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Abstract

The pressure anisotropy is quantitatively estimated in RF-heated plasmas which are mag-
netically confined in tandem mirror GAMMA 10. The pressure anisotropy is defined as
ratio of pressures perpendicular to parallel to the magnetic field line ( P, /P, ), which
indicates a degree of distortion of a distribution function in a velocity space. The pressure
profile of the anisotropic plasmas (P /P > 1) is peaked at the midplane of the magnetic
mirror in the direction of the magnetic field line. The pressure of the isotropic plasmas
(Py/Py ~ 1) is constant along the magnetic field line. The pressure profile is connected
with P /P in term of magnetohydrodynamic (MHD) equilibrium.

Some simple methods are developed for estimating the pressure anisotropy and com-
pared with each others. The first is to use an array of diamagnetic loops which is arranged
along the magnetic field line for measuring the axial pressure profile. The second is to
use a small Faraday cup which can directly obtain a pitch angle distribution of ions af
peripheral region of the plasma. The third is to use a secondary electron detector (SED)

array which detect neutral particles emitted from a plasma through the charge exchange

collisions. The neutral particle carries away the same momentum as an jon. Then. the




pitch angle distribution of the ions is deduced from that of the neutral particles.

Effects of the pressure anisotropy on microinstability are studied. An Alfvén Ton Cy-
clotron (AIC) mode is one of microinstabilities in the range of an ion cyclotron frequency,
which is driven by plasma beta (ratio of plasma pressure to magnetic pressure) and the
pressure anisotropy. Magnetic fluctuations which are dependent, on beta and the pressure
anisotropy are identified as the AIC mode. Spatial structure of the AIC mode is clarified
in the axial, radial and azimuthal direction. The AIC mode propagates azimuthally in
the left-handed direction with respect to the magnetic field line and has an azimuthal
wave length comparable with a circumference of the plasma column. The AIC mode has
a left-handed polarization at the core of the plasma column and the right-handed polar-
ization on the periphery. These characteristics of the fluctuations agree with a theoretical
prediction on the AIC mode. Measurements of axial wave numbers in the axial direc-
tion indicate that the AIC mode has a propagating region and a standing wave region.
The axial extention of the standing wave region is found to depend on an AIC driving
term defined by 3, (P, /Py)?. Here, B, is a perpendicular beta value along the magnetic
field line. A new theoretical model on a one dimensional axially-bounded AIC mode is
proposed. Fine structure of the frequency spectra of the AIC mode is compared with
the dispersion relation which is derived from the newly-proposed eigenvalue equations.
This model explains well the measured discrete spectra which depend on both 4, and the

pressure mli“u\‘l‘n])l\‘.

Relaxation of the pressure anisotropy associated with an onset of the AIC mode is




i
experimentally observed by using the diamagnetic loop array, the small Faraday cup and
the SED array. The pressure anisotropy relaxation corresponds to an enhancement of the
velocity space diffusion caused by the AIC mode.

Effects of the pressure anisotropy on a macroinstability are also studied. Flute-
interchange mode is one of the macroinstabilities which are driven by the pressure weighted
on bad curvature region of a magnetic field line. Stability limit determined by the flute-
interchange mode is typically described by the beta value ratio between the central and
anchor cells. This critical beta ratio has a strong dependence on the pressure anisotropy

of the central cell. The stronger pressure anisotropy leads to the higher critical beta ratio.
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Chapter 1

Introduction

It is in the decade from the early 1960s to early 1970s that microinstabilities in mirror
machines are of crucial subject, because it is considered that the plasma confinement
was degraded owing to the instabilities ). The microinstabilities in the mirror system is
driven by a free energy owing to loss-cone character of the ion distribution function, which
has a negative gradient and an anisotropy in the velocity space. Many microinstabilities
are studied experimental by and theoretical by. Their physical characteristics are to be
obvious and stabilizing methods are developed. The suppression of the microinstability
is attained by filling the loss-cone and reducing the free energy due to the loss-cone.
The tandem mirror concept is one of the ideas which reforms the distribution function
to be a stable one. In this concept the confinement system basically consists of three

linked mirror cells. A large volume mirror cell is centered and two small mirror cells are

placed at both ends of the central cell where a positive potential is produced and SUppPress




end losses along the magnetic field line. With the potential formation, the loss cone of
the ion distribution function of the central- cell plasma is filled out.

Recently, in order to attain plasma parameter in the fusion reactor regime, additional
plasma heating is attempted by various methods, such as high energy neutral beam injec-
tion and high power radio frequency (RF) heating. The principle of the RF heating is to
convert the oscillating-field energy to a thermal energy of the plasma particles. The energy
conversion from the RF wave to the plasmas takes place through collisional dissipation,
such as resistivity and viscosity, as well as collisionless dissipation such as cyclotron damp-
ing, transit time magnetic pumping and Landau damping. Particles which are accelerated
by the RF field yield a high energy tail in the distribution function especially in the case
of the collisionless dissipation. This high energy tail deforms the distribution function
into an anisotropic one. The anisotropy of the ion distribution in the velocity space is
determined by the balance between production and loss of the high energy components in
the velocity space and the energy relaxation from the energetic particles to the thermal
component.

In the GAMMA 10 tandem mirror >®) high energy plasmas with hot ions are produced
by using radio-frequency (RF) heating in the range of ion cyclotron frequency. Energy
containment of the ions in the present experiments is dominated by charge-exchange loss
and /or electron drag. Typical time scale of the ion-ion coulomb collision is much longer

than those of these energy loss processes, and then the energy of the hot ions can not

be sufficiently converted to the thermal energy. In a simulation study by using a Fokker-




Planck code, an anisotropic distribution function is demonstrated for the plasma parame-
ters obtained in the experiments¥). Sudden saturation phenomena of the energy which is
stored in the central cell has been observed in the strong heated plasmas. This saturation
is not explained by the electron drag and charge-exchange loss. It is expected that the
instability related to the anisotropy plays an important role in this saturation mechanism.
Hence, the microinstabilities which are driven by the [ree energy of anisotropic, high-beta
plasmas deserve to be studied with a special attention.

Alfvén ion cyclotron mode (AIC) is one of a electromagnetic instabilities which is
driven by plasma pressure and pressure anisotropy. Shear Alfvén wave couples with free
energy derived from the relaxation of an anisotropic population of ion energy state and
becomes unstable. Here, the anisotropic population means a distribution function which
has the perpendicular pressure greater than the parallel pressure.

Study of the AIC mode is advanced by many theorists >® and experimentalists 7 from
the various standpoints. In comparison with the theoretical development of the AIC
mode, the experimental study in a laboratory is less advanced because of difficulties in
producing a highly anisotropic plasma and then rarely observed except for a few examples
as follows. In the foreshock region of the earth’s bow shock, both of incident and reflected
ion beams are observed. A heating source is required for the existence of the ion beams.
Wave heating due to the AIC mode is simulated in the hybrid-particle code and discussed

on the possibility ®. Deterioration of the plasma confinement particular in the mirror

devices because fluctnating wave field associated with the AIC mode induces the diffusion




in the velocity space. lons are scattered to the loss cone in a time scale shorter than
the coulomb collision time?). It is of crucial issue to study the AIC mode in the tandem
mirror.

In TMX (Tandem Mirror Experiment) device, the AIC modes are observed in the end-
cell plasma which is produced by perpendicularly-injected high energy neutral beam in
order to form a plugging potential formation and the plasma confinement is degraded '?.
It is reported that the AIC modes have small azimuthal mode number and frequencies as
low as 12 % below the minimum ion cyclotron frequency in the end cell. The polarization is
in the direction of the ion gyration, and the azimuthal propagation is in either the electron
or the ion diamagnetic direction. Stabilization of the AIC mode is achieved by reducing
the anisotropy which is controllable by adjusting the injection angle of the neutral beam.
The physics of the shear Alfvén wave generated by the AIC instability is also studied by
observation. The mode conversion from shear Alfvén wave to compressional Alfvén wave
is theoretically predicted at the transition region of the magnetic field between the central
cell and end cell '),

In the Tara tandem mirror, the AIC modes which are excited in the ICRF-heated and
central-cell plasma are studied '?). Stability threshold of the AIC mode is discussed and

is within a factor of 2 of the theoretical value. The stability threshold of the AIC mode

is theoretically predicted as the boundary between absolute and convective instabilities.




The unstable region is approximately represented as follows :

In the Tara experiment the AIC modes have frequencies of w/Q.; = 0.8 —0.9 and have the
parallel wave number of ky = 2—6 m~'. Here, §,; is the cyclotron frequency corresponding
to the minimum magnetic field strength of the central cell.

In the central cell of the GAMMA 10 tandem mirror, the peak ion temperature of 5
keV is attained with the pressure anisotropy P, /P is above 10. Magnetic fluctuations is
observed depending on the beta value 3, and the pressure anisotropy '®. From detailed
measurements, we have identified the mode as an AIC mode. In order to specify the
mode structure, we need spatial measurements of these fluctuations '), In this paper, we
mainly report the identification of the fluctuations and specification of the mode structure
in an inhomogeneous and bounded plasma column. Detailed measurements of the spatial
structure reveal that the AIC mode is excited as an eigenmode constrained by an axial
boundary condition. The AIC-mode stability threshold in GAMMA 10 is experimentally

obtained and represented approximately as follows :

2

]J
Ll >ns3. 1.2

By 7J|_| >

In the region of ,fl{f’l/a"’“}z < 3.5. the conventional theory for an infinite and uniform
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plasma predicts that the AIC mode will be released out of the plasma region before
growing up to a observable fluctuation level. The unstable parameter regime should be
modified by the finite-length effect in the real experiments. A new model which includes
the effect of the axial boundary condition is developed in this paper. Theoretically it
is usually considered that the finite-length effect stabilizes the AIC mode'®. In the
present new theory, the AIC mode is destabilized by wave reflection which is caused at an
axial boundary layer. Recently, it is reported that the AIC mode is observed by a using
nonperturbing reflectometry system in the GAMMA 10 experiments '%:17),

For another example on the interaction between the anisotropic distribution and shear
Alfvén waves, toroidal Alfvén eigenmodes (TAE) are observed in large-tokamak current-

drive experiments by use of deuterium neutral-beam injection '*'?)

. Because the velocity
of the high energy neutral beam is comparable with the Alfvén velocity, the neutral beam
interacts strongly with the shear Alfvén waves which are driven unstable. The resulting
fluctuations cause diffusion of fast particles produced by the neutral beam injection and
reduction of the current-drive efficiency. In this case, the anisotropic population is com-
posed by a distribution function with the parallel pressure greater than the perpendicular
pressure. In the fusion reactor regime, it is expected that the 3.5 MeV alpha particles
from D-T reaction are born and from the high energy anisotropic population. It is possible

that the highly energetic alpha particles drive the TAE mode and degrade the confine-

ment. From the sense of the physics of the shear Alfvén wave, the AIC modes have some

characteristics similar to the TAE modes on wave propagation, excitation condition and




effects on the plasma parameters. Thereby, the study of the interaction between the shear
Alfvén wave and the anisotropic distribution is a common problem in various magnetic
confinement devices.

The plan of this paper is as follows : experimental setup is described in chapter 2, the
quantitative analyses on the pressure anisotropy by using diamagnetic loops in chapter 3,
the identification, spatial structures and the new model of the AIC mode and an effect on
the plasma parameter due to the AIC mode which is experimentally observed in chapter
4, possibility of controlling the pressure anisotropy by using two-frequency RF heating
and suppression of the AIC mode, for another example on the stability which is related
to the pressure anisotropy, stability study on flute-interchange mode in chapter 5, and

finally conclusion in chapter 6.




Chapter 2

Experimental Setup

2.1 GAMMA 10 Tandem Mirror

GAMMA 10 is an axisymmetrized tandem mirror with a thermal barrier which is schemat-
ically drawn in Fig.2.1. The tandem mirror is designed to improve the plasma confinement
by the combination of a magnetic mirror and positive electrostatic potential hill's which is
produced at both ends of the mirror for reducing axial endloss ions. The thermal barrier
helps an efficient formation of the plug potential for the ion confinement. GAMMA 10
consists of five mirror cells, which are a central cell, minimum-B anchor cells and end
plug/barrier cells at both ends. Total length of GAMMA 10 is 27 m and total volume of
stainless-steel vessel is 150 m*. The length of the central cell between the mirror throats

is 5.8 m and the diameter of the vacuum vessel is 1 m. Magnetic field strength at the

midplane of the central cell is 0.405 T in a standard mode of the operation and the mirror




ratio is 5. A limiter of which diameter is (.36 m is set near the midplane. The anchor cells
are located at the both ends of the central cell and consists of a minimum-B mirror field
which is produced by a baseball seam coil. The anchor cell is named after the role that
the anchor plasmas fastens the central plasma which is, otherwise MHD unstable. The
magnetic field strength is 0.610 T at the midplane of the anchor cell and the mirror ratio is
3. The plug/barrier cells are located at the both ends of GAMMA 10, where the thermal
barrier and plug potential are produced. The base pressure is less than 5 x 102 torr; it

is maintained by turbomolecular pumps (three pumps with 2.5 m®s~! and three pumps
) I |

with 1.5 m®s~!), ecryopumps (two pumps with 10 m®s~" and 18 m®s~! in the central cell,
two pumps with 18 m?s™" in the plug/barrier cells and two pumps with 18 m®s~! in the

end mirror tanks) and cryopanels (two panels for the anchor cell with 400 m®s~! and two
panels for the end-mirror tanks with 900 m?~"'). At each end of GAMMA 10, radially
and azimuthally-segmented end plates are installed and are grounded with resistors of 1
MQ to ground. Typical plasma parameters are as follows : the density n = 3.0 x 10'® m=3
on axis, the averaged ion temperature T;; = 3.6 keV, the electron temperature 7, = 100
eV and the averaged plasma beta perpendicular to the magnetic field line g, = 2.3 %.

