m <p [S _]-1 ( e k ), [5]?fJ f) 
e=o 
N-l 

I: J-le te , (m<p[S-]m<p[s.J- 1 (eJ.)) 
e=o 
N-1 

I: J-leOke 
e=o 
N-l 

L J-leOke 
e=o 

J-lk, k = 0,1,2,"·,iV-1. 

Consequently, it is the function in mSN satisfying the condition for the biorthonormal 

basis. The symbol Oke is Kronecker's delta. 

AssUlne that a function Vk Ems N which is different froin Uk also satisfies the condi tion 

of the biorthononnal basis. Then, by the definition, functions Uk and Vk satisfy 
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for any 8 E msN . Consequently, 

° 
and 

Thus, there exists the unique biorthonor11lal basis. 

Next, it is shown that (i) follows fro111 (ii). Assume that there exists unique biorthonor-

mal basis. By definition, the mapping m<p[s.] is a bijection. By assu111ption, any signal 

8 E mSN can be represented in the [onn 

N-l 

8 L Ji-krs]~f, 
k=O 

Ji-k (8,fS.]~f), k = O,l,···,N-1. 

Consequently, for the signals 81,82 Ems N satisfying the relation 

there must hold 

N-l 

L (81 - 82, fS.]~f) (fS]~f, fS]~JY) = 0, e = 0,1, ... , N - l. 
k=O 
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Since functions fS.]7/;r, (k = 0, 1, 2, ... , N - 1) are not idenLicall) zero, ther holds 

51 = 52. 

Consequently, mc.p[s.] is a bijection. 

Therefore, Lemma 5 holds good. • 
By Lemma 5, there exists unique biorthonormal basis if and only if mc.p[s.] is a bij ction. 

The following lemrna indicates the relation between mc.p[s.] and me. 

Lemn1a 6 The following two conditions aTe equivalent. 

(i) The mapping mc.p[s.] is a bijection . 

(ii) The matrix me is regular. 

(Proof) 

It is shown first (ii) follows frol11 (i). By the definitions of mapping mc.p[s.] and matrix 

me, me and me-1 are represented, respectively, as 

me m m -1 me-1 m m -1 = c.p[s·] c.p[S] , = c.p[S] c.p[S·] . 

Since mapping mc.p[S] is a bijection, me is regular if mc.p[S'.] is a bijection. 

Next, it is shown that (i) follows frol11 (ii) . By the definition of mapping mc.p[s.] and 

m -1 m -1 me-1 
<P[s·] = c.p[S) . 
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Since mcp[S] is a bijection, 7n cp[s.] is a bijection if me is regular. 

Therefore, Lemma 6 holds good. • 

By Lemma 6, the bijection property of mcp[s.] and the regularity of m·e ar equlva-

lent. The following property indicates the relation between the unique exist llCC of the 

biorthonormal basis and the regularity of me . 

Proposition 5 The following two conditions are equivalent. 

(i) The matrix me is regular. 

{ }
N-l 

(ii) There exists the unique bioTthonor'mal basis [5.]'ljJi~ k=O' 

(Proof) 

By Lelnma 5 and Lelnlna 6, the regularity of me and the unique existence of the biorthonor-

mal basis are equivalent. 

Therefore Proposition 5 holds good. • 
By Proposition 5, the biorthonormal basis uniquely exists if and only if me is regular. 

The following lemma indicates the regularity of me. 

Lelnma 7 The matrix me is regular. 

(Proof) 

As it seen from eq.(2.4), the san1pling basis has the invariance against the shifL 

[5] 'ljJf ( t) = [5] 'IjJ~ (t - k h ) , k = 0, 1, 2, ... , N - 1 
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Then, the matrix mG represented by eq.(2.7) is a circular matrix. Consequently, the 

eigenvalue m(h of mG is given [135] by 

N-l 
me _ " (m "I,N m " I,N) e-j21rlk/N 

k - ~ [5] 0/( ,[5] % , k = 0,1"" ,]V - 1. 
(=0 

The inner product in the right-hand side of the above expres ion is calculated as 

(f.5J¢f, f.5J¢t') == O;>aIP-el[B]¢,;'" ~ ma1ql[B]¢;' ) 

N-l N-l 

L L malp_llmalql (fBJ1fJ;r, fBJ1fJ~) . 
p=O q=O 

Consequently, the eigenvalue mOk is given by 

Thus 

mOk > 0, k = 0,1, ... ,]V - 1 
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is derived. Therefore, all eigenvalues are positive, and th 111atrix m·e is regular. • 

By Lerllrlla 7, me is regular. By Proposi tion 5 and Le111111a 7, the unique exi tence of 

the biorthonormal basis is given by the following theore111. 

Theorem 3 In the signal space m S N composed of peTiodic spline functions of d g1' (n7,-

{ }
N-l 

1)) theTe exists the unique bioTthononnal basis fS·]'ljJf k=O' 

(Proof) 

By Lemma 7, me is regular. Consequently, there exists the unique biorthollor111al basis, 

by Proposition 5. Th.erefore, theorerll 3 holds good. • 
Theorem 3 indicates that there exists the unique biorthonormal basis. This subs ction 

showed the unique existence of the biorthononllal basis in the periodic spline signal space 

msN . The next subsection derives the biorthononllal basis using the 111atrix mG. 

2.5.2 Derivation of biorthonorlnal basis 

This subsection derives the biorthonormal basis in m SN. 

The following proposition indicates that the biorthonorn1al basis {[s.]'ljJt'}~=-Ol can be 

represented by matrix me-1 and the sampling basis. 

Proposition 6 The bioTihononnal basis {fS.]'ljJf}~=-Ol is Tepresented, using me-I) as 

wheTe ek is the N-dimensional vectoT) with only the k-th component being 1 and other 

components being zeTO. 
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(Proof) 

By Lemma 5 and Lemma 6, m<p[s.] is a bijection. Consequently, [or any signal Ems N, 

there holds 

(~ f1/(S],p~, m'P[SO]-'( ek)) 
N-l 

L J-l/ee (m<p[S.]m<p[S.]-l(e,~J) 
e=o 
N-l 

L J-le6ke 
e=o 

J-lk, k = O,l,···,N-1. 

{ }
N-l 

Then the biorthonor,mal basis fS.]7jJf k=O is represented as 

N-l 
'" t mc-1 m ~/,N L..J ee 7 ek [S]'Pe , k = 0,1"" ,N - 1. 
e=o 

• 
Proposition 6 provides the representation for the biorthononnal basis, using matrix 

mG-1
. The following lenuna gives detailed form of the matrix mG- 1 . 

Lenlnla 8 The matTix mG-1 is TepTesented as 

mgo m
g1 mgN _

1 

mc-1 = 
m

g1 mgo mgN _
2 

mgN _
1 

mgN_
2 mgo 
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where the coefficients {mge }~~l aTe giv en by 

(Proof) 

1 N-l 1 
_ '" _ej27rep/ N 
N2 ~ me 

p=O p 

f {sin7rkIN}2mINS{ f [sin7r(--PIN+r)] m,}2 
k=-oc> 7rkiN r=-oc> 7r(-pIN+r) 

Since the sampling basis is shift-invariant, the rnatrix me is a circular 111atrix. Th n 

diagonal matrix me cornposed of the eigenvalues of me; and the 111atrix U cOlnposed of 

the eigenvectors of me are given by 

me .= 

U 

t[l ej27rk/N ej47rk/N ... e j27r (N-l)k/NJ 
' , " , 

N-l 
'" (m ~/,N m 'J/,N) e - j27rek/ N 
~ [5] 0/( '[5] 0/0 
(=0 

L SIn 7rp N-l {' IN}2m, 

p=-oc> trp IN 

INs { f [sin 7r( -kiN + r)] m}2 
r=- oc> 7r( -kiN + r) 

Using those expressions, me is represented by 

Then, mc-1 is given by 
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diag(me- 1 me-1 ... me-1 ) 
0' l' , N-1 

The (f, k) element of mc- 1 is calculated as 

X* o 

X* N-l 

1 N-l 
~ t (X x*me-1 ) N2 b ee p p -]J ek 

1 N-l 1 
_ ~ __ e j27r (e-k)p/N. 
N2 ~ me 

p=O p=O ]J 

Let coefficients m gk be 

1 N-l 1 
mg = _ ~ __ ej27rkp/N k = 0 1 2 ... N - 1 

k N2 ~ me " '" , 
p=O P 

the (f, k) element of mc-1 is represented by mg,e_k,. 

Therefore, Lemma 8 holds good. • 
Using mc-1 obtained by Lemma 8, the biorthonormal basis in the periodic spline signal 

space of degree (171 - 1) is derived by the following theoreill. 

{ }
N-l 

Theorenl 4 The biorthononnal basis fS.]~t' k=O in the signal space m S N composed of 

periodic spline functions of degree (177, - 1) is represented as 

(2.8) 
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whe1~e the coefficients {m 9 I.} ~c/ are given by 

1 N-l 1 
_ ~ __ ej2rrl.p/N 

N2 ~ mO 
p=O p 

f {sin7rk/N}2m /Ns { f [sin7r(-p/N + 1')] 71t }2 
k=-oo 7rk/N r=-oo 7r(-p/N+T) 

(Proof) 

By substituting m<p[s+]-l derived by Lemlna 8 for mc- l in Proposition 6, the biorthonor-

mal basis fS+]~f is represented as 

N-l 
~ t mc-1 m ,,/,N 
~ €I. €k[S]lPl , k = 0,1,··· ,N - 1 
1.=0' 

N-l 
~ t m,,/,N 
D 9IC-kl[S] lPC ' 
1.=0 

where the coefficients {mge}~c/ are given by 

1 N-l 1 
_ ~ __ ej2rre7J/N 
N2 ~ mO 

p=O p 

f {sin7rk/N}2m INs { f [sin7r(-p/N + r)]nl.}2 
k=-oo 7rk/N r=-oo 7r(-p/N+r) 

Therefore, Theorem 4 holds good. • 
Figure 2.5 shows an exan1ple of the function fS+]~t' composing the biorthonorn1al basis. 

This subsection derived the biorthonormal basis, which composes the integral transform 

expression to derive the san1ple value sequence froln the signal wave[onn, in the spline 

signal space msN . 

This section derived the biorthonorInal basis for the sampling basis in the spline signal 

space m S N. The operation to derive the sample value sequence from the signal in the 
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F igure 2.5 : Exan1ples of functions COn1pOS1l1g the biorthonorl11cd basis for m S N 

(v = [S . l~~l(t)). 
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spline signal space is characterized. By this biorthononnal basi and the san1pling basis 

derived in section 2.4, the Fourier-like expansion formula for the san1pling basis in the 

periodic spline signal space m S N is c0111pleLed. 

The derived Fourier-like expansion forn1ula is sumn1ariz d as follows. 

2.6 Summary 

In this chapter, a san1pling theoren1 for the periodic spline signal spaces of arbitrary 

degree was derived. The present theory makes it possible to select a signal space out of 

the series of signal spaces which exist between the staircase and Fourier series. 

64 



Part III 

Biorthop.ormal Expansioll Formulas for 

Non-periodic Fluency Signal Spaces 

65 



In Part III, the sampling theoreln for non-periodic spline signal spaces is con1pl ted by 

deriving biorthonorn1al expansion forn1ulas. The class of spline functions arc linlited to 

the infinite open domain. 

In Chapter 3, the spline functions of arbitrary degree are prepared. Th salnpling 

theorem for spline signal space of arbitrary degree in the infinite op n d0111ain is c0111pleted. 

It generalizes the Whittaker-Someya-Shannon's salnpling theore111 when the degree tends 

to infinity and that the spline signal space of degree zero is identical with the space of 

staircase functions . 
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Chapter 3 

Biorthonormal Expansion l~ormulas for 

Spline Signal Spaces of Arbtitrary Degree in 

Infinite Open Domain 

3.1 Introduction 

In this Chapter, a salnpling theorem for spline signal spaces of arbitrary order shall be 

completed in the infinite open d0111ain by deriving biorthononnal expansion for111ulas. The 

salnpling theorenl in the spline signal space corresponds to Whittaker-So111eya-Shannon's 

sampling theoreln in band-lilnited signal space. 

