
Agile Production Planning and Control System

Graduate School of Systems and Information Engineering

University ofTsukuba

March, 2005

Tunglun Tsai

050094BfJ

Acknowledgements

I wish to express my sincere gratitude to all those who helped me to get to this point of

life. A very special acknowledgement goes first to my academic advisor, Professor Ryo Sato,

Dean of College of Policy and Planning Sciences, for providing me personal growth and

academic advice during the period of my doctoral program in Japan. Without his strict

discipline and warm encouragement, I have already given up my dream of being a researcher.

Even though he was so busy in teaching and doing research, he never refuses to write

commendation letters for me to apply scholarship and tuition deduction, and he even actively

recommended me as a research assistant (RA) of the graduate college twice. When I was

taking a carefree attitude toward studying, he gave me a firm warning to get back on the track.

When I was lacking confidence in my ability to submit a paper, make a presentation, or take a

degree, his composed attitude always rebuilds my confidence.

My special appreciation goes next to Professor Ushio Sumita who gave me a valuable

comment on the direction of my research in a SIM seminar in 2001, then to Professors Masato

Koda and Suzuki Hideo who gave me some great advice on my paper during the summer

camp in Kusazu, and finally to Professor Takao Terano who suggested me to introduce

minimum generation gap (MGG), a model of generation alternation, into my genetic

algorithm (GA) by which the performance and efficiency of GA have been greatly improved.

I would also like to thank my former advisor Professor Ryosuke Hotaka for his

encouragement during the period of my first year as a research student in University of

Tsukuba. I am very grateful to Professors Ryoh Fujihara, Akihiro Hashimoto, Yasuhiro

Monden, Mika Sato-Ilic, Maiko Shigeno, Hideaki Takagi, Yoshitsugu Yamamoto, Akiko

Yoshise, Yongbing Zhang for their teaching of the introduction courses from which I have a

chance to explore the broad fields of policy and planning sciences.

A deep gratitude goes to Professor Jeremy Kuo who strongly recommended that I should

study abroad to have more opportunities for growth and self-mastery, instead of entering local

graduate school in Taiwan. He came to Japan many times to visit me, encouraged me to

overcome the culture shock, and even offered me the partial living cost of my first year in

Tokyo.

I greatly appreciate the Japanese government and University of Tsukuba for granting

scholarships and a bounty to me. Besides, I would like to express my heartfelt thanks to Kanto

Gakuen University for employing me as an instructor and allowing me to complete my

I

doctorate at University of Tsukuba continually.

My greatest appreciation goes to my parents in Taiwan and grandparents in heaven who

have supported and educated me, and finally to my wife Wendy Fu who gave up her good job

in Taiwan to accompany me to Japan.

II

Abstract

The purpose of this dissertation is to provide a new conceptual scheme for the integrated

production planning and control (PPC), called agile production planning and control system

(APPCS), along with development of a novel genetic algorithm (GA) for optimal scheduling,

called genetic algorithm with minimal generation gap and demand crossover (MDGA), which

is quite useful for implementing APPCS. PPC is a system that has functions of planning,

execution, and control on elements of material and resource. This dissertation consists of three

parts.

In the first part, the concept of APPCS is developed. It has the following three unique

features:

1. Production planning and scheduling is made once a planning cycle. Customer orders

accumulated during the previous cycle are incorporated at a time in the planning and

scheduling for the current cycle. APPCS uses a time bucket as a planning cycle.

2. Scheduling and capacity planning are integrated to produce a feasible production plan.

3. When customers change their request and/or suppliers cannot maintain planned supply,

with respect to date or quantity, they give advance notification before it happens. Upon

the arrival of such information, APPCS immediately updates the production plan.

While different functions in PPC closely interact against each other, they tend to be managed

separately. For example, Yeh (1997) pointed out that the calculation of requirements such as

master production scheduling (MPS) and material requirements planning (MRP) is separated

from the phase of capacity requirements planning (CRP) in the production planning with

MRP /MRP II. They are not integrated. The second point is achieved by the use of so-called

advanced planning system CAPS) software. For a supporting software package, SyteAPS™

from SYMIX Japan is employed. Notice that an APS alone does not assure successful

scheduling. APPCS provides an effective way for scheduling with APS. The third point is the

primary feature of APPCS. Suppliers and customers inevitably make changes after the

purchase/customer orders are placed. This is a practical situation, since an important machine

or person in a supplier could not be available as scheduled, and alternatively, a customer

wants to change the requirements even with additional payment. In such a case, advance

notification is usually possible, and also such notification seems to bring better results if it

could be used properly. Neither a time bucket nor advance notification is incorporated in

Yeh's scheduling method.

III

In the second part, a model of agile production planning and control (APPCM) is

described. A model for product data management and planning had been available in Scheer

(1994). The formulation of APPCS shows an augmentation so that APPCS is possible. The

formulation of APPCS is described by the universal modeling language (UML) and illustrated

by class diagram, statechart diagram, and sequence diagram.

In the third part, MDGA is proposed to solve dynamic flexible scheduling (DFS) problem

and is developed for optimal scheduling to replace SyteAPS in APPCS. A DFS problem is to

achieve a specified goal for given product data, possible resource flexibility, and

work-in-process (WIP) inventory. In application of GA to optimization problems, the

performance of the algorithms is largely affected, in general, by how to represent genes and

how to reproduce a new generation of genes. In MDGA, the gene representation of a DFS

problem is defined as an operation for a part with specified resource and WIP inventories. A

chromosome is a sequence of such genes, which can be transformed into a set of tasks

deployed in a Gantt chart. In other words, a chromosome corresponds to a feasible schedule

for the DFS problem. For the reproduction process, minimal generation gap (MGG) approach

(Yamamura et aI., 1996) is employed. Through the combined use of MGG and demand-wise

crossover called demand crossover, MDGA enables one to find a better and feasible schedule

for the problem. For a set of DFS problems of reasonable size, the exact optimal solutions are

generated by exhaustive search of complete enumeration. These exact solutions are then

compared with the corresponding results obtained by MDGA, demonstrating the accuracy of

the MDGA approach. Numerical results for applying MDGA to usual job shop scheduling

problems are also exhibited, showing the effectiveness of MDGA at a satisfactory level. Some

suggestions concerning the use of MDGA for solving DFS problems are provided in the end.

IV

Contents

Acknowledgements ... I

Abstract .. III

Contents .. V

Acronyms ... IX

List of Figures .. XI

Figures .. XI

Tables ... XIII

1 Introduction .. 1

1.1. Production Planning and Control ... 2

1.2. Problem Formulation ... 3

1.3. Outline of the Dissertation ... 5

2 Production Planning and Control System .. 9

2.1. Introduction .. 9

2.2. Production Planning and Control Model .. 11

2.2.1 Data Model .. 12

2.2.2 Behavior Model ... 13

2.3. Model of Traditional Inventory Control. .. 15

2.3.1 Data Model ... -....................................... 15

2.3.2 Behavior Model ... 16

2.3.3 Mapping from TICM to PPCM ... 19

2.4. Model of Material Requirement Planning ... 20

2.4.1 Master Production Scheduling .. 21

2.4.2 Material Requirement Planning .. 23

2.4.3 Capacity Requirement Planning .. 26

2.4.4 Short-term Scheduling .. 27

2.4.5 Production Control .. 29

2.4.6 Mapping from MRPM to PPCM ... 30

2.5. Summary .. 31

3 Agile Production Planning and Control System .. 33

3.1. Introduction .. 33

3.2. Architecture of APPCS .. 36

V

3.2.1 Product Data .. 36

3.2.2 Net Requirement Planning and Scheduling .. 37

3.2.3 Procurement .. 41

3.2.4 Production Execution and Control. ... 42

3.3. Dealing with Changes .. 44

3.3.1 Supply Uncertainty ... 44

3.3.2 Demand Uncertainty ... 46

3.3.3 Combining Advance Notification with Safety Buffer. .. 47

3.4. Application of the APPCS .. 49

3.4.1 Procedure .. 49

3.4.2 Simulation Design ... 49

3.4.3 Simulation Result .. 51

3.5. Summary .. 55

4 Model of Agile Production Planning and Control ... 57

4.1. Introduction .. 57

4.2. Data view ... 58

4.3. Constraints ... 61

4.4. Behavior view .. 64

4.4.1 State Transition of a Job .. 64

4.4.2 Sequential Flow of a Demand ... 66

4.4.3 State Transition of Procurement Job ... 68

4.5. Mapping to PPCM and Comparing with MRPM ... 69

4.6. Testif)ring APPCM ... 71

4.6.1 Simulator ... 71

4.6.2 Instance of APPCS .. 71

4.7. Summary .. 74

5 APPCS Optimization ... 75

5.1. Introduction .. 75

5.2. Rescheduling Capability of APPCS ... 78

5.3. Dynamic Flexible Scheduling Problem ... 81

5.3.1 Definitions and Notations ... 81

5.3.2 Problem Formulation .. 86

5.4. Genetic Algorithm with MGG and Demand Crossover ... 92

5.4.1 Encoding ... 92

5.4.2 Initialization .. 93

5.4.3 Reproduction ... 94

5.4.4 Generation Alternation .. 96

5.4.5 Correctness and Effectiveness ... 97

VI

5.5. Experimental Analysis ... 100

5.6. Discussion .. 103

5.7. Summary .. 104

6 Conclusion and Future Research .. 105

6.1. Conclusion ... 105

6.2. Future Research .. 107

References .. 109

Appendixes .. 113

Appendix A: UML Model ... 113

A.l: Model Management .. 113

A.2: Use Case Diagram ... 114

A.3: Class Diagram ... 115

A.4: Collaboration Diagram .. 118

Appendix B .. 121

B.l: Methods of Resource Class .. 121

B.2: Methods of Job Class ... 122

B.3: Methods of Demand Class ... 124

Appendix C .. 127

C.l: The Total Number of Legal Permutations on Requirements in Rq 127

C.2: The Number of Requirement Aggregations for a Sequence of Requirements 127

C.3: The Number ofWIP Allocations .. 128

List of Papers ... 129

Journal Papers .. 129

Conference Papers .. 129

Discussion Papers ... 0-< 130

VII

VIII

Acronyms

APPCM

APPCS

APS

BOM

BOMfr

CRP

DFS

EDD

EOQ

ERP

FILO

lIT

JSS

LFL

LOX

MDGA

MGG

MRP

MRPII

MRPM

MPS

NDC

POM

PPC

PPCM

rMGG

SGA

SOP

SPT

TIC

TICM

Model of Agile Production Planning and Control

Agile Production Planning and Control System

Advanced Planning and Scheduling

Bill-of-Materials

Bill-of-Manufacturer

Capacity Requirements Planning

Dynamic Flexible Scheduling

Earliest Due Date

Economic Order Quantity

Enterprise Resource Planning

First-in-Last-out

Just-in-Time

Job Shop Scheduling

Lot-for-Lot

Linear Order Crossover

Genetic Algorithm with minimal MGG and Demand crossover

Minimal Generation Gap

Material Requirement Planning

Manufacturing Resource Planning

Model of Material Requirement Planning

Master Production Scheduling

N -Demand Crossover

Production and Operations Management

Production Planning and Control

Model of Production Planning and Control

roulette Minimal Generation Gap

Simple (Standard) Genetic Algorithm

Sales and Operation Planning

Shorted Processing Time

Traditional Inventory Control

Model of Traditional Inventory Control

IX

TOC

UML

WIP

Theory of Constraints

Universal Modeling Language

Work-in-Process

x

List of Figures

Figures

Fig. 1.1: Flows of production planning and control system ... 2

Fig. 2.1: A logistics package and the contained sub-packages .. 11

Fig. 2.2: The production planning and control package and its contained models 12

Fig. 2.3: A class diagram of PPCM .. 13

Fig. 2.4: A use case diagram ofPPCM .. 14

Fig. 2.5: A class diagram ofTICM ... 16

Fig. 2.6: Collaboration diagrams of traditional inventory control model 17

Fig. 2.7: A class diagram ofMRPM ... 22

Fig. 2.8: Collaboration diagrams of material requirement planning modeL 23

Fig. 2.9: Two ways of determining leadtime for a planned order in MRP 24

Fig. 2.10: Capacity profiles of work center X .. 27

Fig. 2.11: A set of jobs fitted in a Gantt chart forms a schedule 28

Fig. 3.1: An example of product data containing part, operation, work center, resource,

and shift .. 36

Fig. 3.2: Schedule-based production planning of APPCS _ 37

Fig. 3.3: Result of planning and scheduling ofjobj1 .. 38

Fig. 3.4: Result of net requirement planning and backward scheduling of demand d1 ... 40

Fig. 3.5: Result of net requirement planning and forward scheduling of demand d1 40

Fig. 3.6: A result of procuring raw material e by purchase order sl 41

Fig. 3.7: State changes of jobs related to demand d1 by some events 43

Fig. 3.8: Procedure of rescheduling against supply uncertainty 45

Fig. 3.9: The rescheduling results for (a) supply time uncertainties and (b) supply

quantity uncertainty .. 46

Fig. 3.10: (a) The jobs affected and cancelled by a demand quantity uncertainty, (b)

rescheduling result for the uncertainty ... 47

Fig. 3.11: Cases of safety buffers against supply uncertainties 48

Fig. 3.12: Distribution of evaluation variables of the simulation result (lb _ htu: using

safety leadtime against high time uncertainty, sb _ htu: using safety stock against

XI

high time uncertainty) .. 51

Fig. 3.13: Service level under supply time/quantity uncertainty (xx_yzz: using xx buffer

against y level zz uncertainty; xx='1b': safety leadtime, xx='sb': safety stock; y='h':

high, y='m': medium, y='l': low; zz='tu': time uncertainty, zz='qu': quantity

uncertainty) .. 52

Fig. 3.14: Service level under demand time/quantity uncertainty (xx_yzz: using xx buffer

against y level zz uncertainty; xx='lb': safety leadtime, xx='sb': safety stock; y='h':

high, y='m': medium, y='l': low; zz='tu': time uncertainty, zz='qu': quantity

uncertainty) .. 53

Fig. 4.1: A class diagram of APPCM ... 58

Fig. 4.2: State chart of a job ... 65

Fig. 4.3: Pseudo code of Demand.planningScheduling() for net requirement planning

and scheduling a demand ... 66

Fig. 4.4: Three possible sequences of executing net requirement planning and backward

scheduling .. 67

Fig. 4.5: The instances of APPCM for demonstrating how APPCS works 73

Fig. 5.1: (a) Product data of part 'F' and (b) a schedule of demand 'dl' shown by Gantt

chart .. 79

Fig. 5.2: The schedules that achieve (a) minimum makespan, (b) minimum processing

time, (c) maximum service level, and (d) a weighted-sum 80

Fig. 5.3: A schedule in terms of terminologies ofDFS problem 82

Fig. 5.4: (a) Legal sequences of requirements, (b) sequences of baskets, (c) possible

resource assignments for a sequence of baskets, (d) possible WIP allocations for a

set of requirements ... 88

Fig. 5.5: Procedures of production planning and scheduling ... 90

Fig. 5.6: Results of (a) backward scheduling, and (b) forward scheduling 91

Fig. 5.7: The mapping ofDFS problem to the GA encoding ... 92

Fig. 5.8: Procedures of MDGA initialization ... 93

Fig. 5.9: The reproduction operators ofMDGA .. 95

Fig. 5.10: Procedures of generation alternation with rMGG ... 96

Fig. 5.11: Experiment data of (a) product data, (b) No. of demands, and (c) resource

flexibility .. 101

XII

Tables

Table 2.1: Model elements mapping from TICM to PPCM ... 19

Table 2.2: Material requirements plan for a part .. 20

Table 2.3: Model elements mapping from MRPM to PPCM ... 30

Table 4.1: Model elements mapping from APPCM to PPCM ... 69

Table 4.2: A comparison between APPCM and MRPM .. 70

Table 5.1 : Result of the exhaustive search ... 97

Table 5.2: Comparison of MDGA with Croce's GA .. 98

Table 5.3: The best and statistical results of the experiment. ... 102

XIII

XIV

1 Introduction

The purpose of this dissertation is to provide a new conceptual scheme for the integrated

production planning and control (PPC), called agile production planning and control system

(APPCS), along with development of a novel genetic algorithm (GA) for optimal scheduling,

called genetic algorithm with minimal generation gap and demand crossover (MDGA), which

is quite useful for implementing APPCS.

PPC is a system that has functions of planning, execution, and control on elements of

material and resource. The functions of PPC and its trends are shown in section 1.1. APPCS

should implement the basic functions of PPC to be a system of it. We focus on five

requirements to accomplish the purpose of this dissertation. The five requirements are

enumerated and explained in section 1.2.

The contents of this dissertation are organized into 3 parts to meet the five requirements.

In the first part, we propose the concept of APPCS, which has three characteristics.

1. Production planning and scheduling is made once a planning cycle. Customer orders

accumulated during the previous cycle are incorporated at a time in the planning and

scheduling for the current cycle.

2. Scheduling and capacity planning are integrated as a function to produce a feasible

production plan.

3. Advance notifi·cation of changes is possible. Once a change is reported, APPCS

immediately updates the production plan.

Secondly, in order to formulate the concept and mechanism of APPCS, we describe a model

of agile production planning and control (APPCM) by using universal modeling language

(UML). Thirdly, since the current advanced planning system (APS) software seems to have a

large room in improvement, we propose a novel genetic algorithm to have a quasi-optimal

production plan for APPCS. Outlines of the dissertation that contains these parts are shown in

section 1.3.

1

1.1. Production Planning and Control

The definition of production planning and control (PPC) varies across the ages. The science of

manufacturing planning and control began in the 1880s with the studies of Federick Taylor

and other engineers. The definition of PPC might be the improvement of efficiency and moral

of human labor in industry. In the 1960s, better customer satisfaction, higher profits, and

lower capital investment are identified as the important objectives of manufacturing, and the

definition ofPPC became the proper management of inventory to optimize those objectives.

In the 1970s, the development. of manufacturing planning and control systems was

progressing rapidly, and computers and MRP systems were employed to provide a more

accurate date on schedules. These focused some managers on the need for accurate data, valid

master plans, and the value of sound execution. Vollman (1997) defines production planning

and control as the system provides information to efficiently manage the flow of materials,

effectively utilize people and equipment, coordinate internal activities with those suppliers,

and communicate with customers about market requirements.

"Materials", "resources", and "time" are internal elements, "customers" and "suppliers" are

external roles, and "planning", "execution", and "control" are internal functions that are

hidden in the definition. In other words, PPC is a system that has functions of planning,

execution, and control on elements of material, resource, and time to communicate with

customers and suppliers.

Customer

Goal, Policy, Judgement

Management

Fig. 1.1: Flows of production planning and control system

Fig. 1.1 shows the flows of PPC system, in which a hollow-arrow line denotes a material

flow, a solid-arrow line an information flow, a rectangle a role, and an ellipse a function.

Planning is the activity of transforming customers' orders into plans, each of which is a

2

requirement for a material that is planned to be manufactured by a resource for a period of

time before a finish time. Execution is the activity of converting plans into reality. It releases

production orders to shop floor and purchase orders to suppliers, accepts the reports of

production and delivery, and reports the production result to customers. Control is achieved

by comparing execution to plans, detecting significant deviations, reporting them to the

proper persons and taking prompt corrective actions.

By applying the PPC system, however, problems happened in the 1980s that many

manufacturing companies had much more capital tied up in inventory than they needed. The

extra stock is used as safety stock to protect from changes. The source and reason of the

changes are the saturation and globalization that make the increasingly fierce global-scale

competition. To keep the extra stock against an unpredictable change is not wise. The

importance of short leadtime and flexibility of manufacturing became clear. For example,

just-in-time (JIT) system that asks a plant to always kaizen itself against changes was

successful in shortening safety leadtime and decreasing safety stock while satisfying its

customers.

Everything is changeable except for the change itself. The capability of handling changes

is a prerequisite of a PPC system as illustrated in Fig. 1.1 with a '7' mark. Accordingly, the

definition of PPC might be modified as a system that has functions of planning, execution,

and control on elements of material, resource, and time to communicate with customers and

suppliers, and deal with "change".

1.2. Problem Formulation

In this dissertation, we focus on the following five requirements to formulate the problem.

1. To capture both practical and detailed complexity of "real PPC" by using the structurally

same product data with a modem enterprise resource planning (ERP) package.

2. To invoke production planning by a set of customer orders once a planning cycle

(time-bucket approach).

3. To take into consideration work-in-process (WIP) while making a production plan.

4. To incorporate the changes from customers and suppliers as well as WIP in re-planning

the production.

5. To provide a goal-oriented optimal production plan.

The product data that is actually used in commercially available ERP packages such as

SAP R/3 and SyteAPS™ contains parts, bills-of-materials (BOM), routings, work centers, and

resources. Finished product, assembly, and raw material are the types of part. BOM is a term

used to define a request-supply relation between parts. A routing is a sequence of operations

3

to make a part. A work center that enrolls some resources is assigned to an operation, and the

operation can be processed by one of the resources in the work center. The first requirement

indicates that the product data must be used to produce a feasible production plan. In other

words, a feasible plan can only be generated on a basis that product data is well defined and

estimated.

In the second requirement, time-bucket approach and real-time approach are the two

alternatives considered in production planning. By applying real-time approach, which

invokes production planning as soon as a customer order is placed, a customer order is opened

earlier and, thus, the more flexible production plan can be prepared for the customer order.

However, more purchasing cost due to some additional orders must be paid and more

discounts for ordering in bulk cannot be earned if real-time approach is applied in place of

time-bucket approach that invokes production planning once a planning cycle for a set of

customer orders accumulated during the previous cycle. Both approaches should be provided

in the production planning and control system to deal with the various requirements.

The third requirement stresses the importance of considering WIP in producing a feasible

production plan. A scheduled receipt that has not yet arrived at an inventory location is

considered as a WIP. As soon as the scheduled receipt is completed, the stock on hand is

updated to reflect the amount of completed part. So, in other words, a WIP will be the stock

on hand at a future point of time, and consequently it can be scheduled to be a material input

after the time point. Since some necessary workloads in a production plan can be marked as

executed if some appropriate WIP is used instead, getting advantage of WIP is regarded as a

way to produce a flexible production plan.

The fourth requirement demands for the mechanism of dealing with changes. An

unpredictable change can make a feasible schedule infeasible. Suppliers and customers

inevitably make changes after the purchase/customer orders are placed. This is a practical

situation. An important machine or person in a supplier could not be available as scheduled.

Alternatively, a customer wants to change the requirements even with additional payment. We

have mentioned in the previous section that other than material, resource, and time, change

has became another important factor of making and evaluating a production plan. In case of

any change, the production plan in execution should be modified according to the change.

Furthermore, some follow-up actions should be taken with regard to the new production plan.

The last requirement is natural and straightforward. To maximize the profit and minimize

the loss are the goals of running a business. For example, maximization of service level is the

goal specified to maximize of the profit, and the minimization of makespan and tardiness are

the goals of production to partially minimize the loss. To provide a goal-oriented optimal

production plan is the responsibility of a production planning and control system.

4

1.3. Outline of the Dissertation

This dissertation has the following structure.

[Chapter 2] Model of production planning and control system

This chapter provides general issues of production planning and control (PPC) system.