Because the electron temperature is much lower than the ion temperature and is expected

to be uniform along the field line, the ion diamagnetic current is dominated by the ion

pressure.




2.2 Heating and Gas Fueling System
ICRF System

Figure 2.2 shows schematics of power supplies, antennas and transmitter lines for the
[CRF heating. Two kinds of antennas are installed near the mirror throats at the central
cell. One is so-called NAGOYA TYPE-III antennas which are installed at the locations of
z = £2.2 m, where R = 1.6 2%2"22), The other is conventional double-half-turn antennas
which are installed at the location of z = 4+1.7 m, where R = 1.1. These antennas are
driven by two different frequencies of 9.6 MHz and 6.2 MHz. The frequency of 9.6 MHz
which corresponds to the ion cyclotron frequency near the midplane of the anchor cell is
required for producing and sustaining plasmas. Two oscillator systems are constructed,
which are named as RF1 and RF2 systems. The performance of each system is as follows

the frequency ranges from 6.2 MHz to 30 MHz for RF1 system and from 4.6 MHz to
9.9 MHz for RF2 system, the maximum output power is 1 MW and the maximum pulse
duration of 100 ms for two system.

Each RF system has two final amplifiers in order to drive each antenna independently.
RF1 and RF2 have almost same composition. The RF source signal is generated by a
signal generator (SG) MG439B (ANRITSU Elec. Corp.) and divided into two branches.
The outputs of the wide-band amplifier are connected to intermediate power amplifiers
(IPA) and finally connected to the power amplifiers (PA). One is connected to a wide-

band amplifier and another is also connected to the wide-band amplifier via phase shifter.
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Between antennas and power amplifiers, there are matching boxes which have roles of
tuning and impedance matching. One branch of RF1 system has an additional exciter
amplifier (EX) which is used for getting a sufficient drive power for IPA2. Phase shifters
installed between the signal generators and wide band amplifiers controls the phase dif-
ference between two outputs. The RF current of RF2 system is divided into two lines
in the matching box and connected to each half-turn antenna with same phase. The RF
current of RF1 system is divided into two lines and connected two matching boxes. Each
matching box is connected to the set of top and bottom antenna elements or to the set of
north and south antenna elements of NAGOYA TYPE-III antenna. The top and bottom
elements or north and south elements are driven out of phase. The phase between the
set of top/bottom and north/south is controlled by changing the cable length between
the matching box and divider. A compressional Alfvén wave which is launched from the
NAGOYA TYPE-III antenna propagates through a flux tube with an elliptical cross sec-
tion between the anchor and central cells and converted to a shear Alfvén wave ). The
converted share Alfvén wave is damped at the ion cyclotron resonance layer in the anchor
cell. Therefore, a high-beta plasma is maintained in the anchor cell and provides on the
MHD stability of the GAMMA 10 tandem mirror ¥, The frequency of 6.2 MHz which
corresponds to the ion cyclotron frequency at the midplane of the central cell is required
for the central-cell ion heating.

The plasma is started up by injecting a short pulse (1ms) gun-produced plasma [rom

each end and is sustained by applying only ICRTF power in combination with a hydrogen




gas puffing in the central cell. The radiated power of ICRF antennas is typically 200 kW

in total with the duration of 50 ms.

Gas Puffing System

Four kinds of piezoelectric gas puffed are equipped in the GAMMA 10 as shown in
Fig.2.3. Some of these are combined to start up (#1b and #2b) and sustain a plasma
(#1a,#2a,#3a and #4a) in a pre-programmed manner and the others are auxiliary used
for a special physical purpose such as a short-pulse additional gas puffing for studying
plasma responses by increasing of the charge exchange loss and of wall reflux (#3b and
#4b). In the transient phase of the plasma startup, a puffer (#1b and #2b) with a fast
response of 1-2 ms is combined with a puffer (#1a and #2a and/or #3a and #4a) with
a slow response and a good axisymmetry for gas injection. In the quasi-steady phase,
only the latter puffer is used at a reduced gas flow rate. Gas flow rate of each puffer is
controlled by the reservoir pressure because of the better reproducibility compared with

the voltage control of the flow rate.

2.3 Diagnostics

Figure 2.4 shows the axial profile of the magnetic field strength in the central and the

anchor cell and locations where the diagnostic and the heating systems are arranged.




2.3.1 Measurements of Pressure Anisotropy

Diamagnetic Loop

Three diamagnetic loops are installed at the locations of z=—0.33 m, z=—1.5 m and
z=1.95 m in order from the central-cell midplane. Mirror ratios at the location of the
each diamagnetic loop are 1.008, 1.077 and 1.264, respectively. Each diamagnetic loop is
named as the midplane loop W;, the second loop W, and the third loop Ws. The inner
diameter of the diamagnetic loop is large enough compared with the limiter diameter of
0.36 m. Two diamagnetic loops are installed at the midplane in each anchor cell, which
are named as Wg4 and Wy 4. The sum of the Wg, and Wiy 4 are represented as W ,.
The inner diameters of Wy, W,, W3, Wgs and Wiy, are 0.55 m. 0.55 m. 0.40 m, 0.50
m and 0.50 m. From the diamagnetism measured by loops installed at the locations of
z==+1.5 m, it is confirmed that the axial pressure profile is symmetric with respect to the
central-cell midplane.

A simplified method employed to determine plasma pressure from the observed dia-
magnetic loop signals is described as follows : The signal-to-noise ratio is improved by

using a novel cancellation technique with a concentric pair of diamagnetic loops. The

plasma pressure equilibrium is described by the ideal MHD equation.

dv
At

= gxB-VP, 2.1

w h(\]‘[‘




p=nm;+n.m, ~n(m; +m,)

nym;v; + n.m.v,

P

v =

j=e(njv; —n,v,) = en(v; — v,).

P is plasma pressure, n;,n. and n are ion, electron and plasma densities, respectively, v;,
] i I ;

v, are velocity vector of ions and electrons, respectively. In a steady state (9/0t = 0)

VP = j x B.

2
o

From the Maxwell’s equation in a steady state V x B = pgj, where i is the magnetic

permeability of vacuum, Eq.2.2 is represented as follows :

VP = (LV XB) x B. 2:3

fo

The right-hand side in Eq.2.3 tells that

Ho Mo

(lva)xB = —]~((—V(B-B)+2(B-V)B+Bx(VxB)). 9.4

where

v 32
(V’XB)XB'-‘{B-V)B—% 2.5




Substituting Eq.2.5 in Eq.2.4,

7 1
V(P+‘—)=—(B-V)B. 2.6
2'”.” ff“ g

Because the right-hand side of Eq.2.6 is neglected in a nearly uniform magnetic field, the

pressure equilibrium is represented as follows :

2
P 4+ — = constant. 2.0
Ho
Then, the pressure in a straight cylindrical plasma is obtained as
J l 2 2 u)
P=—(B- B, ok
2,’!(]

where By and B are the magnetic field strength outside and inside of the plasma, respec-
tively. If the plasma pressure is small, the plasma pressure in a uniform magnetic field is

represented as follows :

p _ Bo-AB

Ho

where By is considered to be uniform in the radial direction at least within the outer coil

radius as in the GAMMA 10 central cell. AB is defined as AB = B, — B. Magnetic flux
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®, and ®, through the inner and outer coils are simply written as follows :

(I’] = ?T?'i B + ?T(T'f = 7‘5);}”

b, = m'i B+ ?T(i".g - r;‘::l B, 2.10

where r,,7; and r; are the plasma radius, the inner and outer coil radii, respectively. The

electromotive force generated on the coils (V; and V, ) is

; ,ff(I’l s d s m d :
Vi = =N s N m';;f—! (AB) — ;\'m‘l‘m (B,)
) d®, SRR v cail y
"'2 = _a'\l ”" = .{\'.ﬂ'r;’(ﬁ([.l!;) == 1’\"?’1_?'25 (f))“] .JII

whereN is the number of turns of each coil. In Eq.2.11, the first term is the diamagnetic
signal and the second term is noise caused by the field ripples. The concentric diamagnetic

loop is used to cancel the ripple as follows :

{
Vo= N2 2 (AB) = Vi = 51— (Vo = ), 2.12

where V5 is the ripple-canceled loop signal. From the time-integration of Eq.2.12 the

diamagnetic loop signal W (in unit Wb) is obtained as follows :

: : I .
W =nr?AB = ‘[n,{n,



The substitution of Eq.2.13 into Eq.2.9 yield

B B
. [W 0w 2.14

N7 pigr2 T flor 2 foTT?

In this section, the simplified relation between the plasma pressure and the diamagnetic
loop signal is represented. The more realistic calculation including the effects of finite

length of plasmas is discussed in chapter 3.

Small Faraday Cup

A small Faraday cup is a multi-grid-type electrostatic energy analyzer, which is installed
at the midplane of the central cell and can rotate around the x-axis of GAMMA 1025,

A schematic of the small Faraday cup is shown in Fig.2.5. The small Faraday cup is
used for measurements of the pitch-angle distribution of ions. The first grid is floated for
minimizing a disturbance to the plasma. The second and third grids are negatively biased
to retard electrons. The fourth and fifth grids are used for suppressing secondary electrons
which are emitted from the collector and the third grid. By tracing the ion orbits in the
energy range from 1 eV to 5 keV by use of a computer, ion energy dependence of the
detector efficiency is estimated for the angle 0, where 0 is defined as the angle between
the axis of the small Faraday cup and the magnetic field line. No energy dependence

for a fixed angle @ is confirmed by the computer simulation above 100 eV. When the

magnetic field strength is 4 T, the minimum detectable energy is 100 eV. By tracing the




18

ion orbit with the energy from 1 eV to 5 keV with pitch angles different from 0, the pitch
angle resolution of the Faraday cup can be evaluated. Figure 2.6a shows the pitch angle
dependence with the Faraday cup set at § = 70° under the magnetic field strength of
0.4 T. The pitch angle resolution is determined to be about +5° from the FWHM of the
pitch angle profile. The detector efficiency depends on the pitch angle. Figure 2.6b shows
efficiencies normalized by the efficiency for the case of # = 27°, which corresponds to the
loss cone angle in the present experiments. The signals detected by the small Faraday cup
are integrated flux of ions which have their pitch angles between 0 + A#/2 and 0 — A0/2.

The detected flux I'y is represented as follows :

00 a+Aa8/2
]‘,q x !‘gf(f.”ni-‘p{!i{). 2[3

Vmin JO-AH/2

where v,,.;, is the minimum detectable velocity, f is the velocity distribution function and
ve is the velocity of ions which have the pitch angle of #. By changing 0, the pitch angle
distribution of the total ion current can be measured under a fixed plasma operation
condition. In the case of strongly RF-heated plasmas the distribution function of ions

can be approximately described by a bi-Maxwell distribution. The distribution function

is written as follows :

2 2 (nksin?0  nkcos? 0
_ 32302 ( m ) m sy [ TV [ R sin " nk cos 216
i oxP,) \2rBy) | 2 P, il o
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By using Eqs.2.15 and 2.16, we can calculate the total ion flux which is collected by

Faraday cup. The total ion flux in the # direction becomes

AR P R
[y o eAO— — sin? 0 + —= cos? 0 2T
im \ By Py _
The signal ratio in the case of 0; to 0; is evaluated from Eq.2.17 and given by
, i 370

(sinz 0, + A cos? 01) ; P,
Ry, = 37 where A= B 2.18

(sin"" 0, + A cos? U?) |

A represents the pressure anisotropy. In Fig.2.7, the calculated pitch angle distribution
which is normalized by the value of # = 907 is shown as a function of A. Experimentally

obtained pitch angle distribution is also shown in Fig.2.7.

Charge-Exchange Neutral Particle Analyzer
Time-of-Flight Type Energy Analyzer

A time-of-flight type neutral-particle energy analyzer (TOF) placed at z = 1.8 m with
the mirror ratio of R = 1.16 is schematically shown in Fig.2.8. The TOF is used for
measurements of ion temperature in a relatively low energy range and for the estimation
of radiation loss energy in the central cell *). Turning point of the ions with the pitch angle

707 is located in front of the TOF, then the TOF system dominantly measures the pitch

angle of 707 in the ion distribution function of central cell midplane. The TOF mainly
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consists of a chopper, a 3.5 m -long flight tube and Daly type detector. The chopper is
beryllium-copper disc with 24 slits of 0.2 mm in width and rotates at about, 40,000 r.p.m..
Charge-exchange neutral particle flux escaping from a plasma strikes a copper target after
being chopped by the rotating disc. The target emits secondary electrons, and then the
electrons are collected by the detector. Ton temperature is estimated from the spectrum
of the secondary electron current as a function of the delay time after chopping.