In band-limited signal space, the mutual relation between a continuous time signal and 

discrete time signal is expressed by the Whittaker-Someya-Shannon's sampling theorem. 

This theorem consists of an orthononllal expansion forrnula using sinc [unction. In that 

formula, the expansion coefficients are identical to the sanlple values of signals. In general, 

however, the band-limited signal space is not always suited to model the signals in nature. 

By deriving biorthonormal expansion formulas, the sampling theorem is completed for 
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the spline signal spaces which are suited to model the signals in nature rath r than 

the band-limited signal space. Since the obtained sampling theor ITI gives th siITIplest 

representation of signals, it is considered to be the most fundanl utal charact rization 

of spline functions used for signal processing. The biorthonornlal basis deriv d in this 

chapter is considered to be the delta function at sampling point wi th SOITI continuous 

differen tiabili ty. 

3.2 Preliminaries 

In this section, signal spaces con1posed of spline functions are prepared. 

Continuous time signals in signal processing are generally considered to be in the Hilbert 

space [140, 139] 

L 2 (R) ~ {ul i: IU(IWdl < +oo} (3.1) 

with the inner product 

(3.2) 

where R denotes the totality of real numbers. 

So we consider a signal space COlTIposed of spline functions [105] of degree (nl, - 1) as a 

subspace of L2(R). Let ms denote the signal space composed o[ spline [unctions of degree 

(m - 1) and be called a spline signal space of degree (m -- 1). Then m S can be d fined by 

based on the B-spline functions [1 05] of degree (n~ - 1) 
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m,,/. ( ) ~]oo (sin7rfh)m j27f!(t-kh)d'f 
[b]tf/k t fl e 'J, -00 7r 1, 

k = 0, ±1, ±2,···. (3.4 ) 

The B-spline functions can be represented in the form of piecewise polyno111ials of degree 

(m - 1) as follows: 

mh-m ~ r!(~~rr)! (t - (r + k - m/2)h)";-" (3.5) 

{ 

(t_a)m-l, t>a 

0, t ~ a, 
(3.6) 

which are (m - 2)- tirnes continuously differentiable. Here, h is a posi Live consLanL which 

means knots interval. Functions {fb]~k} :-00 shall be called the B-spline basis of degre 

(m - 1). 

In this section, the spline signal space m 5 has been prepared. 

3.3 Formulation of Problem 

In this section, the salTlpling Lheorem for the spline signal spaces is formulaLed. 

The sampling theoren1 consists of two transforms: (i) the linear cOlnbinaLion of Lhe 

sampling basis weighted by sample values, and (ii) the integral transform to give sample 

values from signal. The transform (i) was formulated by showing the sampling basis 

in ms [114]. The transforn1 (ii) can be fOflTlulated by introducing Lhe concepts of the 

biorthononTlal basis. 

First, we fonnulate the Lransforn1 (i). In the spline signal space m S', the linear combi-

nation which reconstructs a waveform from salTlpled values is represenLed by 

69 



00 
s(t) = L Il-k~)'fk(t), (Il-k = S(tk)' tk = kh) (3.7) 

k=-oo 

for any s Ems, which is based on the san1pling basis [114] {r:) 'fk } :-00 for ms: 

00 
~)'fk(t) ~ L m,sle_kl[b)'fe(t). (3.8) 

e=-oo 

Here, the coefficients {m,s k} ~-oo are defined as follows: 

~ f/2 m,sk h m B(f)ej27rfkhdf, (3.9) 
-h/2 f 

jB(f) 
6. h 

(3.10) f= {sin 7r (f h - p) r . 
p=-oo 7r(fh-p) 

Since the sampling basis directly gives an interpolant s(t) of sampled valu s {Il-k} :-00 in 

the form of linear combination (3.7), the sampling basis characterizes spline int rpolation 

as its impulse response. 

Next, we formulate the transforn1 (ii) which gives sarnpled values froIn a waveform. In 

the band-limited signal space, the salnpling basis {Si:~~t{:~)k)} :-00 of Whittaker-Solneya-

Shannon consists of orthonormal systems. The transfonm (ii) for the band-limited signal 

s is simply performed by the following integral transfonn: 

( 
Sin7r(t/h-k)) 

s, h 7r ( t / h - k) L2 
(3.11) 

100 s(t) sin 7r( t/ h - k) dt, 
-00 h7r(t/h-k) Il-k = S(tk)' k=0,±1,±2,···. (3.12) 

In this chapter, following the above analogy, the transform (ii) for a spline function 

s Ems is formulated by functions {~.)'fk} :-00 in the form of the following integral 
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transform: 

(s, ~.]1jJk) L2 (3.13) 

i: S(t)r;.]1jJk(t)dt, f-lk = S(tk), k = 0, :±:1, ±2,···. (3.14) 

In the spline signal spaces, the sampling basis {r;]1jJk } ~=-oo does not consist of orthonormal 

systerns except m = 1 and 1TI --7 00 . Then functions {~.]1jJk} :-00 ' ([~.] 1jJk Ems) should 

be derived newly. This integral kernel is a biorthonormal basis[122, 123] for th sa111pling 

basis . From eq.(3.14), this biorthononnal basis characterizes the iransfornl (i1) as its 

impulse response. 

The above transforms (i) and (ii) construct a Fourier-like expanSIon formula uSIng 

sampled values as the expansion coefficients. When a given signal u E L2(R) is not in 

ms, the function s E ms which is given by 

f-lk (3.15) 

00 
s( t) 2::: f-lk~]1jJk(t) (3.16) 

k=-oo 

is the least mean square approxi111ation of u in ms [122, 123]. This 11leans that ~.]1jJk(t) 

perfonns like a delta function in m S with some continuous differentiability. 

In this section, the sarnpling theorem in m S was formulated. To c0111plete the salnpling 

theorem, the biorthonorlllal basis is cieri ved in the following sections. 
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3.4 Derivation of biorthonormal basis 

In this section, the biorthonornlal basis for the sanlpling basis is derived in th spline 

signal space ms. First, the existence of the biorthonornlal basis and its uniqu 11 s are 

shown, and the biorthonornlal basis is derived. 

3.4.1 Existence of biorthonorn1al basis 

In this subsection, the existence of the biorthonornlal basis and its unIqueness are 

investigated. 

To show its existel~ce and uniqueness, a coordinate systenl m<p[s] [or the sampling basis, 

a mapping m<p[s.] which gives inner products of signal and the sampling [unctions, and a 

coordinate transform operator me froln m<p[s] to m<p[s.], are introduced. 

The coordinate system m<p[s] for the sampling basis is defined as follows: Let J.L denote 

a vector which is obtained by sampling s Ems at the sampling point {tk} ~-oo' (tk ~ 

kh, k = 0, ±1, ±2,' .. ), i.e. 

(3.17) 

and let m ]([s] denote the totality of J.L. Then the coordinate system [or the sampling basis 

m<p[s] : m 5 -+ m ]([s] is defined as a Inapping satisfying 

7n () ~ <P[s] s = J.L . (3.18) 

And the space m ]([s] beconles the Hilbert space 
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(3.19) 

wi th the inner prod uct 

00 

(v, w)l2 = L: VkWk· (3.20) 
k=-oo 

The coordinate system mtp[s] is an isomorphic n1apping between s Ems which is bounded 

in the sense of L2 norm and JL which is bounded in the sense of £2 norm [114]. 

The 111apping mtp[s+] fro111 signal s Ems to the inner products of s and sampling functions 

[s]~k' k = 0, ±1, ±2,' .. is defined as follows: Let TJ denote a vector 

~ T 
TJ = [. ", T/-2, 71-1, T/o, T/1, T/2,"'] (3.21 ) 

which is composed of inner products of s Ems and [:]VJk, i. e. 

(3.22) 

and let m ]{[s+] denote the totality of TJ. Then mtp[s.] : m S -t m ]{[s+] is defined as a 111apping 

which satisfying 

(3.23) 

for any s Ems. 

Next, the coordinate transform operator mG from m~O[s] to mtp[s.] is defined as follows: 

mG ~ m m -1 = tp[s+] tp[s] . (3.24) 

The coordinate transform operator mG : m ]{[s] -t m ]{[s.] is represented as a matrix of 

infinite dimension. The ll1utual relation among mtp[s] , mtp[s.] and me is illustrated in 
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1ns 

m 
CP[s*] 

Figure 3.1: Mutual relation between m(.p[s], m<p[s.] and mo. 

Fig.3.1. In the following part, we investigate the existence of the biorthonormal basis and 

its uniqueness by using relations among m<p[s], m<p[s.] and mo. 

The following lemma shows the sufficient condition for the existence of the biorthonor-

mal basis and its uniqueness in terms of m<p[s·]. 

Lemma 9 ifm<p[s.] is an isomorphic mapping, the bioTthonormal basis {~.]~k} :-00 ex-

ists uniquely and it is represented by 

k = 0, ±l, ±2, ... , (3.25 ) 

where ek is a column vecto1' which has unit value at k-th components and zero's at other 

components. 

(Proof) If the mapping m<p[s·] is an isomorphic mapping, functions {r;.J~k} :-00 defined 

by 
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k = 0, ±l, ±2, ... (3.26) 

which are bounded in the sense of L2 norm exist uniquely in m s. 

By using eq.(3.23), the inner products of functions [~'.]7/>k and s E ms are evaluat d as 

follows: 

00 
L J-le (~]7/>k' mcp[s·] -1 (ek)) L2 

e=-oo 00 
L J-l1!ef (mcp[s.]mcp[s.]-l (ek)) 

e=-oo 

f=-oo 

Thus functions {~.]7/>k} :=-00 construct the biorthonorrnal basis. 

Assume that functions {¢k} ~-oo other than {[~.]7/>k} :=-00 satisfy 

we have 

(s, ¢k) L2 - (s, ~.]7/>k) L2 

( s, cP k - r:·] 7/> k ) L2 

for any s Ems and 

° 
0, 

Therefore, the biorthonornlal basis {~.l7/>k} :-00 exists uniquely. 
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• 
Froin Lemma 9, m<p[s.] should be an isomorphic illlapplng for the existence of the 

biorthonormal basis and its uniqueness. 

The following lemma shows the relation between m<p[s.] and mc. 

Lemlna 10 The following two conditions are equivalent: 

(i) The mapping m<p[s.] is an isomorphic mapping) 

(ii) The mapping mc is aTi isomorphic m,apping. 

(Proof) (i) Assume that the Inapping m<p[s.] is an isornorphic mapping. Then mc and 

mc-1 is represented by 

respectively. Now, the Inapplng m<p[s] IS an iso1110rphic lnapplng, then mc IS also an 

isomorphic mapping. 

(ii) Assume that mc is an iso1110rphic mapping. Then the mapping m<p[s.] and m<p[s]-l 

is represented by 

m -1 m -lmc-1 
<P[s·] = <P[s] , 

respectively. Now, the 111apping m<p[s] is an isomorphic nnapping, m<p[s·] is also an isomor-

phic mapping. 
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• 
The following proposition shows the necessary and sufficient condition for th existence 

of the biorthononnal basis and its uniqueness. 

Proposition 7 If the 1natTix mc is an isomorphic rnapplTLg, th e biorthonoTlnal basis 

{~-]7j;k } :-00 exists uniquely and it is 1'epresented by 

m ,,/, m -lrnc-1 ( ) 
[s-] If/k = <'o[s] ek , k = 0, ±1, ±2, ... , (3.31 ) 

where ek is a column vector which has unit value at k-th cornponenls and zeTO 's al othe1' 

components. 

(Proof) From Lemlna 9 and Lelnnla 10, Proposition 7 holds obviously. 

• 
The following lemma shows a frequency characteristics of mc to investigat whether 

mc is an isomorphic mapping or not. 