PPC has evolved many systems, such as traditional inventory control, material requirement

planning (MRP), just-in-time (JIT) system, and theory of constraints (TOC), etc. The system

has its strengths and weaknesses. To understand the essence of PPC helps choosing and

establishing successful production management system. This chapter provides an abstract

model of production planning and control (PPCM) which is described by universal modeling

language (UML) to define the core of PPC. PPC has functions of planning, execution, and

control on elements of material, resource, time, and change to communicate with customers

and suppliers. In the abstract model, the functions are defined on a set of data classes and their

associations. The system that implements PPC must provide a realization of the modeling

elements of PPCM to ensure that the basic functions of PPC are satisfied. If the modeling

elements in PPC are completely satisfied by a system that implements PPCM, then the system

is called a complete PPC system. Traditional inventory control system is not a complete PPC

system. MRP system is shown to be a complete PPC system. PPCM can be viewed as a

description, reference and verification for a system that implements PPC

[Chapter 3] Agile Production Planning and Control System

An agile production planning and control system (APPCS) is proposed. It allows us agile

re-scheduling upon unexpected events. It executes schedule-based planning in the sense that

scheduling is tightly connected with net requirement planning and capacity requirements

planning. APPCS does precise scheduling with so-called an advanced planning system for the

set of demands that are accepted in the planning cycle. It produces a feasible production plan

on a basis of product data. After releasing the production or purchase orders, notification to

change the schedule may arrive from suppliers or customers in advance of due date. Based on

the notification, APPCS does re-scheduling in accordance with the then situation. Safety

leadtime in purchase orders and safety stock in raw material are used in APPCS to absorb the

effects caused by sudden changes. As an example of implementation, it is applied to a

fictitious and typical factory with variety of products. The simulation result shows that

planning with notification is effective, and that notification has the similar effect with safety

leadtime.

5

[Chapter 4} Model of Agile Production Planning and Control

This chapter provides a UML model of APPCS. The proposed model of APPCS satisfy

abstract model of production planning and control (PPCM) is thus a complete PPC system.

Beside that, it makes the immediate planning and scheduling possible. In order to testify the

model, both instance of the model and its implementation in a simulator are shown.

[Chapter 5} APPCS Optimization

A novel genetic algorithm with minimal generation gap and demand crossover (MDGA) is

invented to replace SyteAPS and as an augmentation of APPCS to search for a production

plan that meets the goals. The scheduling problem is defined as a dynamic flexible scheduling

(DFS) problem, in which the concept of operation requirement and task are used. An

operation requirement is a manufacturing requirement for an operation of a part. Customer

orders are converted to operation requirements based on product data during production

planning. A task is a scheduling result of operation requirements. An operation requirement

becomes a task if the responsible resource is specified, and both planned start date and finish

date are set.

An operation requirement is represented by a gene in MDGA, and a sequence of the

requirements forms a chromosome. MDGA reproduces a population of chromosomes with the

principle of minimum generation gap (Yamamura et at, 1996) instead of simple tournament

selection used in standard genetic algorithm (GA). In general, a sophisticated reproduction

(crossover) method is needed to solve an optimization problem with many constraints by GA.

Some proposed reproduction processes in standard GA, such as one-point crossover and

two-point crossover, are inefficient because they tends to produce infeasible offspring. Thus

by considering the structure of constraints, MDGA uses newly proposed specific crossover,

called demand crossover, so that the crossover process produces only feasible offspring.

For a set ofDFS problems of reasonable size, the exact optimal solutions are generated by

exhaustive search of complete enumeration. These exact solutions are then compared with the

corresponding results obtained by MDGA, demonstrating the accuracy of the MDGA

approach. The exhaustive search also shows the difficulty in solving DFS problem. Numerical

results for applying MDGA to usual job shop scheduling problems are also exhibited,

showing the effectiveness of MDGA at a satisfactory level. Finally, since MDGA has many

parameters, it is examined how they effect on solution-search process. Some suggestions

concerning the use of MDGA for solving DFS problems are provided in the end.

[Chapter 6} Conclusion and Future Research

The results of this dissertation are summarized. Furthermore, some future research topics

6

are discussed.

7

8

2 Production Planning and Control
System

2.1. Introduction

In this chapter, a model of production planning and control (PPC) is proposed to be an

abstract model of all PPC systems including traditional inventory control (TIC) and material

requirement planning (MRP), etc. The abstract model that defines the basic functions on the

data classes and associations is simple and easily understandable.

PPC has been developed from the traditional inventory control, and evolved a lot of

applications to respond to the various product mixes and process patterns. The evolution

began with the scientific management developed to increase the efficiency of human labor in

industry in the 1880s.

Before MRP, which was first developed by Joseph Orlicky in IBM, got a tremendous

boost in 1972, when some techniques of TIC were widely adopted by many manufacturing

companies. The techniques such as economic order quantity (EOQ) and statistical reorder

point help determining when and how many parts to make to achieve the lowest cost by

considering the factors of cost and demand rate. Orlicky and the other originators of MRP

recognized that the TIC is much better suited to final products than components.

Rather than a production planning and control system, TIC is better to be positioned as a

forecasting system, since it predicts the future independent requirement, but neglects planning

dependent requirements and resource capacity. While on the other hand, MRP has been

growing from an algorithm of calculating net requirement to a hierarchy of modules (MRP II)

of long-term forecast, aggregate production planning, master production scheduling, material

requirements planning, capacity requirements planning, and shop floor scheduling and

control.

Just-in-time (JIT) , a distinctive style of manufacturing considered by Taiichi Ohno and

9

successfully applied to Toyota from 1945, places emphasis more on "control" than "planning".

In MRP, releases into the production line are triggered by the schedules. As soon as a job is

completed at a work center, it is pushed to the next work center. Adversely, in lIT, production

is triggered by a demand. When a part is removed from the inventory, the last work center

producing the part is given authorization to replenish the part. MRP plans customer due dates,

but has to respond to a change. lIT directly responds to changes, but must accommodate

customer due date by setting more kanbans or using overtime. lIT system is well suited to

repetitive manufacturing environment in which discrete parts are produced at a fairly steady

flow rate (Hopp and Spearman, 2000).

MRP plans material requirements first and then resource capacity under the assumption

that a resource has infinite capacity. The assumption may lead to bottlenecks during actual

production. Due to that the bottleneck determines the throughput of the whole production

system, theory of constraints (TOC) prefers to plan first the resource that causes bottleneck

during production planning and scheduling.

Every system has its success story, but it also bears some criticisms of its weakness and

inadequacy. To choose a proper production planning and control system is vital to the success

of production management. In order to make such decision, one should know the essence of

production planning and control. There are so many systems and applications developed so

far for the purpose of production planning and control. It is easy to get lost in those systems.

No matter how the system evolves, the basic concept and elements of production planning

and control remains the same. In the next section, an abstract model of production planning

and control (PPCM) is presented by applying universal modeling language (UML), in which

the interface, data structure, and functions are defined.

PPCM is the abstract model of TIC, MRP, lIT, TOC, and agile production planning and

control system (APPCS). In other words, these systems provide a realization of the abstract

model. Section 2.3 and 2.4 show that how functions and data classes are realized by TIC and

MRP, respectively. A brief summary is given in section 2.5.

10

2.2. Production Planning and Control Model

Production planning and control nl0del (PPCM), an abstract model of all production planning

and control (PPC) systems, is represented by a data model and a behavior model. A package

in UML is a grouping of model elements. The description and relationship among the model

elements are explained in Appendix A.l. PPC package is a sub-package of the logistics

package, which is again a sub-package of, let's say, the enterprise package. All the packages

are arranged in a hierarchy. For example, as shown in Fig. 2.1, the packages including

production planning and control package, inbound package, outbound package, etc., together

with their associations are used to express the logistics package.

Logistics
Package

Production
./ Planning and

«.a ... c .. c ... ~.~s-» Control Package \.
«access»

Inbound
Package

Other
Packages

Outbound
Package

Fig. 2.1: A logistics package and the contained sub-packages

Fig. 2.2 shows that production planning and control model (PPCM), traditional inventory

control model (TICM), material requirement planning model (MRPM), and agile production

planning and control model (APPCM) are included in production planning and control

package. These models together with their associations describe a view of the package.

The core of production planning and control is described in PPCM, and it is an abstraction

of TICM, MRPM, and APPCM. In UML, an abstraction is a relationship that relates two

models that represent the same concept at different levels of abstraction. The realization

abstraction relationships indicate that TICM, MRPM, APPCM, and the future models of

production planning and control are required to support all of the properties that PPCM

declares.

A model captures a view of a physical system. A model contains data elements, behavior

elements, and their mutual relationships. The model of a complex system itself can be very

complicated and hard to understand. To solve the difficulty, a diagram is used to show some

11

of the elements to describe a concept, a function, or an interface with the external elements. In

UML, class diagram presents only data elements, use case diagram shows only behavior

elements and their associations with external elements, and collaboration diagram contains

some data elements and behavior elements together with their links to explain a function.

Production Planning and
Control Package

n

Traditional
Inventory

Control Model
(TICM)

Production Planning
and Control Model

(PPCM)

Material
Requirement

Planning Model
(MRPM)

Agile Production
Planning and

Control Model
(APPCM)

Fig. 2.2: The production planning and control package and its contained models

A class diagram shown in Fig. 2.3 and a use case diagram shown in Fig. 2.4 are used to

depict PPCM. The notations and descriptions about the elements used in a use case diagram

and a class diagram are provided in Appendices A.2, and A.3, respectively.

2.2.1 Data Model

PPCM is presented from the data view through a class diagram, which classifies the data used

in PPCM. Part, epoch, and resource are the three basic elements which must be determined

during production planning. In the class diagram, the Part class represents a set of items

used in a plant either for production or procurement, the Epoch class expresses a set of

points in the time-axis, and the Resource class is the set of machines and labors that can take

part in manufacturing.

The Demand class is an abstraction of demands from either customer orders or

forecasting. An attribute of quantity and links of part: Part and dueEpk: Epoch must be

specified when creating a demand. A link can be viewed as a reference key pointed to another

object of a class. For example, part is an attribute of the Demand class, and it is also an

object in the Part class.

The Task class, which is also an association among Part, Epoch, and Resource classes,

12

is to represent a set of tasks generated in PPC. A task (tsk: Task) is a planned manufacturing

requirement (tsk.quantity) for a part (tsk.part:Part) which is processed by a resource

(tsk.resource: Resource) for a length of time (tsk.processTime) ending at tskjinsihEpk: Epoch.

A task can also be a procurement requirement for a raw material without specifying a

resource.

The SatisfY association between the Demand class and the Task class indicates that a

demand can be supplied by a task, but a task can be generated for supplying more than one

demand. The TaskLink association with both ends connecting to the Task class denotes an

abstraction of request-supply relations between successor tasks and predecessor tasks in a

hierarchy of tasks.

Demand
0 .. * 1

quantity: Qty Epoch
dueEpk

1..* 0 .. *

1..* finishEpk

part 1
1..* 0 .. *

Part Resource
part resource

1
Task

Satisfy quantity: Qty 0 .. *
processTime: Time -=-=-- successor

O··t TaskLink
p reaecessor

Fig. 2.3: A class diagram of PPCM

2.2.2 Behavior Model

The behavior model of PPCM is depicted by using a use case diagram that is shown in Fig.

2-4. Use cases in the diagram show the main functions of a model. The functions and their

associations of PPCM with the actors are discussed in the following paragraphs.

Planning

The planning function transforms a request from a form into another equivalent form. For

example, aggregate planning compiles corporate strategies into yearly, seasonal, or monthly

requirements for some product families. Master production scheduling converts the aggregate

requirements into weekly requirements of specific product. Material planning transforms

product level requirements into component-level requirements and, at the same time, into

13

manufacturing requirements (production orders). The "planner" is responsible for executing

the planning function to transform all demands in Demand class into tasks in the Task class.

Execution

The execution function is to carry the planned requirements (tasks in the Task class) into

production or procurement orders. Production orders are released to "production manager",

and purchasing orders are sent to "purchasing manager" for execution. After the work of

production or procurement is completed, they should report the result of their works.

Control

The control function is to check whether or not the execution of production and

procurement exactly follows the plan. The differences between them might be caused by some

events, such as machine breakdown, quality difficulties with a particular batch, or the supply

problem of vendor. Once "production manager" or "purchasing manger" cannot handle a

change, the "planner" should be able to assess the impacts and provide a new schedule to

incorporate the change.

If there is a change occurred to a demand, the Satisfy association helps locating the tasks

that are affected by the change. If a task is delayed, the affected successor tasks are known by

the links of TaskLink association. Once a failure happened to a resource, the affected tasks

by the failure can be manifested by links of the Task association class.

~
Planner

Production Planning and
Control Model

Purchasing
Manager

Fig. 2.4: A use case diagram of PPCM

14

2.3. Model of Traditional Inventory Control

In this section, traditional inventory control is introduced. A model of traditional inventory

control (TICM) is proposed, and a mapping from TICM to production planning and control

model (PPCM) is provided to show how PPCM is realized by TICM.

Inventory is materials required for production, including raw materials, work-in-process,

finished products, and spare parts. The traditional inventory control, also called scientific

inventory control, replenishes an item's stock by applying theoretical, mathematical

procedures such as economic order quantity (EOQ) and statistical safety stock calculations

(Plossl, 1991).

Stock replenishment approach is based on the principle of having inventory items in stock

at all times, so as to make them available at the time of need (Oricky, 1965). According to the

goal setting of stock replenishment approach, a full stock level of an item is determined and a

replenishment order for the demand quantity is placed as soon as a demand arrives.

Another alternative of planning, called reorder point techniques, plans the requirements

during replenishment leadtime together with some safety stock to compensate for the

fluctuation in demand. A quantity Q of replenishment is made whenever the net stock level

drops to the order point (safety stock) s or lower. Many alternatives are proposed to determine

Q, such as the statistical order point, min/max, ordering up to level, and economic order

quantity, by taking into consideration the demand rate of items, holding cost, and ordering

cost, etc.

2.3.1 Data Model

Fig. 2.5 shows a class diagram that describes the static data structure of TICM. The notations

and descriptions related to the elements of class diagram are provided in Appendix A.3.

The Demand class inherits all of its attributes and the definition from the respective class

inPPCM.

Two approaches, stock replenishment and reorder point, are applied to items in the

traditional inventory control. An item is replenished by one of the approaches. The items

applying different approach have different attributes and behaviors. Consequently, two classes

SRItem and RP Item are used to represent the items applying stock replenishment approach

and reorder point approach respectively. Some attributes and methods related to items are in

common. The Item class is the super class of the two to represent the common attributes and

methods. The three item classes with two generation relationships are implemented to refine

the Part class defined in PPCM.

15

Demand
Item Requirement

0 .. * 1 1 0 .. *
+ quantity: Qty

- stockOnHand: Qty + replenishEpk: Epoch
+ shipEpk: Epoch item - stockPosition: Qty ,...

+ quantity: Qty
+ orderltem()

+ withdrawO + consumeStockO + replenishO
+ orderStockO
+ withdrawltemsO
+ replenishltemsO

.~
I I

RPltem SRItem

+ lotSize: Qty + full Stock: Qty
+ safetyStock: Qty

+ planning8yReplenish()
+ planning8yReorder()

Fig. 2.5: A class diagram ofTICM

The stock on hand is the stock that is physically on the shelf; it can never be negative. The

stock position of an item is defined by the relation

Stock position = (Stock on hand) + (Stock on order) - (Stock on shipment) (2.1)

The stock on order is stock that has been requisitioned but not yet received. The stock on

shipment is the stock that has been committed but not yet shipped. Stock position can become

negative (namely, if there are backorders). Both stock on hand (stockOnHand) and stock

position (stockPosition) are attributes of the Item class.

Since resource is not considered in the traditional inventory control system, the abstract

Resource class is not implemented in TICM, and the Requirement class in TICM partially

realizes the Task class in PPCM.

The association that is starting from the Item class to the Demand class indicates that an

item can be replenished by invoking many demands, and the inverse navigation reveals that a

demand can only request for one and only one item. Another association exists between the

Requirement class and the Item class. Multiplicities of the association explain that many

requirements can be planned for an item, but there is one and only one item for a requirement.

Since all requirements are generated for an item, the association is a composite.

2.3.2 Behavior Model

The behavior of TICM is described by a collaboration diagram of UML as shown in Fig. 2.6.

The diagram that contains instances, relationships, and interactions among the instances helps

16

understanding the behavior of an operation declared in a class. The notations and descriptions

related to the elements of collaboration diagram are described in Appendix A.4.

orderltem(qty, shipEpk) --. itm: Item ~
Sales

withdraw() --. dmd: Demand

9
~

Shippin
Manage r Manage r 1 [Time>dmd.shipEpk and

1: create(qty, shipEpk) -+ t2: con sumeStock() dmd.qUantity<itm.stockonhandl:+
withdrawStock()

dmd: Demand
{new} itm: Item

(a) (b)

~
p/anning8yRep/enish(repEpk) --. sri: SRltem ~

planning8yReorder(repEpk) --. rni: RPltem

Planner P lanner

1 [sri.stockPosition<sri.fUIiStock1:+
create(repEpk)

1 [rPLstockPosilion<rPLsafetyStoCk]+
create(repEpk)

2 orderStock()
reg: Reguirement

itm: Item ~

{new}

2 orderStock()
reg: Reguirement

itm: Item ~

{new}

(c) (d)

replenish() 1: replenishltems()
OR --. reg: Reguirement --. itm: Item

Purchasing
Manager

Production
Manager

(e)

Fig. 2.6: Collaboration diagrams of traditional inventory control model

When a customer order for an item (itm: Item) arrives, a sales manager send a message to

invoke the operation itm.order Item() of the item as shown in Fig. 2.6a. The operation creates

a new demand (dmd: Demand {new}) for the customer order and connects itm and dmd with

a linle The demand invokes the operation itm.consumeStock() through the link from dmd to

itm to deduct the requested quantity (dmd.quantity) from stock position of the item

(itm.stockPosition).

If it is time to ship the item (itm:Item) ordered by a demand (dmd:Demand) and stock on

hand for the item (itm.stockOnHand) is enough for the requested quantity (dmd.quantity),

then the shipping manager invokes the operation dmd. withdraw() , which triggers the

operation itm.withdrawStock() through a link from dmd to itm as shown in Fig. 2.6b. This

operation takes away the shipped quantity (dmd.quantity) from stock on hand of the item

(itm.stockOnHand).

A planner sends a message to trigger the operation sri.planningByReplenish() of an item

(sri: SRItem) applying stock replenishment as shown in Fig. 2.6c, after the planner found that

17

stock position of the item (sri.stockPosition) is lower than the full stock level (srifullStock)

that is determined beforehand. The operation generates a requirement req:Requirement{new}

to replenish the shortage (req.quantity =: srifullStock - sri.stockPosition) before an estimated

time (req .replenishEpk).

A planner can be a device that can detect the shortage and automatically send a signal to

invoke the replenishment. As shown in Fig. 2.6d, a planner sends a message to trigger the

operation rpi.planningByReorder() of an item (rpi:RPItem) applying reorder point approach

after the planner found that the stock position (rpi.stockPosition) is lower than the safety

stock level (rpi.saJetyStock) which is estimated for the item. The operation generates a

requirement req: Requirement {new} to replenish the quantity (req .quantity =: rpi .lotSize)

before an estimated time (req.replenishEpk).

After either approach creates a requirement (req: Requirement) for an item (itm: Item),

through a link from req to itm the operation itm.orderStock() of the item is invoked to

reflect the stock on order on the stock position by adding req.quantity to itm.stockPosition.

As soon as a requirement for an item is generated, it is released to production manager or

purchasing manager. They are called on to replenish a requirement (req: Requirement) for an

item (itm: Item) before req.replenishTime. As shown in Fig. 2.6e, They report their work by

invoking req.relenish() of the requirement, which immediately lunches itm.replenishItems()

of the item to reflect the replenished quantity on the stock on hand by adding req . quantity to

itm.stockOnHand.

18

2.3.3 Mapping from TICM to PPCM

Table 2.1 shows how TICM realizes PPCM by a correspondence of classes and functions

between the two models. Since resource is not implemented and no control is invoked to

respond to changes as shown in the table by the shaded regions, so traditional inventory

control is not a complete system of production planning and control.

Table 2.1: Model elements mapping from TICM to PPCM

PPCM Implementation ofTICM

19

2.4. Model of Material Requirement Planning

Material requirement planning (MRP) has been evolved from the initial version of Joseph

Orlicky (1975), whom many authorities regard as the father of modem MRP, through a

version called closed loop MRP (Vollmann et aI., 1997, Silver et aI., 1998), into enterprise

resource planning (ERP), in which MRP is embedded. Closed loop MRP contains capacity

planning and ranges widely from master production scheduling (MPS) to shop floor control. It

has been implemented successfully in many software system, and acts as a basic structure for

some new models, such as manufacturing resource planning (MRP II) by Oliver Wight (1984),

and manufacturing planning and control (Vollmann et aI., 1997) .The MRP we mentioned in

this section is closed loop MRP.

The logic of MRP is simple as shown in Table 2.2, where Gr" Srt, Skt, Nrt, POt, and Prt

present the values for the tth time bucket. Stock on hand provided by (2.2) shows the stock

when no replenishment is planned. Net requirement, shown by (2.3), is planned for the

shortage occurred when the planned order is not enough for the gross requirements.

Table 2.2: Material requirements plan for a part

PartP
Leadtime = 1 buckets
Ordering 201ic~: Lot-for-Iot

Time buckets (t) 0 1 2 3 4 5 6 7 8

Gross requirements (Grt) 30 30 20 0 70 30

Scheduled receipts (Srt) 0 30 20

Stock on hand (Skt) 30 50 20 -10 -30 -30 -100 -130

Net requirements (NrD a 0 0 10 20 0 70 30

Planned order receipts (POt) 10 20 0 70 30

Planned order releases (Pr,) 10 20 70 30

Supplying part of P (rate=2)

Gross requirements 20 40 140 60

A planned order is either a production order or a purchase order planned to satisfy the net

requirements, and the scheduled receipts are the planned orders that have been released but

not yet finished or received. To plan the net requirements without backorder, various

replenishment policies are provided to determine the replenishment lot under the constraint

(2.4). For example, (2.5) shows a lot-for-Iot strategy. A planned orders planned to be arrived

20

on t should be released no later than t-I as shown by (2.6). As shown in Table 2.2, the

released planned orders become gross requirements of the supplying parts.

(2.2)

Nrt =max{ 0, Grt -max{ Skt-I, O}}, for all t~ 1 (2.3)

t t

LPoi ~ LNri , for all t~ 1 (2.4)
i=l i=!

(2.5)

Prt = POt+l, for all t~ 1, where I indicates the leadtime (2.6)

A model of MRP (MRPM) is proposed and presented according to the following sections

of master production scheduling, material requirement planning, capacity requirement

planning, short term scheduling, and production control.

2.4.1 Master Production Scheduling

The input of MRP is from master production schedule (MPS), which is a requirement for end

items. Master production scheduling is a work to generate MPS by integrating customer

orders and forecasts demand management with sales plans from sales and operation planning

(SOP), and to utilize plant capacity effectively by rough-cut capacity planning. Demand

management makes customer delivery promises and resolves trade-offs between

manufacturing and market. SOP provides the best trade-offs among incomes (sales marketing

objectives), cost (manufacturing objectives), and investments (inventory/financial objectives).

A class diagram and a collaboration diagram ofMRPM are shown in Fig. 2.7, and Fig. 2.8,

respectively. In the class diagram, the Demand class is an abstraction of a group of demands

which are the outputs of demand management and SOP. A demand is a requirement (quantity)

for a part (part: Part) before a due time (dueTime). The due time here is represented by a time

bucket.