TOF can discriminate between particle loss and radiation loss from plasmas by use of
the difference between their flight times. The signals of TOF caused by the particle and
photon are separately described as follows. The signal 5';1(1;}) for the particle loss with

the pitch angle © in the energy range from E; — AE/2 to E; + AE/2 is

lq;*;"ror( EJ . C( EJ)A:I?;{JF( E_,, U)|0=@1'ur (Or0r = 70°)
S a E+AE[2 gty ; B ‘
N (B @) = Ar / / no(r)nir) < oLv > f(E,0)—AS drdE, 2.19
J—a JE,~AE/2 4

where (7 is the efficiency of the detector which is geometrically determined. n(£;) is the
secondary electron emission coefficient of copper for energy E; and n; is the ion density,
ng is the neutral particle density, ., is the charge-exchange cross section, f(F,0) is the
distribution function of ions, AQ is the solid angle subtended by the slit on the chopper
disc at the center, AS the viewing area of the detector system and At the gate time.

Secondary electron emission coefficient 5( £) used here has been reported with uncertainly

less than 25 %

% *7). The uncertainly comes from mostly the technical error of measuring




n(E) rather than from the surface conditions to the emitter material. The detected signal
for photons in the jth energy range 5':3!“”'"(!'5_?) with photon energy from E; — AE/2 to
E;+AE/2is

/I<:}+.’_\.E/'z

SSToF (E;) = CF; I(E)dE = C5;Npw(E;), 9.20

g

where 5; is the total efficiency averaged over the above energy range, I(E) is the intensity
of photons at energy E, N,,(E;) is the total number of photons in the energy range AF;
Typical time evolution of TOF signal is shown in Fig.2.9a. The first peak of the signal
is caused by the photon and the following peaks are caused by the neutral particles. In
Figures 2.9b and c, it is shown that the signal ratio of the photon to the neutral particle

depends on both time and radial position. The ratio R, is defined as follows :

Tore g
Z ‘c‘ph’ o5 ( hj' )
F}

3 (SAren(B;) + Sgror (B)

E,

Rop =

The photon signal area is integrated over the time from the rising to the fall off of the
first peak. The neutral particle signal area is integrated around the second peak which is
concern with the particle energy spectrum. R, is represented by using the ratio of signal
areas due to photons and particles. As described in the next paragraph, it is needed for

the elimination of the photon signal from SED to obtain informations of the pitch angle

distribution.




Pitch Angle Distribution Analyzer (Secondary Electron Detector)

Figure 2.10 shows schematically a secondary electron detector (SED) system. SED detects
the secondary electrons emitted from the copper target on which and the neutral particle
and photons impinge. The neutral particles which have informations on pitch angle and
energy of ions are emitted from the plasma by the charge exchange process. Three SEDs
are installed near the midplane with the angles of 45, 60 and 90 degrees with respect to
the magnetic field line. The signal of SED should be described by integrating Eqs.2.19
and 2.20 of the TOF signals. The SED signal Ispp(©) with an angle © is represented by

the sum of signals contributed for both neutral particles and photons.

- - () ‘ v(=) 4 [f)’l ali = 0 0O
Isep(©) = Y (SS(E;) + SS(E;)) = X SS(E)) + —2— Y S™(B)). 2.22

— pa
E, E; L — Ry E,

.Q':f,( E;) is the signal from the neutral particles from E; — AFE to E; + AFE detected by a

SED with the angle ©O. Sﬁ(ﬁj] is the signal from the photon. S3),(F;) can be estimated
by using the distribution function of Eq.2.16. The pressure anisotropy dependence of the
signal ratios of 60° to 90° SED and 45° to 90° SED is estimated as a function of the

photon ratio R,, under the fixed energy distribution at the pitch angle of 70° which is

shown in Fig.2.11.




2.3.2 Fluctuation Measurements
Magnetic Probe

Magnetic probe consists of a small pick up coil with 4 mm in radius and a stainless steel
cover for shielding the coil from the charge-exchange fast neutral particles. Figure 2.12
shows schematically the measurement system of the magnetic probe. Small coils are made
by a coated wire of 0.05 mm in diameter and are wound around a Teflon tube of 1.5 mm
in diameter with 10 turns for r-component and 5 turn for 8-component. The signal of the
magnetic probe is digitized in 8-bit by a digital oscilloscope DIL.2120b (Yokogawa Elec.
Corp.) which has two channels of fast A/D converter with the maximum sampling of 200
MHz and a large memory of 128 kword/ch. The digital data is transferred to a personal
computer PC-386 (Epson corp.) and stored in a digital audio tape (DAT) system (1
Gbyte/tape). By using the conventional fast fourier transform (FFT) methods, the signals
are converted to the frequency spectrum. The cross correlation between two probe signals
are analyzed. A hybrid combiner as shown in Fig.2.13 is used to discriminate between
the electric and the magnetic component. The hybrid combiner consists of three identical
coils, each with about 5 turns, trifilar-wound on a small toroidal ferrite core. Owing to the
hybrid combiner, electrostatic noise is suppressed to a lower level. Relationships between

the voltage are derived as follows :




as a result vy — vy = 20;. 2.23

Here, v is the voltage drop across each of the three transformer windings. vy — v, is the
voltage induced by the pick up coil.

The magnetic probes are installed at z = —1.28 m, —1.12 m, 0.3 m, 0.9 m and 2.8
m, which are used for measuring parallel wave number, azimuthal mode number and
radial profile of magnetic fluctuations. The magnetic probes at z = —1.28 m, —1.12 m
and 2.8 m are radially movable to pick up the magnetic signal at any radial position.
Probe measurements of magnetic fluctuations are attempted in the peripheral plasmas,
because we must avoid the impurity contamination from the magnetic probes. Once the
contamination reduces the plasma pressure, the AIC modes are not excited. The radial
profile is measured near the mirror throat of the central cell, where the magnetic probe
effect on the core plasma is minimized compare with those near the midplane.

The magnetic probe is calibrated by RF magnetic field which is induced by a Helmholtz
coil. The calibrating system is shown in Fig.2.13. Figure 2.14 shows the example of the
magnetic probe signal with a frequency f = 3.84 MHz which is obtained by using the

calibration system. The difference between probe signals with and without a stainless

steal cover in Fig.2.14. The field is uniform in the central region and is given by ?®

1ol /
B _ 07155 (’l) 2.24
a(1.25)14
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The radius and current of the Helmholtz coil are a = 2.5 x 1072 m and I = 0.2 A-turn.

respectively. Then the oscillating magnetic field strength of B = 7.2 x 107° T is produced
with frequency f = 3.84 MHz. From Faraday’s law V = —d®/dt = —SdB/dt = -2xS[B,
the effective area for picking up the oscillating magnetic field is obtained as follows :

V Vv

Serp = X 2= x 2 (m?), 2.25
1= 2% (B 174 4 (=) :

here, the multiplier 2 is the effect of the hybrid combiner from Eq.2.23. The effective area

Sers in unit m? of each magnetic probe is shown as follows :

component z=-1.29m z=-1.14m z=2.8m
r 20.0 x 108 23.0 x 1078 23.0 x 10°°
0 46.0 x 10~° 36.0 x 10-° 23.0 % 10~°

The coil areas of the magnetic probes with a stainless steel cover are as follows :

component z=-1.29m z=-1.14m z=2.8m
r 172 % 10=° W25 10=° 8.6 x 107°
e 17:2 % 10°% 14.4 x 1078 12.0 x 10~°

The cross section of r-component of the magnetic probe is about S = 7 x (0.75 x 107*)? x
10 ~ 18 x 107® m? In order to adjust a f-component sensitivitie to r-component, the

cross section of @-component is twice of that of r-component because the stainless cover

mainly decrease the sensitivity of f-component. The calculated area S of the cross section




of the coil is within the error of less than 30 % as large as the effective area S,;;. We can

obtain a level of the magnetic fluctuation by using the following relation

4

B=_——
27 Seys.

The stainless steal cover reduces the probe sensitivity of the f#-component by about 30 %
compared with that without the cover. It is confirmed that the probe system shows no
resonance which is caused by a stray capacitance and inductance because the magnetic

probe signal increases proportionally with the frequency up to 20 MHz.

Electrostatic Probes

Electrostatic probes are installed at 2z = =06 m, 2 = 0.3 m and z = 5.0 m. The
electrostatic probes are biased at —200 V in order to measure density fluctuations from
the ion saturation currents. The voltage is sufficiently biased to saturate the ion current
on the characteristic curve of the electrostatic probes. The curves show that the floating
potential lies at about several hundred volts about the grounded potential. At z = 0.3
m , the electrostatic probes are azimuthally arrayed with the angle of 45 degree, which
measure the azimuthal mode number. The electrostatic probes at z = —0.6 and 5.0 m
measure the wave number along the magnetic field line by analyzing the cross correlation
between the two probe signals. At the inner transition region z = —3.7 m and the

outer transition regionz = 6.7 m, radially scannable electrostatic probes are installed to




measure the radial profiles of the ion saturation current and the floating potential. The
ion current of the electrostatic probe is picked up by a resistor of 19, amplified by an
isolation amplifiers P-64 and P62A (NF Elec. Inst.), AD-converted to 12-bit digital data
by a digital oscilloscope DL1200E (Yokogawa Elec. Corp.), transferred to a personal

computer and stored in the DAT storage system.




Chapter 3

Quantitative Estimation

of Pressure Anisotropy

3.1 Pressure Profile Model

Procedure for quantitatively estimating the pressure anisotropy by using the three dia-

). In an infinite and homogeneous plasma

magnetic loops is described in this section
column, the diamagnetic loop signal is proportional to the local plasma pressure. An
infinite-length solenoidal coil which induces magnetic flux proportional to the current
density is the closest analogy. If the coil has a varying radius in the axial direction and
a finite axial length, however, the induced magnetic flux is not proportional to the local

current density owing to the fringing field effect. The diamagnetic loop signal is affected

by an axial profile of the plasma pressure and must be evaluated by integrating the local




current density 30)
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First, we assume a perpendicular pressure profile as follows :

PL(®,2) = Py[l — H(® — )] ¢(z) 3.1
o0’ B(z=0
Bgres ro° B( ) 9.9
2
Here, ® is the magnetic flux, ®, is the magnetic flux at z = 0 m, H(®) is Heaviside’s
step function, rg is the plasma radius, Py is the perpendicular pressure at z = 0 m and

B is the externally applied magnetic field. In Eq.3.1 P, is homogeneous in the radial

direction and the axial profile is represented by £(z). We select four types of £(z) as

follows :

Type A
Type B
Type C

Type D

Here, L is a scale length, By,

}Un HIIII

By

2
max| 1 — 7 0] 3.3
2

r_'xp(—ﬁj 3.4

B} — B? oy

max| m , 0] 3.5
B., Br—B

s = 3.6
By" " Br — By

are the magnetic field strengths at z = [,

= 0 and at the mirror throat located at z = 2.8 m, respectively, and n is a free
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parameter. Figure 3.1 shows P, and P profiles corresponding to the four types of &(z)
with L = 2 m and n = 50. Type A is a parabolic profile and Type B is a Gaussian profile,
both of which depend on the z-position. Type C is an ideal distribution conventionally
used in the calculation of the ballooning mode®"). Type D is a pressure profile obtained
when the ion distribution function is assumed as f(e, ) = (p — ()"_%g(;r), where ¢ is the
total energy, u is the magnetic moment of ions and g(p) is an arbitrary function®?). The
function g(x) does not appear distinctly in the pressure distribution of Type D, because
it is contained in the constant Py, which is evaluated in the process of integrating the
distribution function. This distribution function proposed by Taylor satisfies the MHD
3)

equilibrium condition *). By use of the conventional two-component pressure tensor of

the collisionless guiding-center fluid theory, the MHD equilibrium condition is given as

follows **)

a (!’“ P
g B’~ BT,

B is the externally applied magnetic field. This equation gives the relationship between
the perpendicular and the parallel pressures. When the axial profile of the perpendicular
pressure is obtained, the profile of the parallel pressure is evaluated numerically from
Eq.3.7. In the cases of Type B and Type D, the boundary condition is Py = 0 at the
mirror throat. In the cases of Type A and Type C, the boundary condition is Py = 0 at

Z === » I
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The diamagnetic currents in a plasma with a finite axial extent are determined from the
balance between the Lorentz force and the pressure gradient force. The signals picked up
by each diamagnetic loop can be estimated as an integrated magnetic flux induced by the
axially distributed diamagnetic current. As a result, from the pressure profile represented
with an arbitrary scale length, the signal ratios of the third loop to the midplane loop and
the second loop to the midplane loop are evaluated. Figure 3.2a shows the relationship
between the ratio of the second loop signal to the midplane loop signal and the scale
length L and n. Figure 3.2b shows the calculated relationships of the diamagnetic loop
signal at the locations of the second loop and the third loop which are normalized to
the diamagnetic loop signal at the location of the midplane loop for the four types of
pressure profiles defined above. In Fig.3.2c, the calculated anisotropy at the midplane
is shown as a function of the normalized diamagnetic loop signal of the second loop. It
can be clearly seen that there remains ambiguity in determining the anisotropy in Fig.3.2
when only two diamagnetic loops are used. The anisotropy can be determined from
comparing the experimentally obtained ratios between the diamagnetic loops with those
of the calculated ratio, as shown in Fig.3.2b and Fig.3.2c. When data point is not located
on the assumed distribution, the anisotropy can be represented by a linear combination

of the two neighboring distributions in Fig.3.2b and Fig.3.2c.