LelTI111a 11 The frequency characteristics jC(f) of the matTix me is represent d by 

mC(f) = ~ f {(sin 7r(fh + q))2m mB(f + q/h)2} . 
f h q=-oo 7r(fh + q) f 

(3.32) 

(Proof) Since s Ems is represented by 

00 
s(t) = L f-lk~]7j;k(t), f-lk = S(tk), k = 0, ±1, j:2,·· ., (3.33) 

k=-oo 
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the R-th component of 1] = 7n<p[s.](s) is represented by 

7] £ ( s, ~] 'ljJ £) L2 

C~oo Jlk~l,pk' ~l,pe) L, 

00 

L (~]'ljJk' [~]'ljJe) L2 11k· 
k=-oo 

The inner product (~]'ljJk' ~]'ljJ£) L2 in eq.(3.34) is rearranged as follows: 

(~l,pk' ~l,plt = 1: ~l,pk(tm,pl(t)dt 
1: ~]'ljJo(t - kh)~]'ljJo(t - Rh)dt 

-1: [~]'ljJO(t)~l~O((R - k)h - t)dt. 

Using Fourier transform of ~]'ljJo(t), i.e . 

eq.(3 .35) is rearranged by the convolution theorem in Fourier transform as follows: 

(
m ,,/. m ,,/. ) 100

00 m[s]W(f)m[s]w(f)ej27rf(£-k)hd{ 
[s] o/k, [s] 0/£ L2 = '.l 

100 (sin n fh) 2m f B(J?ejhf(l-k)hdf. 
-00 nfh 

By substituting eq.(3.34) for TJe, discrete Fourier transform E(f) of 1], i.e. 

00 

E(f) = L TJ£e- j27r jlh 
£=-00 
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is evaluated as follows: 

E(f) 

where M(f) denote discrete Fourier trans[orn1 JL, i.e. 

00 

M(f) = :L {lke-j21rJkh. (3.38) 
k=-oo 

By using equality 

f= ej27r(j'-J)ph = ~ f= b(f' - f - qlh) 
p=-oo h q=- oo 

(3.39) 

which is held in Fourier transfonn, 

E(f) = M(f)jOO (sin7rf 'h)2m mB(f')2 {~ ~2()O b(f' - f - qlh)} df' 
-00 7r f' h J h q==-'oo 

M(f) {~ f= ( sin7r(fh + q))2m mB(f + qlh)2}. 
h g=- oo 7r(fh + q) J 

Therefore, the frequency characteristics TG of mG is represented by 

jG(f) = E(f)1 ]1I1(f) 

{ ~ f= (sin7r(fh + q))2m mB(f + qlh)2}. 
h q=-oo 7r(f h + q) J 
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• 
From Proposition 7 and Le111n1a 11, the existence of the biorthonor111al basi and its 

uniqueness is shown by the following theoreln. 

TheorelTI 5 In the spline signal space m S, the bioTlhonormal basis {[~.l?jJk } ~=_ JOT the 

sampling basis exists uniquely. 

(Proof) Since the frequency characteristics j B(f + q/ h) in eq.(3.32) is bounded from 

eq.(3.10) if m is bounded, jG(f) is bounded and non-zero [or any f. Thus the mean 

square norms of the frequency characteristics for jG 

jl/2h 2 

h IjG(f)1 df 
-1/2h 

(3.40) 

and l/jG(f) 

j l/2h 1 1 12 
h -1/2h j G(f) df 

(3.41) 

are bounded, respectively. And by the fact that 

E(f) jG(f)lVI(f) 

M(f) E(f)/jG(f) 

and that discrete Fourier transforn1 preserves mean square norm, m G is bounded in the 

sense of £2 norn1. Thus, mG is an isolTIorphic 111apping. 

Therefore, from Proposi tion 7, the biorthonormal basis exists in m S. 

• 
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In this subsection, the exisLence of the biorthonorrnal ba i and iLs unIqueness were 

shown. The biorthonormal basis is derived by using the matrix mc in the next subsection. 

3.4.2 Derivation of biorthonorll1al basis 

In this subsection, the biorthonormal basis in m S is derived by using the 111atrix mc. 

The following lemma shows the operation of the matrix me-I. 

Lemma 12 The matrix mc-I 1naps 1] to JL in the following manner: 

00 

J.Le= L mge_k77k, JLEm]([sj, 1]E m]{[s·],C==O,±1,±2,···, (3.42) 
k=-oo 

where the coefficients {m 9 e} ~-oo aTe represented by 

i!=O,±1,±2,···. (3.43) 

(Proof) The frequency characteristics 1I'ILC(f) of mc--I and discreLe l'ourier transfonns 

M(f)andE(f) of JL and 1] hold the equation: 

M(f) == jC-I(f)E(f). (3.44) 

By denoting inverse discrete Fourier transfonn of 1/70 (f) 

(3.45) 

the convolution theorem in discrete Fourier transforn1 leads that 

00 

J..te = L (3.46) 
k=-oo 
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• 
By using jG-1 of Lemma 12, the biorthonorn1al basis in the spline signal space ms is 

given in the following theoren1. 

Theorem 6 In the spline signal space m 5) the biorthono1~1nal basis {r;.]~k } ~=_ Jor the 

sampling basis is represented by 

00 
~.]~k(t) = L mgle_klrs~]~e(t). (3.4 7) 

f=-oo 

(Proof) From eq.(3 .31), {[~.] ~e } :-00 is represented by 

00 
L er (mG-

1 (ee)) ~]~k' 
k=-oo 

Therefore, by expanding mG- 1 following eq.(3.42) in Lemlna 12, ~.]~f is represented by 

• 
Figure 3.2 shows exan1ples of functions ~.]~k composing the biorthonormal basis. 

In this subsection, the biorthononnal basis for the sampling basis was derived in the 

spline signal space m S. This basis characterizes the salllpling operation in the spline signal 

space. 
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Figure 3.2: Exanlples of fUllctions COlnposlng the biorLhonorn1al basis [o r m S 

( V = r:.] ?Po ( t ) ) . 
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The biorthononnal basis derived in this s ction and the san1pling basis d rived in [114] 

complete the sampling theorem for the spline signal space m S of degree (Tn - 1). They 

are summarized as follows: 

For s Ems; 

00 

s( t) L: Ilk[sl 1/;dt ), 11k = s(t k), tk = kh, (3.48) 
k=-oo 

(3.49) 

3.5 Summary 

In this chapter, the san1pling theore111 for the spline signal space was c0111pl t d by 

deriving the biorthononnal expansion formulas. This sampling theorem consists of two 

transforms: (i) the linear cOlnbination of the sampling basis weighted by sa111ple values, 

(ii) the integral transfor111 to give sa111ple values froin signal. The biorthononnal basis 

constructing transform (ij) is considered to be the delta function at sampling point with 

some continuous differentiability. Since the spline signal space generalizes band-liinited 

the signal space in the ter111S of continuous differentiability of signals, the derived Fourier-

like expansion fonnula is one of the generalized sampling theorems to Whittaker-Someya-

Shannon's. It is possible to select the most sui table signal space out o[ the splir e signal 

spaces which connect the signal space of staircase functions and that of Fourier [unctions. 
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Part IV 

Relations between Biorthonorrnal 

Functions and Delta Function 
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In Part IV, relations between biorthonorrnal functions and delta [unction are discussed 

in terms of the reproducing kernel [or spline functions. Th class o[ spline functions are 

limi ted to the infini te open domain. 

In Chapter 4, a reproducing kernel [or spline signal space is d nv d. The reproducing 

kernel is considered to be a delta function with some continuous differentiability in spline 

signal space. The uniform convergence of spline approxirnation is asily prov n by using 

the reproducing kernel. 
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Chapter 4 

Reproducing Kernel for Spline Functions 

4.1 Introduction 

In this chapter, we'shall deal with the problen1 to derive cardinal spline I((x, ~), s.t. I((.,~) E 

Sn for V~ E R and I((x,.) E Sn for Vx E R which satisfies 

1: J((x,Os(x)dx = 5(0, (~E R) (4.1) 

in function space Sn spanned by square-integrable cardinal spline s of degree n [105]. 

This integral kernel is a reproducing kernel for the function space Sn of cardinal splines. 

A uthors derived an integral transform which transforn1s s E Sn to {s (k)} k=- oo E £2 in 

Ref. [5, 13, 12]. But the transforn1 can perfonn like delta function for V s E Sn only at 

(x = k, k E Z ). On the other hand, eq. (4.1) Ineans that the reproducing kernel for Sn 

can perform like delta functions at any points. 

Based on the theory of reproducing kernel [141], reproducing kernel has the meaning 

that the cardinal spline s of degree n which approximates Vy E L2(R ) in the sens of least 

square error, z. e. } 
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i: Iy(x) - s(x)1 2dx -+ 111in. , (4.2) 

is given by 

s(~) = i: J{(x,~)y(x)dx, (4.3) 

in the Hilbert space 

(4.4 ) 

with inner product 

6100 

-(y, Z)L2 = -00 y(x)z(x)dx. (4.5) 

In a function space composed of spline functions of degree (2k-1) with knots {xe }%=o, (a ::; 

Xl < X2 < ... < XI ::; b; 1 ::; J ::; J) on R, reproducing kernel was derived [107] with 

respect to inner product 

(4.6) 

However, in function space of cardinal splines, reproducing kernel has not been derived 

with respect to the most fundalnental inner product (-, . )L2. This is the first approach to 

derive the reproducing kernel J( ( x ,~) for Sn as the solution of integral equation (4.1). 

4.2 Preliminaries 

The cardinal spline function space 
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(4.7) 

generated by the B-spline funcLion of degree n [105] 

Bn(x) ~ ~;oo [2 sin( U/2)] n+l eiuxdu, ( ) n = 0, 1, 2, ... ; x E R 
27f -00 U 

( 4.8) 

is a subspace of L2(R) [105, LecLure 4] . 

4.3 Reproducing kernel for cardinal splines 

Theoren1 7 R eproducing kernel ]«(x,~) satisfying 

i: K(x, Os(x)dx = s(O, (e E R ) for "Is E Sn ( 4.9) 

is given by 

]«(X,~) = L L Vk_eBn(X - k)Bn(~ - f), (4.10) 

kEZ eEZ 

where 

(1' E Z). (4.11 ) 

Proof. Reproducing kernel ]{(x,~) is represented in the [arm 

1«(x,~) = L L 'Wk,eBn(X - k)Bn(~ - f), (4.12) 
kE Z eE Z 
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because reproducing kernel ]{(x,~) should satisfy ]((-,~) E Sn and ]((x,.) E Sn. Any 

function s E Sn is represented in the fOrIl1 s(x) = z= ApBn(X - p), {Ap}p=_oo E £2. Sub
pEZ 

stituting it for s in eq.( 4.9), eq.( 4.9) can be rearranged as follows: 

100 

L L Wk,eBn(X - k)Bn(~ - £) L ApBn(X - p)dx 
-00 kEZ f.EZ pEZ 

L: Ap [L: L: Wk,e 100 

Bn(x - k)Bn(x - p)Bn(~ --ndx] 
pEZ kEZ f.EZ -00 

z= Ap [z= z= Wk,e B2n+l(P - k)Bn(~ - £)] 
pEZ kEZ eE Z 

Since {Ap}~_ oo is an arbitrary clell1ent in £2, we can further reduce it to the si1l1ultan ou 

equations 

L: L: Wk,e B 2n+l(P - k)Bn(~ - £) = Bn(~ - p), (p E Z). (4.13) 
kEZ f.EZ 

The Fourier characteristic functions of the both sides of eq. (4.13) beco1l1es 

L [z= L Wk,f. B2n+l(P - k)Bn(~ - £)] e- 1
:
UP 

pEZ kEZ f.EZ 

L Bn(~ - p)e-iup , 
pEZ 

[2: B2n+l (q)e- iUq
] [2: {2: wk,eBn(~ - £)} e-iUk

] 
qEZ kEZ eE Z 

2: Bn(~ - p)e- iup . 
pEZ 

U sing the convolution theoren1 in Fourier transform, j t holds good that 

90 



Using Dirac's delta functions, it holds good that 

~ J 71'" J OO Bn(x) r I: 8(x - H P)] iuxdx -iu~eiuedu 
27r -71'" - 00 ~EZ 

~ JOO B,,(x) r I: 8(x - (+ P)] J 7r eiu(x-~+e)dxdu 
27r -00 ~EZ -71'" 

L Bn(~ - p)~ J 71'" itl(-p+f.)du 
pEZ 27r -71'" 

Bn(~ - f) . (4.15) 

Substitute eq.(4.14) and eq.(4.15) [or eq.(4.12). Then I«(x,~) is represented in Lh form 

]«x,e) = L L 'LUk,eBn(X - k)Bn(e - £) 
kEZ eEZ 

[ 

1 J71'" eiu(k-e) 1 
= 2: 2: - I: _iUqdu Bn(x - k)Bn(( - f). 

kEzeEZ 27r -71'" B2n+l(q)e 
qEZ 

This means that 'LUk,e is represented in the form 

1 J71'" eiu( k-e) 
'LUk,e = - . du 

27r -71'" I: B2n+l(q) e-tuq 
qEZ 

1 J71'" eiu(k-e) 
- du 
27r -71'" L [2sin(u/2 + 7r q)] 

2 

qEZ u + 27rq 

1 J7r eiu(k-e) 

= 27r -71'" [2sin(u/2)]2n+2 I:(u + 27rq)-2n-2
du

. 
qEZ 

Let Vr be coefficients defined as follows: 
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The coefficients Vr satisfy 

• 

That formula is similar to the cardinal function of E. T. Whittaker [101]. In [unction 

space 

(4.16) 

the cardinal expansion 

( 4.17) 

holds good for Vw E lV. Equation (4.17) is a kind of generalization of eq.( 4.9) because 

the cardinal spline space approaches the cardinal funct ion space when the degr e n tends 

to infinity [105, Lecture 3]. 