21

Demand

PartLink + dueTime: Bucket j1ink + quantity: Qty
+ reqPart: Part 0 .. *
+ supPart: Part 1 0 .. *

+ planningMPS()
+ rate: Otv +supLinkL- Part

0 .. * - level Code: Int
+part

0 .. 1

J'\ + leadtime: Bucket SatisfY
EndItem V {ordered} 1 +grq

+ getNextBucketO 1 0 .. * + levelCodingO GrossReq + setLevelCodeO
+ getLevelCodeO +part + due Time: Bucket
+ planningMaterialsO - quantity: Qty Capacity

~ Fulfill
,----- + period: Bucket + generateGrossReqO

0 .. * + addQuantityO

~ + workHour: Int
r--

+ getGrossReqO 1..*

~ ~
.. ~

~ +part 1 ~ . Exp o~lOn 1 Planned Order
WorkCenter {ordered}

+ quantity: Oty
0 .. * +operation

0 .. * + receiptTime: Bucket

~ ~ °t:
Operation

1 + release Time: Bucket
- oprNo: Int + getSchedl:JledReceiptO
+ setup Time: Bucket +operation

I 0,,'
+ schedulingO

1 .. * + processTlme: Bucket ~ ~
1 .. * +resource + qenerateWorkloadO Workload +plo

Resource + startTime: Bucket 1 .. *

+ finishTime: Bucket
0 .. * +workload 1

+resource

Fig. 2.7: A class diagram ofMRPM

Fig. 2.8a shows how the demands are transformed into a set of master production

schedules, each of which is viewed as a gross requirement for a finished product in MRP. A

gross requirement is represented by a quantity (quantity) of a part (part:Part) required on a

time bucket (dueTime). The gross requirements are grouped into a GrossReq class. A planner

planning MPS sends a message to trigger the operation (1 *)p/anningMPS() of a demand

(dmd:Demand), if an MPS (mps:GrossReq) has been created for other demands that have the

same values of part and dueTime with the demand dmd, then dmd.quantity is added to

mps.quantity by triggering the operation (i.1)mps.addQuantity(), and a new link between

dmd and mps is created (i.2). Otherwise a new gross requirement is created for the demand

dmd.

The association between the Demand class and the GrossReq class is very important for

the planner to trace the affected gross requirement when a change occurred to a demand, and

to show the affected demands when an MPS is delayed due to some internal changes caused

by, for example, machine breakdown.

22

2 1 *[i:=1 .. n]: planningMPS() A --.. dmd: Demand

Planner
i,1 [dmd.part = grq.part and /
dmd.dueTime = grq.finishTime]:~ /
addQuantity(dmd.quantity) {new}

i.2 [else]:
~reate()

1 *[i:=1 .. n]:
levelCodingO --.. : Endltem

Planner I
i,1: self.setLeveICode()... re Link

\
mps: GrossReq GrossReg{new} L3n [n=a,b, ..] I

i.2 U=1 .. m]:c=
reqPart.getLeveICode()

(a)

1 *[i:=1 .. a, sortby leveICode]: -...

~ planningMaterialsO

i.1 *U:=1 .. b]: t=getNextBucketO + c:::
Planner

[if exists supLink]: ...
supPart.setLeveICode()

supLink
(b)

Lj.S.m.1: createO--"
ngr: GrossReg

Lj.S*[m=1 .. d] {new}
gener~ossReq(npr

+l:;upPart ptl: PartLink Lj.4 * [k=c .. 1]:

prt:Part prt generate~kload(npo)

prt {n~w}

opr:Operation

opr
i.j.1: +

i.j.3

Q!.Q;. sr+=:getScheduledReceipts(t) [ifgr>sr]:~~
Lj.4.k.1 create(npo)+

{new}
PlannedOrder create(sr, gr)

Lj.2 gr:=getGrossReq(t)
[else]:

npo:PlannedOrder npo wkl:Wordload sr-=: gr ..- {new} {new} gm;. {new}

GrossReq
{new}

(c)
work 1 operation 1 workload * center : Capacity

available
: WorkCenter

operating *
: Operation

*
: Workload

1 operation ca aci workcenter

(d)

1 operation operation
: WorkCenter

operating *
: Operation

workload I *
1 I Warkeenle, 1 assigned released WorkCenter task * * 1 iob

enrolled
: Resource

responsible *
: Workload

scheduled
: PlannedOrder

1
Resourc Resource Task

(e)

Fig. 2.8: Collaboration diagrams of material requirement planning model

2.4.2 Material Requirement Planning

MRP recursively plans the dependent requirements of MPS. The relation between the

requirements is based on a set of request-supply relations between parts, which are modeled

as an association class (PartLink) as shown in Fig. 2.7. The attribute rate of a link

pti : PartLink from reqPart: Part to supPart: Part shows the number of supplying part

(supPart) required for one requesting part (reqPart). A set of such links starting from a

requesting part defines a bill of material (BOM) of the part.

There are two different ways to determine the leadtime of processing a planned order. One

way, which is called "leadtime scheduling" in SAp™, explores the structure of a routing,

23

estimates processing time of each operation by taking into consideration the lot size, and

reserves the capacity of a resource for the processing time. Another way, which is called

"basic date scheduling", regards the estimated leadtime of the part requested by a planned

order as the leadtime of the planned order without considering lot size. MRPM supports both

ways of scheduling. The two ways and their respective times are shown in Fig. 2.9, in which

part B is the supplying part of part A, and part A has two operations and part B has only one

operation.

Order release time of 8
Start time of 8-1

Finish time of 8-1
Order receive time of B
Order release time of A Finish time of A-1

Start time of A-1 Start time of A-2

ea Ime Ime

Order receive time of A
Shipping time

Lead time scheduling

If----part B---7~----part A-~ Basic date scheduling

Order release time of 8 Order release time of A Order receive time of A
Order receive time of 8 Shipping time

Fig. 2.9: Two ways of determining leadtime for a planned order in MRP

As shown in Fig. 2.7, leadtime is an attribute of the Part class which is used in basic

date scheduling. Moreover, the Operation class is an abstraction of operations needed to

manufacture a part. That the Part class is a composite of the Operation class indicates any

operation is included in one and only one part. An operation (opr: Operation) has the

attributes of operation number (oprNo), setup time (setup Time), unit processing time

(process Time) for calculating the total processing time, and processing work center

(wkCtr: WorkCenter). The attributes of the Operation class provides the information needed

to do leadtime scheduling. Operation number indicates the processing precedence of the

operations in a part. Usually, the operation with a smaller operation number must be

processed before the operation with a larger number.

A prerequisite for planning material requirements of a part is that all gross requirements of

the part must be known before the planning starts. To plan the parts in a top-down sequence is

a way not to violate the prerequisite. A level code is used to identify the position of a part in

the hierarchy of parts. The levelCode attribute of the Part class is to keep the level code for

a part. The end item that is not used as a component of any other part is assigned a level code

o as indicated by (2.7). The level code of the part except for the end item equals one plus the

maximum level code among its requesting parts as shown by (2.8).

24

(VprtEPart) if prt.reqLink=0 then prt.levelCode =0 (2.7)

(VprtEPart) prt.levelCode = Max rl.reqPart.leveICode + 1
rl E prt .reqLink

(2.8)

Fig. 2.8b shows the sequence and objects used in a collaboration diagram to assign a level

code to each part. The level coding process starts from assigning level 0 to end items. As

shown in Fig. 2.7, the Part class is a super class of the Endltem class.

The operation (1 *)edi.leveICoding() of an end item edi: EndItem is triggered to lunch an

operation (i. 1)prt.setleveICode() of its super object prt: Part through the generation link

from edi to prt. Then the operation (i.2)prt.getleveICode() of the part prt is invoked to

determine level code of the part by adding 1 to the maximum level code among its requesting

parts or setting 0 if there is no requesting part. Finally, the (i. 3 n)supPart.setleveiCode()

operation is invoked for each supplying link spl in prt.SupLink. This operation is a recursive

process in which many of such operations might be called through the links from a requesting

part to its supplying parts.

Fig. 2.8c shows the sequence and related objects to plan material requirements for each

part prt: Part in order of its level code with lot-for-Iot ordering policy by invoking operation

(1 *)prt.planningMaterials(), which transforms a set of gross requirements of the part prt

into (1) a set of planned orders for the part prt, (2) a set of workloads for each of the planned

order, and (3) a set of gross requirement for the parts supply to the part prt. The

plannedOrder class is an abstraction of the generated planned orders with attributes of order

quantity (quantity), receive time (receiptTime), and release time (releaseTime). A set of

workloads is generated for a planned order as a proclamation of the required capacities. The

Workload class is an abstraction of the workloads generated for all planned orders. A

workload is an interval of time, starting from startTime and ending at finish Time , for

processing an operation (operation) of the requested part of a planned order. Since all

workloads must be generated for a planned order, the PlannedOrder class is the composite of

the Workload class.

The operation invokes (i.t *)prt.getNextBucket() to loop each time bucket. In the t-th

loop, the operation invokes (i.j.l) getScheudledReceipts() of a planned order

pia: PlannedOrder whose planned release period is t to sum up the scheduled receipts sr, and

lunches (i.j .2)GrossReq() of a gross requirement grq: GrossReq to get the gross requirement

gr at time t. When gr>sr, a new planned order npo:PlannedOrder{new} supplement the

shortage npo.quantity (= gr-sr) by time npo.receiptTime (= t), and new links from the new

planned order npo to the gross requirement grq are created (i.j.3). The Fulfill association

is an abstraction of the links from planned orders to gross requirements such that the planned

25

orders are generated to meet the gross requirements.

If "basic time scheduling" is adopted, release time the planned order (npo.releaseTime)

will be (npo.receiptTime - prt.leadtime). If "leadtime scheduling" is performed, the

processing time is calculated by recursively invoking (i.jA*)generate Workload() of an

operation opr: Operation from the last operation to the first one through the links from prt

to opr with a parameter npo. The operation sends a message (i.jA.k.l) to create a new

workload wkl: Workload{new} , a new link from wkl to opr, and a new link from wkl to

npo. Let wkli be the workload of a planned order npo generated for the ith operation opri

of the part requested by the planned order. The finish time (jinishTime) of workload wkli is

set to be the start time (startTime) of the latter workload wkh+ 1. If there is no that workload,

then the finish time will be (receiptTime) of the planned order npo. The start time (startTime)

of the workload wkli is calculated by

wkli.startTime = wkli.finishTime -(opri.setupTime + npo.quantity x opri.processTime). (2.9)

Finally, the start time of the first workload wkl1 becomes the release time (release Time) of

the planned order npo.

A planned order npo generated for a part prt becomes a source of gross requirement to

its supplying parts. The operation (i.j.5*) ptl.supPart.generateGrossReq() is invoked

repeatedly through a link ptl:PartLink from the part prt to ptl.supPart to (i.j.5.m.l) create

a new gross requirement (ngr: GrossReq{new}) whose due time (dueTime) is npo.releaseTime,

and gross requirement (quantity) is (npo.quantity x ptl.rate), and a new link from the gross

requirement ngr to the planned order npo. The Explosion association is an abstraction of

the links from gross requirements to planned orders such that the gross requirements are

generated as inputs to the planned orders.

2.4.3 Capacity Requirement Planning

Capacity requirements planning (CRP) determines the required capacity through time at each

work center. No CRP is necessary for the parts running basic date scheduling. In the usual

approach of CRP, known as infinite loading, capacity constraints are ignored when developing

capacity profile. Fig. 2.10 shows a capacity profile of work center X with actual capacity and

required capacity.

Fig. 2.8d shows a collaboration diagram at specification level to generate a capacity

profile where both available capacity and required capacity are investigated. The available

capacity of a work center is estimated according to number of available resources and their

available work hours in the work center. The Capacity class is an abstraction of the available

26

work hours (workHour) of all work centers at all time buckets (period). The association

between the whole class (WorkCenter) and the part class (Capacity) provides the necessary

data to plot the available capacity on a capacity profile.

Actual capacity
Capacity

Work center X

Fig. 2.10: Capacity profiles of work center X

The association between the WorkCenter class and the Operation class indicates that a

work center can process many operations. The workloads planned to perform these operations

are known by the association between the Operation class and the Workload class. The two

associations among the three classes provide the needed data to plot the required capacity on a

capacity profile.

Fig. 2.10 shows that capacity problems occurred in period 5 and 6. All the workloads

planned at a period can be shifted forwardly or backwardly if the shift won't break down the

balance of other work centers. For period 5, the solution is simply shifting some workloads

ahead to period 4. However, the influence of the shift should be investigated.

The association between the Workload class and the PlannedOrder class shows the

planned order of a shifted workload, and other workloads of the planned order that also have

to be moved due to the shifted workload. Also the other planned orders which are either the

requesting or supplying planned orders related to the planned order needed to be adjusted.

Those planned orders affected are know by the two associations Explosion and Fulfill

between the PlannedOrder class and the GrossReq class.

The possible solution for period 6 are (1) working over time, (2) using subcontracting, or

(3) transferring resources from underutilized work center. If any of these solutions is not

possible, then master schedule may be revised and MRP run again until all the work centers

have a feasible capacity profile.

2.4.4 Short-term Scheduling

Short-term scheduling is to provide an actual start time and finish time for each planned order.

The planned orders are released to shop floor for in-house production and to suppliers for

purchasing according to the planned release time. A planned order is called a job after it was

27

released to the shop floor. Within house, a dispatch list contains the scheduled jobs is sent to

shop floor in the morning. The list suggests the sequence in which jobs are to be run on each

machine. There are many resources (machines) in a work center. Short-term scheduling

chooses a workable resource for each workload of a job and finally the actual start time and

actual finish time of the job are known.

To schedule a set of jobs is to fit workloads of the jobs in a Gantt chart. There are

thousands of ways to schedule those jobs. The most common and simplest way is to schedule

the jobs by a sequence, which is usually determined by some priority rules. The rules to

choose a job among the jobs in the dispatch list are EDD (earliest due date), SPT (shortest

processing time), etc. A result of short-term scheduling is shown in Fig. 2.11. No job can be

fitted in the occupied area of resources in a Gantt chart. Such way of scheduling is called

finite scheduling, which sets a detailed schedule for each job through each work center, and

explicitly accounts for limited resource capacity at each work center.

Resource
- --- --,- - - -- -j- -- - --1- - -- - - r-- - -- -r ---- --r- - - -- -,- -- - --,- -----1

Rl ~~';"";'...l i i I Job !-3 Iii :
------~-----~------~------~------~------~-----~------~------~

I I If!
I I I t I
1 I I I I
1 I I I I

R3 ---- -T---- -1- --j~b'I ~:i--,-) ~b-2~j- -,- -rj ~b- ;~:£--i-;---- --1
R4 ------I----i-:-i~b-2~2---I-:J~-b4{2--I-_r--j~-b:-i:4--1------1
R5 -- - ---1- -----,---- - -, -- -- - -r----

I
--rj~b i:i--,-T-----l------:

• • I I ! _____ -' ______ ..l ______ .l ______ L ______ L ______ L _____ -' ______ .l ______ J

9 10 11 12 13 14 15 16 17
Time

Fig. 2.11: A set of jobs fitted in a Gantt chart forms a schedule

A released job has a set of workloads that are generated in the stage of material

requirement planning, and adjusted in capacity requirement planning. The short-term

scheduling of a released job is to choose a resource and reserve an interval of time of the

resource for each workload of the job. That the workloads scheduled from the first operation

to that of the last operation of a job is called forward scheduling.

In Fig. 2.7, PlannedOrder, Workload, Operation, WorkCenter, and Resource are the

classes that used in modeling the short-term scheduling of a released job. Roles of there

classes are shown in Fig. 2.8e by a collaboration diagram to demonstrate the process of

scheduling. A workload (wkl: Workload) is planned based on an operation (opr: Operation),

the operation opr is assigned a work center (wkc: WorkCenter), and a resource

(res: Resource) enrolled in the work center wkc is selected to be responsible for processing

the workload wkl. The actual start time (startTime) and finish time (jinishTime) of the

workload wkl is known after it is fitted in the area belongs to the resource res in a Gantt

chart, in which some tasks have been scheduled. A scheduled workload is called a task that

will be realized in shop floor.

28

2.4.5 Production Control

The entire MRP process is carried out once per period (typically the period is one week). All

changes that have taken place since the previous regeneration are incorporated in the new run.

However, some changes such as additional order of an important customer or the delay in

arrival of raw material might have the potential for tremendous impact on the plant. In such

circumstances, a net change approach is used to incorporate such change on essentially a

continuous time basis. In the net change, the modification of the previous schedule is limited

to the affected part of schedules.

Assume a large customer order is completely canceled and net change is applied to the

change. As shown in Fig. 2.7, the demand is an instance of the Demand class. Through the

SatisfY association between the Demand class and the GrossReq class, the gross

requirement affected by the change can be identified. Subsequently, planned orders for the

gross requirement are known through the Fulfill association from the GrossReq class to the

PlannedOrder class. The gross requirements, moreover, supply to a planned order can be

traced by the Explosion association from the PlannedOrder class to the GrossReq class. If

a planned order has been released to shop floor, the in-processing job can be pegged and

stopped to avoid waste. Once a delay in the arrival of important raw material or machine

breakdown occurred, the affected demands can also be identified on the inverse direction of

classes and associations. Some action can be taken immediately to alleviate the damage

caused by those changes.

29

2.4.6 Mapping from]VIRPM to PPCM

Table 2.3 shows that how classes and function of PPCM are realized by classes and functions

of MRPM. All the modeling elements of PPCM are implemented, hence material requirement

planning (MRP) is regarded as a complete production planning and control system.

Table 2.3: Model elements mapping from MRPM to PPCM

PPCM Mapping by MRPM

Part Part; PartLink; Operation; EndItem;
Epoch It becomes a data type (Bucket) in MRPM.

n Resource WorkCenter; Resource; Capacity;
~ Demand Demand CJ)
CJ)
(I)

Task GrossReq; PlannedOrder; Workload; CJ)

Satisfy Satisfy
TaskLink Fulfill; Explosion;
Planning Material requirement planning is achieved by Endltem.leveICoding() and

Part.planningMaterials(). Capacity requirement planning is achieved by
Operation.generate Workload(). The planned orders in PlannedOrder is

i-rj
released to shop floor when it is release time. The released planned order

~ Gob) is transformed to a set of tasks by PlannedOrder.scheduling() at the
~
() shop floor. .-+-......
0 Execution A task is processed by the specified resource at the assigned work center ~ en

during the scheduled interval. After all tasks of a scheduled job are finished,
the finished parts are stocked and then supplied to other planned orders.

Control Satisfy, Fulfill, and Explosion are associations used to identify the affected
demands, gross re_quirements, planned orders, and tasks by a change.

30

2.5. Summary

Production planning and control model (PPCM) was defined as an abstract model of

traditional inventory control model (TICM) and material requirement planning model

(MRPM). The system that implements PPCM must provide a realization of the modeling

elements to ensure that the basic functions of production planning and control (PPC) are

satisfied. The system that completely implements PPCM is called a complete PPC system. We

have shown that TIC is not, but MRP is, a complete PPC system.

Demands are transformed into tasks by planning function. The tasks are executed by

releasing to production or procurement. Any change during execution is reported and

controlled by first identifying the possible damages brought about by the change and then

taking some effective actions to incorporate the change into the production plan.

Part, time (epoch), and resource are the three factors determined in production planning

and scheduling. Five classes (Part, Epoch, Resource, Task, and Demand) and two

associations (Satisfy and TaskLink) are used to define the basic factors and functions of PPC

system.

In TICM, resource is not planned; furthermore, it is extremely difficult to identify the

impact caused by a change and to revise a schedule because no link between demands and

requirements is maintained. Therefore, the traditional inventory control is not a complete PPC

system. In distinction from TICM, MRPM implements all elements of PPCM; MRP is thus

regarded as a complete PPC system.

No matter how production planning and control systems evolve, PPCM remains

unchanged. A new production planning and control system, agile production planning and

control (APPCS), is proposed in chapter 3 and a model of APPCS (APPCM) is presented in

chapter 4. We will show there how PPCM is realized by APPCM.

31

32

3 Agile Production Planning and
Control System

3.1. Introduction

This chapter proposes a production planning and control system, called agile production

planning and control system (APPCS), which has the following three characteristics:

1. A set of demands from customers is planned in a scheduling cycle. That is, a production

planning is made once a planning cycle.

2. Scheduling and capacity planning are integrated to produce a feasible production plan.

3. When customers change their request and/or suppliers cannot maintain planned supply,

with respect to date or quantity, they give advance notification before it happens. Upon

the arrival of such information, APPCS immediately updates the production plan.

The first point allows us to use a time bucket as a planning cycle. Since sales and

operations planning (SOP) and demand management are widely used with materials

requirements planning/manufacturing resource planning (MRP IMRP II), and since they

usually use the concept of a time bucket (Vollmann et al. 1997), so far developed expertise in

such planning activities is incorporated with APPCS.

MRP /MRP II is a widely used production planning and control system implemented in

commercially available enterprise resource planning packages so that production schedule at

work centers is also calculated. A bill of materials (BOM) of a part is used in the calculation

of net requirements and inventory. A routing of a part specifies necessary operations to make

the part from component parts, and then is used to calculate necessary time to do the

operations. Since the set-up and processing times of operations, together with possible parallel

operations, are specified, the total necessary time consumed by all operations can be precisely

calculated. Those planned operating times are deployed on the factory's calendar to make

production schedule.

33

As Yeh (1997) pointed out, in the production planning with MRP/MRP II, the calculation

of requirements such as master production scheduling (MPS) and MRP is separated from the

phase of capacity requirements planning (CRP). They are not integrated. BOMs and routings

of a part have complex hierarchical structures, which are mutually related. Therefore, in the

case that a resulted production plan should be changed to meet a condition on capacity,

production or purchase leadtime, or any kind of feasibility, it is difficult to see what the effect

will be if some portion of the resulted plan changes. That is, the separation between

production planning and CRP often leads to an unachievable situation.

Vollmann et al. (1997) also pointed out a similar drawback of MRP IMRP II. Then they

called for so-called a real-time production and planning system. Yeh (1997) proposed a

"schedule based scheduling", which is a kind of a real-time system. It uses a bill of

manufacturer (BOMfr) structure that is composed of the combined data of BOM, work

centers and routing, and then makes a production plan through "job-oriented finite capacity

scheduling". Two processes exist in the scheduling cycle. In phase 1, the priority order among

production jobs is decided, and a job to be scheduled is selected. In phase 2, the job is

scheduled in a backward and/or forward loading sequence, referring to operations in the

corresponding routing (Yeh 1997).

Yeh's scheduling method certainly provides a way of integrating scheduling and capacity

planning, and produces a feasible production plan. Nevertheless, a schedule needs to be

changed in response to a request from customers, suppliers, or both.

The second point is achieved by the use of so-called advanced planning system software.

We used SyteAPS™ from SYMIX Japan.

The third point is the primary character of APPCS. Suppliers and customers inevitably

make changes after the purchase/production orders are released. This is a practical situation.

An important machine or person in a supplier could not be available as scheduled.

Alternatively, a customer wants to change the requirements even with additional payment. In

such a case, advance notification is usually possible, and also such notification seems to bring

better results if it could be used properly. Neither a time bucket nor advance notification is

incorporated in Yeh's scheduling method.

When APPCS is used, the target service level of the whole production process can be

decided. Hegedus and Hopp (2001) proposed an optimal parameter setting algorithm for

purchase planning in production process. Based on the observation that recent large

manufacturers of electronics operate their production process stable with almost no

work-in-process (WIP) inventories, they modeled the whole production process as a single

machine. The main source of schedule disruption is suppliers in the research. APPCS also

uses a safety buffer only in purchase planning. Safety leadtime and safety stock for purchased

materials are possible safety buffers in this research. In order to decide the sufficient amount

of safety buffer to keep customers' due dates, simulation will be undertaken for various buffer

34

setting. Based on the graph that shows the relationship between buffer levels in purchase

orders and service levels, users of APPCS can find a suitable buffer level for target service

level.

The rest of the chapter has the following sections. In Section 3.2, the architecture of

APPCS is shown. In Section 3.3, the rescheduling of APPCS against advance notification

from customers and/or suppliers is proposed. A simulation method to decide suitable buffer

level for purchase orders is illustrated in Section 3.4. Conclusion is in Section 3.5.

35

3.2. Architecture of APPCS

3.2.1 Product Data

In a production planning and control system, parts are classified into three types: finished

products, assemblies and raw materials. Raw materials are procured externally and used to

manufacture assemblies. For a raw material, a procurement leadtime is estimated. Assemblies

are further devoted to manufacture a finished product or another assembly. Such vertical

relations each of which specifies a required number stem from a finished product or an

assembly to its component parts is called a bill of materials (BOM). A hierarchy of parts can

be constructed by applying recursively the request-supply relations defined in BOM.