3.2 Experimental Results and Discussion

As shown in Fig.3.2¢, a temporal evolution of the diamagnetic signals indicates the pres-
sure anisotropy. The signals of the second and the third loops normalized by the midplane
loop are plotted in Fig.3.2b. The experimentally obtained ratio of the diamagnetic fluxes
at { = 56 ms lies exactly on the curve of Type C with the scale length of L = 1.9 m. On
the other hand, the ratio of the diamagnetic loop signal at t = 60 ms corresponds to the
distribution of Type A. It is clearly seen that the axial pressure profile varies temporally
and cannot be described by only one of the pressure distributions assumed in the previous
section.

Effect of an isotropic cold ion component on the diamagnetic loop signals has been
estimated. The hot ion temperature is by more than five as high as the cold ion tempera-
ture, which is evaluated by a small Faraday cup installed in the transition region between
the central and anchor cells, as shown in Fig.2.4. Because the distribution of the cold
ions is more isotropic than that of the hot ions, the ions in the losscone of the central
cell will be dominated by such cold ions. The number of cold ions is determined from
measurement by a microwave interferometer installed at the central-cell mirror throat,
where the isotropic component should be dominant. The line density of the mirror throat
is less than one-half of the line density of the central cell. As a result, contribution of the
cold ions to the total plasma pressure is less than ten percent of that of the hot ions.

In order to estimate effect of the radial pressure profile, the relationship between




—
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the anisotropy and the ratio of the second loop signal to the midplane loop signal is
calculated in the case of two different plasma radii of 0.9 m and 0.18 m. It is shown from
the calculation that Figs.3.2b and 3.2c are hardly modified by the difference in the plasma
radius. The assumption of the homogeneous pressure profile in the radial direction will be
adequate, because an inhomogeneous pressure profile by the superposition of homogeneous

pressure profiles which different radii.

Extended Model of Pressure Profile

When a data point satisfies the calculated relations in the previous section, the anisotropy
is only approximately estimated in Fig.3.2. When the data point lies in the outer region
which is not covered by the model, the anisotropy can not be estimated. Axial pressure
profiles in the anchor, transition and plug/barrier cell is required for an analysis of flute-
interchange instability. In order to improve this problem, a new model of the pressure
profile is developed. The new model is more flexible because of the adoption of two free
parameters and includes the pressure profiles in the anchor, transition and plug/barrier

cells. The profile is shown as follows :

Powt = P!+ P+ P+ i = hot + cold 3.8

ehot component
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(L =B B )" for 0<z<28m
‘”f{zl =Y (1 =B/By, )™ for 4.5 < z < 6.0m
0 for else

Plf‘(z) from MHD equilibrium (see Eq.3.7)
ecold component

P{(z) = Pj(z) = P. = constant.

where B is the magnetic field strength, Lo and Ly the scale lengths, ne and ny4 the
shaping factors for the hot component pressure in the central and anchor cells, suffixes *
and ° for the hot and cold components, ; and || the directions perpendicular and parallel
fo the magnetic field line, respectively. It is considered that the cold components P. does
not depend on the axial position z because the cold plasma component is thermalized
owing to the short collision time. By using the new pressure model in the computer code
described in the section 3.1 estimated the ratio of the diamagnetic loop signals. Because
of the isotropic cold plasma, the assumption of Pf = B is valid. Figure 3.3a shows
the relationship between the ratio of the second loop signal to the midplane loop signal
and the scale length Ls and ne. Figure 3.3b shows the calculated relationships of the
diamagnetic loop signals of the second loop and the third loop which are normalized by
the diamagnetic loop signal at the midplane for the pressure profiles defined above. In

this calculation, the cold pressure component is included with a fraction of 10 % of the hof
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pressure at the midplane of the central cell z =0 m. In Fig.3.4, the calculated anisotropy
at the midplane is shown as a function of the scale length L in various cases of ne. The

new model of the pressure profile extends the covered parameter region in comparison

with the model described in the section 3.1.




Chapter 4

Altvén Ion Cyclotron Instability

4.1 Physical Picture of AIC Mode

In this subsection, we present the physical picture of the AIC mode by using a combination
of a single particle motion and a fluid approximation ®*. We consider a plane wave which
propagates along the magnetic field line with the left-handed circular polarization. The

wave electric field is represented as follows :

E, =e.|E |cos(kz —wot) + e, |E, |sin(kz — wpl). 4.1

36
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Here, the wave number is k, the angular frequency wy and the wave electric field E,. The

velocity of ion in a gyration motion is given as

Vigp=¢€,v, ('{)S(g]‘(‘f’ = {r'l)l) e e!'a'.{"l. Hi”(s-!,.,f . f:"i)l')‘ '1‘2

The unit vectors in the direction of the x- and y-axes are e, and e,, The ion cyclotron
angular frequency ) and the initial phase of the ith particle is ¢;. The substitution of
Ampere’s law into the equation of motion in the parallel direction yields

(fv” q

f -
= —v;0X b; = —"!—‘Um X (kxE,). 4.3
dt m Wotn

By solving Eq.4.3, we obtain the parallel velocity as follows :

v = ' o sin [ﬂ?: — i + (D — wp) ). 4.4

m wo Qi —wy

We define the pressure tensor P
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P.. and P,, components of the pressure tensor are evaluated using Eqs.4.2 and 4.4 as

follows :

- {fh‘J_ -':T!"i
1 ?.N?LJJ”(S—E,', — LL.'[])

qE, kvt

P.x

< E.”?‘J_U.r > Hi]l(l{': _Ld..‘“!)

P, = < V|VLoy > cos(kz — wol). 4.6

2”“""“(er' e L‘v‘n)
The fluid equation for ions in the perpendicular direction is

dv | q

I P )P, "
=—-El+—q-vl><B{,——(r Ly yeu) 4.7
m !

dt m nm\ 0z ° dz

The velocity displacement due to the stress of the pressure tensor is evaluated from Eq.4.7
h | ] |

as follows :

q|E | I f"-‘?|1’1.|?

_ — ————— | [e,sin (kz — wpt) — ros (kz — wol 4.8
g % gl — o) [e. sin ( wol) — e, cos ( wo }]

The net current which is induced by the pressure tensor is given by

J =ngév,. 4.9

The current which is represented as Eq.4.9 is fed back to the perturbed magnetic field
and amplify the fluctnation. Figure 4.1 shows the schematic of the ion motions which

are derived from Eqs.4.2 and 4.3. Tilting discs correspond to the trajectory of gyrating
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ions with the perpendicular velocity of v; = v,,. Because we consider the anisotropic
ion distribution, the discs are fixed at an initial fixed point along the magnetic field line.
Figure 4.1a shows a gyration motion of a single ion. When the magnetic field fluctuation
by is directed upward and the phase of the gyration motion varies uniformly from 0 to
180 degree, the velocity vector of the ion inclines to the positive direction of the z-axis.
When the gyration phase is from —180 to 0 degree, the velocity vector tilts in the negative
z-direction. If the magnetic fluctuations with left-handed polarization are spontaneously
excited, the ion begins the tilting motion. The net current due to the tilting motion is in
the perpendicular direction to the z-axis and 90 degree out of phase against the magnetic
fluctuation. As a result, the net current is fed back to the magnetic fluctuation as shown

at 1 = 2w /wp in Fig.4.1 and the fluctuation can grow up.

4.2 Observation and Identification of Fluctuations

Figures 4.2a and 4.2b show a temporal evolution of (a) the line-integrated electron density
using a millimeter wave interferometer at z = —0.6 m and (b) diamagnetic loop signals
which are measured with three diamagnetic loops. The discharge starts at 50 ms when
initial gun-produced plasmas are injected. The on-axis plasma density is 3 x 10'® m—2,
the averaged 3, is | % and the averaged perpendicular temperature is 3.6 keV at 60 ms.
Figure 4.3 shows the RF power dependence of the beta value and the pressure anisotropy

in the central cell. The beta value is defined as a product of the density at the center and
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the radially averaged temperature. The density profile is assumed to be parabolic profile
in the radial direction. The pressure anisotropy is evaluated using the diamagnetic loop
array which is described in chapter 3. The evaluated pressure profile well fitted to the
Type D in Eq.3.6. The beta value of the central cell increases with the increase in RF
power. The pressure anisotropy becomes strong and reaches 12.5 at 100 kW of the RF
power and saturates suddenly.

As shown in Fig.4.3, the evaluated anisotropy should be large enough to induce the
microscopic instabilities which are driven by the pressure anisotropy and the plasma /3,
value. In GAMMA 10, magnetic field fluctuations near the ion cyclotron [requency mea-
sured with small magnetic probes are studied as a function of the pressure anisotropy
and the plasma 3, value. Figure 4.4 shows a typical frequency spectrum of the magnetic
fluctuation obtained from the conventional FFT (fast Fourier transform) analyses. Fluc-
tuation measurements with the magnetic probes are performed in the peripheral region
in order to minimize the disturbance to the core plasmas. The peaks at 6.3 MHz and
9.9 MHz in the figure correspond to the frequencies externally applied by the RF anten-
nas. The peaks from 5.6 MHz to 5.9 MHz are the spontaneously excited fluctuations.
These fluctuations are observed, only when both the anisotropy and the plasma 3, are
relatively high. The frequencies of the fluctuation are below the ion cyclotron frequency
at the midplane. There are some discrete peaks. The frequency differences between the
adjacent two spectral peaks side by side becomes narrower with higher frequency peaks

than with lower frequency peaks.
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Figure 4.5a shows a parameter space of 3, vs (Py/PFy)? obtained experimentally. The
solid circles show the data in the parameter range where the fluctuations are observed
and the open circles the data without fluctuations. The criterion of the excitation of
the fluctuations is defined as the minimum amplitude of the fluctuation of 1 x 10-7 T
which is determined by the sensitivity of the magnetic probes and the precision of the
FFT method. The amplitude of the wave magnetic field excited by the ICRF antenna is
typically about 1 x 10~* T.

Figure 4.5b shows the dependence of the fluctuation amplitude on an AIC driving
term. Here, the AIC driving term is defined as 3, ( >, | Py)? which is a product of the two
parameters on the vertical and transverse axes in Fig.4.5a. The fluctuations are observed
in the parameter region of the AIC driving term beyond 0.3. The fluctuation amplitude
increases with increase of the AIC driving term. The fluctuation amplitude measured by
the magnetic probe at the z = —1.12 m have the maximum amplitude at the AIC driving
term of 1.2. On the other hand, the fluctuations at the z = —1.28 m have the maximum
at he AIC driving term of 1.5.

Dispersion relation of the AIC mode is as follows 36):

D(k,w) = k*c® —w? + Y~ Q% x;(k,w) = 0, 4.10

J=en

where §,; is the plasma frequency, ) is the ion cyclotron frequency, k is the axial

wave number. w is the frequency of the AIC mode and y is the plasma susceptibility (see
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Appendix B Eqs.B.13 and B.16). Figure 4.6 shows a typical dispersion relation of the AIC
mode which is derived by solving Eq.4.10 with respect to the real wave number k,. Here.
the pressure anisotropy and 3 of 12.5 and 0.007 are used. respectively. The maximum
growth rate [w;/Q.]pax is defined as a peak value of the imaginary frequency which
is shown by a dotted-broken line in Fig.4.6. The solid lines in the Figure 4.5a indicate
contour of maximum growth rate, [wi/Qeilarax of 1075 and 1072 which are calculated
from Eq.4.10. The dotted line shows a boundary between the absolutely and convectively
unstable regions of the AIC mode '?).

In Fig.4.7 it is shown that the frequency of the fluctuations depends on the strength of
the externally applied magnetic field in the range from 0.3 to 0.6T. Using an appropriate
frequency of the RF2 system for the ion heating in the central cell, the resonance layer is
fixed near the midplane of the central cell. Thereby, the heating geometry is not modified
even in the various strengths of the magnetic field, where the pressure profiles are also
peaked at the midplane in the central cell. A solid line shows the ion cyclotron frequency of
the minimum strength of the magnetic field in the central cell. Broken, dotted-broken and
dotted lines correspond to frequency of 0.99, 0.859.; and 0.8Q,;. respectively. Here, Q).
is the ion cyclotron frequency at z = 0 m. The frequencies of the fluctuations are slightly
below the ion cyclotron frequency. This dependence agrees well with the prediction from
the dispersion relation of the AIC mode.

Figure 4.8 shows the wave structure in the azimuthal direction. The azimuthal mode

number m is measured by magnetic probes which pick up the radial component b, of the
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fluctuations and are azimuthally arrayed at z = 0.3 m. Four magnetic probes are set on
the angles of 0, 22.5, 45 and 90 degrees with the x-axis. The magnetic fluctuations have
azimuthal mode number of m = —1 or —2. This means that the fluctuations propagate
in the ion diamagnetic direction and have the wavelength equals to the circumference of
the plasma column. As mentioned above in Fig.4.4, several spectra peaks are observed.
These peaks have the same azimuthal structure.