The following two theorellls are followed by Theorern 7 

Theorem 8 Function space Sn ZS a reproducing kernel Hilbert space with reproducing 

kernel ]((x, ~). 

Proof. The function space Sn is a Hilbert space with inner product C,' )£2. By using 
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we have the relation 

for any s E Sn. 

i: I{~(x )s(x )dx 

i: I{(x,~)s(x)dx 
s(~) 

Theoren1. 9 For any s E Sn) its approxi7nation given by 

N 

L s(k)~l~k(x) 
k=-N 

(4.18) 

• 

(4.19) 

converges s uniformly) where r.;]~k(X), k = 0, ±1, ±2,··· are sampling functions for Sn· 

N 

Proof. For any s E Sn, L s(k)~l~k converges s in the sense of rnean square norm 
k=-N 

by Ref. [5, 13, 12], i. e. , 

N 

s - L s(k)~l~k -t 0, (N -t (0). (4.20) 
k=-N L2 

By using 1«( defined by 

(4.21 ) 
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we have 

(
J(x, S - t S(k)(.;]V>k) 

k=-N L2 

N 

S(X) - L s(k)~l 7jJdx ) 
k=-N 

N 

< Ill{xllL2 s - L S(k)~] 7jJk 
k=-N 

Therefore the approxirnation converges uniformly, i. e., 

N 

s(x) - L s(k)~]7jJdx) -+ 0, (N -+ (0). (4.22) 
k=-N 

• 

4.4 Summary 

In this chapter, reproducing kernel for cardinal splines was derived. This reproducing 

kernel obtains function values of s E Sn at any point ~ E R, while the mapping from s E Sn 

to its function values {s( k) }~-oo E £2 performs like delta function only at sampling points 

(x = k, k E Z) for "Is E Sn in [5, 13, 12]. This means that the reproducing k rnel k(x,~) 

shall be called delta-like function. 
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Part V 

N urnerical Analysis Based on 

Biorthonormal ExpansioJn Formulas of 

Spline Functic)ns 
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In Part V, a real-time spline approxin1ation Inethod is proposed and analyz d. The 

class of spline functions are lilni ted to the infinite open dOlnain. 

In Chapter 5, a real- tin1e spline approxin1ation based on the biorthonorn1al expansion 

formula is derived. The approxin1ation error is estilnated for th practical use of spline 

approximation for digital signal processing. An example of the r al-tilne approxilnation 

shows the effectiveness of the approximation method in the ilnplen1entation of fl xible 

signal processing with spline functions. 
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Chapter 5 

A Real-time Spline Approximation w ith 

Biorthonormal Expansion 

5.1 Introduction 

Approximation by spline functions has been widely utilized in the con1pression of the 

data volume for figures, medical in1ages and other graphic images. The splin approxi

mation problem has been discussed lnostly in tenns of the B-spline [119, 121, 110]. The 

approximation method using the B-spline functions requires to solve sin1ultan ous equa

tions after the whole input data was observed. This means that the approximation cannot 

be obtained in real- time. Therefore, approximation using the B-spline functions cannot 

be applied in the fields where the approximation result needs to be obtained in r aI-time 

for the input signal. 

In this chapter, a spline approximation method is proposed, which can obtain the 

approximation result in real- tin1e, based on the biorthonormal expansion fonnulas. 

In the previous chapters, the Fourier-like expansion formulas composed of the sam-
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pling basis and its biorthonorn1al basis were obtained for spline signal spac s, which 

constitute sampling theorems. In this chapter, by truncating th sampling basis and its 

biorthonormal basis with finite length, a least square approxill1ation ll1ethod which ob-

tains approximation result in real-time is derived. By the truncation, an approxin1ation 

error is caused. The relation between the truncation length and approxi111ation error 

caused by the truncation is estimated. By referring to the relation, und r S0111C tolerable 

approximation error, the least square approxilDation by spline functions can b obtained 

in real- tilDe. 

5.2 Preliminaries 

In this section, signal spaces cOlnposed of spline functions and the biorthonormal basis 

are prepared. 

Generally, signals defined on the real axis are considered to be in the Hilbert space[140, 

139] 

(5.1 ) 

wi th the inner product 

(5.2) 

where R denotes the totality of real numbers. 

So we consider the signal space C0111posed of spline functions [105] of degree (1n - 1) 

as a subspace of L2(R). Let ms denote the signal space composed of spline function of 
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degree (m - 1) and be called a spline signal space of degree (1'n - 1). Then Tn S can be 

defined by 

m S ~ [m ,,/. ] (X) m, S C L2 (R) 
= [b] If/l l=-(X) , (5.3) 

based on the B-spline functions [1 OS] of degree (m - 1) 

(5.4) 

The B-spline functions can be represented in the form of piecewise polynomials of d gree 

(m - 1) as follows: 

~]~l(t) 
Tn (l)P 

mh-mI: '( - ),(t-(e+m/2-p)h)~-1 
p=O p. rn - p . 

{

(t-a)m_I, t>a 

0, t ~ a 

(5.5) 

(5.6) 

Which are (m - 2)-tilues continuously differentiable. Here h is a positive consLanL which 

is the interval of each piecewise polynomial. 

Let {tk}~_(X)' tk = kh, k = 0,±1,±2,··· be sarnpling points on th Lin1e axis, 

then sampling basis {(;]~k} :-(X) and its biorthononnal basis in m S {f;.]7Pk} :-(X) arc Lhe 

functions which satisfy the following relations: 

(X) 
s( t) L S(tk)[~J~k' (~J~k Ems) (5.7) 

k=-(X) 

(5.8) 

Equation (5.7) and eq.(5.8) consist of a biorthonormal expansion formulas for spline func-

tions. The sampling basis and its biorthonormal basis were derived as follows [114, 5, 13, 
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12]: 

00 
~ ma m~/, 
L.J I--'e-k[b]lf/e, k=0,±1,±2,··· (5.9) 

e=-oo 00 
L m ge-k~] ?/Je, k = 0,±1,±2,···, (5.10) 

e=-oo 

where 

J
1/ 2h 

h j B(f)ej27r jphdf, 
-1/2h 

p = 0, ±l, ±2, ... (5.11) 

jB(f) 
1 

(5.12) 

p = 0, ±1, ±2, ... (5.13) 

h 
(5.14) f (sin7r(f h +q))2m mB(f+q/h)2· 

q=-oo 7r(f h + q) j 

Here, r x 1 lueans the maXinlU111 integer nUluber which does not exceed x. The functions 

{~]?/Jk } :-00 are called spline sa111pling basis and each function ~]?/Jk is called salupling 

function. And the functions {r;.]?/Jk} ==-00 are called spline biorthonornlal functions and 

each function ~]?/Jk is called biorthonormal function. Figure 5.1 shows exampl s of the 

sampling functions and the biorthonormal functions. 

In this section, the spline signal spaces were prepared, and the salupling basis as well 

as its biorthonornlal basis in the signal spaces are introduced. 
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(b) Examples of biorthonormal function (h=l) 

Figure 5.1: Exan1ples o[ sanlpling [unctions and their biorthollon11al [unctions. 
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5.3 Real-time spline approximation method based on biorthonor

mal expansion formulas 

In this section, it is shown that the least square approximation by the spline functions 

can be obtained by the biorthononnal expansion forrnulas. Also, th real-tin1 spline 

approximation method, by truncating the sampling function ~] ~O and its biorthonormal 

function r:.]~O into finite length, is proposed. 

It is shown that the least square approxin1ation for any signal is obtained by the 

biorthonormal expansion forn1ula. Signal space L 2 (R) is divided inLo spline signal space 

m S and its orthogonal c0111plc111ent m Sl... For any signal x 

uniquely by the sum of s Ems and S c E m Sl.. as 

x = S + Sc. 

The s is the least square approxilnation of x. Since s is in m S, j L is sampled as 

S(tk) = 1: s( t)~'l,pdt)dt, k = 0, ±l, ±2,' ... 

And since Sc is in m Sl.. and ~.]~k is in m S, it holds that 

Then, by using 

Vk = 1: x(t)~'l,pk(t)dt, k = 0, ±l, ±2,"', 

we have 
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Vk = S(tk)' k = 0,±1 , ±2 , ···. (5.19) 

Therefore the least square approxilnation s in m S [or any signal E L2 (R) is giv 11 by 

1: x(t)r;.] 'l/Jk(t)dt, k = 0, ±1, ±2,·· . ( 5.20) 

00 

s(t) L Vk~]'l/Jk(t). (5.21) 
k=-oo 

Here, by eq.(5.9) and eq.(5.10), we have 

(5.22) 

(5.23) 

Then eq.(5 .20) and eq.(5.21) are rearranged as 

1: x(t)~'J,po(t - kh)dt, k = 0, ±l, ±2,··· (5.24) 

00 

s(t) L Vk~]'l/JO(t - kh). (5.25) 
k=-oo 

These become the prototype of the real-time spline approximation lnethod. 

The real-time approxilnation 111ethod is obtained by truncating the sampling basis 

and its biorthonor111al basis. For a positive constant }f, the sampling function and the 

biorthonormal function truncated into [-Hh,Hh] are represented as 

(5.26) 

(5.27) 

Then eq.(5.24) and eq.(5.25) can be approximated by 
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00 

s(t) L Vk~]~O(t - kh) 
k=-oo 

rtf h-Hl 
L Vk~]~O(t - kh), 

k=- Lt/h+H J 

k=0,±1,:i::2,··· (5.28) 

(5.29) 

where r xl denotes the maxi111u111 integer number which is not gr ater x , and l x J d notes 

the minimum integer nU111ber which is not less than x. 

The above equations mean that s( t) can be ilnn1ediately calculated only by x( T), (( r t/ h-

Hl - Ii) h :s; T :s; (l t / h + Ii J + 11) h) . 

For s E L2(R), we evaluate the approxin1ation error between sand s in the sens of 

mean square norm. The error is represented as 

II s - ~ II L2 

II T IIJ'2 

[
rOO ]1/2 

J-
oo 

Is(t) - s(t)1 2
dt 

[
r OO ]1/2 

J-
oo 

Ix(t)1
2
dt 

(5.30) 

In this section, the real-tin1e spline approxin1ation :method was proposed. And the 

approxirnation error caused by truncation was defined. In the following section, the error 

represented in eq.(5.30) is estirnated. 

5.4 The relation between approximation error and truncation 

length 

In this section, the relation between the truncation length of the sampling [unction 

and its biorthonormal function and the approximation error caused by the truncation 

is estimated. In the first subsection, the upper bound of the biorthonormal function is 
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derived to estimate the error. In the nexL subsection, the relaLion between truncation 

length and approximation error is estimated. 

5.4.1 Upper bounds of san1pling function and its biorthonorn1al function 

In this subsection, the upper bound of the biorthonorrnal function is derived to sLimate 

the error. 