H~~~~~~Y Operation :~[~ Resource Shift

[O+40n,20+40n], n=O, 1, ...

[20+40n,40+40n], n=O, 1, ...

(a)

part operation lead time setup time process time work center
a 1 1 0.5 wI

2 0 0.8 w2
3 2 0.6 w2

b 12
c 3 0.5 wI
d 20
e 16

(b)

Fig. 3.1: An example of product data containing part, operation, work center, resource, and

shift

A routing of a part is a sequence of necessary operations to produce the part from the

components defined in its BOM. Setup time and processing time per unit are estimated for

each operation, which will be processed at a work center in which resources are enrolled.

Usual resources are human workers and machines with specific skills. The capacity of a

resource is defined as a set of finite time intervals that are called shifts. The shift defines a

36

start epoch and an end epoch of the working interval. A work center enrolls a set of resources,

and one of the resources will be assigned to an operation in scheduling. A hierarchy of parts,

called part structure,

An example of a product data is shown in Fig. 3.1. A finished product 'a' is made of input

parts {b, c} through a sequence of operations {a-I, a-2, a-3 }. The operation 'a-I' is

processed at a work center 'wI', and operations 'a-2' and 'a-3' at another work center 'w2'.

Resources 'rl' and 'r2' are enrolled in work center 'wI'. Resource 'r2' works for both work

centers 'wI' and 'w2'. The shifts of resource 'rl' are described by a set of time intervals. As an

example, let the shifts be {[a, 20], [40,60], ... }, each of which corresponds to available work

hours on a factory calendar. When scheduling is undertaken, a resource in {r 1, r2} is

assigned to operation 'a-I'.

3.2.2 Net Requirement Planning and Scheduling

Production planning starts with given independent requirements for finished products, and

finally outputs executable schedules for manufacturing necessary assemblies and requests for

procurement of raw materials. Forecasting and customer orders form independent

requirements, each of which has a required quantity and due date.

APPCS uses planning cycle. A time interval, e.g., one week, is used as a planning cycle.

Production planning will be made regularly for a set of demands for finished products

accepted within the planning cycle. For each demand, finished product, required quantity and

due date are specified. Required quantity of a demand is the gross requirement of a finished

product.

Since scheduling is used to produce a feasible production plan in APPCS, the planning

method of APPCS is called a scheduling-based production planning. The outline of the

schedule based planning of APPCS is shown in Fig. 3.2.

for each demanded finished product {
for each part of a finished product {

}

}

net requirements planning of the part;
scheduling the operations for the part;

Fig. 3.2: Schedule-based production planning of APPCS

In APPCS, the production planning of a part consists of two phases. In the first phase, net

requirements are calculated for the component parts of the part. Gross requirement can be

supplemented by available stock on hand andlor released planned orders on condition that the

planned finish epoch of the orders is in time for due date of the gross requirement. The

37

unsatisfied portion of gross requirement is called net requirement, which should be filled by

manufacturing or procurement. The first phase is called net requirement planning.

In the second phase, capacities of resources are reserved for the planned net requirement.

This phase is called scheduling. During scheduling, the time required to process the amount of

parts is calculated, capacity of the proper resources equivalent to the time is determined and

reserved, and a job with a start epoch and a finish epoch is generated corresponding to the

scheduling result. Scheduled finish epoch cannot be later than due time of the net requirement.

Ajob will be released to a work center for production or to a supplier for procurement, which

is respectively called a manufacturing job and a procurement job.

The product data shown in Fig. 3.1 will be used to illustrate the planning and scheduling

logic of APPCS. Assume that a set of demands {dl, d2} has been generated and released at

epoch 0 that dl requests 15 pieces of part 'a' before epoch 50, d2 requests 20 pieces of 'a'

before 90. At epoch 0, stock on hand of part 'a' is 5 pieces, part 'b' is 30, and no stock is for

parts {c, d, e}. Besides, a planned purchase order has been released and 50 pieces of part 'd'

will be delivered at epoch 10.

Using 5 pieces of finished product 'a' from stock on hand, a manufacturing job}1 of

which net requirement is 10 pieces is generated for demand dl as shown in Fig. 3.3a. A

demand in the figure is represented by a rectangle, a job by an oval, and stock on hand by a

fined oval. A line with solid arrow shows the assignment from stock on hand to a job. A line

with hollow arrow shows a request-supply relation between a demand and a job.

Resource
1:- - - - - - - ---"'-"'~~rrr7""7'7"7"".~"'-

Time

(a) (b)

Fig. 3.3: Result of planning and scheduling of job}1

In the scheduling phase, the actual start and finish epochs of a job are determined. For a

procurement job, the procurement leadtime of raw material is the only factor that should be

considered. For a manufacturing job, all operations of a finished product must be scheduled.

Total processing time of an operation is calculated by

(Setup time) + (Processing time per item) x(Net requirement). (3.1)

38

The processing time must be offered by one of the resources in the specified work center, and

it can be covered by fragmented intervals or a continuous one on that resource. To schedule a

job from the last operation to the first one is called "backward scheduling". On the contrary,

"forward scheduling" is to schedule from the first operation to the last one.

Fig. 3.3b shows a scheduling result of job jI in a Gantt chart, in which a white area

shows an available (unoccupied) shift of a resource, and a bar with a job is an occupied shift.

Resource 'r2' is assigned to operations 'a-I' and 'a-2', and resource 'r3' is assigned to operation

'a-T. There are 3 shifts occupied by job j1. Actual start epoch of the job is the start epoch (26)

of the first operation and finish epoch of the job is the finish epoch (50) of the last operation.

So far, production plan for finished product 'a' is completed. We continue the work of

planning and scheduling of parts 'b' and 'c'. Since net requirements of 'a' is 10 pieces, gross

requirement of parts 'b' and 'c' will be 20 and 10 pieces, respectively. Net requirement of part

'b' is zero and no further scheduling is invoked, because all the required 'b' items are fully

supported by the stock on hand. Net requirement of part 'c' equals to its gross requirement.

Resource 'rI' is selected among resources enrolled in work center 'wI' for the only operation

of part 'c', since it provides a latest finish time (20) for the generated job j3.

Subsequently, gross requirements to net requirements of parts 'b' and 'c' are calculated in

the following planning. Because part 'b' is a raw material; moreover, its net requirement is

zero, no gross requirement is planned for the part. Gross requirements of part 'd' and part 'e' to

supply net requirement (20) of 'c' are 40 pieces and 20 pieces, respectively.

Net requirement of part 'd' is again zero, since there is a released planned order that

supplies 50 pieces of part 'd' and it arrives in time for the starting of job j3. Part 'e' is a raw

material whose replenishment leadtime is 16, as shown in Fig. 3. I b, which is independent of

the net requirement (20) and consumes no resource. The planning and scheduling continues

until there is no gross requirement. In this manner, backward scheduling explodes a demand

into jobs in a top-down sequence, and schedules backwardly from due epoch of the demand to

a start epoch.

Fig. 3.4 shows the result of net requirement planning and backward scheduling of demand

dI. The result of net requirement planning is presented by a hierarchy of jobs; while the result

of scheduling is by a Gantt chart. Since job j4 is scheduled to start from a past epoch (-4),

the result of backward scheduling is infeasible.

All of the jobs spanning from demand dl are canceled, and taking away from the Gantt

chart. Then, forward scheduling takes place to generate a schedule starting after epoch O. The

procurement job j4 is first scheduled from epoch 0 to 16. Subsequently, operation 'c-l 'of job

j3 reserves capacity of 'r2' instead of 'rI' from 20 to 28. Finally, capacities [28, 34] of

resource'r2', [40,48] of'r3', and [48,56] of'r3' are scheduled for operations {a-I, a-2, a-3},

respecti vel y.

39

Resource
r--1.--_---"i2 ______ - -- - - - - - - - --

j4
(e-O)

Time

(b)

Fig. 3.4: Result of net requirement planning and backward scheduling of demand dl

Forward scheduling usually generates some holes on Gantt chart. That is, there may exist

fragments of unoccupied intervals. In order to remove such holes, shifting occupied intervals

to the right will be tried so that more continuous and wider intervals are hopefully remained

for other jobs, which will be called back shifting. Fig. 3.5 shows a result of forward

scheduling with shifting back the job j4, j3 (c-I), and jl (a-I). In this case, the scheduling

failed to fill the required due date, 50, of the demand n. Thus, we need to negotiate with the

customer about delaying the due date, or consider other possibilities.

(a)

Resource
t- - - --1r:-0 ----=to
I
L - - -"-----.;,.~~~'T777'"7"77"/7""/;'"T""'"

rll
I

r2

(b)

Time

Fig. 3.5: Result of net requirement planning and forward scheduling of demand dl

In the scheduling of APPCS, demands are scheduled according to priority. Demand with

the highest priority together with its dependent requirements can first consume available stock

on hand, released planned orders in net requirement planning phase, and first reserve the free

capacity of resources in scheduling phase. Earliest due date (EDD) rule is adopted by granting

priority to the demand that has the earliest due date. For example, demand dl is scheduled

prior to demand d2 if EDD rule is applied. In this manner, demands are scheduled

independently and in a sequential order in the scheduling of APPCS.

40

3.2.3 Procurement

A set of procurement jobs is generated at the end of net requirement planning and scheduling.

Each job represents a dependent requirement of raw material. To meet the procurement

requirement with respect to due epoch, purchase orders are generated and released to vendors.

If the lot-for-lot (LFL) policy is adopted, a purchase order, or we say supply from the view

point of vender, is generated for each procurement job. If more than one procurement job

requires the same material, then they can be aggregated into a purchase order. In this instance,

quantity of a purchase order is the summation of the net requirements, and planned release

epoch and arrival epoch are set to the start epoch and finish epoch of the earliest job among

the jobs.

Demands

Purchase
orders

Fig. 3.6: A result of procuring raw material e by purchase order sl

Job j4 shown in Fig. 3.5a requests 20 pieces of raw material 'e' by epoch 26. Assume that

demand d2 is scheduled and there is a job j50 that requests 30 units of the same raw

material 'e' by epoch 20. Purchase order sl is generated to meet the requirement of the two

jobs (see Fig. 3.6).

A set of purchase orders is generated to fill the set of procurement jobs. For a purchase

order, raw material to be purchased, quantity, and delivery epoch are specified. A purchase

order should be released no later than (due epoch) -It, where It denotes the procurement

leadtime estimated for the raw material.

41

3.2.4 Production Execution and Control

Production execution is the realization of the scheduled production and procurement plan.

Under the architecture of APPCS, production control monitors the execution of manufacturing

jobs and procurement jobs. As shown in Fig. 3.6, purchase order sl will be released to a

vender at epoch 4, and it will be delivered at epoch 20 to supply jobs j4 and j50. The delay

of purchase order sl will have impact on both of the jobs, and finally on at least demands dl

and d2.

A manufacturing job is controlled by verifying that if all of the supplying jobs can be

finished before the start epoch, and that for all scheduled operations the assigned resources are

available during the assigned interval. For example, as shown in Fig. 3.6, jobs j4 and j50

are required to start job j3, and as shown in Fig. 3.5b, resource 'r2' is responsible for the

processing of operation 'c-I' of the job. After a job is finished, it is supplied to other jobs or

becomes stock on hand. The delay of the supplying jobs or resource breakdown will delay

demand d1 and worse the service level.

Production uncertainty is caused by unpredictable event that could make the production

plan invalid. A demand change caused by a customer, forecasting error, and supply change

caused by a vender are such events. If the production system does not learn to deal with it, it

is prone to cause the production system an inconceivable loss.

APPCS responds to the events by invoking the net requirement planning and scheduling

again. The demand whose schedule becomes infeasible or unattainable will be added to the

rerun list. Silver et al. (1998) indicated that the frequent updates from the planning process

leads to a poor communication between the planning department and the shop floor. To avoid

such a dispute, once a manufacturing job is released to the shop floor, it cannot be cancelled

or stopped. Except for the released in-processing jobs, the previously planned jobs and

scheduled tasks belong to the rerun demands will be abandoned. The reserved capacity of the

resources by those tasks is freed, and the assigned stock on hand is cancelled. The processing

and scheduling run again for the demands according to priority based on the in-processing

jobs, inventory, and released purchased orders.

Fig. 3.7 depicts how state (Sn, n=O,I, ...) of planned jobs of a demand is changed by the

unpredicted events (En, n=I,2, ...) during production execution. Invoking planning and

scheduling PS() at notification epoch tn remedies the change. In the figure, a dot line with

its start point in the time axis and end arrow pointing to a job shows an event, and a bold line

with an arrow indicates a state change. In each state, an oval shows a job, a filled oval a

released job, a square of dot line a finished job.

42

shipping

Fig. 3.7: State changes of jobs related to demand dl by some events

43

3.3. Dealing with Changes

Scheduling described in section 3.2 is executed by so-called advanced planning system

software (like SyteAPSTM). After a production schedule was made, it sometimes faces

uncertainty caused by unexpected events such as machine breakdown or change in demanded

requirements or supply. The arising uncertainty during procurement and manufacturing can

make the schedule infeasible. In this research, we focus on the uncertainty caused by supply

and demand. That is, as Hegedus and Hopp (2001) formulated, it is assumed that production

process is in good operation without any malfunction or failure, and that suppliers and

customers are sources of unexpected events. Since customers want their changes to be

attained with minimum possible delay and vendors hope to reduce the effect of their changes

to a minimum, they usually send advance notification of their change before it really happens.

If a manufacturer could use notification effectively with an appropriate mechanism to respond

to such uncertainty, it is strategically beneficial and brings reduction of the damage caused by

the uncertainty.

APPCS provides the mechanism against uncertainty through rescheduling as follows. First,

the set of planned demands is investigated to find out demands affected by the uncertainty.

Let Dc be the set of such demands. When rescheduling is started, some jobs might be still

in-processing. Such jobs will not be updated in rescheduling. The other planned jobs except

for the in-processing ones are cancelled, and the reserved stock on hand and planned purchase

orders by the jobs are freed. The tasks scheduled for the cancelled jobs are abandoned, and the

reserved capacity of related resources is freed.

Employing the (earliest due date) EDD rule, the demands in Dc are planned and

scheduled once again based on the updated available stocks on hand, released purchase order,

and in-processing jobs. After the rescheduling, some demands in Dc may be delayed. The

related department or customers should be notified of the delay if no other solutions can be

found.

3.3.1 Supply Uncertainty

There are two types of uncertainty with respect to procurement: supply time uncertainty and

supply quantity uncertainty. The former refers to any delay of supply beyond that is scheduled.

The latter means there is less quantity than is scheduled. The rescheduling algorithm against

supply uncertainty is shown in Fig. 3.8.

As shown in Fig. 3.6, purchase order sl is released to a vendor at epoch 4 and it is

scheduled to be delivered at epoch 20. Assume that during [4,20] the vendor notifies of

44

supply time uncertainty that sl will be delayed for time dly(sl). If dly(sl)~6, then Dc={d2}

holds. Otherwise, we have Dc={dl, d2}. The demands in Dc will be rescheduled by

following the EDD rule.

II Reschedule against supply uncertainty
x := the procurement job that is notified of change from a supplier;
SWITCH (type of supply uncertainty)

CASE supply time uncertainty:
IF a new purchase order will be delivered earlier than the notified time,
THEN immediately generate and release a new purchase order;
ELSE wait for the arrival of x;

CASE supply quantity uncertainty:
immediately generate and release a new purchase order to cover the shortage;

Fig. 3.8: Procedure of rescheduling against supply uncertainty

Since purchase order s 1 will be delayed for dly(s 1), it is supposed to be delivered around

arv(s 1) + dly(s 1) , where arv(s) denotes the planned arrival epoch of purchase order s. If

notification of the purchase order's delay is at epoch ntf(s 1), and if a new purchase order of

the raw material 'e' were immediately issued at ntf(sl) that will be delivered earlier than the

suggested delivery time, i.e. (arv(sl) + dly(sl» > (nif{s1) + It('e')) holds, where It(p) denotes

purchase leadtime for raw material p, then a new purchase order is created.

Assume the delay time d/y(s1)=5 for purchase order sl shown in Fig. 3.6 is known at

ntf(sl)=6. The delayed order sl, whose new arrival epoch is 25, has an affect onjob j50. As

shown in Fig. 3.9a, a new purchase order s4 that requests 30 pieces of material 'e' was

lunched to another vendor at epoch 6, and the new delivery epoch is 22 (6 + 16), which is

earlier than the arrival epoch (25) of the original order s 1. If ntf(s 1)~9 or dly(s 1)~2 holds,

the best policy is to wait for the arrival of the delayed purchase order s 1.

If the vendor notifies of supply quantity uncertainty that less item will be delivered on

time than promised for a purchase order sl, then we have Dc={dl, d2}. The demands in Dc

will be scheduled again according to earliest due date (ED D) rule based on the released

purchase order s 1. The demand with higher priority can reserve quantity of the released order.

As a result, another purchase order s4 must be released immediately (at epoch nif{sl» to

cover the shortage Sfg(sl) of purchase order sl. The new purchase order is expected to be

arrived at (ntf(sl) + ifCe'). Fig. 3.9b shows the result of the rescheduling for the supply

quantity change on Dc, where priority of dl is higher than d2 and the shortage 10 is

reported at epoch 12.

45

Demands

Purchase
orders

new

Demands

Purchase
orders

delay

new

(b)

Fig. 3.9: The rescheduling results for (a) supply time uncertainties and (b) supply quantity

uncertainty

3.3.2 Demand Uncertainty

Demand uncertainty might happen after a demand is accepted and before it is delivered. There

are two types of demand uncertainty. If a customer asked for earlier delivery than committed

due time, then it is called demand time uncertainty. If a customer asked for more products

than the promised quantity, then it is called demand quantity uncertainty.

As shown in Fig. 3.6, demand d1 is scheduled to start from epoch 4 and to end at 56.

Demand uncertainty of the demand can happen during [4, 56]. Suppose demand time

uncertainty happened. Since the current schedule for demand d1 is the result of forward

scheduling as shown in Fig. 3.5, and since there is no space for early processing on resource

'r3', it is impossible to achieve the request.

With regard to Fig. 3.5, assume that the customer of demand d1 made an additional order

of 2 pieces of finish product 'a' at epoch 30. The customer wants to know when the changed

request can be completed. As shown in Fig. 3.1 Oa, at epoch 30, purchase order sl has been

delivered, job j4 is completed and job i3 is still in processing. Because job il is not started,

it is cancelled and its planned tasks are freed. Moreover, the assigned but not used stocks on

hand are cancelled.

Forward scheduling of the updated demand d1 is invoked by further using the

in-processing job j3. Fig. 3.10b shows a new schedule of demand dl after the uncertainty is

handled by rescheduling. Job j3 is in time to used by job iI, so all its quantity is assigned to

job j6, and net requirement of job j6 is reduced to 2 pieces. An additional purchase order s4

is released at epoch 33, and the additional request will be offered at epoch 79.

46

Purchase
orders

- Changed

Resource 6 ____________ _

d1
~~,L..44r..w:.L..LL-'_m'_;........;..~;..___;.~ - ~ Time

(a)

Resource
t--- --"rt--------'r--- - -- - -- --­
I
I
I

rl

r3

50

(b)

Fig. 3.10: (a) The jobs affected and cancelled by a demand quantity uncertainty, (b)

rescheduling result for the uncertainty

3.3.3 Combining Advance Notification with Safety Buffer

Sudden changes in a schedule with respect to quantity or due time will finally affect the

service level of the whole production. The service level is defined as the ratio of the number

of customer orders filled within their due time to that of delayed customer orders. Safety stock

and safety leadtime are commonly used buffering remedies, which are seemingly effective

against such sudden changes, i.e. uncertain at the time schedule was made. Since APPCS uses

advance notification about changes, the combination of notification with either or both buffers

is possible. The advance notification of uncertainty, which is used in APPCS, has a mutual

effect with each of both kinds of safety buffers. Several cases of mutual effect are illustrated

in Fig. 3.11.

When we reserve safety leadtime buffer against supply time uncertainty (upper left of Fig.

3.11), cases A and B are possible according to the delay time. Case A shows that delayed

purchase order arrives before starting the epoch of manufacturing and reserved safety

leadtime works successfully in protecting the manufacturing schedules. Case B shows that the

delay time is greater than reserved safety leadtime. Depending on the notification epoch of

47

uncertainty, a new supply, which will be delivered earlier than the original one, is released in

time (case B 1) or late (case B2) for manufacturing. If notification is too late to have the new

supply arrive later than the original supply (case B3), then it is better to wait for the original

one.

The cases in which safety leadtime is used against supply shortage are shown in the lower

left of Fig. 3.11. A new purchase order must be released to compensate the shortage. If

notification comes early enough (case C 1), then a new supply is in time for manufacturing.

Otherwise, the extra supply will be late (case C2) and we see inevitable delay on schedule.

I procurement I safety I production I procurement I production
lead time - I safety stock I ~

I (D) original supply I (A) original supply I I S·
(D I (B) oris.inal sue.e,zJ:. I I (Di2 new sUPEJJ!.. I =rJ'J

= = r------..., ~"O I (B i) new supply , JIE) .!!.e:!, s.!:!pp!Y _ J (D"O
:4.-~'"< I (B2) new supplJ!.. I S·
q -------1

!.JBj) !?e~ s!!J?& _

= ~..c rJ'J I (C) ori~inal sUE!.pJy I I (£) original supply I
(D = = :4.~"O I (C 1) new supply I I (F) original supply I ~ "0
S'q~ I I (F 1) new supply I I (C2) new supply q

Fig. 3.11: Cases of safety buffers against supply uncertainties

Case D shows two possible situations of safety stock against supply time uncertainty in

the upper right of Fig. 3.11. If the notification of uncertainty is early enough (case D 1), then

the manufacturing can start earlier by releasing a new purchase order. Otherwise, it is wise to

wait for the delayed purchase order (case D2).

As shown in the lower right of Fig. 3.11, there are two possibilities of using safety stock

buffer against supply quantity uncertainty. Case E depicts that safety stock is enough to meet

the additional requirement, and that production is ensured to be on time. Otherwise, extra

procurement has to be made immediately for the shortage (case F 1) by a new purchase order,

but delay of the manufacturing is inevitable.

48

3.4. Application of the APPCS

This section shows a method to introduce APPCS to achieve a target service level. It uses

simulation to see the trade-off among buffer setting and service level under certain amount of

demands.

3.4.1 Procedure

The procedure of the method is as follows.

• Determine the planning cycle, e.g. a day, a week or a month.

• Provide a set of demands. We can use forecasting for the planning horizon and/or a

breakdown of the company's profit plan.

• Execute scheduling for the demands with various uncertainties to get the relationship

between buffer size and a performance index, such as service level.

• Drawing curves of such relationships, find an appropriate safety buffer size that seems to

attain target performance.

3.4.2 Simulation Design

Consider a fictitious manufacturer, ABC Plant. Assume that all of the products of ABC Plant

have a respective three-level hierarchy of parts. This assumption is not strange because one of

the most common enterprise resource planning packages, SAP Rl3 TM, has a sample enterprise,

and about half of its 200+ products have a three-level hierarchy of parts (SAP 2000). The

low-level code of a finished product is 1, and that of a raw material 3.

ABC Plant has eight products, each of which is highly configurable. For a finished

product, its component parts differ among a customer's configuration. The number of

assemblies is more than or equal to 1 and less than or equal to 4. The number of component

parts per part is more than or equal to 1 and less than or equal to 4. For a part, the number of

operations is under 6. For each operation, setup time and processing time per item are under

0.5 hour and 0.2 hour, respectively. For a raw material, the purchase leadtime is under 48

hours. In the simulation, above product data are randomly sampled from the respective

uniform distributions with the respective ranges, and the processing work center is assigned

randomly. The number of work centers is four, and each work centre has a distinct resource.