Figures 4.9 show radial profiles of each peak which are measured at the mirror throat of
the central cell. Tons are accelerated up to a high energy of several keV and trapped near
the midplane of the central cell. Therefore, most of the high energy ions cannot reach the
mirror throat. Then the contamination due to impurities from the probe surface which
are bombarded by the high energy ions would be reduced. The frequencies of each peak
are (a) f = 5.50 MHz, (b) f =~ 5.55 MHz, (¢) f ~ 5.65 MHz and (d) f = 5.75 MHz. The
amplitude profiles of the radial component b, as well as the azimuthal component by are
plotted for each spectrum peak in Fig.4.4. The fluctuation amplitudes are larger in the
core region than in the edge region. This means that the observed modes have a property
of body waves not of surface wave. Profile of the phase difference between the b, and b,
components at the frequency shown in Fig.4.9 is shown in Fig.4.10. The polarization in

this figure is defined as follows :

bh? bh?
P g Pp= oy 111
h.,' 4 hR h; 4 !"H
b. + 1bs b, — ih,
rfl‘,- — —— hh’ = I § l 2
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Py, shows ratio of the square of the magnetic fluctuation strength with left-handed polar-
ization to that to the total fluctuation strength. Figure 4.10 shows that the left-handed
polarization dominates in the center region of plasmas, while the right-handed polarization
in the outer region for all spectral peaks. This result is consistent with the experimental
observation that the AIC mode are shear Alfvén waves excited by the free energy of the
anisotropic distribution function.

[t is concluded that the magnetic fluctuations are identified as the AIC mode from
the experimental results on the frequency dependence on the magnetic field strength, the
excitation condition depending on the pressure anisotropy and £, and the consistency
with the shear Alfvén wave properties with respect to the radial and azimuthal wave
propagation ¥73%),

Figure 4.11 shows that axial wave numbers of the AIC mode depend on the AIC driving
term. The wave number is evaluated from the phase difference between the fluctuation
signals which are detected using two magnetic probes along the magnetic field line. It
is shown that the wave numbers converge to zero with the increasing AIC driving term.
This behaviour on the wave number also depends on the position of the magnetic probe
along the magnetic field line. When the magnetic probes at z = 0.3 and 0.9 m are used,
the zero wave number is observed at lower driving term than that at z = —1.12 and —1.28
m. The measured wave number of k = 0 could be attributed to the standing wave. As a
result, it is indicated that the AIC mode has two regions along the magnetic field line; one

is a central region with a standing wave near the midplane and the other is a propagating



wave region at both sides of the standing wave region. This type of Alfvén wave structure
has been observed in single mirror experiments on ballooning instabilities 39,

The expansion of the standing wave region corresponds to the axial expansion of
the AIC driving term. The axial structure of the AIC mode is schematically drawn in
Fig.4.12. The axial AIC-driving-term profile determined by using the diamagnetic loop

array is represented by a solid line in Fig.4.12.

4.3 Spatial Structure and Excitation Condition

4.3.1 New Theory for AIC Eigenmodes

It is predicted theoretically that the AIC mode is to be unstable in the region of

Bi(PL/P)* > 3.5 which corresponds to the absolutely unstable region in the case of
infinite and homogeneous plasmas. If an initial perturbation is excited with a thermal
noise level in a finite-length system, the maximum growth level is restricted by the system
length in the case of the convectively unstable. The initial perturbation can grow up from
an excitation point to an observation point. The group velocity v, of the AIC mode with

the maximum growth rate [wi/Qeilarax is evaluated from Fig.4.6 as follows :

do  Aw  Aw/Q N S OMTI Qe

= e 4.13
9T Gk T Ak T Dke/D ) B i

t‘
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The propagation time At for a typical length £ = 5 m from the generated point to the

observation point is

14 0l 30 1 63.4
Abm = oo U el s L e 4.14
v, 0.473Q5c  0.473 9., Qe
The AIC mode grows during At as follows :
Wi . - .
exp ([wi]arax At) = exp ([—J X {)3.-1) = exp (0.005 x 63.4) = 1.4. 4.15
Medmax

This estimation indicates that the amplitude of the fluctuation becomes large enough
for the detection when it is excited with a thermal-noise level and propagates to the
observation point.

In GAMMA 10, the AIC mode is observed in the region of the 3, (P, /P)* > 0.3.
This observation indicates that the AIC mode is sufficiently growing for the detection
in the convectively-unstable parameter region and needs for an analysis including finite
length effects, which is described in the following part.

We consider the boundary problem which is drawn schematically in Fig.4.131, Two
reflection points are assumed to be at z = i%‘ and an initial perturbation is excited at
z = 0. The wave number k and the frequency w are defined as complex numbers k, + ik;
and w, +iw;. The wave propagation in the positive z-direction has a wave number ky and

the other wave propagation in the negative z-direction has a wave niumber k_. We denote
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ky and k_ as poles of Green’s function derived from the wave equations which yield the
dispersion relation of Eq.4.10. As w; — [wilarax, ky and k_ are in the upper and lower
half-plane of complex k-plane '), respectively. Asymptotic expressions far from z = 0 for

the waves which propagate from the midplane in the positive and negative z-directions is

¢y = aexpi(kyz — wt)] 4.16
¢- = aexp|i(k_z —wt)]. 4.17

After a reflection from the right-hand boundary at z = % ¢, propagates to the left, and

at sufficiently long distance from the boundary takes an asymptotic form as follows :

ky L )
¢, = aRexp (? j! ) exp {r' [A'_ (z - %) - w;‘]} 4.18

¢_ is also reflected and has the asymptotic form,

¢ = af?oxp(_'?;"fj) PXI){i[h (:-Ir—);) —w!” 4.19

The ¢/, is reflected again at z = —% and reflected wave ¢/ has the asymptotic form,

, ky L . )
¢, = aR’exp (; ; )P.\‘])[—ri'_ L)exp {'.r' [Aq_ (3 + g) — u.:!]} 1.20




The condition for the standing wave formation is given by

"

¢y = ¢, +¢.. 4.21

The substitutions of Eqs.4.16,4.19 and 4.20 into Fq.4.21 yield

X2+ X -1

Il

0

i(ky — k)L
X = Rexp [———i( : 2“) ] 4.22

Then, the eigen value equation is written in term of k, and k_ as follows :

dnm
ki, =Ry = =
kyi —k_; = T[2I;1H+h|(—+2ﬁ)] 1.23

Here, n is an axial mode number and R a reflection coefficient. k; and k_ are given by
the dispersion relation D(k,w) = 0 of Eq.4.10. The equations are solved by using the

simplex method 4?).

Figure 4.14 shows the eigenmode in term of k; which is evaluated
from Eq.4.23. The boundary length LQ,;/c, reciprocal of pressure anisotropy 7, beta
value 3, and reflection coefficient are given as 20, 0.08, 0.007 and v/0.5. The real and
imaginary parts of the frequency and the imaginary part of the wave number are derived as

a function of the real part of the wave number. The unstable eigen modes have the negative

imaginary part of the wave number and the positive imaginary part of the frequency. In
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the case of Fig.4.14a, unstable waves have the mode numbers of n = §8,9,10 between
the boundary length L. This theoretical model can explain the discrete spectrum and
the frequency difference between spectrum peaks which becomes narrower at the higher
frequency side than at the lower frequency side. Figure 4.14b shows a contour map of the
amplitude of the AIC mode which shows the axial profile and time development of the
AIC mode corresponding to the dispersion relation of Fig.4.14a. The axial mode number
n is 8. Both z- and t-axis are non-dimensional parameter which are normalized by a
product between the inversed plasma oscillation frequency and the light speed and the
ion inversed gyration frequency, respectively. At the inner region between the reflection
points of 2 = £L/2, the AIC mode forms the standing wave structure. At the outer
regions, the AIC mode propagates in the outer direction.

The eigenmodes depend on the parameters of L, R, #; and 7 defined above. Figures
4.15a and 4.15b shows the drive term dependence of the AIC-mode frequency. The AIC
driving term is a product between the beta and the square of the pressure anisotropy. In
Fig.4.15a, the AIC driving term increases with the increasing #; under the fixed pressure
anisotropy. On the contrary, the AIC driving term increase with decrease of 7 in Fig.4.15b
under the fixed ;. When the 3, increases, the new eigenmodes appear from the low
frequency side as shown in Fig.4.15a. As the free energy originated from the pressure
anisotropy is increasing, the new unstable eigenmodes appear from the high frequency
side as shown in Fig.4.15b. In both Figs.4.15a and 4.15b, the frequency of the eigenmode

increases and the frequency interval between each mode and are contracted with increase



of the AIC driving term. When the length L is varied, the mode are drastically changed
as shown in Fig.4.15c. A new mode appears from the higher frequency side. Its frequency

decreases and disappears at the lower frequency side with increase in the boundary length

L.

4.3.2 Experimental Results and Discussion

In this section, the experimentally obtained spectra of the AIC mode is compared with
the spectra which are derived from the new theory in the previous section. In the initial
startup phase, the temperature, density and anisotropy increase temporally. It is shown
in the measurement of the diamagnetic loop array that the axial length of the hot plasma
region is extended in this phase. The frequency of the AIC mode move to higher fre-
quency side and the frequency difference between spectrum peaks get narrower as shown
in Fig.4.16. It is rather difficult to control precisely plasma parameters such as P[P
and B, in the plasma startup phase becaunse of the lack in the reproducibility of plasmas.
Hence, the comparison between the experiment and theory is very difficult in the start
up phase.

In order to obtain a reproducible plasma parameters, the AIC driving term is controlled
by the pulse modulation of the RF2 power for the ion heating of the central cell. The time
evolution of the line density, diamagnetic signal and RF input power including the power
loss of the circuit are shown in Figs.4.17a.b.c. The input power of the RF2 is modulated

down from 75 ms to 85 ms. The line density slightly decreases and the diamagnetic loop




signal drastically decreases mainly due to the reduction of the ion temperature.

Figure 4.18 describes the AIC driving term dependence of the frequency of the spec-
trum peaks which are normalized by the ion cyclotron frequency Q. /27 = 6.335 MHz at
the position of the magnetic probe. The frequencies of the spectrum peak increase with
an increase in the AIC driving term. The frequency difference between the peaks becomes
narrower and the number of the eigenmode increases. Solid lines are the frequencies of
the unstable mode of the AIC instability evaluated theoretically and agree well with the
experimentally-obtained data. The parameters of 7, R? and Lf),;/c are fixed at 0.08,
0.5 and 20, respectively. The boundary length L is 3.2 m which is corresponding to the
density of 2 x 10" m~>. It is confirmed that the reflection coefficient R does not influence
on the frequency spectrum but on the growth rate of the AIC mode.

Figure 4.19a shows the AIC driving term dependence of the reciprocal of the pressure
anisotropy 7 and ;. Because the pressure anisotropy is almost constant 7 = 0.08 above
Bl PL/PH]2 ~ 0.8, the increase in the AIC driving term in the region above ﬂl(!’l/!"”)"2 ~
0.8 is originated from the increase in 3. Figure 4.19b shows the axial profiles of the AIC
driving term which are drawn by four vertical lines (I),(II),(III) and (IV) in Fig.4.19a.
Each line corresponds to a particular condition which is as follows. The boundary length
L depends on the extension of the hot ion distribution. When the axial profiles of the AIC
driving term are (1) and (1), the boundary crosses over in front of the magnetic probes
which are installed at z = 1.28 m and z = 0.90 m in Fig.4.11. Hence, the boundary

length L is determined as 2.6 m and 1.8 m with respect to (1) and (I1) profiles. From the



theoretical calculation of the frequency spectrum, the boundary length L is given as 3.2
m in Fig.4.18, which is represented by the profile of (II1) in Fig.4.19b. The case of the
maximum AIC driving term in Fig.4.19a is described by the profile of (1V) in Fig.4.19b.
The critical values of the AIC driving term at the reflection point of the AIC mode are
experimentally obtained as 4.6 and 5.4 corresponding to (I) and (II) of Fig.4.19b. The
averaged critical value of the AIC driving term is 5.0. As a result, the boundary length
of the profile (III) is determined as 3 m which is a good agreement with the theoretical
value within the ambiguity of the estimation. In Fig.4.19b, the boundary length are little
expanded in profile (IV) when the AIC driving term increases at the midplane. Hence,
the fixed boundary length of L = 3.2 m is valid in the profile (IIT) and (IV).

From the above reasons, the AIC mode is expected to be excited as the eigen mode
determined by the axial boundary. The boundary length of the AIC mode depends on
the axial extension of the hot ions. The reflection will be caused by the mismatching of

the wave number which are caused by the spatial variation of the AIC driving term.