The upper bound of the san1pling basis was derived by Ref. [117]. Fron1 Ref. [11 7], the 

following lemlna shows one of the upper bounds of the san1pling [uncLion. 

Lenuna 13 

(i) When m = 1 

/,]1/Jo(t) = { 
1, It/ hi < 1/2 

0, It/hi ~ 1/2 
(5.31 ) 

(ii) When m = 2 

t,]1/Jo(t) = { 1 - It/ hi, It/hi < 1 

0, It/ hi ~ 1 
(5.32) 

(iii) VVhen Tn ~ 3
J 

there exist two constant mu, mu (0 < mu < 00, ° < mu < 1) s.t. 

(5.33) 

To represent the upper bound of biorthonormal function, the following lemlna shows 

the biorthonormal function in the fonn of linear combination of the B-spline functions. 
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Lel11111a 14 The biodhononnal function [;.l~o( t) is 1'ep'rese'ntcd in the fonn of linea?' com-

bination of the B-spline functions 

00 

~·l~O(t) = L mdprbll~p(t), (5.34 ) 
p=-oo 

1
1/2h 2m B(f) 

mdp = h 1 ej21f1phdf, p = 0, ±1, ±2,···. 
-1/2h T B(f) 

(5.35) 

(Proof) Substituting ~l~k(t) in eq.(5.9) for eq.(5.10), ~'.l~o(t) is represented in the form 

of linear combination of B-spline functions as follows: 

00 

L mgk~l~k(t) 
k=-oo 

00 00 

L mgk L mfJp_kfbJ~P(t) 
k=-oo p=-oo 

PJ;= [k~= m 9k m !1P-k] [bj1/;p(t). 

00 

Let mdp denote L mgk m fJp-k, then it is represented as 
k=-oo 

k=-oo 

1
1/2h 

h mC(f)-lm B(f)ej21f1phdf, 
_1/2h1 1 

p = 0, ±1, ±2, ... 

by convolution theorelTI for discrete Fourier transform, eq.(5.9), and eq.(5.13). 

Let 8(·) denote delta function, T B(f) represented by eq.(5.12) becomes 

1 
jB(f) r(m-l)/21 

L ~l~O(qh)e-j21f1qh 
q=- r(m-l)/21 
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1 
= 00 

:L [blj'l/JO(qh)e-j2rrjqh 

q=-oo 

1 
= f [ 0 ibJ1/!o(t)e~jhft8(t - qh)dt 

q=- oo -00 

1 
= 1: IbI1/!O(t) U~:oo 8(t - qh)] e~j2~ftdt' 

By the convolution theorelll for Fourier transform, we have 

-

1: {1: IbI1/!o(t)e~jhf'tdt} L~oo ejh(J'~J)Ph} dJ" 

FrOlll eq.(5.5) and the equation 

00 1 00 

:L ej27r(j'-J)ph = - :L 5(f' - f - plh), 
p=-oo h p=-oo 

f B(f) is rearranged as 

1 J B(f) = 

r oo (sin 7r,I' h) m. [~ f 5(f' - f - pi h)] df' 
J- oo 7r f h h p=-oo 

h 
= f (sin7r(f h + p))m. 

p=-oo 7r(fh+p) 

By using the above j B(f), jG(f) is represented by 

mG(f) = ~ f (sin 7r(fh + q)) 2m m B(f + q/h)2 
j hq=_ oo 7r(fh+q) j 
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2 

h ~ f (Sill7f(f h +q))2m 
hq=_oo 7f(fh+q) f (Sin7f(f h +q+P))n1 

p=-oo 7f(fh+q+p) 
2 

~ f (sin7f(f h +q))2m 
h q=-oo 7f(j h + q) 

h 
(1' = q + p) f (~in 7r (f h + 1')) 711 

r=-oo 7r(fh + 1') 

Then the coefficients {mdp } ::-00 is represented as 

]
1/2h 

h mC(J)-lm B(f)ej27r1phdf 
-1/2h 1 1 

1/2h 2m B(f) . h] 1m B(f) eJ27r1phdf, p = 0, ±1, ±2,' ... 
-1/2h 1 

• 
The following lemma shows one of the upper bound of biorthonon11al function. 

Lel11.111a 15 

(i) vVhen m = I, 

[s*]1/;o(t) = { 1, 
0, 

It/ hi < 1/2 

It/hi 2 1/2 
(5.37) 

(ii) When Tn 2 2, there exisl lwo co'nstants m W, mw (0 < mw < 00,0 < mw < 1) 5.1. 

(5.38) 

(Proof) (i) when m = 1, coefficients {mdp } ::-00 is represented as 
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}B(f)}B(f) = 1 ·1 = 1, (1TL = 1) (5.39) 

byeq.(5.5). 

By substituting them for eq.(5.35), we have 

1 { 1, P = 0, dp = . 
0, p =I 0 

By substituting Idp for eq.(5.34), we have 

From eq.(5.31), we have 

1 ) {1' It/hi < 1/2, 
[s·]?/Jo(t = 

. '0, It/hl~1/2 

(ii) When m ~ 2, by Lell1111a 1 and Lemma 2 in [117], coefficients {2m,Bp} :-00 satisfi s 

(5.40) 

for certain constants 0 < 2mb < 1, 0 < 2m B < CXJ. From eq.(5.12), the inverse discrete 

Fourier transform of l/jB(f) becolnes {~l?/JO(ph)}:_oo' The coefficients {mdp}:_oo is 

represented by the convolution of {2m,Bp}:_00 and {fbj?/Jo(ph)}:_ oo ' Using 

from eq.(5.5), the one of the upper bound of the amplitude is evaluated as 

00 

k=-oo 
r(m-l)/21 

L 2m ,B]J-k~l?/JO( kh) 
k=-r(m-l)/21 
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Let m D and md denote 

2(2m b)-f(m-l)/21 _ 2mb - 1 
2mB~~ ____________ _ 

h(1- 2m b) , 
(5.42) 

(5.43) 

respecti vely, we have 

Since the B-spline function is sY1111TIet1'y f1'o111 eq. (5.10) 

(5.44 ) 

it is enough to consider only the case that t ~ 0 to show eq.(5.38). From eq.(5.5), we have 

o < ~l~p(t) < 1/ h, It/ h - pi < m/2, 
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~l~p(t) = 0, It/h - pi < Tn/2. 

Then one of the upper bound of 1[:\l~O( t) I is represented as follows: 

00 

1~·]~o(t)1 = 2:: mdp[~l~p(t) 
p=-oo 

rtf h+m/21 
= L mdp~l~p(t) 

p=-lt/ h-m/2J 
rtf h+m/21 

< L Imdpllffi~p(t)1 
p=-lt/h-m/2J 
1 rtf h+m/21 

< _ ~ Imd I h ~ P 
p=-lt/h-m/2J 

1 rtf h+m/21 
< _m D 2:: 7nd1p1 . 

. h p=-lt/h-m/2J 

Using md-1 > md, it is rearranged as 

Thus, we have 

1 rt / h+m / 21 
< _m D 2:: md1pl 

h 

= 

= 

p=-lt/h-m/2J 
m D (m d l t / h - 1n / 2 J - m d It / h + m / 2l ) 

h(l - md) 

m Dmdlt/ h - 1n/2 J 
h(l - md) 

< mDmd lt/h-rn/2J 
h(1 - md) 

< m Dmdlt/ hi - 17'1,/2 
hU - m·d) 

= m Dmd-1n/2mdltl/h 
h(l - md) . 

Here, by introducing 

mw 
m D-m/2d 

-
hU - md) 

mw = md, 
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m 2 3 4 5 6 7 8 9 1 0 

01 U 1.0000 1. 2589 1. 3335 1. 2589 1.1481 1. 1350 1. 1220 1.1092 1. 0965 

01 u 0.3679 0.1715 0.2679 0.3758 0.4266 0.4623 0.5309 0.5559 0.5754 

mw 1. 8011 1. 3530 1. 2861 1. 1555 1.1501 1. 1409 1. 1320 1. 1252 1. 1135 

mw 0.2777 0.4650 0.5755 0.6380 l. 1409 0.7644 0.7843 0.8032 0.8062 

Table 5.1 : At tenuaL'ion pa.l'all1eLcrs of siul1pling funcLions and thei r biortilollo 1'111al fUll -

tions. 

eq.(5.38) holds. • 
Frol11 Lelll11la 15, the biorthonol'll1C1.l function ~.J'lj;o is a tillle lilnited fUllcLioll wh n 

17~ = 1. Thus there is no need to truncate the biorthonol'll1al function when 1n = 1. 

And when 1'n 2:: 2, the an1plitllde of [~L.j'fo aL tillle t decreases exponentially del nding 

on Itl . Frolll Lell1llla 13 and Lelllllla 15, the alllplitude of the sC11npling fUllctioll and its 

biorthonorll1a.l funcLion decrease exponentially, Lhen it is expecLed LhaL Lhe approxinlaLion 

error caused by the truncat.ion rapidly c1ilninishes. 

Table 5.1 shows the nunlerica.l eva.lllaLion of m\;\f and mw [or [~.J1Po. TabJe 5.1 shows 

the nUll1erical evaluation of mu and mu for ~] 'lj;o [ron1 [117]. Il ro111 Tabl 5.1, there is a 

tendency that larger (17~ - 1) deCI'cases the at ten uation speed. 
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Figure 5.2 shows the upper bounds o[ the sanlpling [un tion and its biorthonorInal 

function in logarithmic scale. FrOlll Fig. 5.2, the derived upper bounds are good. 

In this subsection, it was shown that the upper bounds of th san1pling function and its 

biorthonormal function attenuate exponentially. In the next section, the relation betw n 

approximation error and the truncation length is estimlated by using the upp r bounds. 

5.4.2 The relation between approxin1ation error and truncation length 

In this subsection, the relation between apprOXil1lation error and the truncation 1 ngth 

is estilnated by usir~g the upper bounds. 

The follqwing leln111a shows the upper bound of error in coefficients Vk, k = 0, ±1, ±2,' .. 

caused by truncation of the biorthonorn1al function. 

Proposition 8 When m ~ 2, 

(Proof) From eq.(5.24) and eq.(5.28), we have 

00 

II v - v IIi
2 

= L IVk - Vk 12 
k=-oo 

kJ;oo Ii: x(t)f,"j"bo(t - kh)dt - i: x(t)f,'.j,po(t - kh)dl 1
2 

f= Ii: x(t) {f,"j"bo( t - kh) - f,'.j,po( I - kh) } dl12 
k=-oo 

< f= i: Ix(tW I~'j"bo(t - kh) - ~'j,po(t - kh)1
2 

dl 
k=-oo 

i: Ix(tW LJ;oo I~'j"bo(t - kh) - ~'j,po(t - kh)12} dt 
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Figure 5.2: Upper bounds of s(1,111pljng functions and Lheir bjorLhonorn1a.l fUllcLions. 
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and 

< 1: Ix(t)12 dt { -a!~f<oo kf;oo 1r:'J"&o(1 - kil) - r:'Jv>o(t - kh)r} 

= II x IlL {-a!~Rcoo kf;oo 1r:'J,,&O( t - kh) - r:'J v>o ( t - kit) 12 } , 

(H ~ : ~L:lr, r < -a!~i~oo kf;oo 1r:'J"&o(t - kh) - r:.JV>o(t - kh)1
2 

= sup f= 1r;·]~o(t-kh)-r.;.]7jJo(t-kh)12. 
0S.t<h k=-oo 

Using eq.(5.27) and eq.(5.38), it beC0111eS 

sup f 1 ls'.J"&o( t - kh) - [;'Jv>o( t _ kh) 12 
0S.t<h k=-oo 

< sup {ftiI=Hllmw(mw)tlh_kI2 + f= Imw(mwtt1h+kr} 
0S.t<h k=-oo k= Lt/h+HJ 

sup {ftlI=H\mW)2(mw?tlh(mwt2k + f (mw?(mwt2tlh(mw)2k} 
0S.t<h k=-oo k= Lt/ h+HJ 

{ 
(m W)2Cnw )2t/h(mw )2 rt/h- Hl (m W)2(mw )-2t/hcnw )2Lt/h+HJ } 

sup + 
O<t<h 1 - (mw)2 1 - (mw)2 

mw 2 (mW )-2 r -Hl + (mw)2LHJ 
() 1 - (mw)2 

2(mW)2 (mw?H+2. 
l-(mw)2 

• 
From the above proposition, the following theoren1 shows one of the upper bound of 

the error II s - s II / II x II in eq.(5.30). 