The available capacity of a resource is defined by shifts. In the simulation, every resource

has the same shift that works from 0:00 to 10:00 hours everyday. Planning cycle is defined as

49

[01101, 01/31].

Request quantity of any demand varies according to the exponential distribution with the

average of 10. To guarantee the demands to be finished within the planning horizon, the due

date of demand is determined by running planning and forward scheduling to get a finish

epoch. Then the due date is randomly determined between the finish epoch and 01131. All the

requirements of raw material are integrated and accumulated to become a purchase order and

released to a vendor.

For any purchase order, the delay time of supply is smaller than the procurement leadtime.

The shortage of supply is smaller than the released quantity. A customer asks for an earlier

shipment than the initial due date before the total processing time will pass by. Extra quantity

requested by a customer for an initial demand is less than the original request quantity. All of

these uncertainties are sampled from suitable uniform distributions in simulation.

• A case in simulation is a combination of the following five parameters:

• Advanced notification is possible or not.

• Source of uncertainty specifies either demand uncertainty or supply uncertainty.

• Type of uncertainty specifies either time or quantity.

• Level of uncertainty: degree of demand uncertainty is high (75%), medium (50%) or low

(250/0). The degree is defined as the ratio of the changed demands to the total demands.

Degree of supply uncertainty is high (50%), medium (25%) or low (12.5%), which is

defined similarly.

Rate of buffer: rate of safety leadtime takes a value in {O, 0.1, 0.2, ... , l.0}. It means that

the rate of safety leadtime that is additionally reserved for the predefined procurement

leadtime. Rate of safety stock is a rate of additional quantity to total required quantity.

For example, a case has high-level uncertainty in supply quantity and 20% safety leadtime

with advanced notification. Then, APPCS schedules with a procurement leadtime 1.2 times

longer than usual, and 75% of purchase orders will change in respective quantities. If a

change is reported from a supplier, then rescheduling will be executed. Each case is simulated

40 times to provide a data for the case, and performance indices are calculated for the data.

An average service level is the evaluation variable in our simulation. It is defined as the

average ratio of the number of demands finished as it was planned to the number of all

demands. A point on a curve in Fig. 3.12 shows the mean of 40 data. The upper and lower

vertical line-segments with a point show the second and third quartiles, respectively,

indicating what variety the 40 data has. The hollow curve shows cases of using degrees of

safety leadtime, and the solid curve shows ones using safety stock against high degree of

supply time uncertainty with advanced notification. In the following graphs, only means are

shown to draw curves.

50

100 ,--------------.--___ -,1

90

80 r-~----------~--~~---~

~ 70 r---------------~~-----;·1

~ 60 ~----------~~.-~----_4j
;>
~ 50 ~--------_.-~~~-----~

~ 40 ~------~~_±~--~~_=~

.~ 30 ~--~~~~--_4·----~-~~4
PA

20

10 ~----------------------~4

o 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
rate of buffer

Fig. 3.12: Distribution of evaluation variables of the simulation result (lb _ htu: using safety

leadtime against high time uncertainty, sb _ htu: using safety stock against high time

uncertainty)

3.4.3 Simulation Result

Supply Uncertainty

Fig. 3.13a shows the relationship between service level and rate of buffering. The hollow

curves depict that relationship with safety stock (sb~, while the solid curves depict that with

safety leadtime (lb~. For both kinds of lines, there are three cases: under high L htu), medium

Lmtu) and low Lltu) levels of supply time uncertainty. The higher the rate of uncertainty is,

the lower the service level can be achieved. Note that the service level increases much sharply

with rate of safety leadtime buffer than that of safety stock buffer.

The reason why safety leadtime is effective against supply time uncertainty is twofold.

When the prescribed safety leadtime is longer than delay time, or when the notification time is

early enough, the uncertainty will not delay the production. This result suggests that safety

leadtime can be adjusted by the APPCS to achieve a target level of service in different degree

of uncertainty environments. When safety stock is used against supply time uncertainty, there

is an upper limit of service level for each level of uncertainty. Hence, safety leadtime is more

flexible than safety stock under supply time uncertainty.

Fig. 3.13 b shows the relationship between service level and supply quantity uncertainty.

Since each service level goes gradually up to 100% as rate of both buffers increased, both

types of buffer are effective against supply quantity uncertainty. When supply quantity

uncertainty is informed, some action must be taken to supplement the shortage. If safety

leadtime is reserved, releasing another purchase order is inevitable and no production can be

started until the arrival of the purchase material. If safety stock is reserved, the shortage is

supplemented either from stock or by releasing another purchase order. The result of the

experiment shows that both buffering approaches are adjustable to achieve a target service

51

level under supply quantity uncertainty.

Fig. 3.13c and 3.13d show the result of the same experiment with Fig. 3.13a and 3.l3b,

respectively, but the plant will not know the change until the promised delivery date. Thus,

the effect of notification on service level can be obtained by the difference of the two pairs of

figures. By comparing Fig. 3.13a and 3.l3c, we observe that safety leadtime is more effective

than safety stock. The comparison of Fig. 3.l3b and 3.l3d brings us to the fact that the service

level of using safety leadtime falls dramatically.

'·_--'--(-a) against supply ti~e -:-cer~ainty -'--1 (b) :gainst s~pplY q::ity unc~rta~~;r--~
with notification J with notification I 1:: f---------...-= F--cA-~"'-----."---_lI+ 1:~ 1_-_-·_······_-·-·_-----.--..... ---.. --.. --.--~~;:::: ~ .. -.~-l==--~.-!!!C-.. -,.--_ .. ~---~·-~·-~···--~-~·-~·--~-l

i
80 1----.. ~=-=----r= I-_=____=r....,/'_-~D__lIt 80 I---~)oc;~~~----:=H'~=--_____:J-J~

~ ~70 ~~~-~~-~--~-~-~·t ~70 f-------~~~-----_____:F___4
~ ~

,-]:: ,-ll~""ir.=-==------__ r----------DT i:: f----------~«---/--------jl
~ 40 1-------/--------------1It "8 40 f----------=-:;;;......:~:..=.....----__4
'6 30 I 't
til r ~ 30

20 1-cr-~:.....c~~~~~~~~~~::::;;===;=J+ 20 I-n.....-'I...I---""'-j

10 --o-sb_mtu --o-sb-'tu I 10 I--------'~~--=~==-=~

0.1 0.2 0] 0.4 0.5 0.6 0.7 0.8 0.9 t 0.1 0.2 03 04 0 f 06 0.7 U

l·---·,-----"---·-··-(cragalnsrsu;.;:;-~i~~;~e-rrafrifY-· -~ ------ -}I-------,--···--·,·-,-(a-r--ag-,-a--ln-st--s-u-----,fp--~-a~-;u-·~~-~t..,-~;-·y-~~-~--ce-rr-a-iii-fY-::----.-----1