4.4 Pressure Anisotropy Relaxation

due to AIC Instability

Relaxation of the pressure anisotropy is predicted by the quasi-linear theory ®, computer

simulation ® and so on. The first experimental observation of the pressure anisotropy

relaxation due to the AIC instability is presented in this section **. Figure 4.20 shows
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the time evolution of the observed signals which indicate the relaxation of the pressure
anisotropy: (a) the diamagnetic signals of the midplane loop and the second loop (b) the
signals of the SEDs in the direction of pitch angles of 90 and 45 degrees at the midplane.
(c) the signal of 5.1 keV ion flux escaping from the mirror end, and (d) the amplitude
of the AIC mode. During the relaxation period, the density measured by the radially-
scannable microwave interferometer is almost 2 x 10" m~=3. The ion temperature obtained
from the midplane diamagnetic signal is above 1 keV and is increasing. Relaxation due to
Coulomb collisions cannot be expected because the ion-ion collision time is of the order
of 10 msec and becomes longer as the ion temperature becomes higher. The SED signal
due to photons in this period is relatively small based on the measurements of the TOF
analyzer. The increasing rate of the signal SED(90) for charge-exchange neutral with the
pitch angle of 90 degrees decreases due to the onset of the mode, while the signal SED(45)
for neutrals with the pitch angle of 45 degrees increases continuously. In this period the
increasing rate of the diamagnetic signal near the midplane becomes slightly smaller and
the diamagnetic signal off midplane maintains its increasing rate. These two phenomena
suggest the relaxation of the pressure anisotropy. The ratio of the signal SED(45) to the
signal SED(90) is also shown in Fig.4.20b. The time evolution of the amplitude of the
AIC mode is shown in Fig.4.20d which is obtained by using the several plasma discharges.
Figure 4.20c¢ is the time evolution in the end-loss ions with the pitch angle near the loss
cone boundary. The time evolution of the end-loss ion flux resembles that of the excited

mode. The increase of the end-loss ion flux corresponds to the reduction of SED(90),
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which is clearly related to the onset of the AIC mode.

A small Faraday cup (FC) is used to investigate effect of the AIC mode during the
relaxation period. The FC is inserted in the peripheral region of the midplane to measure
the flux of ions with the same pitch angle as the angle between the magnetic field line
and the FC orientation. Figure 4.21a shows the ratio of the ion flux at the end to the
beginning points the relaxation period as a function of the pitch angle. The ratio decreases
toward 90 degrees and becomes less than unity at 70 degrees. Figure 4.21b shows the
pitch angle dependence of the ion flux normalized to the ion flux with pitch angle of
90 degrees, where solid and open circles represent the data at the beginning point and
the end of the relaxation period, respectively. The beginning point means the point at
which the increasing rate of the signal begins to decrease and the end point means the
point at which the decrease stops. This confirms the relaxation of the pressure anisotropy

suggested by the SED measurement.




Chapter 5

Pressure Anisotropy Effects

on Micro- and Macroscopic

Stabilities

5.1 Suppression of AIC mode

by Control of Pressure Anisotropy

The double-half turn antennas which are installed in the central cell are usually driven by a
frequency of 6.2 MHz in the standard operation. As described in the previous chapter, the
AIC mode excited in the central cell of the tandem mirror causes a pitch angle scattering

of the mirror trapped ions into the loss-cone region. The dispersion relation of the AIC-



56

mode with a confinement potential is theoretically solved®®). In the velocity space, ions
confined by the potential contribute to the relaxation of the pressure anisotropy and the
AIC mode will be suppressed. Recently, experiments in a plasma with a higher density
and higher temperature have been initiated. The suppression experiments of the AIC
mode by the formation of the confining potential will be performed in near future. In the
present heating experiment, the reduction of the pressure anisotropy with second ICRF

pulse has been tested in order to suppress the AIC-mode ),

Another resonance layer is
located off-midplane in addition to the midplane resonance layer. Because the magnetic
field profile of the GAMMA 10 is nearly flat near the midplane, the location of the
resonance layer for the second ICRF pulse of which frequency is slightly higher than that
of the midplane resonance frequency is apart about 1 m from the midplane. Figure 5.1a
shows the pressure anisotropy of the central cell determined with the diamagnetic loop.
It is clearly shown that the pressure anisotropy in the case of two frequencies is relaxed
in comparison with the case of only the midplane resonance. The integrated intensity of

the AIC mode is suppressed in the case of two frequencies as shown in Fig.5.1b. This

suggests the possibility of suppressing the AIC mode even in the future cases where the

fluctuation level becomes high enough to affect the plasma confinement.




5.2 Pressure Anisotropy Effect on

of Flute-Interchange Mode

5.2.1 Stability Theory of Flute-Interchange Mode

A flute-interchange mode is driven by the plasma pressure weighting on the bad curvature
region. The stability is determined by integrating the product of the total pressure and
the normal curvature along the magnetic field line divided by the magnetic field strength

as follows :

o
—

. (PL+ B) &,
1)
B

Equation 5.1 is estimated by substituting the pressure profile which is estimated as de-
scribed in the section 3.2 for Py + P. Solid line shows a typical pressure profile a dotted
line the magnetic field strength, a thin solid line the normal curvature , and a thin
dotted line the integrand in Eq.5.1. When the pressure anisotropy is strong, the pres-
sure profile is more peaked near the midplane of the central cell. It is expected that the
flute-interchange stability is influenced by the decrease in the pressure weighting on the
bad curvature region. It is obvious that the pressure of the cold component dominates
the integration of Eq.5.1 at the transition regions from I.h.r‘ central cell to the anchor cells

because of the presence of large bad curvature. Estimation of I' is made as follows : The

pressure profile is given by Eq.3.9 and the integration of Eq.5.1 is the summing up to the
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pressure weighting of the hot component in the central and anchor cell as well as the cold
component which consists of potentially trapped ions in the whole flux tube. By using

relation P, + Py = P, (1 + P/ P,), Eq.5.1 reduces to
[ Il |

[ = TePle+TaPy + TooaPs. 9.2

where I'c,I'y and [¢,g are components of the hot ions in the central cell, in the anchor
cell, and the cold ions respectively. I'c and I'4 are functions of each pressure anisotropy
in the central and anchor cells in Figs.5.3a and 5.3b. Figure 5.3¢ shows that ey is
determined locally as a function of the plasma length along the magnetic field line. P!
is a pressure of the hot ions at the midplane of the central cell, P}, at the midplane
of the anchor-cell and P{ the pressure of the cold component. It is useful to rearrange
Eq.5.1 with respect to the perpendicular pressure components, because we measure the
perpendicular pressure profile by use of the diamagnetic loop array. We set I' = 0 in order
to obtain the stability threshold as a function of ratios of the central beta to anchor beta

and the pressure anisotropy. We obtain the following equations by rearranging Eq.5.2 and
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Reciprocal of the integration I'c is approximately described as a linear function of the

pressure anisotropy of the central cell as follows :

oh

= —(0.148 x "llT: 5.6

1
I'c
From Eqgs.5.3 and 5.6, we obtain the following relation

Bic te .
Bia =

+
o
(0] |
=

Eq.5.7 shows the pressure anisotropy dependence of the critical beta ratio. It is necessary
to obtain parameters of the pressure anisotropy and the ratio of the cold component to
the hot component in the anchor cell in Eq.5.7. Here, we assume reasonably that the
pressure anisotropy of the anchor cell lies within P, 4/ P4 = 5 ~ 10, then the minimum
of I'4 is 6 in Fig.5.3b. Figure 5.4 shows the theoretically-predicted critical beta ratio with

a parameter of a which indicates contribution of the cold component. The anisotropy

dependence of the critical beta ratio strong function of the parameter a.
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5.2.2 Experimental Results and Discussion

The stability boundary of GAMMA 10 for the flute interchange modes is experimentally
obtained. Additional gas puffing into the anchor cell enhances the charge-exchange loss
and reduces the anchor beta. Modulation of the ICRF heating power is successfully used
to vary the beta values at anchor (8, 4) and central cells (B.¢) in a wide range. When
the ratio of the central beta to the anchor beta reaches a critical value, the central beta
abruptly dump and the plasma is terminated associated with violent density fluctuations.
In Fig.5.5 the experimentally obtained data are plotted on 3, -, 4 diagram. The central-
cell plasmas can not be maintained stably in the region of the low anchor beta. The
stability boundary corresponds to agree well with the threshold predicted by the flute-
interchange instability theory including the effect of the pressure anisotropy of the central-
cell plasma.

Figure 5.6 shows a temporal evolution of the central- and anchor-cell pressure. When
the additional gas is puffed into the anchor cell, the anchor-cell pressure decreases because
of an increase of the charge exchange energy loss. When the beta ratio reaches a critical
value, the central-cell pressure abruptly dumps. It is found that the MHD stability is
determined by the ratio of the central-cell beta value B, to the anchor-cell beta value
Bia.

Low-frequency fluctuations on ion saturation currents are detected as shown in [ig.5.7

by 8 electrostatic probes which are arrayed on the central-cell limiter and flush with the
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limiter edge. As seen in Fig.5.7, the fluctuations have an azimuthal mode number of
m = —1; propagation in the direction of the ion diamagnetic drift with the phase velocity
nearly equal to E x B rotation velocity. Moreover, the phase difference between a central-
and anchor-cell probe signals which are arranged along the field line is quite small. This
indicates that an axial wavelength is much longer than the distance of 5.8m between the
two probes, that is, parallel wave number k ~ 0. These results indicate that the observed
low-frequency instability is caused by a flute interchange mode.

In Fig.5.8, the critical beta ratios f1¢/f1 4 are plotted against the pressure anisotropy
in the central cell. The solid line is theoretically obtained dependence of the critical
beta ratio on the anisotropy of the central cell. The stability boundary of the flute-
interchange mode is influenced by the pressure of the cold component which is weighted
on the transition region from the central cell to the anchor cell shown in Fig.5.4. Figure
5.9 shows the RF2 net power dependence of (a) the diamagnetism in the central and
anchor cells, (b) the pressure anisotropy of the central cell, and (c) the density of r = 0
m at the midplane and mirror throat in the central cell. When the radiated power from
the RF2 antenna increases the stored energy in the central cell increases and decreases
oppositely in the anchor cell. lons are heated by the wave field which is excited by the RF2
antenna and trapped in the mirror field of the central cell, then, the passing ions to the
anchor cell decreases. The density of the central cell is éstimat.ml from the radial profile

of the line-integrated density, by the Abel inversion. The density of the mirror throat

is estimated from the on-axis line density and the profile of the ion saturation current.
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The absolute value of the density is evaluated from comparing between the line density
and the profile of the ion saturation current. In Fig.5.10, the radial profiles of density
are shown at the central cell, inner and outer transition region and mirror throat of the
central cell. The pressure in the transition region is estimated from the measurements of
the ion saturation current and the small Faraday cup which are installed at the transition
region. The density of the inner transition region is three times higher than in the outer
transition region at r = 0 m. The axial profile of the pressure of the cold component is
assumed to be constant in the region between both anchor midplanes. The pressure in
the outer region from the anchor midplane is assumed to be 1/3 times lower than that of
the inner region from the measurement of the ion saturation current. The pressures of the
anchor and central cells is estimated from the diamagnetic loop signal. We assume that
the density profile n(r) is parabolic and the temperature profile 7'(r) is radially constant.
The pressure is defined as the product of n(0) and T'(r) = T. The assumption of the
axial profile of the pressure is reasonable by taking into account the measurement shown
in Fig.5.10.

The anisotropy dependence of the pressures in the central, anchor and transition re-
gions is shown in Fig.5.11a. From the experimentally-obtained parameters as shown in
Fig.5.9, the parameter a is obtained and is shown in Fig.5.11b. The o has only a weak
dependence on the pressure anisotropy of the central- cell plasma. The minimum a be-
comes about 0.1 as seen in Fig.5.11b. By using @ = 0.1, the theoretical curve of the

critical bheta ratio is obtained as a function of Lthe pressure anisotropy and corresponds to
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the solid line of the critical beta ratio shown in Fig.5.8.

Pressure Anisotropy Effect to AIC and Flute-Interchange Instability

The stability regimes for both the AIC and the flute-interchange modes are shown on
Bi1c-Py /Py diagram as seen in Fig.5.12. Solid lines show the theoretical contour of the
constant growth rate of the AIC mode. Dotted lines are the flute stability boundary
which is calculated from Eq.5.1. The solid circles indicate the case in which the AIC
mode is observed and the open circles no AIC mode. When the amplitude of the AIC
mode increase, relaxation of the pressure anisotropy has been observed. In the parameter
region including the solid and open circles the plasma is macroscopically stable, which is
good agreement with the predicted stable region.

With the increasing beta value, the pressure anisotropy is enhanced, and the increase
of the amplitude of the AIC mode suppress the pressure anisotropy. When the beta value
is more increasing, the plasma is terminated owing to the limit of the flute-interchange
instability. In a future 10 experiments in GAMMA 10, the auxiliary heating to the anchor
cell, for example as a neutral beam injection, may be needed for the avoidance of the flute-

interchange limit assisted by the AIC mode.




Chapter 6

Conclusion

l. The pressure anisotropy is quantitatively obtained by using the diamagnetic loop

array, the secondary electron detector and the small Faraday cup.

2. The fluctuations which depends on both the ion pressure and the pressure anisotropy

are identified as an Alfvén ion cyclotron (AIC) mode.
(a) The fluctuations have discrete frequency spectra in the range slightly below
the ion cyclotron frequency at the midplane of the central cell.

(b) The azimuthal mode number of the fluctuations is low m number of —1 or —2

which propagate to the direction of ion diamagnetic drift.

(c) The radial profile of the fluctuation amplitude is peaked at the core region of

the plasma.

(d) The left-handed circular polarization is dominant in the core region, while. the



right-handed circular polarization is dominant at the edge region.

(e) The fluctuations take the standing wave structure in the axial finite extension

and propagate in the outer region. The standing wave region is expanded

depending on the AIC driving term.