Theorem 10 When m ~ 2) 
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(5.46) 

(Proof) From eq.(5.25) and eq.(5.29), we have 

2 

< to f: IVk[,'j,,&o( l - k h) - Vk[,'j'<PO( t - kh) 12 dt 
-00 k=-oo 

- to f: IVk[,'j"&O(t - k h) - Vk[,'j,,&O( 1 - kh) 
-00 k=-oo 

_ 12 
+Vk~l7jJo(t - kh) - Vk~l~O(t - kh) dt 

< 1: f: IVk[,'j,,&o( 1 - k h) - Vk[,'j,,&O( t - kh) 12 dt 
k=-oo 

< 1: IVk - vkl
2 

k!;OO l[,'j"&o(1 - kh)1
2 

dt 

+ Joo IVkl2 f: Ir:j"&o(l- kh) - [,'j'<Po(t - kh)r dt 
-00 k=-oo 

= II v - v lIi211 ~l~O lIi2 + II v 11:211 ~l~O - ~l~O lIi2 . (5.47) 

using Lemma 13, one of the upper bounds of II ~.l~O(t) IIE2 is represented as 
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jHh < rnu(mu)ltl/ltI2dt 
-Hit 

jHh 
- m U2CnU )2 Itl/hdl 

-Hit 

= lHh 2 0 mu2(ln U)2t/hdl 

= h(mU)2 {(mU?lf _ I} . 
logmu 

From eq.(5.24), one of the upper bounds of II x 11~2 is represented as 

00 

II V 11~2 = L IVkl2 
k=-oo 

= kf;oo Ii: x(t)i~'l,pO(t - kh)dt
l

2 

< f IX> Ix(t)12[~'1,po(t - kh)[2 dt 
k=-oo -00 

= 1: Ix(t)12 L~oo [~'l,pO(t - kh)[2 } dt 

< 1: 1;r(tW dt {-C!~E:ookf;oo [~'l,pO(t - kh)[2} 

< II x Ill, {_C!~!~ OO kf;oo [mu(mu)lt-khl/h[2 } 

- II x Ill, {_C!~)~OO kf;oo (mu?(mu )2 It-kh11h } 

(5.48) 

_ II X lIi
2 

{ sup [ r~l (mu)2(mu )2(t1h-k) + f (mU)2(,nu?(t1h_kl] } 
-oo<t<oo k=-oo k=-rt/hl+l 

= II x II i2 (m UJ 2 2 { sup [( m U ) 2 (t / h - r t / h 1) + (m U ) 2 - ( t / It - r t / h 1 -1)] } 
1 - ( U) -oo<t<oo 

(mU)2 
= II x Ill, 1 _ (mU)2 {(mu)2 + I}. (5.49) 

From Lemma 13, one of the upper bounds of II ~l~O(t) - ~l~O(t) IIi2 is represented as 

II ~](;o - ~]~O IIi2 = 1: Ir:l{;O(t) - ~]~O(t)12 dt 
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= i~I" 1[;J';'o(l)12 dl + ;;: II:J';'o(t)12 dl 

< r:" Imu(mU)'t'/hI2 dt + L: Imu(mU)'t'/lf dt 

J-
Hh 

mu2(mU)-2t/hdt + roo mu2(mU)2t/hdt 
- 00 JHh 

= _h(mU)2 (mU)2H. 
logmu 

(5.50) 

By substituting eq.(5.48), eq.(5.49) and eq.(5.50) for eq.(5.47) and using Propo iLion 8, 

we have 

II s - S 1112 II v - v 11~211 rsl]~O 1112 + II v 11;211 i~]~o - i:l]?/JO 1112 

< 2(ntlV)2(mw)2 (mw)2H II x Iii !!jmU)2 {Cnu )2Il - I} 
1-(mw)2 2log mu 

+ II X 112 (mU)2 {(mu)2 + I} _h(mu)2 (mu)2Il, 
L2 1 - (mu)2 log mu 

and the upper bound of approxiination error becomes 

2(mW)2(mw)2 (mw)2Hh(mU)2 {Cnu)2H _ 1} 
l-(mwF logmu 

+ (mU)2 {(mu)2 + 1} _h(mu)2 (mu)2Il 
1 - (muF log mu 

= 2h(mwmumw)2 (mw mu)2H 
(1 - mw2 ) log mu 

2h(ntwmumw)2 ______ (m )2H 
- (1 - mw2) log mu w 

_ hmu
4
(mu

2 + 1) (mu)2H. 
(1 - mu2) log mu 

• 
Froin the theorem, the suitable truncation length H is determin d by eq.( 5.46) when 

the tolerable approximation error II s - s II / II x II is given. From eq.(5.46), the upper 
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Figure 5.3: Relation betwecn truncation width (11) and UPl r boulld of 'nor. 

bound o[ the approxill1ation enor caused by the truncation of th sall1pling [un ti 11 a,Hd 

its biorthonoflllal function attenuates exponentially according to 1-1. 

Figure 5.3 shows the relation between 1-1 and the upper bound of error fronl q.(5,46). 

Considering the frequently used ca,ses of 171 = 3 and 17"L == 4, it is enough to trun at within 

1-1 = 5 and 1-1 = 7, respectively, to keep the truncation nor wi thin -60dB. FrOID th s 

cases, there is no need [or t.he truncation length to be long. 

In this subsection, the rela.tion bctween approxinlatioll error and the trullcation lengLll 

was estill1ated by using the upper bounds. By using the relation, the s t1 table truJ) ation 

length for given tolerable error can be detenllined. 

In this section, the real-till1e spline apprOXi111ation ll1ethod was characterized. 
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5.5 Examples 

In this section, an application exall1ple of the proposed approxinlation ll1ethod is shown. 

The proposed approxilTIation 111ethod consists of eq.(5.28) and cq.(5.29). 

For an input signal x, apprOXilTIation coefficient Vk is calculated byeq.(5.2 

k=0,±I,±2,···. (5.51) 

Since the Vk is calculated by x(t) on -Hh + kh ~ t ~ Jih + kh, it is dcLcnnin d aft rIIh 

frOlTI tk = kh. 

The output s(t) at t is calculated by eq.(5.29) 

rtf h-Hl 
s(t) = I: vk~l~O(t - kh). 

k=- Ltfh+H J 

Since the s(t) at t is calculated by {vk}l~~t~:~Hl' it is determined after Jih fron1 t. 

(5.52) 

Therefore, the approximation s(t) of input signal x(t) at t is detenruned after 2IJh from 

x(t). 

Figure 5.4 shows an exalTIple: (a) input signal x(t) = 1 + 0.5sin(~~/~) + O.4cos(~;/~) + 

0.1 cos( ~~~t), (b) approxinlaLion result s( t) by the proposed ll1ethod, ( c) approxilnaLion 

result s( t) by the conventionalnlethod using the B-spline [unctions. 

The approxi111ation result s( t) by the conventional meLhod using the B-splin [ullctions 

was calculated after the input signal was observed whole the finite observation interval. 

In the proposed method, in order that the approximation error is less than -60dB on 

m = 3, the truncation length becolnes IJ = 5. The integral was evaluated discrct lyon t 
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~'I"'I" 
-2Oh -,,()h 

(a)Original signal x(t) to be approximated \ 

S(t) 

(b)Approximation of x(t) by this method 

(c)Approximation of x(t) by the method with B-spline functions 

Figure 5,4: Exan1ple of approxin1aLion. 
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with h/16. By nU111ericai evaluation, the approxin1ation error i - )6.4 dB. It wa shown 

that the proposed method can obtain the spline approximation within th giv n tolerable 

error. 

In this section, an applicatioll cxan1ple of proposed approxiJl1il.t.ioll III ,thod was sllown. 

5.6 Summary 

In this chapter, the real- tilne spline approximation was proposed by trun ating the 

sampling function and its biorthononnal function in the biorthonorn1al expansion [ormu

las . The approxin1ation error caused by the truncation was evaluated [or the proposed 

approximation method. The relation between truncation length and til upper bound 

of the approximation error was sUlnmarized in Fig. S.3. By using the figur ,th suit

able truncation length can be deten11ined [or a given tolerable approxilnaLlon error. This 

makes the proposed lnethod practical. One of the further researches is the application to 

data compression. 
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Part VI 

FIR Filter Design Method using Spline 

Approximation 
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In Part VI, a design method of the linear phase FIR filter is propos d. The Ii IR filt rs 

take advantages that it can exactly implement linear phase filters and stable on . The 

design methods of FIR filter are classified into three rnethods as follows: (i) windowing 

method, (ii) frequency sarnpling luethod and (iii) optinlal filLer design 111 thod. The 

Remez exchange luethod is one of the optimization method Lo approxin1aL fu 11 Lions in 

the sense of equi-ripple error. 

In Chapter 6, a design technique of the linear phase FIR filLers using splin funcLions 

is presented. The filters are represented by C-spline functions. The n1 thod is based on 

Remez exchange method to approxilnate frequency characLerisLics ill Lhe sense of qui

ri pple error. 

In Chapter 7, computational cOluplexi ty of polynoluial in terpolaLion for Lh R Inez 

exchange method is evaluated. This approximation n1ethod is widely uti liz d for filLer 

design techniques. It is found thaL Lhe Newton's polynomial inLerpolation is Lwo times 

faster than the conventional polynoluial interpolation. 
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Chapter 6 

Linear Phase FIR Filter D~esign Method 

Based on Weighted Equi-ripple Spline 

Approximation by Remez J8xchange 

Method 

6.1 Introduct ion 

The FIR filters have advantages that they can implement linear phase characteristics 

exactly, and that they are always stable. On the other hand, the FIR filters have a defect 

t hat the dimension of the filter becolnes large to have good fr q uency characteristics. 

For a given frequency characteristics, it is in1portant to design Ii IR filters with sInal] r 

dimension than what the conventional design methods require. 

In this chapter, a design Inethod is proposed for the linear phase FIR filters based 

on equi-ripple spline approxin1ation using the Remez exchange 111ethod. Th inlpulse 

responses of the designed filters are represented by C-spline functions which are piecewise 

polynomials in the time d01l1ain and are non-rational functions in the frequency domain. 
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The frequency characteristics are approxilnated in the frequenc dOlnain in tll s ns of 

equi-ripple error criteria using Rel1leZ exchange m thod. SOlne design exanlples are shown. 

Based on the design exal1lples, eXperil1l ntal relations anlong SOl1le paranl t rs of filter 

are investigated. 

The proposed design lnethod can obtain the FIR filters wi th slnall l' dinl nsion than 

what conventional design nlethods require. And the proposed l1lcthod can obtaill th FIR 

filters which cannot be obtained by the conventional design nlethods. 

6.2 Preliminaries 

This section prepares SOl1le fonllulas of C-spline functions to represent FIR filters. 

The C-spline function is represented by linear cOlnbination of finite nUl1lber of B-spline 

functions which have local support. Then, the C-spline function representing the FIR 

filter s(t) is a tin1e-limited real-valued function as follows: 

s(t) = 0, (It I ~ T/2). (6.1 ) 

To design the linear phase FIR filters, the condi tion 

s(t) = s( -t) (6.2) 

is used. Then, the linear phase IiIR filter s(t) of dilnension n is uniquely rcprescnt d as 

(n-l)/2 

AO~J~(n-l)/2(t) + L Ar {m~(n-l)/2-r(t) + ~J~(n-l)/2+1.(t)}, 
r=l 

n is odd, 
(6.3) s(t) = (n-2)/2 

L Ar {~J~(n-2)/2-r(t) + ~J~n/2+r(t)}., 
r=O 

n IS even; Ar E R. 
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m[b]1/;l(t) = mh-m ~ t1)k) (I - (JI- (m + n - 1)/2+ k)h)'+n-l , t:a k! 711, - k ! 