l- 100 ___ lb_htuwi~I~_~~fi~b-'tu +i'- 100 without notification

90

80

- 70

~
60

o

90

1---------:~-----==--~=--=----..-_lI+ 80

t----~~~~~--~~~~--~~~·t ~ 70

I-----::Ir---=-----;:-:::::;;;{F~'?'"""-OO_"l""""=-; I ~
I 'r ~ 60

~~~~~~~~---~~--~t ~ :: f----------~~--------1~lj 
! "t 1---------"'------------lI1" ~ 30 

20 h-........ ~~~-__;=_::;;;o--~~_II=~~~J 
1-=~--------------lIT 10 ~-~-_i_~~~~~~~~~~~ 
~~-~~-~~-~~--~~-~l 

Jr 
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 ! 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

rate of buffer ,J rate of buffer 

.'::-::-::=::=-::---r=============.,J,::::::",.==============J 
Fig. 3.13: Service level under supply time/quantity uncertainty (xx_yzz: using xx buffer 

against y level zz uncertainty; xx='lb': safety leadtime, xx='sb': safety stock; y='h': high, 

y='m': medium, y='l': low; zz='tu': time uncertainty, zz='qu': quantity uncertainty) 

Among the related works in comparing safety leadtime and safety stock, a pioneering 

work was done by Whybark and Williams (1976) who compared the two buffers under both 

demand and supply uncertainty. They modeled a representative part in an MRP system and 

concluded that safety leadtime can protect from time uncertainty and the safety stock buffer 

performs well under quantity uncertainty in either case of demand or supply. If we can use 

advance notification that informs future change in a schedule, however, then the safety 

52 



leadtime gives more flexibility in response to the four types of uncertainty than the safety 

stock does. Besides, we found that the earlier notification policy, which triggers a release of 

additional purchase order if rescheduling suggests, can improve the service level and decrease 

the delay time when demand uncertainty happened. The notification approach can be regarded 

as another form of safety leadtime that is offered by external vendors and with less effort. 

Demand Uncertainty 

, f , 1 1 1 1 , 
(a) against demand time uncertainty (b) against demand quantity uncertainty 

! 
with notification with notification 

100 --- 100 
~ --- ,... - ,.() 

~'""' .r -~ ~ - ~ -:n... ;rj 
80 

IJ" - V~ - -u" 
80 -u--'-'" --.........- ,,-., 

~~ ......-~ 

~ H: ]It : -
~-~ ~ - ~ 

60 "U 60 ~ ~ -rl""" 
"U 
>- >-
~ ~ 

! 0 40 0 40 
~ .~ 

Co) 

.~ 

.... I-e-Ib_hqu ----..-Ib_mqu --.--lb-,qU!_. .... 
\-e-lb_htu ----..-lb mtu --.--lb ltu I 0 20 0 

(I) 20 CIJ \-o-sb_hqu -o--sb_mqu --o-sbJqu 
--O--sb_htu -o--sb~mtu -o-sb~ltu \-

~ 

0 
0 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 
0 0.1 0.2 OJ 0.4 O.S 0.6 0.7 0.8 0.9 

~ rate of buffer rate of buffer 

• 

.) -- -- --- . --~,,-.. -. ...... " .. '="y""'''' "1-' 

(c) against demand time uncertainty (d) against demand quantity tIDcertainty 
, without notification without notification 

JOO 100 
, .. J ____ Ib _htu ----..-Ib mtu --.--Ib ltu I 

I.----Ib_hqu ----.-..lb_mqu --.--lbJqU..J_ 
80 

-o-sb_htu -o--sb_mtu -o-sb-'tu -o-sb hqu -o--sb mqu--O-sb lqu 
,- "U 

80 .r.. - ....... 
~-<) ~ - ~ -v- - "U --- J"'\. ..... 

'~ 60 >- 60 - J). 

~ - 'V 
0 ~ =b- iJ ~r&- f!J- Ca 0 

...... 
Co) 

Co) '!> 40 .~ 40 .... 
<lJ ....", ~ 

.... ... 
CIJ - .... ..... 0 <.r "'U" ....- - '"U' - .... 

--- ,.,. CIJ 

20 20 ..n. .n....-rl. ~~ - ... --".,. - --
0 

0 
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 
,- rate of buffer rate of buffer 
• . ............... L. .............................................. . ....... L .... 

Fig. 3.14: Service level under demand time/quantity uncertainty (xx 3ZZ: using xx buffer 

against y level zz uncertainty; xx='lb': safety leadtime, xx='sb': safety stock; y='h': high, 

y='m': medium, y='l': low; zz='tu': time uncertainty, zz='qu': quantity uncertainty) 

Fig. 3.14a and 3.14b are the results of service level under demand time uncertainty (tu) and 

demand quantity uncertainty (qu) under 0.75 Lh), 0.5 Lm), and 0.25 LI) degrees of demand 

uncertainty. Fig. 3 .14b and 3 .14c show the same experiment without advance notification. It is 

clear that both safety buffers in procurement are not helpful when increasing the service levels 

under both types of demand uncertainty. Examining the cases in detail, it was found that if 

any demand order is changed without advance notification, then it must be delayed. Therefore, 

as shown in Fig. 3.14c and 3.14d, the service level is almost equal to one minus the rate of 

uncertainty. 

The difference of the service level between Fig. 3.14a and 3.14c or that of Fig. 3.14b and 

53 



3.14d shows the effect of advance notification. It improves the service level from 27 to 82% 

when demand time uncertainty is at high level and from 18 to 67% when demand quantity 

uncertainty is at high level. It is obvious that the introduction of the advance notification 

increases the service level. The demand uncertainty is transferred from consumer or retailer 

through levels of production down to suppliers of the supply chain. Without advance 

notification, the demand change cannot trigger the rescheduling procedure in real time or 

cannot be transferred through suppliers. The delay or shortage will be apparent all of a sudden 

when procured materials will arrive. We conclude that other than supply safety leadtime or 

safety stock, the notification approach improves the service level under demand uncertainty. 

54 



3.5. Summary 

Agile production planning and control system (APPCS) with advance notification has been 

proposed. It uses a planning cycle and builds a feasible production plan for a set of demands. 

APPCS can enhance the agility of production processes in the sense that it does immediate 

rescheduling upon advance notification from customers and/or suppliers. The rescheduling of 

APPCS allows a response in accordance with various situations. 

Although APPCS does not use work-in-process (WIP) inventory for assemblies or 

products, a buffering mechanism against uncertainty can be set in a purchase plan. Users set 

throughput by the production and purchase plan, and also set the safety leadtime and/or safety 

stock according to a target service level. As far as the example in section 3.4 is concerned, our 

simulation analysis showed that safety leadtime is preferable to safety stock in most uncertain 

situations. Furthermore, advance notification can be regarded as another form of safety 

leadtime offered by external vendors. 

When APPCS is used in a specific firm, a set of demands should be decided. Those 

demands can be formed from past operation, or from strategically meaningful assumptions 

such as profit plan for the next year. Then, through simulation, buffering parameters can be 

decided corresponding to specified service level. 

The proposed scheduling method needs lot-for-Iot sizing. If the lot-for-Iot procedure 

cannot be employed for some reason or other, rescheduling might bring instability in the 

schedule. Reduction of such nervousness in rescheduling is out of the scope of this 

dissertation. Furthermore, APPCS can be used as a real-time system in the sense that it makes 

a schedule when a customer order arrives and a reschedule when uncertainty happens. It is not 

clear whether such a real-time APPCS is preferable to the APPCS. This comparison is another 

topic for future study. 

55 



56 



4 Model of Agile Production Planning 
and Control 

4.1. Introduction 

This chapter provides a model of agile production planning and control (APPCM). A data 

model for product data management and planning is available in Scheer (1994). This chapter 

showed an augmentation of the Sheer's model so that agile production planning and control 

system (APPCS) is possible. The formulation of APPCS is described by the universal 

modeling language (UML) and illustrated by class diagram and statechart diagram. 

Model of production planning and control (PPCM) described in chapter 2 and system 

requirements of APPCS specified in chapter 3 act as guidelines of system analysis and design. 

Data view, constraints, and behavior view of APPCM are shown in section 4.2, 4.3, and 4.4, 

respectively. The modeling elements of APPCM mapping to that of PPCM is listed in section 

4.5 to show APPCM is an implementation of production planning and control (PPC) and 

APPCS is a complete PPC system. In section 4.6, we provide an example of the APPCM to 

demonstrate how the APPCS is applied. Finally, a summary is provided in the final section of 

this chapter. 

57 



4.2. Data view 

Class diagram of UML is used to describe the data view of APPCM as shown in Fig. 4.1. The 

notations and descriptions about the elements used in class diagram are provided in Appendix 

AJ. How the classes used by APPCM to refine the requirement of PPCM is not shown in the 

figure. The classes of PPCM are listed as subtitle in the data view section, and classes of 

APPCM are presented under the respective subtitle to show the mapping of the two models. 

reqJob 
lobLink .......... ----_ .. 0 .. * 

Job "J I + supQty [1]: Qty 
+ IreqJob [1J: Job + netReq [1]: Qty 
+ IsupJob [1J: Job 0 .. * + startEpk [1 J: Epoch Unreleasedlob 0 .. * 0 .. * Releasedlob 

supJoo + finishEpk [1]: Time + IwipAssign [0 .. *]: Assign plnJob wipJob + IplnAssign [0 .. *]: Assign 
+ Ipart [1]: Part 
+ Itask [0 .. *]: Task + netPlanningO + getDisposableQtyO 

1..* 
+ IreqJobLink [0 .. *]: JobLink + backwardScheduling() + reportFinishO 
+ IsupJobLink [0 .. 1: JobLink + forwardSchedulingO 
+ ImeetDemand [0 .. *]: Demand + cancelPlanningO Assign 
+ /meetBySupply [0 .. 1]: Supply + cancelSchedulingO 

+ asgQty [1]: Qty 
+ getDueFinishEpkO + IwipJob [1]: ReleasedJob 

0 .. 1 + getDueStartEpkO + JplnJob [1 J: UnreleasedJob 

Supply 
+ getRequestQtyO 
+ ifAI1SupJobScheduledO 

+ supQty [1]: Qty + ifAIIReqJobScheduledO 
+ deliveryEpk [1]: Epoch Shift 
+ IsupPart [1]: Part 

1 0 .. * ~ ~1 1 + !resource [1J: Resource 
+ IreqJob [1..*]: Job + startEpk [1]: Epoch 

Sati ~fy 0 .. * task shift + finishEpk [1]: Epoch 

0 .. * Task + Itask [0 .. *]: Task 
Demand 

+ startEpk [1]: Epoch 
+ reqQty [1]: Qty - + finishEpk [1]: Epoch 0 .. * + dueEpk [1]: Epoch 0 .. * 0 .. * + Ishift [1]: Shift 
+ IreqPart [1]: Part + /job [1]: Job 
+ IsupJob [1]: Job + loperation [1]: Operation 

+ caneelPlanning SehedulingO 
1 

+ planningSchedulingO ~~ 
+ buildJobLinksO 0 .. * Resource 

0'1 
+ IjoinWkCtr [1 .. *]: WorkCenter 

1 1 + Ishift [1 .. *]: Shift 
1 Part Operation + getPrevFreelntervalO 

1 + proeureLeadTime [1]: Time +oprNo [1]: Int 
+ getNextFreelntervalO 

+ lope ration [0 .. *]: Operation +setupTime [1]: Time 1..* 
supPart + IreqPartLink [0 .. *]: PartLink 1 0 .. * + processTime [1]: Time 

.-- + JsupPartLink [0 .. *]: PartLink ~ + JprocessWkctr [0 .. 1]: WorkCenter PartLink 0 .. * ..... 1 .. * 

+ reqPart [1]: Part .--_ ... _-- WorkCenter 
+ supPart [1]: Part 

I reqPart 1..* + lenrollResource [1 .. *]: Resource + rate [1]: Qty 0 .. 1 
0 .. * + chooseResourceO 

Fig. 4.1: A class diagram of APPCM 

58 



Part 

The Part class is an abstraction of a set of elements such as finished products, assemblies, 

and raw materials that are used in production or procurement. The attribute procureLeadTime 

of a part represents the time for procuring or outsourcing the part. 

A set of operations is specified for a finished product and an assembly. The Operation 

class represents an abstraction of those operations. Since a part owns its operations, there is a 

composite association from the Part class to the Operation class. For clarity, an association 

is also shown in a class by an attribute that begins with a "/" to distinguish it from other 

attributes. The attributes setupTime, and processTime of an operation preserve the setup time 

and processing time per unit of the operation to calculate the total processing time in the 

scheduling phase. A link process WkCtr from an operation to a work center shows that the 

operation is processed at the work center. 

A bill of materials (BOM) of a part can be regarded as a set of links that connect the part 

to its components with each link specifying the rate (number of components required per part). 

Association PartLink with its both ends attaching to the Part class represents the 

request-supply links between parts. The association is also a class because it has an attribute 

rate that indicates the number of components required per part. A part can be a component of 

other parts, and a part can be made of other components. For a part, reqPartLink attribute 

indicates links from the part to its requesting parts, and supPartLink attribute shows links 

from the part to its supplying parts. 

Resource 

A work center is a category of capabilities for processing some operations. Assembly lines, 

polishing shops, and brushing machines are examples of respective work centers. A resource 

is either a labor or a machine. The WorkCenter class is an abstract entity to represent the 

work centers in a plant, and the Resource class is an abstraction of the resources. APPCS 

assumes the resource flexibility that a work center can enroll numbers of resources, and a 

resource can join more than one work center. Accordingly, there is a many to many 

association between the two classes. 

An association between the Operation class and the WorkCenter class suggests that at 

most one work center can be assigned to an operation for manufacturing, and many operations 

can be processed at a work center. 

The capacity of a resource is finite and managed by shifts. A shift defines the workable 

time on the planning horizon, which indicates a time axis toward the future. The Shift class 

with attributes of startEpk and jinishEpk is an abstraction of a group of intervals that show 

capacities of the resources. Hence, there is a composite association between the Shift class 

and the Resource class. 

59 



Demand 

A demand is used to represent an independent requirement for a finished product before a 

due epoch. A demand, either the result of forecasting or customer orders, acts as a base unit of 

net requirement planning and scheduling in APPCS. The Demand class is an abstraction of 

the demands. A demand has attributes of requested quantity (reqQty), due epoch (dueEpk), 

and requested part (reqPart). The requested part is also a link from the demand to a part. 

Task 

A demand is transformed into a set of jobs in the net requirement planning phase. Ajob is 

defined as a net requirement of a part that is manufactured or procured during a period of time. 

The start epoch and finish epoch of a job are known after scheduling is completed. 

The Job class is an abstraction of the jobs generated by net requirement planning. Its 

attributes are net requirement (netReq), start epoch (startEpk), finish epoch (jinishEpk), and 

requested part (part) that is linking to the Part class. An association from the Job class to 

the Demand class shows that a demand must be satisfied by exactly one job, and ajob can be 

generated to meet many demands. 

During production execution, a job is released to the shop floor or to a vender in form of 

purchase order when it is time to start the job, and its output is input to other jobs after the job 

is finished. The request-supply relations between the planned jobs form a hierarchy of jobs. 

The JobLink association class is to describe the request-supply relations between any two 

jobs. The attribute supQty of a link from a job to a supplying job denotes a gross requirement 

for the supplying job. To view from a job, the attribute reqJobLink is an abstraction of the 

links from the job to its requesting jobs, and supJobLink from a job to its supplying jobs. All 

the jobs are exploded from external demands. We can traverse all jobs explored from a 

demand if the demand has a link with the root job, which is the job without requesting job in 

the hierarchy of the jobs. Conversely, the link starting from a root job to a demand provides 

the information for transferring the finished product. Hence, a bi-directional association is 

specified between the Demand class and the Job class. 

Stock on hand can be viewed as some jobs that are finished manufacturing or procurement. 

The WIP can be viewed as an in-processing job not reserved by other jobs. When a change 

occurred, except for the released jobs, the planned jobs that are affected by the change will be 

cancelled. During rescheduling, disposable net requirement of the released jobs can be 

assigned to the planning jobs. For these reasons, the Job class has two sub classes, the 

Releasedlob class and the Unreleasedlob class, for identifying the different operations of 

the two types of job. 

The Assign association class is an abstraction of the assignments from a released job 

(wipJob) to a planning job (PlnJob) with an assign quantity (asgQty). The multiplicity 

60 



suggests that net requirement of a released job can be assign to many planning jobs, and a 

planning job can take assignments from various released jobs. For an planning job of the 

Unreleasedlob class, the attribute wipAssign is an abstraction of the links from assigning 

jobs to the planning job. For an assigning job of the Releasedlob class, plnAssign is an 

abstraction of the links from planning jobs to the assigning job. 

Net requirement of a manufacturing job is transformed to a set of tasks in the scheduling 

phase. The Task class is an entity to represent all the tasks. The processing operation 

(operation: Operation) and an unoccupied interval starting from startEpk and ending at 

jinishEpk within a workable shift (shift: Shift) of a resource must be specified for a valid task. 

To prevent a resource from being assigned a reserved area of its shifts to other tasks, the 

reserved areas within a shift should be managed. A composite association from the Shift 

class to the Task class is for this purpose. The multiplicity reveals that a shift can be shared 

with many tasks without duplication, and the interval of a task can only be located on a shift. 

Procurement 

The net requirements of procurement jobs are aggregated and then released to the 

respective venders with by purchase orders. The Supply class acts as an abstraction of the 

purchase orders. For a purchase order, purchased raw material (supPart), promised delivery 

epoch (deliveryEpk), supplied quantity (supQty) are specified. 

A purchase order can be generated to meet the requirements of one or more than one 

procurement job. Since there is no need to separate the net requirement into more than two 

purchase orders purposely, ajob is supplied only by a purchase order. An association between 

the Supply class and the Job class is an abstraction of such request and supply links. 

4.3. Constraints 

The model of agile production planning and control (APPCM) should satisfy certain 

conditions. The conditions are specified to restrict some actions of the model elements. A 

constraint is a semantic relationship that must be maintained; otherwise, the system described 

by the model is invalid (OMG 2002). The semantics is described in terms of the set theory. 

Regarding Part, PartLink, Operation, WorkCenter, Resource, Shift, Demand, Job, 

JobLink, Assign, Task, and Supply as tables, tIe E A II means e is an element of a table A, 

"e.attr" and "e.opr()" shows attribute attr and operation oprO of element e, respectively, and 

"a = b" implies a and b are the same elements. 

• The part of a job that is generated to meet a demand must be the same with the requested 

61 



part of the demand. 

(\IdE Demand) (d.reqPart = d.reqJob.part) (4.1) 

• The part of a planning job must be the same with the part of a WIP (released job) whose 

net requirement is assigned to the job. 

(\I aEAssign) (a.wipJob.part = a.plnJob.part) (4.2) 

• To assign net requirement of a WIP (released job) to a planning job, the WIP must be 

finished in time to supply all requesting jobs of the planning job. 

(\I aEAssign) (\ljl E a.plnJob.reqJobLink) (a.wipJobjinishEpk ~jl.reqJob.startEpk) (4.3) 

• The total assigned quantity of a WIP among requirements cannot exceed net requirement 

of the WIP. 

(\lrjEReleasedJob) ( Ia.asgQty ~ rj.netReq) (4.4) 
aErj.plnAssign 

• To meet the net requirement of a manufacturing job, there must be a supplying job 

created for every component part of the part that the manufacturing job requested. 

(\ljEJob) (\lpIEj.part.supPartLink) C~jIEj.supJobLink) (p1.supPart = jl.supJob.part) (4.5) 

• A link between a job and a supplying job represents a gross requirement for the 

component part of the supplying job. The gross requirement is the product of net 

requirement of the job with the number of component parts per part of the job. 

(\ljl EJobLink) (3 pl=(jI.reqJoh.part,jl.supJob.part) EPartLink) (j1.reqJob.netReq x pl.rate = 

jl.supQty) (4.6) 

• Precedence constraints of jobs: A job must be finished before the start epoch of all of its 

requesting jobs, and started after the finish epoch of all of its supplying jobs. 

62 



(VjEJob) [(VrjEj.reqJob) (jjinishEpk ~ rj.startEpk) and (VsjEj.supJob) (j.startEpk ~ 

sj jinishEpk)] (4.7) 

• The minimum level of net requirement of a job equals to the sum of gross requirements 

from its requesting jobs and independent requirements from demand minus the WIP 

assignment, if any. The surplus of net requirement might be reserved for the sake of 

safety stock. 

(Vj E Unreleasedlob )(j .netReq) ~ :Ld.reqQty + IJI.supQty- :La.asgQty) (4.8) 
d Ej.meetDemand jl Ej.reqJobLink a Ej.wipAssign 

• The part of the purchasing order should be the same with the part of the procurement 

jobs. 

(VsESupply) (VrjEs.reqJob) (s.supPart = rj.part) (4.9) 

• Quantity of a purchasing order must not be less than the sum of net requirements of all 

the procurement jobs. The promise (delivery) epoch of a purchasing order must be earlier 

than the earliest finish epoch among the procurement jobs. The surplus might be reserved 

for the sake of safety stock, and the earlier delivery than required could be for the reason 

of safety leadtime. 

rjEs.reqJob 

:Lrj.netReq and s.deliveryEpk:S Min rf.finishEpk) 
rjes.reqJob 

(4.1 0) (V S E Supply) (s .supQty ~ 

• A resource can join at most one shift simultaneously. 

(VrEResource) (Vi,jEr.shlft) ([i.startEpk, ijinishEpk) nU.startEpk,jjinishEpk) =0) (4.11) 

• For ajob, all of the operations defined in a routing for making the part must be scheduled. 

(Vj EJob) (V 0 Ej.part.operation) (3 kEj.task) (0 = k.operation) (4.12) 

• The precedence constrains of tasks in ajob must be followed. 

63 



(VjEJob) (V m, nEj.task) (if m.operation.oprNo > n.operation.oprNo, then m.startEpk 

>njinishEpk) (4.13) 

• When choosing a resource for a task working on an operation, the resource must be one 

of the resources enrolled in the assigned work center of the operation. 

(VjEJob) (V kEj.task) (k.shift.resource E k.operation.process WkCtr.enrollResource) (4.14) 

• By assuming finite loading, the interval reserved for a task must be a subset of the 

occupied shift. 

(VjEJob) (VkEj.task) ([k.startEpk, kjinishEpk) c [k.shijt.startEpk, k.shijtjinishEpk) (4.15) 

• There must be no intersection between intervals reserved by tasks in a shift. 

(VsEShift) (V m, nEs.task) ([m.startEpk, mjinishEpk) n[n.startEpk, njinishEpk) =0) (4.16) 

4.4. Behavior view 

4.4.1 State Transition of a Job 

A job has 5 states in its life cycle as shown in Fig. 4.2. They are "created", "planned", 

"scheduled", "released", and "finished". In the figure, the ellipse shows a state, a solid cycle 

an initial state, a solid cycle with double lines a final state, and the arrow line connecting two 

states an event. Two types of event are used in the state chart. A change event occurs when an 

expression becomes true as a result of a change in value of one or more attributes or 

associations. A call event represents the reception of a request to synchronously invoke a 

specific operation. A state is driven by an event to jump to another state. 

A job is created to represent a net requirement for a part. A set of jobs are created for a 

demand. 

The planned net requirement (job.netReq) of a job (job: UnreleasedJob) is known after 

executing operation job.netPlanningO. The detail procedures of the methods used in this 

section are listed in appendix B. 

64 



reportFinishO 

cancelS 

Fig. 4.2: State chart of a job 

A "planned" job (pjb: UnreleasedJob) can go to the scheduled state by scheduling. To 

satisfy the requirement of a job, the part requested by the job should be processed for all 

operations. The scheduling process reserves capacity of a resource for each operation of the 

part. A set of tasks is generated by scheduling for a planned job. The scheduling process is 

bi-directional. Backward scheduling (pjb.backwardSchedulingO) of the planned job starts 

with the last operation and ends by the first operation from a due finish epoch, which is the 

earliest start epoch among its requesting jobs. Forward scheduling (pjbforwardSchedulingO) 

of the planned job begins with the first operation by starting from a due start epoch, which is 

the latest finish epoch among the supplying jobs. 

A job in the "scheduled" state goes back to the "planned" state when the result of 

scheduling is infeasible or some changes trigger rescheduling by canceling the scheduled set 

of tasks, freeing the reserved capacity of resources, and returning the assigned WIP. The 

operation sjb.cancelSchedulingO of a scheduled job (sjb: Unre Ie ase dfo b ) is invoked to do 

these works. 

A job enters the "released" state when it is the time of startEpk. A -manufacturing job is 

released to the shop floor for production. A procurement job is transformed to a purchase 

order, and released to a vender. We assume that a released job cannot be canceled, i.e. it is 

unable to go back to the "scheduled" state. 

After a job is released, the disposable quantity rjb.getDisposableQtyO of the job 

(rjb: Releasedlob) can be assigned to other planning jobs in the planning phase. When the job 

is completed, it goes to the "finished" state by invoking operation rjb.reportFinishO. The 

released job must be finished before the planned finish epoch, or an event is triggered to 

inform the delay and a new schedule will be generated by APPCS based on the delayed job to 

incorporate the delay. 

A "finished" job is either sent to the requesting jobs, or becomes stock on hand for 

assigning to other planning jobs in the next planning run. Finally, a finished job enters the 

final state when all the disposable quantity is used up. 

65 



4.4.2 Sequential Flow of a Demand 

A demand is a basic unit of planning and scheduling in APPCS. The planning and scheduling 

of a demand is executed by invoking the operation dmd.planningSchedulingO of the demand 

dmd: Demand. It generates a set of jobs and a set of tasks for the jobs. Fig. 4.3 shows a pseudo 

code of the operation. Details of the operation and the operations invoked inside are given in 

appendix B. 

(1) Job Initialization 
(2a) Net requirement planning of jobs 
(2b) Backward scheduling of job of jobs 
IF the schedule is infeasible 

(3) Canceling the scheduling 
( 4) Forward scheduling of jobs 

END IF 

Fig. 4.3: Pseudo code of Demand.planningScheduling() for net requirement planning and 

scheduling a demand 

The first step of planning and scheduling is to initialize the jobs that will be used later. If it 

is the first time for a demand to execute planning and scheduling, then buildJobLinksO 

operation of the demand is invoked to build the hierarchy of jobs by following instances of 

the Part class and links of the association PartLink. This operation acts as a preparatory 

work of accumulating all the requirements of such part in a job. If not, there has a hierarchy of 

parts, and cancelPlanningSchedulingO is invoked to cancel tasks of the unreleased jobs. 

There are two synchronized operations in the second step of planning and scheduling. One 

is net requirement planning (NP) that plans net requirement of ajob. Another one is backward 

scheduling (BS) that generates a set of tasks for a job. A job can run NP only when the due 

finish epoch is determined. In other words, the requesting jobs of the planning job, if any, 

must be in the "scheduled" state. Because the due finish epoch is necessary for the planning 

job to know whether some WIP assignments are usable or not. A job can run BS only when it 

is "planned". 

PSet and BSet are the two sets of jobs that are used to prevent the execution ofNP process 

and BS process from violating the precedence constraints. The netPlanningO operation is 

invoked for any job waiting in PSet. The backwardSchedulingO operation is called for any 

job waiting in BSet. After a job executes NP, if net requirement of the job is greater than 0, 

then it is appended to BSet. After a job runs BS, the supplying jobs that are capable ofNP will 

be appended to PSet. Ajob is capable ofNP if it has no requesting job or all of its requesting 

jobs are scheduled. In APPCS, whether a job is capable of NP is checked by operation 

ifAllReqJobScheduledO· 

66 



The planning and scheduling of a demand first performs in a top-down direction from the 

finished product level to the raw material level by a combination ofNP and BS processes until 

PSet and BSet are empty. The job with the highest priority to run NP can first reserve the 

disposable quantity of the released jobs (WIP). The job with the first priority of running BS 

can reserve the available capacity of resources. The sequence of jobs running NP and BS 

processes determines a schedule for a demand. 

Some rules help determining the schedule. For example, a breadth-first rule assumes that 

NP is invoked when there is no job in BSet, and BS is triggered when there is no job in PSet. 

A depth-first rule assumes that PSet is a first-in-Iast-out (FILO) stock, and a job runs BS as 

soon as it enters BSet. In addition, selecting the job that has the earliest finish epoch CEDD) or 

the shortest processing time (SPT) within PSet or BSet is the rule that usually used. 

Fig. 4.4 shows 3 sequences of planning and scheduling of a demand dl by assuming 

depth-first rule, breadth-first rule, and no rule. In the figure, B indicates the BSet, P the PSet, 

NP(y) net requirement planning of job y, BS(x) backward scheduling of job x, and element a 

within the sets means the job of a part a. 

planning &,sctleduling 

Fig. 4.4: Three possible sequences of executing net requirement planning and backward 

scheduling 

The planning and backward scheduling generates a set of jobs and each job possesses a set 

of tasks. The jobs together with the request-supply relations form a hierarchy of jobs. If the 

result shows that the start epoch of any job is located in the past, then the result is infeasible 

and should be abandoned. Instead, the bottom-up approach that performs forward scheduling 

from the leaf jobs to the root job is adopted. 

As shown in Fig. 4.1, APPCM provides no data structure to memorize the leaf jobs in the 

hierarchy of jobs that is constructed for a demand. To search for the leaf jobs of a demand, 

searching first top-down and then bottom-up is inevitable. During top-down searching, 

cancelSchedulingO is invoked to cancel the tasks generated by BS for all unreleased jobs. 

FSet is a set of jobs that is used to prevent the execution of forward scheduling CFS) 

process from violating the precedence constraints. After searching top-down, FSet contains 

only the leaf jobs. The method forwardSchedulingO is invoked to execute FS for the job 

waiting in FSet. The job capable of FS is the job with no supplying job or all of its supplying 

67 



jobs are scheduled. In APPCS, whether a job is capable of FS is checked by operation 

ijAllSupJobScheduZedO· 

After a job finish FS, its requesting jobs that are capable of FS are appended to FSet. The 

sequence of FS is determined by choosing the next job in FSet. The priority rule, for instance, 

can be the shortest processing time, earliest due epoch, and smallest net requirement, etc. 

A demand begins when any of its jobs is released. During production, if any uncertainty 

occurs to a demand, then the demand must execute planningSchedulingO again to remedy 

the change. After the root job of a demand finishes manufacturing, the demand is finished and 

the finished product will be shipped to the customer. 

4.4.3 State Transition of Procurement Job 

After all the demands finish planning and scheduling, purchase orders are generated to meet 

the net requirements of the procurement jobs. The procurement jobs that request the same part 

(usually raw material) and whose start epochs are within a period of time are usually 

integrated as a purchase order. 

As soon as a purchase order sup: Supply is created, it is released to a vender, and all the 

requesting procurement jobs (sup.reqJob) are marked with "released" automatically, and they 

enter the "finished" state after the supply is delivered. If supply uncertainty occurs to a 

purchase order, then the demands that directly or indirectly use the part supplied from the 

purchase order must execute planningSchedulingO again to remedy the change. 

68 



4.5. Mapping to PPCM and Comparing with MRPM 

APPCS is a complete production planning and control system, since the modeling elements of 

production planning and control model (PPCM) are implemented by the classes and functions 

of APPCM as shown in Table 4.1. Both material requirement planning model (MRPM) and 

APPCM are both complete systems. The difference of the two models is shown in Table 4.2. 

In the table, (:C) and (:A) denote instances of the C class, and links of the A association, 

respectively. 

Table 4.1: Model elements mapping from APPCM to PPCM 

PPCM Mapping by APPCM 

Part Part; PartLink; Operation; 
Epoch It becomes a data type (Epoch) in APPCM. 

(') Resource WorkCenter; Resource; Shift; 
p;-

Demand Demand UJ 
UJ 
(D 

Task Job; UnreleasedJob; ReleasedJob; JobLink; Task; UJ 

Satisfy Satisfy 
TaskLink JobLink; 

""rj 
Planning Net requirement planning, and scheduling are executed together by 

§ Demand.planningSchedul ing(). 
(') Execution The task in Task is released when it is time to start. ..-+-...... 
0 Control Satisfy and JobLink are associations used to identify the affected demands ~ 
CIl 

and jobs by a change. 

69 



Table 4.2: A comparison between APPCM and MRPM 

APPCM MRPM 

Epoch Real time; Discrete time (bucket); 
Resource Assume finite capacity; Assume infinite capacity; 

Capacity is specified in a resource by Capacity (:Capacity) is specified in a 
shifts (:Shlft), the actual workable work center by work hours for each time 
durations; bucket; 
Capacity of a work center is the union of 
all shifts of the resources enrolled in the 
work center; 

Task A task (:Task) has the facets of part, A planned order (:PlannedOrder) has 
epoch, and resource; the facets of part and epoch; 

A workload (: Workload) extends a 
planned order has the facets of part, 
epoch, and resource; 

TaskLink The request-supply relations of jobs are Gross requirements (:GrossReq) are 
defined in JobLink class; fulfilled by planned orders 

(:PlannedOrder) through the Fuljill 
association; 
A planned order (:PlannedOrder) is 
exploded to a set of gross requirements 
(:GrossReq) through the Explosion 
association; 

Planning Net requirement planning and Material requirement planning is first 
scheduling are executed in parallel; executed, planned orders 
Ajob (:Job) is the result of net (:PlannedOrder) are the planning result; 
requirement planning, a task (: Task) is Short-term scheduling is executed at 
the result of scheduling; shop floor after a planned order is 

released, workloads (: Workload) are the 
scheduling result; 

Execution A task (:Task) is released to shop floor A workload (: Workload) is scheduled 
for production; and directly executed at shop floor; 

Control Links (:Satisfy) between demands and Links (:Satisfy) between demands and 
jobs, and links (:JobLink) between gross requirements, links (:Fulljill) from 
requesting jobs and supplying jobs are planned orders to gross requirements, 
used to identify the affected demands and links (:Explosion) from gross 
and jobs by a change; requirements to planned orders are used 

to identify the affected demands, 
planned orders, and gross requirements 
by a change; 

70 



4.6. Testifying APPCM 

In order to testify the proposed UML model of APPCS, we discuss two issues: a simulator and 

an instance. 

4.6.1 Simulator 

We implemented it as part of a simulator (Sato and Tsai, 2004). The simulator is used in 

investigating the setting of safety stock or safety leadtime to protect against unexpected 

events by rescheduling. It is implemented by integrating VC++™ and MSSQL™ database. 

4.6.2 Instance of APPCS 

To give a whole image of the APPCS and to testify the model, we show an instance of the 

model in this subsection. Fig. 4.Sa shows the instances of product data and initial data for the 

example. The instances are contained in tables: Part, Operation, PartLink, WorkCenter, 

Resource, Shift, Task, and Demand. Elements of the tables follow the definition of class 

diagram in Fig. 4.1 and the constraints in section 4.2. Initially, a task from epoch 100 to 200 

of resource y is scheduled for maintenance. 

Two instances in the Demand table run planningSchedulingO in epoch 0 by following the 

earliest due date (EDD) rule. In case of backward scheduling of a job, the chooseResourceO 

obeys the "latest start epoch" rule, and in case of forward scheduling, the "earliest finish 

epoch" rule is adopted. A result of planning and backward scheduling of demand d 1 is shown 

in Fig. 4.Sb by tables of Job, Task, and Shift. The job sequence of plarining and scheduling 

is 1,2, 3, and 4. 

Since the results show that job 3 and job 4 start from the past, hence they are abandoned. 

Forward scheduling is used alternatively for demand dl by the job sequence 3, 4, 2, and 1. 

The result of planning, scheduling, and procuring of demand d 1 and d2 is shown in Fig. 4.Sc 

by tables of Demand, Job, JobLink, Assign, Task, and Supply. The procurement jobs 4 and 

6 are integrated to form a purchase order s2. Then the production activity begins according to 

jobs and supplies in Fig. 4.Sc. 

• Epoch 0: Purchase orders sl and s2 are released suppliers, and the corresponding 

procurement jobs 3, 4, 6 enter the "released" state. 

• Epoch 10: Purchase order s3 is released, and job 7 becomes released. 

• Epoch 40: Supply s2 arrives, and jobs 4 and 6 enter the "finished" state. 