Because the characteristics of the fluctuations agree well with the theoretical pre-

diction of the AIC mode, we identify the fluctuations as the AIC mode.

3. A new theory of the AIC mode is developed including effect of the of the axial finite
extension and compared with the experimental results. The theory predicts well
the observed fine structure of the frequency spectra of the AIC mode; the frequency
gets higher and the difference between the frequency spectral peaks become nar-
rower with the increase of the AIC driving term. The absolutely unstable region is

enhanced by the finite length effects.

4. The relaxation of the pressure anisotropy is experimentally observed by using the

diamagnetic loop array, the small Faraday cup and the SED array.

5. The pressure anisotropy is controlled by the supplement of the additional RF-hea ting
power which is absorbed at the off-midplane resonance layer. It is demonstrated

experimentally that the suppression of the AIC made is possible by the control of

the pressure anisotropy.

6. The stability boundary for the flute-interchange mode are experimentally obtained
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and is in good agreement with the theoretical prediction. The ratio of the central
cell B¢ to the anchor cell 3, 4 determines the MHD stability. By the decrement
in the pressure weighting on the bad curvature region, the stable region greatly

expands on 3, and 3, 4 diagram.
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Appendix A

Other Heating Systems and

Diagnostics

Other Heating System

Magneto-plasma-dynamic (MPD) guns are installed at both ends of GAMMA 10. The gun
has a coaxial electrode as shown in Fig.A.1. The anode, which is made of molybdenum, has
the outer diameter of 70 mm and the inner diameter of 30 mm. The cathode, which is made
of tungsten, has the outer diameter of 10 mm. There are two kinds of insulators, which
are made of boron nitride (BN) and glass ceramic (MACOR), between the anode and the
cathode. A pilot anode, which is made of molybdenum and has the inner diameter of 20

mm, is added between the anode and the BN insulator for obtaining a reliable discharge

at a reduced gas flow rate without employing any trigger electrode. Maximum charging
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voltage on the pulse forming network (PFN) is 1 kV. Typical discharge voltage and current
are about 200 V and 10 kA, respectively. Hydrogen gas is injected quasisteadily during
the discharge by use of a fast-acting electromagnetic valve (FAV) in order to minimize
excessive gas before and after the discharge. The gas pulse-width is adjustable by changing
the spring strength in this valve. In the present experiments the pulse width of 1 ms in
a steady gas flow rate is selected. The gas flow rate at the reservoir pressure of 1 atm
hydrogen is 150 forr-£/s. Short-pulse (1 ms) gun-produced plasmas are injected into the
central cell along the magnetic field line. The gun-produced plasma is very effective for
building up the plasma in combination with ICRF power and a small quantity of central-
cell gas puffing.

The electron cyclotron resonance heating (ECRH) system consists ol four gyrotrons
with the frequency of 28 GHz and the maximum output power of 160 kW. At the
plug/barrier cells, the fundamental ECRH (w = Q.,) is carried out to form the ion confin-
ing potential by producing warm electrons, and the second harmonic ECRH (w = 2()..)
is carried out to deep the thermal barrier potential by producing mirror-trapped hot
electron.

Neutral Beam Injection (NBI) system is installed in the plug/barrier cells. Neutral
beams of 23 kV acceleration voltage and 60 A drain current are injected near the midplane

of the plug/barrier cell at the angle of 40° in order to produce sloshing ions for the effective

ion confining potential.




Other Diagnostics

The electron line densities are measured by six microwave interferometers (wave length
= 4 mm) at central cell, west anchor, east/west barrier, east plug cells and the central
transition in one shot. Scanning microwave interferometers are employed for the mea-
surements of the radial density profile at the central cell and the barrier cell.

The radial profile of the end loss ions are measured by a movable end loss analyzer
(mov. ELA). The ELA is a multi-grid type electrostatic energy analyzer. It is scannable
in the x-direction and is installed between the outer mirror throat of the end mirror cell
and the end plate. Fixed ELA’s with the same structure as the mov. ELA are located
behind the end plate.

The plasma potentials at the midplane of the east barrier cell and the central cell are
diagnosed by neutral Au-beam probes. An energy resolution is no more than 50 V and a

time resolution is 200 usec.




Appendix B

Dispersion Relation of AIC mode

We start the Maxwell and collisionless Boltzmann equations.

‘) f} i p .
i+t’_i+_£[E*_va]_ﬂ =0 B.1
ot dr m; v
V- E = Z q;n; B.2
j=ed
B
VXE = —— B.3
ot

VB = § B.4
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Here, the j-particle charge is ¢;, the mass m;, the density n;, the distribution function
;. the electric field E, the magnetic flux B, the electric displacement vector D, the
current density 7, the conductivity e, the dielectric tensor K and the effective dielectric
permittivity tensor €. € and sty are the permittivity and the permeability of free space,
respectively. Owing to linearizing the Eqs.B.1-B.7, the wave equations for the AIC' modes

can be obtained in the form

KeoE B.8

Here, k ia a wave number, a one-ordered perturbation of the electric field E, an angular

frequency w and the light speed ¢. K is a dielectric tensor for the hot plasma as follows :

: 2.
]\“, = ] -— Z—";—'{(\'j++\3_)
j=ez
. ?51%
Ry = = L =it
j=e i
!\.y;r = —Z PJ(\_H. ‘|‘\,_)
j — .5 |
: 0,
;\yu = b= Z 2”(.\3+ + \J—)
1=e.u
rU
i ‘TQ dv
K. = 1+ % [ dv [ g Y
‘.2 ;1 av)| avy 5 u,‘—f.‘?r”?”rl

Kee = Kypp=K,u=K,=0
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where JC =

Ky K, K, B.9

1\'2_7- ]\':y {":z

2,; and §); are the plasma frequency and the cyclotron frequency, respectively. When the
parallel propagation is assumed for the AIC mode, susceptibility y;4 and X ;- is evaluated

from the moment integration of the distribution function of the ion and the electron.

o mv} [(*""'II —w) gL — ﬂ'ru.,;fi,“ s 4
\}:E — .[_m (.f-H ‘/0 avy TN ;f_?_J“ :'F 6}-(!?‘} | .

When the condition of (I(‘[-[%%E(I —e.e,) — K| = 0 is satisfied, the wave equations have

a nontrivial solution. The explicit expression is given by

k*c? § et k%c? 0
(] TN iy z :?X-H') (l T 24 “'\'.f—)

o w TR
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df
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The AIC mode is excited due to the ion anisotropic distribution, and hence. the dispersion
I

relation of the AIC mode is given by

o Y Z Qf\; X4 =0, B.12
J=eca
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o

Hereafter, the subscript of ; is omitted. Under the condition of 7. = 0 the electron term

o ; B.13

The distribution function of ions is assumed as the anisotropic distribution function de-

scribed as follows :

f(vy,v)) = CH(w)wexp(—avi — n”rﬁ), B.14

Then ion term is as follows :

Xi = Xio + AX; B.15

w [
e e i

L5 ) ] 7 T
_‘1[w~szc,- A e (H H—l)] Z1(8)

- C 2 == oo
A i — 7 / log—e 21" o [ AT L —oa J
\ m f an || (}_2 € { (w . glrl iy L'l‘”)’z l € 2 (] + (& )

Qi ky) vij — v
] — e ™ — g =
a6~ P iy (1-e “”)} (” R=1}

¥ . . v . 2 1) v '
C'is a normalized constant C' = al/2a™ e [z2m!/3, , defines the plasma potential ¢ =

ayvg. 7 defines the pressure anisotropy 7 = a/ay. Ais a constant A = /7ay/a,/(2]).
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The perpendicular velocity v, is transformed to w which is defined as w = v? — (vf —
2

vg)/(R—1). The loss boundary is defined as v = (R- )vd +v2. ais defined as ap = o+

af/(R—1) = M/(2T)). Z is the plasma dispersion function. The argument of the plasma

dispersion function is defined as £ = ((w - 52”)(};”) [k and & = &/ (\/1 +7/(R— I])
H(w) is the Heaviside's step function. The notation "1” indicates the integration defined

as follows :

Ve 2 o, 2
Lie,7,R) = / dte® (- p) +/ di e=*-* B.16
JO \/F
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JO 2 J e 2
Ve 9 4 9 = -
Ii(o, 7, R) = / dii? e [l—p)—l—/ di 12 e~ B.18
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1'2__.
({JET ‘19)
R—1

The pressure anisotropy is determined as follows :

P, 1 I
— = = B.19
]"” T3




Appendix C

Absolute and Convective

Instabilities

In order to determine the stability of a system, we consider a point source with respect to
the coordinate 2z, which starts at ¢ = 0. The stability of the system can be obtained from

40,41)

studying the responses to the point source . The source function is given as follows :

0 for 1 <0

constant x §(z)e "o for t>0

Here, é is the Dirac delta function. The system response is defined as 1




We execute the Fourier transform for the source function of Eq.C.1 so that

constant

¥ — 0 as |z| — oo for a finite ¢.

Gkw = = (‘;
1 (w—wp)
The response function ¥(z,t) is then found from the inversion formula
so+ia et iy
p = constant X / ‘I){z.u:)_——-—‘—w C.A4
J—ocotic .’(u..' — Lb'”] 2m
o] 6112
B(z,w :[ L L C.5
(2,w) J-co D(k,w)
This expression necessarily satisfies the equations #(z,1) = 0 for ¢t < 0 in accordance

with the condition of the problem: the perturbation occurs only after the source comes
in at ¢ = 0. In order to find the asymptotic expression for #(z,t) far from the source
z| — oo in a steady condition, the source begins to operate { — co. To find the required
asymptotic form, we note, first of all, that the asymptotic limit { — oo must be taken

before |z| — oco. Since the perturbation cannot propagate to infinity in a finite time,

We move the contour of integration with respect to w in Eq.C.4 downwards in order
to get the asymptotic expression as ¢ — oo. Since the system is convectively unstable,
®(z,w) has no singularity in the upper half-plane of w, and the highest singularity of

the integrand in Eq.C.4 is the pole w = wy on the real axis. It is discussed in the later

paragraph for the case of ®(2,w) which has a singularity in the upper half-plane of w.




Hence, the asymptotic form as ¢ — oo for the convectively unstable case is

u.-‘(:‘” o (_.-iwofd_)(z.w”}_ C.6

To find an asymptotic form of ®(z,wp) as |z| — oo, we must now move the path of
integration with respect to k upwards for 2 > 0 or downwards for z < 0, until it catches
the pole of the integrand in Eq.C.5, i.e. the root of the equation D(k,wp) = 0.

ky(w) and k_(w) are defined as the poles which are respectively in the upper and lower
half-planes of k as w; — co. As w; decreases. the pole move, and for a real w = wy they
may either remain in their original half-plane or enter the other half-plane. In the first
case, the contour of integration in ®(z,wp) remains on the real axis as in Fig.C.1a; in the
second case, it is deformed as shown in Fig.C.1b, so as to embrace the pole ky(wg) and
k_(wo) (point A and C) that have escaped into the other half-plane. In the either case,
when the contour is moved up or down, it catches on the pole ky and k_, respectively.
The asymptotic form of 1(z,t) as z — +o0o is determined by the contribution from the
lowest pole ky (wy); that is determined by the highest pole k_(wp) as z — —oco0. The pole

concerned is thus the closest to the real axis, or the farthest from the real axis among

those which have moved into the other half-plane. With these values of k . and k_, we




30

have

"XI‘[’-(’(#(WU)Z = u—'n-‘-)] for >0
Y(z,t) o o7

expli(k-(wo)z — wot)] for z2<0.
For a stable system, all poles remain in their original half-plane when w = wy, since the
absence of oscillation branches with w;(k) > 0 (for real k) means that a pole k(w) can
cross the real axis only with w; < 0. Hence, in Eq.C.7 kii(wo) > 0, k_;(wo) < 0 so that
the waves dump in both directions from the source.

In the case of the convective instability, the poles k(w) reach the real axis with w; > 0.
There are therefore certainly poles ky and k_ which have entered the other half-plane for
w = wy, i.e. which have ky;(wy) < 0 or k_;(wy) > 0. The presence of such a pole k, (wp)
or k_(wo) amplified the wave to the right or left of the source, respectively.

In the case of the absolute instability, the integration of Eq.C.4 is modified owing to
the singularity of ®(z,w.) for w = w,. The asymptotic value of the integral is determined

by the neighbourhood of that point, so that

oo

P(2,1t) x exp(—iw.t) = exp(—iwert + weit). C.

If ws > 0, the perturbation increases at any fixed point z, i.e. the instability is absolute,

but if w,; < 0 the perturbation tends to zero at a fixed point, i.e. the instability is

convective.
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In Fig.C.2, the contour plot of D(k,w) in the complex k plane for the AIC mode is
drawn in the case of (a) the absolute and (b) convective instability. The trajectory of the
roots of the dispersion relation is described as the white lines for the wy of 0.76, 0.80. 0.84
and 0.88. The imaginary part of w is moved from 0 to [wi/Qeilmax which is defined in
Fig.4.6. The singularity of ®(z,wy) is caused by the double root of the dispersion relation
D(k,w) = 0, which is shown as a saddle point in Fig.C.2a. in the velocity space due to

the electric or magnetic fluctuations.
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Fig.2.1

Fig.2.2

Fig.2.3

Fig.2.4

Fig.2.5

Fig.2.6

Fig.2.8

Fig.2.9

Figure Captions

Schematic of GAMMA 10 tandem mirror and axial profile of magnetic field

strength.