.e 0,1,2"',,71,-1, 

m = 1,2,3"", 

h=T/(m+n-1), 

(t-a)~-l= -a , 
{ 

(t )m-l 

0, 

(t > a), 

(t ~ a), 

(6.4) 

(6.5) 

(6.6) 

where R is a set of ,real numbers. The function s( t) is a piecewis polynoillial of d gr 

(m - 1). The nU111ber Tn is called order. 

The frequency characteristics of the linear phase FIR filter s( l) is represenLed by the 

Fourier transform [124] 

S(J) = 1: s(t)eihJtdl 

[Si: ;t1 r P(J), 

where P(f) is a cosine polynoll1ial 

(n-l)/2 

Ao + 2 I: Ar COS(27rT f h), n is odd:, 

P(f) = 7'=1 
(n-2)/2 

2 L Ar cOS(7r(27' + l)fh), 71, IS even. 
r=O 

(6.7) 

(6.8) 

When dimension 71, and order m are given, the pararneters detennining s(t) are coeffi-

cients {A r } !~o-1)/21, where r xl means the maximum integer nUlnber which is not grater 

than x. 

In the next section, a design 111eLhod is proposed to determine the parameters {A r } !~;1) /21 . 
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6.3 Design Method 

In this section, a design luethod of the lin ar phas FIR filLers r pres nted by -spline 

function is discussed. In subsection 6.3.1, the approxiluation crit ria i discus d. In sub-

section 6.3.2, a method to deter111ine the parameters according to the crit ria is pr p s d. 

Finally, in subsection 6.3.3, a design eXaIuple is shown, and the feature of th proposed 

design method is discussed. 

6.3.1 Discussion of design criteria 

In this subsection, the approxin1ation criteria is discussed. 

We suppose that the target frequency characteristics are given as follows: 

A(f), 0 ~ f ~ 1/2h. (6.9) 

To minimize the maximum errors, the weighted equi-ripple error criteria is adopt d as an 

approximation criteria. Then, the design n1ethod should find an approxiluatioll 5(f) for 

A(f) under the weighted equi-ripple error criteria. 

From eq.(6.7) and eq.(6.8), 5(f) is a multiplication of even function P(f) with period 

1/ hand [sj~;£h] m. The frequency characteristics S(J) in the interval {JI - 00 < f < oo} 

follows 5(f) in {flO ~ f ~ 1/2h}. Then, the frequency interval to be concerned with is 

limited into {flO ~ f ~ 1/2h}. The 111axin1Ull1 frequency 1/2h can be increased by the 

dimension n for fixed T. 

The weighted equi-ripple approximation 5(J) for A(f) should satisfy 
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Amplitude 

A (/) 
1+8 --;~ 

1 ....... --.--........ 
1-8 

_______ L ___ _ 

-8 - - - - - - - -~P- - - - - - -

Frequency 

. 1'igure G.1: Relation between A(f) and S(f). 

111a.X 111/(f)[.4(f) - 5'(f)]1 ~ 111i11. 
O~j~1/2h 

(G.10) 

Figure G.1 shows tbe reI a.Lioll bet wcell the ta.rget [req uency cll aracteris ti cs A (f) alld 

its weighted equi-r ipple approxin1ation S(f) with respect to th a111plitud in thc case o[ 

low-pass filter. l~ ollowing the ap proxin1atio11 cri teria (G.1 0), paran1eters of lin ar phase 

FIR filters are detennined in the next su bsection. 

6.3.2 Decision of paralneters 

In this subsection, a 11lethod to detennine the paran1eters is lroposed. 

The equ i-ripple approxiI11c\t,ion by cosine polynoll1ial P(J) is perforll1cd by the II ll1CZ 

exchange ll1ethocl proposed in [12G, 128, 129]. The approxill1ation 8(J) [or A(J) should 

be translated into the equi-ripple approxill1a.tion probleln by P(J). Lct A(J) d note a 
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weighted amplitude characteristics 

(6.11 ) 

then eq.(6.10) is rearranged as follows: 

max IW(f)[A(f) - 5(f)]1 
05:J 5: 1/ 2h 

max IW(f) [[sin 7r f h] m A(f) _ [Sin 7r f h] m P(f)] I 

0<S:.J5:1/2h 7r f h 7r f h 

I [
. fl] 711, I SIn 7r 1, - • 

max fl W(f) [A(f) - P(f)] --+ mIn. 
O<S:.J <S:.1/2h 7r 1, 

(6.12) 

From eq.(6.12), the equi-ripple apprOXilTIaLion S(f) for A(f) with weightW(f) is trans-

lated into the equi-ripple approxilTIation P(f) for A(f) with weight 

(6.13) 

Here, W(f) is an arbitrary positive-valued function, which can control the envelop of pass 

band and stop band. Following the above formulation, the function P(J) is d termined 

by the Remez exchange method. 

The coefficients {AT} r~0-1)/21 is determined by P(f) as follows: 

! h jl/2h P(f) COS(27rTf h )df, n is odd, 
\ -lj2h 
AT = 1 2h 

h j P(f) cos(7r(2r + l)fh)df, n IS even. 
-1/2h 

(6.14) 

Equation (6.14) is derived based on the fact that functions {COS(27rT f h)} ~:~ 1)/2 in [-1 /2h, 1/2h] 

constitutes an orthogonal systelTI, i. e. 

2h j1/2h COS(27rT fh) cos(27rvfh)df = I, (T = v and T =/: 0), 
-1/2h 

1

2, (T = v = 0), 

0, (T =/: v), 
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and functions {cos(7f(2r + 1)fh)}~~2)/2 in [-1/2h, 1/2h] con titut s orthogonal y t m, 

z. e. 

2h cos( 7f(2r + l)f h) cos( 7f(2v + l)f h )df =' , j l/2h {I (T = v) 

-1/2h 0, (r 1= v). 
(6.16) 

From the above discussions, the coefficients {A r } ;'~~-1)/21 of the w ighted lui-ripple 

approximation 5(f) for A(f) is detern1ined. The algorithn1 is shown in l~ ig.6.2. 

In Fig.6 .2, the input paran1eters are the target frequency characteristics d scrib d by 

the edge frequencies and anlplitudes of pass-bands and stop- bands, wight W(f), dilnen-

sion n, and order m. And the output parameters are the coefficients {A1·};'~O-1)/21. First, 

the weight W(f) is detern1ined by eq.(6.13). Then, the approxin1ation 5(f) for A(f) is 

translated into the approxin1ation P(f) for /4.(f). The cosine polynolnial P(f) is d rived 

as the approximation for /4.(f) by the Remez exchange method with weight W(J). The 

algorithm was shown in [126, 128, 129]. Finally, from the cosine polynolnial P(J), coef-

ficients {Ar};'~o-1)/21 is detennined. By substituting coefficients {A1"};'~O-1)/21 for eq.(6.3), 

the linear phase FIR filter s(t) is determined. 

6 .3.3 Design exan1ples and Discussions 

In this subsection, an example designed by the proposed method is shown. 1'he feature 

and effectiveness of the proposed design method are also discussed. 

As a design exalnple, a typical low-pass filter is designed. The specification of design 

example is in Table 6.1, and is shown in Fig. 6.3. 
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Input ~ Parameters: III , fl , number of bands, band-edge frequencies,. 

Target frequency characteristics: A (f) 

Weight function: W Cf) 

Preprocessing ~ -ffi 

W (f) f- [ Si~;{h] W (f) 

Remez Initialization ~ {f(O) }fcn +I)(21 h ... 1 I 
'- q q=O ave mltla va ues 

exchange which are equally sampled in each band. 
method 

Determine PCf) h 
L Repeat until E (f k)) = -E (I J~1) = ± max IE (/)1, -

q=O,1,2, ... ,I(n-1)/21, i=i+1 

L n is odd ( Gq f-(nff (cos 2nfh - cos 2n/~) h) 
u=O 
u/q 

is even JZ 
(i) 

Gq f- (cos 2nl h - cos 2n/o h) 

n (cos 2nl h - cos 2n1V) h) 
u- I 
ulq 

I (n - IY2 1 

Cq f- A (/~)) - (-1)q 
LI A (f~')) Ie v (f ;1)) 
v.,( 

~ I Cn 1)12 1 v ~ 
W (f~')) L. (-1) Ie v (f~))W (f ~')) 

v=O 

(i) [(nf2i e q (f ) 
P (I) f- q=O e q (f~')) Cq 

E(/) f- W(/) [A (/)_pi(i)(/)], 

{/~ +I){cn +1)(21 . d . d q=O IS etermme as 
extremal points 

P(/) = p(i \1) I 
1(2h 

Determine Coefficients ~ n is odd ( Ar f- h f P(f) cos 2nr Ih df, 
r =O,l, - I~ .,(n -1)/2 

n is even 
1/2Jo 

{A 1 f(n +1)(21 I Ar f- h f P(f) cos 2n (2r +l)fh df, 
Output r r=O r =0, 1 , - I~. ,en -2)/2 

Figure 6.2: A flowcharL of a 111ethod to deLen11ine {'\1_ }!.~~o-1)/21. 
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Dimension(Filter length) 24 

Band-edges ( h= 1) Band 1 Band 2 

o - 0.08 0.16 - 0.5 

Desired val ue 1 0 

Weight of error 1 1 

rla.ble 6.1: Specification of design exanlpl . 

Amplitude 

A (/) 

1 

o 
0.08 0.16 0.5 

(h=l) Frequency 

Figure 6.3: Anlplitude characteristics of target filLer. 
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Figure 6.4(a) shows an xall1plc de igncd by the proposcd 111 thod, and Fig. 6.4(b) 

shows that by the conventional lllethod[129]. Fro111 those figure, th filt l' in Fig. 6.4( a) 

has better attenuation in stop band than that in Fig. 6.4(b). 

Figure 6.5 shows a relation between the deviation in each band and dill1en ion. The 

deviation becomes small as the di111ension beco111es large. Wh n the din1ension is san1 , 

the deviations of the exa111ples by the proposed lllethod are s111aller than that by the 

conventional method. 

Figure 6.6 shows a relation between the deviation in each band and th transitioll band 

width. The deviation beC0111eS s111all as the transition band width becolnes wid. When 

the transition band width is sa.n1e, the deviations of the examples Gy the proposed In thod 

are slnaller than that by the conventionallnethod. 

The relations aillong para111etcrs can help to estimate the possibility of thc III th d 

before designing filters. 

6.4 Summary 

In this chapter, a design method was proposed for the linear phase FIR filLers based 

on equi-ripple spline approxilllation using the Remez exchange ll1cthod. SOlll d sign x

amples were shown. Based on the design examples, experimental relations alnong typical 

parailleters of filter were discussed. The proposed design lnethod can obtain the suit

able FIR filters with smaller din1ension than what conventional design methods r quire. 

And the proposed 111ethod can obtain the FIR filters which cannot be obtain d by the 
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conventional design methods. 
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Chapter 7 

Fast Polynolllial Interpolation for Relllez 

Exchange Method 

7.1 Introduction 

Abstract: 

In this chapter, we shall analyze C0111putational cOl11plexity of polynolnial interpolations 

to find out the most suitable interpolation polynolnial for the Ile111cz exchang Incthod. 

The Rel11ez exchange ll1cthod[130] has been widely utilized for thc design of linear phase 

Chebyshev digital filters. The Rell1eZ exchange l11ethod is necessary to have l11any itcra

tions of polynolnial interpolation for unequispaced data. The iterations are constructed 

by derivation of interpolating polyno111ials for many sets of interpolation data and evalu-

at ion of many values of each interpolating polyno111ial. This 111 ans that a C0111putational 

complexity of the Remez exchange l11ethod depends on a C0111putational cOl11plexity of the 

polynomial interpolation [130]. 
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7.2 Preliminaries 

The algorithms for obtaining an interpolation polynomial [or unequispac d data are 

prepared in this section. 

Let g(x) denote the interpolation polynoluial of degree (N -1) [or the data {( Xi , Yi )}~(/; 

i.e. g(Xi) = Yi, (i = 0,1,2"", N - 1). The polynomial g( x ) is obtained [1'0111 on o[ th 

following four luethods. 