• Epoch SO: Supply s1 arrives, and job 3 enters the "finished" state. Operation cl0 of job 2 

begins with consuming 20 units of part d from job 3 and 40 units of part e from job 4. 

71 



Disposable quantity of job 3 becomes 20, and job 4 is used up and destroyed. 

• Epoch 60: The supplier informs that the arrival of supply s3 will be delayed for 20 time 

units, i.e. becomes epoch 110. Since demand d2 is affected by the change, so the 

not-started job Gob S) of the demand and its schedules are cancelled. Demand 2 runs 

planningSchedulingO again to remedy the change based onjobs 6 and 7. In Fig. 4.Sd, the 

result shows that the supply change delays demand d2 for 20 time units. 

• Epoch 110: The arrival of the delayed supply s3 makes job 7 enter "finished" state. Job 8 

starts and consumes jobs 9 and 10. Job 6,7,9, and 10 are used up and thus destroyed. 

• Epoch 140: Job 2 is finished. Operation alOof job 1 starts with consuming 10 of part c 

from job 2 and 20 of part d from job 3. Job 2 and 3 are used up and thus destroyed. 

• Epoch 200: The customer requests 2 more units of demand 1 and desires to know the 

earliest possible delivery date. Since the only job that belongs to demand 1 is ongoing, it 

cannot be cancelled. Demand 1 runs planningSchedulingO again based on job 1. Fig. 

4.Se shows that the additional demand can be offered at epoch 324 if purchase orders s4 

and sS can be released immediately. 

• After epoch 220: Job 1 finished at epoch 220. Supply sS arrives at epoch 240, and s4 at 

2S0. Jobs 13 and 14 enter finished state and provide the necessary materials for job 12, 

which starts at epoch 2S0. At epoch 270, job 8 is finished and offered to demand d2. At 

last, job 11 is finished and supplies to demand dl at epoch 324. 

72 



· .. B~llf$_ I: ' . paf.tt \.: .A: . c 
req sup 
Part Part rate 

procure 
no LeadTime 

sup req oper- oprNo setup process process 
PartLink PartLink ation Time Time WrkCtr 

a c 1 
a d 2 
c d 2 
c e 4 
b e 4 
b f 2 

a 
b 
c 
d 
e 
f 

- a-c, a-d 
- b-e, b-f 
- c-d, c-e 

50 -
40 -
80 -

- '" -li a1O 
-

-----
'-A a20 

a-c 
"" 

---... biO 
a-d, c-d - ~ ciO 
c-e, b-e - .. c20 
b-f -

(a) production data and initial condition 

10 
20 
30 

0 
20 

'J~}:'/; "1: i.' / ...... '/.:' :J~i0':1:':_;i ··t:;'C;;.'( .•.. 

Ino part net start finish supJobLink reqJobLink meet wipAssign plnAssign Req Epk Epk Demand 

1 a 10 120 200 1-2, 1-3 - d1 - -
2 c 10 30 120 2-3,2-4 1-2 - - -
3 d 40 -20 30 - 1-3,2-3 - - -
4 e 40 -10 30 - 2-4 - - -

b ( ) p lannin g and backward schedulin g of demand dl 
. ,,' ,"'i:3,/> .~j; . {liG]))~ -:\ ~., >, c. >. '/./ 

no part net start fmish supJobLlnk reqJ 0 blink meet wipAssign plnAssign Req Epk Epk Demand 

3 d 40 0 50 - 1-3,2-3 - - -

2!q 
3'p 
4p 
4!p 
3 r 

....... 
h ••. 

meetBy task Supply 

- """ - ~0: - :~ -
'" 

.-
meetBy task job 
Supply -
sl - 2 

. : • > • ···.;'fii~~{\~;y7~;;~~.{~~ 

job oper- start finish shift ation Epk Epk 

- - 100 200 -1 a20 150 200 ... -
I alO 120 150 i--... -
2 c20 70 120 

---... -
2 clO 30 70 Ai 

..... ' .. 1\~1' .. ; ....•. ;. ;'/.~; .;.';; .. 
operation startEpk finishEpk shift 

- 100 200 -"'--
50 clO 90 ... -

~ 4 40 0 40 -e 2-4 - - - s2 rr--c2o- 90 140 ... -
50 2 c 10 140 2-3,2-4 1-2 - - - ..? 

170 -:;: -
~: I alO 140 

I a 10 140 220 1-2, 1-3 - dl - - - -< 1 a20 170 220 Ai 

b 20 90 250 5-6,5-7 - d2 5 - - - "'" ~; biO 220 250 .. 
6 80 50 90 - 5-6 s2 e - - - blO 90 170 .. 
7 f 40 10 90 - 5-7 - - - s3 -

r:t.; . ·f;tll'lWt,c .. 

task reso- start finish 
urce Epk Epk -- x o 400 

I"/" y o 400 

l?=--z o 400 

~ 
task reso- start fimsh 

urce Epk Epk 

" X 0 400 
I~~ Iy 0 400 
~::::- Z 0 400 

~>'I' 
reqJob supJob supQty 

1 2 10 

.t<'f. :;;~ ;:i~:''''~JI!f-A-;rr ......y" /Y<S~1 1 3 20 
.;~:;~; •• ~.~.;.:~;;-?~;; 1!..1"'·;>~.K'i;)$i;PTi" ;:/,<1 2 3 20 no part supQty 
no 1 part reqQty ue .1 supJob 1 plnJobl wipJob lasgQtyl sl d 40 

IWj_a 10\ 220 \1 s2 e 120 
d2 b 20 1 250 15 s3 f 40 

(c) plannmg, schedulmg and procunng of demand dI, d2 

fmished 1-3 
released C 1-2 
scheduled a dl 
finished e 6-9 s2 
released f 7-10 s3 
scheduled b d2 

(d) rescheduling demand d2 at epoch 60 triggered by supply change (s3) 

released 140 220 -
released 20 110 270 - d2 
scheduled 8 200 250 - 11-13,12-13 

scheduled 8 200 240 - 12-14 

scheduled 2250 284 11-12 

deliveryEpk reqJob 

50 3 
40 4,6 
90 7 

2 4 -----;ur 
5 6 80 
·S-1 40 

reso- start finish 
urce Epk Epk 

x 0 400 
y 0 400 
z 0 400 

reqJob ~~b Qt~ 
1 2 10 
1 3 20 
8 9 80 
8 10 40 

Fig. 4.5: The instances of APPCM for demonstrating how APPCS works 

73 



4.7. Summary 

We have proposed a model of agile production planning and control (APPCM) by using 

universal modeling language (UML). In the model, Part, PartLink, Operation, WorkCenter, 

Resource, Shift, Demand, Job, JobLink, Assign, Task, and Supply classes and their 

associations are defined. Job and JobLink classes and their associations are abstractions of 

the hierarchy of jobs. The Task class is an abstraction of the feasible tasks, each of which 

describes who, where, when, and how long of an operation. The Assign class is an 

abstraction of the assignments from WIP (released jobs) to the planning jobs when planning 

and scheduling is executed again because of uncertainties. 

If a priority rule and the conesponding parameters, such as lot size, leadtime, or safety 

stock are specified, then a feasible production plan can be generated and regenerated against 

uncertainties by first backward scheduling and then forward scheduling. The APPCM has 

been applied to an implementation of a simulator successfully. Furthermore, the APPCM is 

demonstrated and testified by an example, which shows how a demand runs planning and 

scheduling, and how the demand reacts to the supply and demand change during production 

control. 

Hatchuel et al. (1997) pointed out that during the last four decades, continuing 

development of industrial technology has generated a new make-to-order industrial type. 

Under such a competitive environment in the industries, customers are usually allowed to 

change not only the quantity, but also the specification or the style of the product after they 

made an order. The immediate planning and scheduling can respond to the change with higher 

service level, better resource utilization, and less material loss. The proposed APPCM makes 

the immediate planning and scheduling possible. 

In order to control a business process with high quality of performance, qualitative 

analysis of dynamic property such as Sato (1999) is not sufficient. The design of dynamics of 

a business process is necessary. If we could bring planning components into the design of 

business processes, then the whole control mechanism can be explicitly managed. The result 

of this chapter also plays a basic role for that purpose. 

74 



5 APPCS Optimization 

5.1. Introduction 

In this chapter, a novel genetic algorithm, called MDGA, is proposed to solve dynamic 

flexible scheduling (DFS) problem. MDGA has the following two characteristics. 

1. It is integrated with minimal generation gap (MGG) instead of standard genetic algorithm 

(SGA). MGG is a generation alternation model proposed by Yamamura et aI. (1996), 

which keeps variety of chromosomes in a population while preventing the search process 

from local optima. 

2. It uses newly proposed specific crossover, called demand crossover, which only produces 

feasible offspring. Unlike one-point crossover (Nearchou, 2004; Lee and Dagli, 1997; 

Dagli and Sittisathanchai, 1995), valid two-point crossover (Nearchou, 2004), or invalid 

two-point crossover (Croce et aI., 1995), demand crossover exchanges the genes that are 

related to some demands without violating the precedence constraints. 

In the competitive market, for example, it is almost impossible to begin a production after 

the actual demand is known. Based on information of the present, decision makers always 

forecast the future. Hopp and Spearman (2000) pointed out three laws of forecasting: (1) 

forecasts are always wrong, (2) detailed forecasts are worse than aggregate forecasts, and (3) 

the further into the future, the less reliable the forecast will be. The second law explains the 

reason why production planning begins with master production schedule (MPS), which plans 

the long-term requirements of the product family. Subsequently, material requirements 

planning (MRP) is used to plans the short-term requirements of an individual product. The 

third law reveals that the less reliable forecast should be revised by some new information. 

In the field of production management, researches try to build a model to predict the 

future demand. The first law does not disparage the activity of forecasting, but call attention 

to the importance of forecast revision. Sato and Tsai (2004) proposed agile production 

planning and control system (APPCS) to incorporate a change into production system and 

75 



provided a methodology to respond to the change agilely and simultaneously. Once there is a 

notification of change, APPCS generates another feasible schedule based on work-in-process 

(WIP). Tsai and Sato (2004a) gave a model of APPCS (APPCM) by using universal modeling 

language (UML) to show the realizability of APPCS. The schedule developed by APPCS is 

both practical and feasible, because it is compatible with the product data that has the same 

structure detail with a commercially available enterprise resource planning (ERP) package 

and an advanced planning and scheduling (APS) system. 

APPCS provides a feasible schedule, but the schedule is not necessarily good. For a plant, 

a good schedule is the schedule that achieves its own goal and reflects requirements of the 

market. The goal varies among problems and researches. For most of the scheduling problems, 

it is difficult to meet all the goals. There may be conflict among different goals. Kacem et al. 

(2002) proposed an approach to minimize makespan and total processing time (workload) for 

a flexible job shop schedule problem. The problem is different from the general job shop 

scheduling problem because it assumes the performance of the machines in a work center is 

different. Assigning a fast machine to an operation minimizes both makespan and workload at 

first. However as the capacity of the fast machines approaches to full, the optimization faces a 

dilemma of continuously choosing a fast machine to increase makespan, or choosing a slow 

machine to increase workload. 

Two approaches are possible among the studies that try to achieve multiple goals. The 

lexicographic approach searches for the schedule that meets the goals in a lexicographic order. 

The weighted-sum approach seeks for the schedule that achieves the highest scores of a linear 

combination of the goals. 

A measure of the schedule varies from plant to plant, from single goal to multiple goals 

and from lexicographic approach to weighted-sum approach. This research aims to solve an 

optimization problem that achieves various goals subject to a set of feasible schedules that are 

generated for a set of demands on the basis of product data with resource flexibility and some 

WIP. The problem is called dynamic flexible scheduling (DFS) problem. It is flexible because 

it assigns resources in a work center to an operation, and because it responds to various goals. 

It is dynamic because it is requested to respond to any change in real time. The DFS problem 

is practical because it adopts the product data that is actually used in commercially available 

manufacturing planning software (such as SAP R/3 and SyteAPS). 

NP-hard problems are problems for which there is no known polynomial algorithm, so 

that the time to find a solution grows exponentially in problem size (Hopp and Spearman, 

2000). Job shop scheduling (JSS) problem is a simplified DFS problem, which will be shown 

in Section 5.3.2. JSS problem has been shown to be NP-hard by Croce et al. (1995) and 

AI-Hakim (2001), hence DFS is also an NP-hard problem. 

Aytug et al. (2003) provided a review of the use of genetic algorithms to solve the 

production and operations management (POM) problems. The scheduling problem is one of 

76 



them, but the optimization of DFS problem is not in those reviewed researches. In this sense, 

DFS problem is new. In addition, practical and suitable situation in responding to changes 

agilely. 

GA exhibits parallelism, contains certain redundancy and historical information of the past 

solutions. It is suitable for implementation on massively parallel architecture (Wang and 

Zheng, 2001), and it has been applied to a large number of complex search problems 

(Nearchou, 2004). GA does not rely on analytical properties of the function to be optimized, 

which makes them well suited to a wide class of optimization problems (AI-Hakim, 2001). 

However, in view of the randomness property of GA, there is no guarantee of reaching 

optimum solutions for most scheduling problems. In order to see the power of MDGA in 

solving DFS problems, it would be proper to compare it with other methods. Since DFS 

problem is a new class of problems, we cannot find such methods. Therefore, we apply 

MDGA to JSS problems which are simplified DFS problems, and then compare MDGA with 

other methods for JSS problems. Notice that the reason of this comparison is not to show the 

superiority of MDGA for JSS problem, but to show that MDGA is not a bad method to find a 

good schedule in a DFS problem. (The comparison will be conducted in Section 5.4.) 

The rest of this chapter is organized as follows. Section 5.2 introduces APPCS and how it 

responds to a change by an example. Section 5.3 provides a definition of DFS problem, and a 

formulation of the problem. Section 5.4 presents MDGA, and gives exhaustive search and a 

comparison with other GAs to demonstrate its correctness and effectiveness. Section 5.5 

provides an insight into the performance of MDGA through an experiment and gives some 

advice on applying MDGA to solve DFS problem. We give a discussion in section 5.6 about a 

comparison of GA performance between MGG and SGA, and between demand crossover and 

other operators. Finally, a summary in the final section is provided. 

77 



5.2. Rescheduling Capability of APPCS 

Agile production planning and control system (APPCS) is proposed by Sato and Tsai (2004) 

to provide a methodology to respond to the change agilely and simultaneously. Once there is a 

notification of change, APPCS generates another feasible production plan based on 

work-in-process (WIP) to solve the change. We show the rescheduling capability of APPCS 

by an example in this section. 

A product data is the data related to product design and manufacturing. The product data 

for APPCS contains part, bill-of-materials (BOM), routing, work center, and resource. Those 

terms are illustrated with a product part shown in Fig. 5.1 a. A gray square in the product data 

shows a part. Finished product, assembly, and raw material are the types of part. This figure 

shows that it needs two pieces of assembly 'A' and two pieces of assembly 'B' to make one 

finished product 'F'. BOM is a term used to define such request-supply relations. 

A routing is a sequence of operations to make a part. A work center that enrolls some 

resources is assigned to an operation, and the operation will be processed by one of the 

resources. It takes some time to set up a resource before starting an operation. Setup time and 

processing time for processing a piece of part are estimated for an operation. However, the 

operation for procurement is processed without specifying a work center. As shown in Fig. 

S.la, finished part 'F' has two operations - 'F-l' and 'F-2'. Operation 'F-2' is processed at work 

center 'w2' in which resources 'r2' and 'r3' are stationed. It takes 6 time units to set up either 

resource, and 6 time units to process a part. 

A demand is either a customer order or the result of forecasting. In Fig. 5.1 b, a schedule 

generated for a demand 'dl' is illustrated with a Gantt chart. The demand requests 2 pieces of 

finished product 'F' before due time 15 0. A rectangular bar in the chart shows a task. In a 

sense, a schedule is a set of tasks that are fitted in a Gantt chart. The dot line with a white 

arrow in the chart shows the precedence constraints that regulate the manufacturing sequence 

of tasks. According to the schedule, a task is released to the shop floor or it is passed on to the 

purchasing department for subsequent processing. According to Gantt chart shown in Fig. 

5.1 b, the first task (M-O, 8) should be lunched to a vender at time O. 

Assume a new demand 'd2', which requests 2 pieces of 'F' by time 180, arrives at time 30. 

According to APPCS, once an event causes any changes in a schedule to happen, all the 

planned tasks except for the in-processing ones are canceled and a new feasible schedule is 

plotted out again based on the in-processing tasks according to the updated conditions. When 

the in-processing task is finished, its output becomes a work-in-process (WIP). 

78 



Part & BOM Operation Work Center Resource 

oper- setup process work 
part 

ation time time center 
F I 4 4 wI 

2 6 6 w2 

A I 6 3 w3 

2 4 2 wI 

B 1 6 3 w2 

M 0 26 3~ 
N 0 24 l~ 

(a) 

rl A-I 8 F-l 4 
Q __________ ~112Q------------------. 

\' ~.: ' 

r2 *-:-::--M-::--O-':-~-::-::""":3";';'-~-__ -__ -__ -__ -__ -__ f-__ -__ -___ - __ - __ .... ---~~-_:-.~.: ...... ~~--~2zr:::_i\~::::::::::::::::::::::::. 
I N-O, 16... I \\ 

r3 ::::::::::::::::_:::::_:::::::::::::::::-::::~ B-i, 8 1:-_:_::_:1° F -2, 4 l&- d 1 
10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 o 

(b) 

Fig. 5.1: (a) Product data of part Ipl and (b) a schedule of demand 'dl' shown by Gantt chart 

Fig. S.2a gives a new schedule for demands 'dI' and 'd2' based on the WIP (M-O, 8) 

whose planned finish time is 50. A dot line with a solid arrow shows that 8 pieces of the WIP 

are input to a downstream task (A-I, 8), which starts from time 50. Consequently, it is not 

necessary to generate a task for operation 'M -0'. This schedule achieves minimal makespan. 

Some plants may not satisfy with this schedule, because it indirectly causes a long processing 

time (318) and tardiness (38). 

Fig. 5.2b shows another schedule that achieves minimum total processing time (268), and 

the schedule in Pig. 5.2c attains maximum service level (100%), minimum earliness (0), and 

minimum tardiness (0). It is reasonable to process a group of identical operations together, to 

cut down on setup time of processing or on ordering costs of purchasing. The minimum total 

processing time of the schedule in Fig. 5.2b is achieved at the cost of service level (00/0), 

tardiness (86) and makespan (178). Fig. 5.2d shows a schedule that compromise a goal with 

makespan of 140 and total processing time of 288 by applying the weighted-sum approach, 

where the minimum makespan and total processing time are 128 and 268, respectively. 

In this manner, any change to a schedule will trigger APPCS to generate an improved, 

goal-oriented schedule recursively. 

79 



rl 

r2 ...-d2 

150 

r3 lidl 
L-------~150 

(a) 

(b) 

(c) 

--'--------'--------------------------_. 
30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 

(d) 

Fig. 5.2: The schedules that achieve (a) minimum makespan, (b) minimum processing time, 

(c) maximum service level, and (d) a weighted-sum 

80 



5.3. Dynamic Flexible Scheduling Problem 

A dynamic flexible scheduling (DFS) problem is defined as an optimization problem of 

minimizing makespan, maximizing service level, and minimizing tardiness subjects to some 

constraints of scheduling based on product data, operation requirements, tasks, and 

work-in-process (WIP). Subsequently, a formulation of DFS problem in a systematic way is 

provided for the encoding of genetic algorithm with MGG and demand crossover (MDGA) in 

the next section. 

5.3.1 Definitions and Notations 

Product Data 

The following notations are used in defining product data. An instance of the notation is 

provided following the description. The instance is drawn from the product data shown in Fig. 

S.la. 

Pi 

P={Pi} 

bmij = (Pi, Pi ) 

Bm={bmij } 

Qty(bmij ) 

oPij =(Pi,j) 

Nop(pj) 

Spt(oPij ) 

Pete OPij ) 

Pew (oPij ) 

r· 1 

Apart 

The set of parts concerned; P = { F, A, B, M, N } 

An ordered pair indicates that part Pi is an immediate component of part Pi 

The set of the ordered pairs bmij among parts in P; Bm = { (F, A), (F, B), 

(A, M), (B, N) } 

Quantity of Pi per unit of Pi; Qty (F, A) = 2 

An ordered pair, called an operation, represents the jth processing step to 

make part Pi 

The number of operations of part Pi; Nop (F) = 2 

Setup time of operation 0Pij; Spt (F, I) = 4 

Unit processing time of operation 0Pij; Pet(A, 2 )=2 

Processing work center of operation 0Pij; Pcw(B, I )=w2 

A work center 

The set of work centers; W = { wI, w2, w3 } 

A resource 

The set of resources; R = { r I, r2, r3 } 

The set of resources enrolled in a work center Wi; En (W2 ) = {r2, r3 } 

Recursively applying the request-supply relations defined in Bm, a hierarchy of parts is 

constructed. If each part in the hierarchy is replaced with its operations, then we get a 

81 



hierarchy of operations. 

Rat(OPim,OPjn) Number of parts necessary to be processed by an operation OPjn for a part 

by the successor operation OPim defined in the hierarchy of operations; it is 

defined as 

(5.1) 

R 

rl 

r2 

i--_~~----'----:;-'-- ________________ - - ____ - - - - - - - - - - - - - - - _ - - - - ____ - - - - - - - _. 

Fig. 5.3: A schedule in terms of terminologies ofDFS problem 

Demands 

The following notations are used to denote the demands. The instance provided after the 

explanation is from Fig. 5.3, which shows a schedule in terms of the terminologies of the 

problem. 

dj 

D={ di } 

Rqq( di ) 

Rqp(dd 

Dut(di ) 

A demand 

A set of demands; D = { d}, d2 } 

Requested quantity of demand di; Rqq (d} ) = 4 

Requested part of demand di; Rqp (d2 ) = F 

Due time of demand di; Dut(d1 )= 150 

Operation Requirements 

An operation requirement is a request for an operation. The request is exploded either 

independently or dependently from a demand. 'Requirement' is used instead of 'operation 

requirement' for simplific.ation. The following notations are used in defining requirements and 

their relations. 

rqi A requirement 

82 



Rq={ rqi } A set of requirements exploded from demands D; Rq = {rqi }i=1..14 

Opr(rqj) Operation of requirement rqi; Opr(rq6 )=(B, 1) 

Net (rqj ) Quantity (net requirement) of requirement rqi; Net(rqlo )=4 

e ij = (rq i, rqj ) An ordered pair showing precedence relation that rqj must be processed 

before rqi 

A set of directed edges representing precedence among requirements Rq; Erq 

= { (rqb rq2), (rq2, rq3), (rq3, rq4), (rq4, rqs), (rq2, rq6), (rq6, rq7),' , " 

(rq13, rq14) } 

G rq=( Rq, Erq) A directed acyclic graph of the requirements Rq 

Pd(rqi) The set of immediate predecessors of rqi; Pd(rq9)= {rqlo, rq13 } 

Sc(rqi) 

Met(di ) 

The immediate successor of rqi; Pd(rq4 )=rq3 

The requirement planned to meet demand di; Met(d2 )=rqs 

The requirements in Rq must be generated according to the hierarchy of operations. Let 

( rqi, rqj) EErq be arbitrary, and assume that operation Opr(rqj) = (Pi, m) and 

Opr (rqj ) = (Pj, n). If Pi = Pj, then m = n + 1; otherwise (Pi, p) EBm, m = 1, and n = Nop (Pj). 

Requirements are generated to meet the request of all demands. For a demand dj, there must 

be one and only one requirement, rqjERq, such that Sc(rqj)=0, Opr(rqj) = (Rqp(dj ), 

Nop(Rqp(dD» and Rqq(dD=Net(rqj) hold. 

Tasks 

A task is an operation processed within a period of time by a resource, which is generated 

to meet one or more requirements. The following notations are used for defining tasks and the 

relation with requirements. Notice that for a set A, IA I represents the number of elements in 

A. 

Tk={ tki } 

Rsc(tki ) 

Sta(tki ) 

Fin (tki ) 

Tq(tki ) 

Sst 

Est (rqi ) 

Lfi(rqi) 

A task 

A set of tasks scheduled to meet requirements Rq, I Tkl~IRql; 
Tk = { tkj h=1..s 

The resource assigned to process task tki; Rsc ( tk3) = r3 

The start time of task tki; Sta (tk3) = 68 

The finish time of task tki ; Fin ( tk3) = 86 

A set of requirements scheduled to form a task tki ; Tq(tk4)= {rq6, rq13} 

The task of requirement rqi; Qt(rq6)=tk4 

Scheduling start time; Sst= 30 

The earliest time at which rqi can be started; Est(rq3)=98, Est(rql0)=86 

The latest time which rqi must be completed; Lft(rq3) = 128, 

Lft(rqIQ) = 128 

The earliest and latest times for a requirement are defined as 

83 



{

Sst if Pd(rqj) = 0 

Est(rqi) = max Fin(Qt(rqj)) otherwise 
rqjEPd(rq, ) 

(5.2) 

and 

{

oo if Sc(rqj) = 0 
Lft( rqi ) = Sta(Qt(Sc(rqj ))) otherwise 

(5.3) 

WIP 

A rigorous definition of 'work-in-process' that a requirement whose successor is canceled 

by some changes is used in this chapter, instead of the general one that a requirement whose 

task is in-processing. This is because that scheduling start time Sst might be far later than 

notification time of a change, and some in-processing tasks might have been completed. 

Wp The set of work-in-processes; Wp= {rqw } 

Qw(rqj) A set ofWIP that was allocated to a requirement rqi; Qw(rq4)= {rqw} 

Wq(rqw) A set of requirements to which a WIP rqw is allocated; 

Wq(rqw)= {rq4, rqll} 

Alq(rqi' rqw) The quantity ofWIP rqw allocated to requirement rqi; Alq(rq4' rqw) = 5 

Constraints on Scheduling 

[Cl] Operation consistency for a task: The requirements with identical operation can be 

combined to form a task. That is, the following constraint should hold. 

(5.4) 

[C2] Total processing time: The total processing time of a task, i.e. the difference between 

finish time and start time, equals to the sum of setup time and the product of unit processing 

time and the sum of quantities of the contained requirements. It is 

(VtkiETk) (3rqjETq(tkD) Fin(tkj ) - Sta(tki ) = Spt( Opr(rqj» + Pct(Opr(rqj» 

x 2: Net(rq). 
rqjeTq(lkj) '} 

(5.5) 

[C3] Resource flexibility: If there is a resource assigned to a task, then it must be enrolled in 

the work center that is assigned to the operation of requirements satisfied by the task. That is, 

84 



(5.6) 

[C4] Precedence of tasks: The constraint that a task cannot be scheduled to start earlier than 

the latest earliest start time and to finish later than the earliest latest finish time among its 

requirements is denoted by 

(VtkiETk) Sta(tki)~ m?x Est(rqj) and Fin(tki)~ min Lft(rqi)' 
rq;€1q(tk;) rq;ETq(tkj} 

(5.7) 

[C5] Finite loading on resource: The finite loading constraint of a resource is denoted by 

(V tkj, t'9E Tk) if Rsc (tkj ) = Rsc (tkj ), then [Sta (tkj ), Fin (tkD) n [Sta (t'9 ), Fin (tkj» = 0, 

where [tJ, t2) means an interval of time from tl to t2. (5.8) 

[C6] WIP allocation: A WIP (planned requirement) can be used by a requirement if it has the 

same operation with the WIP, and if the WIP is completed before the successor of the 

requirement starts. That is, 

(VrqjERq) (VrqwEQw(rqj » Opr(rqj) = Opr(rqw) and Fin (Qt(rqw » ~ Sta(Qt(Sc(rqi »). 

(5.9) 

[C7] Total quantity ofWIP: The total allocated quantity of a WIP among_requirements cannot 

exceed quantity of the WIP. That is, 

(5.10) 

[C8] Net requirement: For any (rqi, rqj)EErq , quantity of rqj is calculated by subtracting 

WIP allocations from the gross requirement requested by rq j. That is, 

(5.11) 

85 



Dynamic Flexible Scheduling Problem 

Denote evaluation functions of makespan by EVmks, service level by EVsvc, and tardiness 

by EVtds for a schedule. Dynamic flexible scheduling (DFS) problem is defined as: 

Minimize EVmks = max (Fin(tkj )) - min (Sta(tkj)) , 
rk l ETk rk; ETk 

(5.12) 

Maximize EVsvc = ( 2: I(Fin(Qt(Met(dj)))~Dut(di)))/IDI, where 1: {T, F} ~ {I, O}, or(5.13) 
d;ED 

Minimize EVtds = 2: max{Fin(Qt(Met(dJ))- Dut(dj ), O} , 
diED 

Subject to the following eight constraints. 

[CI] Operation consistency for a task 

[C2] Total processing time 

[C3] Resource flexibility 

[C4] Precedence of tasks 

[C5] Finite loading on resource 

[C6] WIP allocation 

[C7] Total quantity ofWIP 

[C8] Net requirement 

5.3.2 Problem Formulation 

(5.14) 

Requirement arrangement, requirement aggregation, resource assignment, WIP allocation, and 

scheduling alternatives are the steps to formulate DFS problem in a systematic way. 

Requirement Arrangement 

Production planning and scheduling assigns available capacity (a time interval) of a 

resource to requirements in the set of operation requirements Rq. To solve the conflict caused 

when more than one requirement requests for the same period of time from a resource, these 

requirements are arranged to a sequence (rqi)i=1..IRQI (rqjERq) and the capacity of resource is 

assigned to the requirements in order of the sequence. Let SQ= {sql' sq2' ... , Sqk} be a set of 

all legal sequences on the requirements in Rq, where a sequence of the requirements is said to 

be legal if the order of the requirements doesn't violate the precedence constraints Erg. For 

the sample described in Fig. 5.3, the set SQ is shown in Fig. 5.4a, in which a circle with a 

86 



number i represents an operation requirement rqj. The ways to calculate the total number of 

cases in requirement arrangement is shown in Appendix A. 

Requirement Aggregation 

The requirements with the same operation that are located adjacent to each other in a 

sequence of operation requirements can be grouped together into a basket. A basket is a basic 

unit of scheduling and the requirements in a basket will be scheduled together to form a task. 

A basket is for a requirement in a sequence of requirements if either side of the requirement 

does not have any requirement with identical operation. 

The aggregation of adjacent requirements without shifting their position in a sequence of 

requirements complies with the precedence constraints Erq . Denote a set of sequences of 

baskets by QAj = {qail , qam .. " qa jm } on a sequence of requirements sqi E SQ. Fig. 5.4b 

shows the possible cases of requirement aggregation (QA;) for a sqi E SQ shown in Fig. 

5.4a. The ways to calculate the total number of cases in requirement aggregation is shown in 

Appendix B. 

Resource Assignment 

A work center is assigned to an operation except operations that need to be planned 

leadtime for procurement. To keep it simple, we assume that such an operation is assigned to a 

dummy work center. A basket, including at least one requirement, inherits work center from 

the requirements, and one of the resources in the work center is assigned to the basket for 

scheduling. 

For a sequence of requirements Sqi E SQ, and for a sequen~e of baskets qaijE QAi' let 

RAij = {raijl, raij2, "., raijk} be a set of sequences of resource-assigned baskets. Fig. 5.4c 

shows some instances of resource assignment for a sequence of baskets shown in Fig. 5.4b. 

Dummy resource is assigned to baskets kl and k3, because they are the aggregation of 

procurement requirements. 

WIP Allocation 

Quantity of WIP can be allocated to the requirements of the same operation, as shown in 

[C7], in the new scheduling run. Fig. 5.4d shows the alternative ways to allocate 8 units of 

WIP rqw to rqs and rq12. Let WA be a set of the possible WIP assignments from WIP in Wp 

to requirements in Rq, The ways to calculate the total number of cases in WIP allocation is 

shown in Appendix C. 

87 



Scheduling Alternatives 

SA = {js, bs} is a function set of two scheduling alternatives - fonvard scheduling and 

backward scheduling. Backward scheduling generates a schedule backwardly from due time 

of a demand, while forward scheduling does it forwardly from the scheduling start time Sst. 

~lj---------------------------------------~ 

I I 
I ro~ I 
I I 
I I : ::::::::::--:::::::::::::::::::::::::::::::::::: 
I I 
L_ 

(c) 

-------------- ------------------1 :WA I 

: Alt~rnalWrna2w~:3 : :w
rn
a9rn· Wrn~l~ :Wrna17rnWrn~19::: :w~a43tEWrn~45: 

I Alt 0 0 .0 _ _ 0 1 I _. I 2 2 _ _ _ _ 7 7 8 

l~~~--~--------------------- _____ ~ 
(d) 

Fig. 5.4: (a) Legal sequences of requirements, (b) sequences of baskets, (c) possible resource 

assignments for a sequence of baskets, (d) possible WIP allocations for a set of requirements 

88 



If we choose a WIP assignment from WA, a sequence of resource-assigned baskets from 

U~:~I U~~I RAij , and determine a scheduling alternative among SA, then we get a unique 

schedule by production planning and scheduling. Domain of DFS problem formulated in a 

systematic way is thus denoted by 

(5.15) 

Production planning and scheduling is to transform a sequence of resource-assigned 

baskets with respective WIP allocation and the specification of a scheduling alternative into a 

set of tasks, which can be fitted in a Gantt chart. One basket, including a set of requirements, 

is converted to a task. The procedure of production planning and scheduling is shown in Fig. 

5.5. Lines from (01) to (03) show that a sequence of resource-assigned baskets running 

forward scheduling or backward scheduling is determined by the scheduling alternative. 

Lines from (04) to (11) show backward scheduling runs net requirement planning together 

with scheduling in a sequence one by one from the rear basket back to the front one. In line 

(05), quantity (net requirement) of each requirement in a basket is planned by deducting 

effective quantity of WIP allocation (due to [C6]) from gross requirement of the successor 

according to [C8]. Lines (06) and (07) show that a task is generated for a basket and the 

resource for the task is brought from the basket. Referring to [C2], total processing time of a 

task is calculated in line (08). In line (09), available intervals of the resource enough and in 

time for the processing time are gathered. Finish time of the intervals cannot be later than the 

start time of the successor requirements. The interval with the latest finish time among the 

intervals is selected and occupied with the processing time of the task as denoted in line (10). 

Finally, as shown by line (12), if the schedule by backward scheduling starts before 

scheduling start time Sst, then forward scheduling is triggered to generate a feasible schedule 

from Sst. 

Forward scheduling plans net requirement from line (13) to (15), then runs scheduling 

from the front basket to the rear one as listed from line (16) to (21). The net requirement 

planning is similar to backward scheduling with the exception that all allocated WIP is forced 

to be used in offsetting the gross requirement as shown in line (1 7). However, finish times of 

the WIP must be taken into consideration in determining the earliest start time of the task. As 

shown in line (20), the earliest start time forces a new task to start after not only the finish 

times of the predecessor requirements but also the allocated WIP. 

The result of production planning and scheduling of a sequence of resource-assigned 

baskets in Fig. 5.4 is shown in Fig. 5.6, in which 'qty', 'tpt', 'ift', and 'est' represent total net 

requirements, total processing time, latest finish time, and earliest start time of a basket, 

89 



respectively. As shown in Fig. 5.6a, backward scheduling is executed in a backward sequence 

from basket k8 to basket k 1. 

1* Terms denote baskets together with their relations with requirements 
Bk= { bki } A set of the resource-assigned baskets 
(bkj)j=t .. IBkl A sequence of baskets on Bk 
Bq ( bki ) A set of requirements in a basket 
1* Production planning and scheduling 
Production _ Planning_and _Scheduling ( Sequence of baskets: <bki») 
(01) IF scheduling alternatives = 'forward scheduling' 
(02) THEN DO Forward_Scheduling (Sequence of baskets: <bki»); 
(03) ELSE DO Backward_Scheduling (Sequence of baskets: <bkj»); 

1* Backward scheduling of a sequence of baskets 
Backward_Scheduling ( Sequence of baskets: (bk j») 
(04) FOR each basket bkiEBk in a reverse order of (bki) 
(05) Calculate quantity of each requirement in bkj by [C8] in the confines of [C6]; 
(06) Generate a task tkn for all requirements in bkj due to [CI]; 
(07) Get resource rs assigned to basket bki due to [C3]; 
(08) Calculate total processing time tpt of tkn by [C2]; 
(09) Get a set of intervals ltv of resource rs whose length 2 tpt 

and finish time :s;min{ Lft(rq) I rqEBq(bki) } due to [C4]; 
(10) Pick an interval of the latest finish time fin from ltv, and 

reserve capacity rfin-tpt,fin) ofrs for tkn due to [e2]. 
(11)ENDFOR 
(12) IF any task in the Gantt chart starts before Sst 

THEN DO Forward_Scheduling ( Sequence of baskets: <bki»); 

1* forward scheduling of a sequence of baskets 
Forward_Scheduling (Sequence of baskets: (bki») 
(13) FOR each basket bkiEBk in a reverse order of (bki) 
(14) Calculate quantity of each requirement in bki by [C8]; 
(15) ENDFOR 
(16) FOR each basket bkiEBk in the order of (bki) 
(17) Generate a task tkn for all requirements in bki due to [C 1 ]; 
(18) Get resource rs assigned to basket bkj due to [C3]; 
(19) Calculate total processing time tpt of tkn by [C2]; 
(20) Get a set of intervals ltv of resource rs whose length 2 tpt, 

start time 2 max{ Est(rq) I rqEBq(bki)} due to [C4], and 
start time 2 max{ Fin(Qt(rqw)) I rqwEQw(Bq(bkD) } due to [C6]; 

(21) Pick an interval of the earliest start time sta from ltv, and 
reserve capacity [sta, sta+tpt) ofrs for tkn due to [C2]; 

(22) ENDFOR 

Fig. 5.5: Procedures of production planning and scheduling 

A WIP rqw that ends in time 50 is allocated to requirements rqs and rq12, but the WIP is 

not in time for tasks tk3 and tk5, hence the allocation is unusable. Ultimately, the schedule by 

90 



executing backward scheduling is not feasible because it is planned to start before the 

scheduling start time Sst. Forward scheduling is done, accordingly. Fig. 5.6b shows the 

resultant feasible schedule executed by forward scheduling that is starting from Sst = 30. The 

allocated WIP is used, hence less material needs to be purchased. 

... backward scheduling e 
qty=24 qty=12 qty=4 qty=12 qty=8 qty=12 qty=6 
tpt =48 tpl =62 tpt =18 ipi =42 tpl =30 Ipl =28 tpt =28 
1ft =38 1ft =20 1ft =52 1ft =80 1ft =52 1ft =80 1ft =108 

(a) 
.e--------forward scheduling---------l .... 
qty=24 qty=4 qty=4 qty=12 qty=8 qty=12 qty=6 qty=6 
Ipt =48 tpt =38 tpl =18 tpl =42 tpt =30 tpt =28 tpl =28 tpt =42 
est =30 est =30 est =68 est =78 est =68 esl =98 est =128 esl =156 

W 
A~ 

-z--w ~ 
~ __ ~ ___ 9~8 15~6 __ --~ ____ ~1~98 