RF heating systems.

Gas puffing systems.

Diagnostics and axial profile of magnetic field strength.
Schematics of small Faraday cup.

(a) Pitch-angle resolution and (b) pitch angle dependence of ion-collecting effi-

ciency of small Faraday cup are computed.
Anisotropy measurement by using small Faraday cup.
Time-of-Flight-Type (TOF) charge-exchange neutral-particle energy analyzer

(a) Typical law data and energy spectrum of TOF analyzer, (b) temporal evo-

lution of ratio of signal due to photon to charge-exchange neutral particle, (¢)



88

profile of ratio of photon to neutral particle signal is peaked at the center of

plasma column. Because the peak value is under 30 %, charge-exchange neutral

particle dominates over TOF signal.

Fig.2.10 (a) Schematic of Secondary electron detector (SED) system and (b) measurement

of pitch-angle distribution by using SED.
Fig.2.11 Relation between SED signal and pressure anisotropy

Fig.2.12 Design of magnetic probe with protection from fast charge-exchange neutral par-

ticles due to SUS cover.

Fig.2.13 Calibration of magnetic probe by use of well-known RF-magnetic field induced

by a Helmholtz coil.

Fig.2.14 Typical signal of magnetic probe in calibration. Spatial resolution and sensitivity

to oscillating magnetic field are tested. SUS-cover reduce sensitivity of magnetic

probe to under 30 %.

Fig.3.1 Schematic of pressure distribution. Pressure distributions perpendicular and
parallel to the magnetic field line are indicated by solid and dotted lines for the
four types of distribution, respectively. Scale length of L are 2 m, 1.6 m, 1.8 m

and the index of n is 50. Broken line is the magnetic field profile of the GAMMA

10 central cell.
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Fig.3.2 (a) Relationship between ratio of second loop signal to midplane-loop signal and
scale length L and n; dotted line for pressure distribution of Type A, dashed
line for Type B, chain line for Type C and solid line for Type D. (b) Diagram
of diamagnetic loop signal ratios for various pressure profiles: dotted line is
calculated by computer code for pressure distribution of Type A, dashed line for

Type B, chain line for Type C and solid line for Type D.

Diamagnetic fluxes at the midplane, second and third loops are represented by
Wy, Wa, W3 respectively. Closed circles show experimental data, which corre-
spond to data at 55 ms, 56 ms, 60 ms and 61 ms. Error bars for the data are
smaller than closed circle radii. Time evolution is expressed by the arrow. From
this diagram, time variation of the axial pressure profile can be estimated. (c)
Pressure anisotropy versus diamagnetic loop signal ratio. Each line corresponds
to the lines in Fig.3.2b. Solid circles are experimental results. From this figure,

pressure anisotropy is estimated once after the pressure profile is determined

from Fig.3.2b.

Fig.3.3 diamagnetic loop signal ratio of second loop to midplane loop and ratio of third
p s1g I ] I
loop to midplane loop is a function of (a) ne and (b) Le. A new model of the
c ¢
pressure profile extends the parameter region of ratio of diamagnetic loop signal

comparing with Fig.3.2.

Anisotropy Py /P is described as a function of Lo and ne.

From Figs.3.3a




Fig.4.1

Fig.4.2

Fig.4.3

Fig.4.4

Fig.4.5
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and 3.3b, parameters L¢ and nc are evaluated by using experimentally-obtained

ratios of diamagnetic loop signal.

Physical picture of AIC mode is drawn. Figure 4.1a shows Lorentz force due to
magnetic fluctuation for gyrating ion. Arranged discs corresponds with trajectory
of ions with velocity of v o. Initial perturbation is growing due to net current

induced by tilting motion of ions.

Typical time evolution of electron line density (a) and diamagnetic loop signal
(b) in the central cell. Midplane loop signal is represented by (), the second

loop signal (x) and the third loop signal (A).

RF power dependence of beta value and pressure anisotropy are evaluated by

using diamagnetic loop array.
Typical frequency spectrum of the magnetic probe signal.

(a) Diagram of P, /P versus beta value. Solid circles represent the parameters
in which the fluctuations are observed and open circles show no fluctuations.
Solid lines are maximum growth rate, [wi/ilaax of 107% and 102, Dotted line
is a theoretically-calculated boundary between convective and absolute instabil-
ity. (b) Fluctuation amplitude depend on AIC driving term which is defined as

product between beta and pressure anisot.mp_\'.

Dispersion relation are derived from Eq.4.10. Maximum growth rate are shown




Fig.4.7

Fig.4.8

Fig.4.9

Fig.4.10

Fig.4.11

by a vertical dotted-broken line.

Frequency of AIC mode increased with increasing magnetic field strength. and
is slightly below ion cyclotron frequency defined at minimum magnetic field

strength of central cell.

Phase variation at dominant oscillation frequency versus angles between magnetic
probes. Observed oscillation has azimuthal mode number of m = —1 which

propagates in ion diamagnetic drift direction.

Amplitudes of fourier spectrum are plotted as a function of radial position. Peaks
of spectrum consist of narrow bands of frequency centers are (a) 5.50 MHz, (b)
9.55 MHz, (c) 5.65 MHz and (d) 5.75 MHz. Closed and open circles show radial
and azimuthal components of magnetic fluctuations. Fluctuation amplitude is

lager in core center region than that in edge region.

Axial variation of polarization of fluctuation wave for each peaks of Fourier spec-
trum. Here, bp = (b, — iby)/2 and by, = (b, + iby)/2. Polarization fraction is

defined by Pr = bj/(b] + b%) and Py, = & /(b2 + b%). Component with left-

handed polarization is dominant at center region.

Wave numbers are determined from phase difference of two magnetic probes at

z=-1.12m and —1.28 m and at z = 0.3 m and 0.9 m. Wave numbers between

= —1.12

2= 2 m and —1.28 m are shown by closed square. Wave numbers between




Fig.4.12

Fig.4.13

Fig.4.14
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z = 0.3 m and 0.9 m are shown by opened square. Wave numbers converge to
zero with increase of AIC driving term. In region with zero wave number, AIC
mode is standing wave. In outer region, AIC mode propagate to both anchor

cells. Region of standing wave is expanded with the increase of AIC driving term.

Schematic of axial structure of perpendicular and parallel pressure in direction
of magnetic field line AIC mode has axial reflection points. At inner region of
reflection points, AIC mode is standing wave. At outer region of reflection points,

AIC mode propagates toward both anchor cells.

Boundary condition for eigen value equation on AIC mode. Initial perturbation
excited at z = () propagates toward positive ¢, and negative ¢_ direction along
the z-axis and reflected at z = +L/2 with reflection coefficient R as ¢, 8" . Wave
component ¢, reflected at z = /2 is again reflected at z = — /2 with reflection

coefficient R as ¢/. As a result, unstable wave should satisfy the condition of

Py = ¢4 + ¢

(a) Eigenmodes about ky are evaluated from Eq.4.23. Boundary length L,,/c,
reciprocal of pressure anisotropy 7, beta value 8, and reflection coefficient R
are given as 20, 0.08, 0.007 and /5, respectively. Real and imaginary parts of
frequency and imaginary part of wave number a.rr derived as a function with
respect to real part of wave number. (b) Propagation of mode number of n = 8

is shown by contour of amplitude. Standing wave is excited between boundary




LAYy /e = 20 and leaks out as propagating wave to anchor cells.

Fig.4.15 (a) Parameter dependence of frequency spectrum which are theoretically ob-
tained. n is axial mode number. AIC driving term ( A ( 't/ P)? ) dependence
of frequency spectrum of AIC mode. Fixed parameters are 7 = 0.08, B2 = 0.5
and L§),;/c = 20. A variety of AIC driving term is originated from beta value.
(b) AIC driving term ( B, (P./P))? ) dependence of frequency spectrum of AIC
mode. Fixed parameter is #, = 0.007, R? = 0.5 and LQy;/c = 20. Variety
of AIC driving term is originated from reciprocal of pressure anisotropy ( 7 ).
(c) Boundary length (L,;/c) dependence of frequency spectrum of AIC mode.

Fixed parameter are #; = 0.007, R? = 0.5 and 7 = 0.08.

Fig.4.16 Experimentally-obtained frequency spectra which vary temporally with the in-

crease of diamagnetism, density and temperature.

Fig.4.17 Typical time evolution of (a) electron line density, (b) diamagnetic loop signal
in the central cell. Midplane loop signal is represented by Wi, the second loop
signal W5 and the third loop signal W3 and power supplied by RF1 and RF2.

Input power of RF2 for heating ions in central cell is modulated from 75 ms to

85 ms.

Fig.4.18 AIC driving term dependence of frequency spectrum. Pressure and pressure
anisotropy are controlled by using RF modulation method. Solid. dotted. dashed

and dotted-dashed lines are correspond with axial mode numbers of n = 7.8.9. 10.
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respectively, which are theoretically obtained with 7 = 0.08, R? = 0.5, L [e =

20 and varying f3,.

Fig.4.19 (a) Relations between AIC driving term, beta value and reciprocal of pressure
anisotropy. At parameter of (I) and (II), the boundary for eigenmode of AIC
mode is cross over magnetic probes at z = 30 and 90 cm and at z = —112
and —128 cm. Parameter of (III) is used for theoretical evaluation of frequency
spectrum. Maximum driving term is obtained at parameter of (IV). (b) Axial
profile of AIC driving term are evaluated for parameter of (1),(IT),(I11) and (TV).
Dotted line is magnetic field strength. Broken-dotted line is AIC driving term of

0.5, which correspond with parameters of reflection point of AIC mode.

Fig.4.20 Time evolutions of experimental data: (a) diamagnetic loop signals at midplane
W, and off-midplane W,, (b) SED signals which are set in direction of pitch
angles of 90 deg. SED(90), and 45 deg. SED(45), and signal ratio of SED(45)
to SED(90), (c) end-loss ions which are near loss-cone boundary of central cell,

with energy of 5.1 keV, (d) amplitude of AIC mode.

Fig.4.21 (a) Ratio of small Faraday cup signal at end to that at beginning of the period

as a function of pitch angle, (b) pitch angle distribution at beginning ( @) and

end point (O )of period.

Fig.5.1 (a) Anisotropy vs. midplane diamagnetic signal, (b) amplitude of AIC mode vs.

midplane diamagnetic signal on both cases with ( ®) and without off-midplane




resonance () ).

Fig.5.2 (a) Solid and dotted lines are axial profile of pressure and magnetic field strength,

respectively, (b) solid and dotted lines are axial profile of k4 and Pry/B, respec-

tively.

Fig.5.3 Pressure anisotropy dependence of I" due to hot pressure component in (a) central

and (b) anchor cell. (c) Integration of cold component from z = 0 to z.

Fig.5.4 Dependence of critical beta ratio of B¢ to 84 on pressure anisotropy (Pf(-/f’l’r'c)

of central cell. a is ratio of cold pressure component to hot pressure in anchor

cell.

Fig.5.5 Experimentally-obtained flute-interchange stability boundary of GAMMA10 on
Bic vs. By diagram. Solid line is theoretical stability limit for a plasma with

pressure anisotropy in central cell and dotted line is stability limit for an isotropic

plasma.

Fig.5.6 Temporal variation of anchor and central cell diamagnetism with additional gas

puffing in anchor cell.

Fig.5.7 Identification of a flute interchange mode by use of edge probe array. Density
fluctuation rotates in order 135, 90, 45 and 0 deg. Density fluctuation are axially

in phase at z = —0.6 and 5.0 m.
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Fig.5.8 Beta ratios #,0/B,4 plotted against pressure anisotropy. Critical beta ratio
strongly depends on pressure anisotropy. Stronger anisotropy leads to larger

critical beta ratio. Solid line show theoretically derived relation between critical

beta ratio and pressure anisotropy.

Fig.5.9 RF2 power dependence of (a) diamagnetic signal of W; and Wy, (b) pressure

anisotropy of central cell and (c) density at midplane and mirror throat of central

cell.

Fig.5.10 Radial profile of density at midplane (dashed line) and mirror throat (x), inner

transition of magnetic field from central cell to anchor cell ( @) and outer

transition ().

Fig.5.11 Pressure anisotropy dependence of pressures at central, anchor and mirror throat.

Ratio of cold pressure component to hot component is represented by a.
Fig.5.12 Stability diagram of pressure anisotropy vs. A3, c.

Fig.A.1 Structure of MPD plasma gun. Plasma gun has coaxial electrode and pilot anode
instead of trigger electrode. Typical discharge voltage, current and duration are

about 200 V, 10 kA and 1 ms, respectively.

Fig.C.1 Pole trajectory in complex wave number plane are schematically drawn for (a)

no unstable mode and (b) amplifying mode cases.




Fig.C.2 Contour mapping of roots which are evaluated from dispersion relation of
D(k,w) = 0 are drawn for (a) absolutely and (b) convectively unstable case.
When imaginary component of frequency are moved from 0 to 0.05, trajectories
of roots are drawn as white lines. Saddle point is marked in absolute unstable

mapping of (a).
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