Algorithn1 (A): Solving sin1ultaneous equations 

The interpolation polynomial g( x) is assumed to be expressed wi th 

N-I 

9 ( x) = L a j x j 
, 

j=O 

where coefficients {aj }f=(/ are the solution of 

N-I 

L ajxi = Yi, i = 0,1,2,,, ·,N-l. 
j=O 

Algorithn1 (B): Lagrange's interpolation allgorithn1 

The interpolation polynOluial g( x) is expressed with 

N-l 

g(x) L YiLi(X), 

where 

i=O 

N-l x-x ' 
Li(X) = II J, i=0,1,2, .. ·,N-1. 

)=0 Xi - Xj 
)~, 

Algorithn1 (C): Lagrange's interpolation algorithrn in the barycentric forln[132] 
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The interpolation polynolTIial g( x) is expressed wi th 

g(x) 

where 

C ' t 

N-l c ' 
L , t "Yi 
i=O X - X t 

N-l ' 

L ,Ci " 

i=O X - X t 

i = 0,1,2", ·,N' -l. 

Algorithnl (D): Newton's interpolation algoritlull 

The interpolation polynomial g( x) is expressed wi th 

g(X) = f[xol + }; f[xo, Xl,"', X;] {U (X - Xj) } , 

where f[·] is defined by the following recursive equation 

7.3 Computational complexity 

Figure 7.1 illustrates the flow charts of the above algorithlTIs for obtaining ]( values of 

the interpolating polynolnial of degree (N - 1) from N data. Figure 7.2 illustrates boxes 

used in Fig.7.l. Figure 7.2(a) ITIeanS that the variable x gets the value a. Figure 7.2(b) 

lTIeanS that the shaded branch A is iterated N times while i incr ases froiTI 1 to N by 1. 

Figure 7.2( c) means that the shaded branch B is executed if and only if the condition is 

true. The other algorithlTIs are evaluated in the same way. In the algoriLllln (A), Gaussian 

elimination is elTIployed in solving SilTIultaneous equations. In the algorithm (D), An 
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Ii igurc 7.2: Boxes used in l[<ig. l. 
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efficient algoritllln[131] for calculating the divided differenc IS 11lploy d. C0111putational 

complexity is evaluated in the flow chart. At first, the nU111ber of operations in a.ch box 

is evaluated. If a box is in an iterative branch, the number of operations in tIl box is 

multiplied by the number of iterations. If a box is in a conditional branch, th nU111b r of 

operations in the box is counted on the condition. The nU111ber of th whole p rations 

is obtained by calculating the numbers for all the boxes. Recent C0111put r ar very 

fast in register-register arith111etic operations so that 111e1110ry-r gistcr transf r tak s a 

considerable part of the whole C0111putation. Since reference to arrays requires 111 lllory

register transfer, nU111ber of references to array elements shall b evaluated as well as 

arithmetic operations. The cOlnputational complexity of each flow chart is listed in l'able 

7.l. 

In Table 7.1, we can see c0111putational complexity with Nand I(. The nUll1ber of 

operations for the algori th111 (A) is less than other algori tlulls in the case that I( is very 

much larger than N as in the order of N 2
. The nUlnbLr of operations for algori Llllll (B) 

is less than other algorithllls in the case that I( is a very small nUlnber. he number 

of operations for the algorithm (C) is less than the algorithm (A) for I{ ~ 2. That is 

why the algorithlll (C) has been used[130] in the Relnez exchange lnethod which needs to 

examine many interpolation values (their number I( is almost proportional to N). But 

the algorithm (D) is faster than the algorithm (C) in the case that I( ~ N. esides, the 

number of divisions with the algorith111 (D) is constant for any IC Therefore, If we em

ploy the algorithlll (D) for interpolation, the computation speed in the R mez exchange 
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Number of operations to obtain !\' interpolation values 
Add/Subtract ~rultiplication . Division Reference to array 

Algorithm (A) (N J 
- 4/"'1')/3 + 1 (jI,.'J + 3/'v' - - ION )/:3 N'.!. - N + 1 (8tv'J + 2TN'..! - ;joN + 39)/0 

+h:(N - 1) +!":(N - 1) +!\'( S - 1) 
Algorithm (B) 

K(2N"2 - ,N) h:(N'2 - N) K(N'2 - IV) !\'(0:\''2 - 2/'v') 
Algorithm (C) N- - N /',,'- - N /'v' 4/"'- + tv' 

+]{(3/V - 2) +XN + [i,: U\t' + 1) +l\'(lLV) 
Algorithm (D) N- - N (N'.!. - ,\')/2 USN'.!. - S)/2 

+b.:(2N - 2) /..:( N - 1) +[\'(2;\,-1) 

Table 7.1: C0111putationa.l c0111plcxity of algorithrns for polYllo111ial interpolation. 
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method becomes faster. 

7.4 Summary 

The Newton's algorithln for polynolnial interpolation works faster in the RC111 z ex

change method than the Lagrange's one in the barycentric fonn. 
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Part VII 

ConclusioIlS 

lIJ7 



The flu cncy func t ions, which wC'rC' proposC'd il nd rC'fC'rrC'd t.o hy tlw \yisdom syst.C'ms 

laborat.ory[ll :i], providC' et powC'rful procC'd u rC' for fi,rxi blC' signill procC'ssi ng et nd et Dillysis 

of complex systems. Applicett.iol1 of th(' flucncy funct.ions hets etlrC'etcly 1)(,C'11 cd,t mptC' I 

to digital signill proccssing [119 , I~U , l21 1~4 ]. Inet tluC'ncy signill SpetC ['C'prC's nting et 

continuolls-t.ime signill SpilCC wit.h et HuC'ncy function , et signetl is ('xprC'ssC'd in t.\w form 

of linear combination of tlw setmpling hasis with thC' setmplC' villuC's of t.hC' signetl rlS thC' 

coefficients, thc scqllC'ncC' of which corrC'sponels to et signetl in et discrd,C'-t.in1(' signetl Sprl C'. 

'fhc sampling thcorelll d('scrihC's the mlltuill trilnsfo rmett.ion l11('t.ho(\ hC'(,wC' n t.it( flu tHy 

signa.l space etnd the discrct('-timC' signill spacc. In this study, t.h(' sp lin C' funct.ions \Ivhieh 

are vcry useful for intcrpolettion and approximiltion of signals , wC'rC' analy?;C'ci 1'01' run la-

mental cha ra.cterizat ion of the {iuency functions in thC' splinC' signetl spacC's. 'J 'hc samp lin g 

thcoreln for thc spline signal spaces \VilS comp let.ed in t.hc form of biorthol10l'metl C'xpansion 

fornllda ilncl the reproducing kC'rnel was df'rivcd for the spacC's. ThC' split C' i'unctions cIS 

fluency function were applied to the t'('al-tinlc approximation Ilwt.hod etne! thC' ~' IH. filtcr 

dcsign t1wthod. 

In part I I thc sanlpling t.hco['elll was accolllplishcd for the splinC' signal Spil .C' with 

periodic q uaclratic functions. Thc sanlpli ng basis for this signet I spacC' \.vetS pt'C'vioLlsly 

described [112]. The biort.honol'mal hetsis for thC' sett11pling betsis WetS dcrivC'<1 in t.his stItely, 

leading to the COlllpld,ion of thC' setmpling tlwol'C'm in t.hC' form of hior(,hotlormetl C'xpetJlsion 

formula. This C'xpetnsion formltlet clpproximettcs signills in t.hc sC'nsC' of t.lw lC'il St. sqlletrc C'['rot' 

"vith periodic qllildratic splinc fllnctions on thC' finit.C' clos('<1 e!otlletin vv·i1.11 uC'riodiciLy. 'J hc 



sarllpling theorem WClS ext.ended t.o Clrhit.rClry degrees, mClking it. possihle t.o correspond 

the spline signal space:s respectively to the signClI spClces from stepwise funct.ions to the 

FOllrif'r's band-limite;d functions. The periodic signClI spClces Clre t.hlIS derived for eVe'ry 

degree. This correspondel1cC' \vill furnish to Cl clClssifieat.ion met.hod of pc-riodie signClls 

based on thc>ir c1ifferent.iClbility. 

In Part 1 rl, tbe scu11pling th('orel11 was complete'c1 for non-perio lic spline fllnctions of Clr

bitrary degre:es. For the: sa.mpling basis[114] in non-pe:riodic signed spClces, the bior1.hol1or-

tl1al basis was dprivcd in the' similar manl1er for periodic sigllr11 spaces. The inpllt signClls 

on the infinit(' open c\ornain can thus bc- approxim(l.1.c-c\ with non-pc-riodic splin flln Lions 

in the s~ns(' of thc least squarC' error. The correspondence: of non-pe:riodi< signal spac('s 

to the spline' signal spacps of Clppropriate degre('s will provide Cl clr1ssif-icClLion met.hod 

of non-p('riodic signClls basf'c\ on t.i1('ir differC'ntiClbilit.y. The fllnct.ions (ollsisting of" the 

biorthonol'mClI basis enable t.o obtClin t.he sClmplC' vCllllcs of" t.hc spline signals Clt. evcry 

sampling point, inC\ic(lting the;ir propC'l'ty similar to a dC'ltCl fUllct.ion. 

In part IV, the reproducing kernels to obtain thC' sample' vCllu('s of t.he spline: signr1ls 

at every poi n tin the c10mai n werC' c1erive:d fo r thC' non-period i c spl i Il(' S ignClI SPr1Ce'S. The: 

reproducing ke:rnel performs like a dc-Ita fllllction with somc diffe;rentir1hility in the: spline 

signal spaces. The of a reprod uci ng ke'rne! r1S Cl de>l ta. fu nction makc-s nllm('rical SOIII-

tion possiblf! for some kinds of difFcl'C'ntial equCltion , . The; lllliform cOllvc-rgenc(' of splinc

a pproxin1Cltion followed from Cl prope:rty of the ker n('l, s IlggesLi ng the dfc-cL i veness of the: 

real-time> Clpproxirnation hClS(,cl 011 til(' t.rllncation of the sllpport. oft.h(' ftlllCtiollS consist.ing 



of thc sampling basis and its biort.honormal hasis. 

In parts V and VI , a r('al -tiln(' approximat.ion 1'I1('1.hocl was propos('c\ as on(' of t.h(' 

in1picI11cntation cOll1pon('nt.s for signal proc('ssing ,"vith thC' flllC'ncy fllnct.ions , and 1,h(' 

sampling th('orr.m c\('ri\'('d Vlas appli('d for th(' b' IH fi lt('r I('sign m('t.hod hy which 1.h(' I,' [H 

filtr.rs bctt.('1' than convr.nt.ionClI on('s \\'('1'(' dr.sign('c\. On CI I'(,ClI -Lil1l(' Clppl'oX"inlc11.it n III t.hod , 

the crror ill impl(,ll1r.nt.atioll of t.\l(' biort.hollormClI ('xpansion formlilas "'CIS Cll1Cllyz('d Cor 

this Incthoc1. Thr. harc\warC' ('qllipm(,llt.s will 1)(' fC'asibk bas('cI on t.his 1l1('t.hoc\ ancl ('rror 

analysis. Next, 011 th(' FlR filt.r.r d('sign mr.thoc\, 1.h(' H(,Il1('Z ('x hang(' lll('t.hoti , ·which is 

widely uti lized for the fi Itr.r c1r.sigll lllC'thocl , was a Iso llllm('rically anCllyz('d. iVl 01'(' ('Hir.iC'nt 

approxi mation 111Cthods like relaxation lTlcthod would b(' LlSr.ftti for the dC'sigll lllC't.ho 1. 

This study aims to r.stablish sonic key steps ill t.h~ 1.hC'orct.ical and C'xp('ri1llC'Ilt.aI illv('sti

gation of digit.al signal proc~ssillg bas('c1 on th(' fllle'IlCY fUllct.iolls. it. is c1('monstrat.('c\ 1'1'0111 

this study a nc1 t.he; works of the \visclom syste;ll1s 1<1 borCltory thCl t. til(' t-Ill(,IlCY fllnctions 

arc applicable; to mor(' c.omple;x Syst(,IllS. The' allthor hop('s t.o cont.illll(, t.h(' work t I this 

direction in the ncar futul'(,. 
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