~~~~ ....... --+---.....;.~--'-:::: :::: ::::::::::: ::::] F:~~ 6 I. 

\ 98 126 ,/
----------------~ ---------------------------------

/---81 A-t~12 I :/
____ -':L--- ____ ~,~-.-. /~'-;;--- "'."" 128------7- -~ ~~-~~~~~~~~~~~~~~~~~:

r3 _______ ~-~~~-~~~-~ A~~'13 B-~~\2m----BJ F!f: 6 Ln ______________ n_
30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200

Sst
(b)

Fig. 5.6: Results of (a) backward scheduling, and (b) forward scheduling

91

5.4. Genetic Algorithm with MGG and Demand

Crossover

This chapter proposes a specific genetic algorithm, called MDGA, to solve DFS problems. A

chromosome acts as information carrier through the processes of MDGA. It joins the

reproduction process to propagate its offspring by demand crossover and mutation. Then, the

offspring's fitness values are measured to compete with those of other chromosomes by

minimal generation gap (MOO), a generation alternation model, to decide whether they can

be promoted to the next generation. If lost, it is abandoned to have more room for a new

chromosome. The processes of reproduction and selection are repeated until all termination

conditions are satisfied. The correctness and effectiveness of MDGA will be examined by an

exhaustive search and a comparison with other OAs in solving some job shop scheduling

problems.

5.4.1 Encoding

Hierarchy of

An instance in domain of DFS problem
e-forward scheduling-'

gene g5
opr-d202
res=(r3)

A chromosome
schAll= forward scheduling

gene g2 gene g6 gene g7 gene g8
opr-dIo2 opr-d203 opr-d30 1 opr=d302
res=(r2) res=(-) res==(rl) res=(r3)

agf=(T) agf=(F) agf=(T)
wip= {} wip== {} wip= {(w, x

3
)}

Fig. 5.7: The mapping ofDFS problem to the GA encoding

92

To encode a chromosome is to represent an instance of domain of DFS problem, which is

expressed in (5.15). A chromosome is a combination of components, called genes. We encode

a gene with a requirement, and a chromosome with a sequence of requirements.

A gene has four attributes: operation, aggregation flag, resource, and WIP allocation.

Aggregation flag and operation advise whether the gene is capable of aggregating with other

genes or not. A chromosome has an attribute of scheduling alternative, which suggests

whether the chromosome should run forward scheduling or backward scheduling. Fig. 5.7

shows the encoding corresponding to the DFS problem, where 'opr' indicates the operation,

'res' the assigned resource, 'agf the aggregation flag, 'wip' the WIP allocations of gene, and

'schAft' the scheduling alternative.

If several genes have the same operation, 'True' aggregation flags, and are adjacent each

other in a chromosome, then they are grouped together in a basket. Subsequently, the

responsible resource for a group of genes is randomly selected among resources of the genes.

As a result, a chromosome can be decoded back to a sequence of baskets.

5.4.2 Initialization

The first step of MDGA is to generate a set of chromosomes randomly to be the initial

population of MDGA. An initialization procedure is proposed in Fig. 5.8 to generate a legal

chromosome for the initial population.

1* Generate an initial population of chromosomes
Initialization ()
(01) Put the last requirement in Rq into a queue Q;
(02) WHILE Q is not empty
(03) Remove any requirement rqi from Q;
(04) Add predecessor requirements Pd(rqj) to Q;
(05) Create a gene gn for rqi;
(06) Choose a resource in En(Pcw(Opr(rqi))

for gn due to [C3];
(07) Set aggregation flag of gn to be 'True' or 'False';
(08) Append gn to a queue of genes G;
(09) END WHILE
(10) Allocate quantity ofWIP to genes in G randomly according to [C6], [C7], [C9];
(11) Designate a chromosome C contains G;
(12) Assign a scheduling function in {'ft', 'bs'} to C;

Fig. 5.8: Procedures ofMDGA initialization

The lines from (02) to (09) are a loop for sampling a sequence of genes without violating

the precedence constraints. The key to that is appending the predecessor requirements to the

sampling pool Q in line (04) immediately after a requirement is removed from Q as shown in

93

line (03). For a gene, a resource is randomly skimmed off among the resources selected by

applying [C3] in line (06), and the aggregation flag is set in line (07). At the end, the quantity

of WIP, if any, is distributed to suitable genes randomly according to rules [C6], [C7], and

[C9] in line (10). From line (11) to (12), a chromosome is generated to contain the sequence

of genes, and finally the scheduling alternative of the chromosome is set to be either forward

scheduling or backward scheduling.

5.4.3 Reproduction

Two methods, crossover and mutation, are used in MDGA to reproduce new offspring. In

general, crossover operator randomly selects two chromosomes from a popul':ltion, exchanges

some genes of them, and reproduces two new chromosomes. Mutation operator randomly

selects a chromosome from the population, reverses some data, and then puts it back to the

population. For a DFS problem, both operators must comply with the precedence constraint

when reproducing a new sequence of genes. The crossover and mutation of MDGA are

explained as follows.

N-demand Crossover

The genes in a chromosome with common attributes form a sub-chromosome. The genes

sharing the same resource are competitors, while the genes belonging to the same demand are

partners. Besides, the genes reside in a sub-chromosome with their positions in the

chromosome might provide some valuable information on solving DFS problem.

After selecting 2 chromosomes from the population, N-demand crossover begins with

choosing N demands from D randomly, and then identifies the genes belonging to those

demands in both chromosomes. Finally, it exchanges the genes from N demands in a

chromosome with the genes in another chromosome. Fig. 5.9a shows how one-demand

crossover swaps genes {g4, gs, g6}, which belong to demand d2 as shown in Fig. 5.7,

between parent chromosomes {x, y} to make a child chromosome c. Similarly, two-demand

crossover swaps genes from demands {d 1, d3} in a chromosome with the genes from the

same demands in another chromosome, as shown in Fig. 5.9b.

The crossover operator exchanges not only the sequence of genes in a chromosome but

also the embedded information including aggregation flag, resource, and WIP allocations. If

the sum of the WIP allocations violates the constraint [C7] after crossover, deduct the surplus

or replenish the shortage from the WIP allocations.

In order to consider the general cases, assume that the selected N demands contain a set of

genes G= {gl' g2' ... , gn} in a chromosome. The chromosome is a sequence of genes denoted

by x=G1 < {gd < G2 < ... < {gn} < Gn+1 , where '<I means the precedence relation in a

94

chromosome, and G1 , G2 , ... , G n+ 1 are sets of sub-chromosomes; on the same assumption,

the same genes in chromosome y can be denoted by y=Hl <{gd<H2 < ... <{gn}<Hn+l .

Define the crossover of x and y as

(5.16)

where 'Q,J,S means taking genes in set S away from sequence Q but remaining the position of

other genes unchanged, and 'Qt P' means filling up the empty position in sequence Q with

genes in a sequence P. The crossover of x and y, x®y, is not necessarily equal to y®x. The

N -demand crossover operator abides by precedence constraints, because the genes in

sequences (gi);=1 and (HI <H2 < ... <Hn+1) belong to different demands.

Parenty
schAlt= bs

(a) one-demand crossover (demand d2 is preserved)

Parenty
schAlt = bs

(b) two-demand crossover
(demands d 1 and d3 are preserved)

(c) shift mutation

Fig. 5.9: The reproduction operators of MDGA

95

Shift Mutation

A single gene is chosen randomly from a chromosome, and then inserted into a random

position after its preceding genes and before its succeeding gene as shown in Fig. S.9c.

Besides, resource and aggregation flag of the gene, and scheduling alternative of the

chromosome are randomly given a new value. The WIP allocation to the gene, if any, is set to

0, and the mismatch caused by shift mutation invokes a process to redistribute WIP quantity

among those genes sharing the WIP.

5.4.4 Generation Alternation

Generation alternation models are important to provide controls on searching process.

Existing works have often used SGA (simple or standard GA) for a fixed generation

alternation model. Yamamura et al. (1996) proposed a roulette minimal generation gap

(rMGG) as an extension ofMGG. The MDGA applies rMGG to generation alternation.

Fig. 5.10 lists the steps of generation alternation of MDGA. Line (01) shows the

generation of initial population; from line (03) to (08), the N-demand crossover operator; and

from line (10) to (11), the shift mutation operator.

The crossover operator selects two chromosomes from the population as shown in line

(03), reproduces two descendants in line (04), evaluates them in line (05), chooses the best

one among the four chromosomes in line (06) and anyone from the remains in line (07), and

puts the two chromosomes back to the population with replacement in line (08). In this figure,

m denotes the population size, n the number of generations, and k the mutation rate.

1* Generation alternation with rMGG
rMGG (m, n, k)

(01) Generate m chromosomes as initial population P;
(02) FOR each generation UNTIL nth generation
(03) Remove 2 chromosomes {x, y} from P;
(04) ApplyN-demand crossover on {x,Y}, and get {x',y'};
(05) Evaluate x' and y';
(06) Choose the best fit from {x, y, x', y'} as b;
(07) Choose anyone from {x, y, x', y'}_{ b} as a;
(08) Put a and b back to P;
(09) IF random number < k
(10) Select a chromosome ch from P;
(11) Apply shift mutation to ch, and evaluate it;
(12) END IF
(13) END FOR

Fig. 5.10: Procedures of generation alternation with rMGG

The main difference between SGA and MDGA is that SGA reproduces all the offspring at

96

a generation then carries out the tournament selection from the whole population, while

MDGA executes roulette selection from the 4 chromosomes immediately after reproduction.

MDGA keeps variety of chromosomes in a population, prevents the search process from

rushing into local optima.

5.4.5 Correctness and Effectiveness

The correctness and effectiveness of MDGA is demonstrated by an exhaustive search (ES)

and a benchmark. The purpose of ES is to verify the correctness of MDGA by examining all

the possible elements in domain of some simple DFS problems to find the best solution, and

comparing the solution with the result of MDGA. In the benchmark, MDGA is applied to

solve JSS problems which are simplified DFS problems, and then compare MDGA with other

methods for the JSS problems.

Exhaustive Search

As shown in Table 5.1, according to 4 sets of demands, four problems based on the

product data shown in Fig. 5.Ia, and 8 units of WIP M-O are prepared. These problems and

their results by ES and MDGA are shown in Table 5.1.

We accomplished the exhaustive search of problem 1, 2, and 3. Problem 4 had been tried

for two months on a: PC, while the best value found by ES during the search is even worse

than that of MDGA. The correctness of MDGA is proved by that it achieves the optimum

value identical to the result of ES. The computer executing ES and MDGA can process about

2000 chromosomes per second. The fact that MDGA reaches the optimum value in less than a

second gives an account of the efficiency.

Table 5.1: Result of the exhaustive search

No
Demand set DFS problem

Time Result Emks Eprt Etds Esvc
(2art, g~, due) Domain size

dl=(F,4, 150) 5,760 3 sec
ES 120 170 0 100

MDGA(sn l
) 120 (1) 170 (3) 0(1) 100 (1)

2 dl:~F, 4, 1506 25,021,440 3.1 hrs.
ES 120 212 0 100

d2- A, 4, 12) MDGA(sn) 120(44) 212 (42) 0(579) 100 (35)
ES 120 248 0 100

3 4,149,596,160 21.4 days
MDGA(sn) 120 (34) 248 (475) 0(338) 100 (562)

dl:fF, 4, 150~ 115,142,123,520 49.5 years
ES2 126 268 0 100

4 d2- F,2, 180 MDGA(sn) 120 (633) 268 (1,162) 0(25) 100 (39)
1 'sn' means number oftimes of the scheduling run when the best value is found by MDGA.
2 The result of running exhaustive search for about 2 months.

97

Benchmark

Job shop scheduling (JSS) problem is a subset of DFS problem. Moreover, JSS problem is

a restricted DFS problem. If we do not use bill of materials, routing flexibility, WIP, or setup

time, if we specify only forward scheduling as the scheduling alternative, and if we select

makespan as the evaluation function, then we have a JSS. In other words, it is hardly to

produce a practical schedule by solving JSS where the use of product data is inevitable.

A benchmark of some famous JSS problems is used to compare with the work of Croce

(1995), who proposed an encoding based on preference rules and an updating step which

speeds up the evolutionary process. The problems whose identification starts with 'MT' are

from Muth & Thompson, and with 'LA' are from Lawrence, according to Croce (1995).

It is not appropriate to compare the performance of GA on the basis of time, since the

experiments are carried out on different computers with different operating system and

implemented by using different programming languages with different skill. As MGG has

different definition of a generation with SGA, generation is not adequate for comparison

either. Croce measured the performance on the basis of the number of chromosomes

generated during a run. In a similar way, we count the times of scheduling as the basis of

comparIson.

Table 5.2: Comparison ofMDGA with Croce's GA
MDGA Croce

Problem OPT l NDC2 POP=50 POP=100 POP=300
n m

SCH=10000 SCH=30000 SCH=60000 SCH=30000

Best Avg. Best Avg. Best Avg. Best Avg.

MT06 6 6 55 3 55 55.0 55 55.0

MTlO 10 10 930 5 955 965.2 939 949.0 939 948.4 946 965.2

MT20 20 5 1165 10 1176 1193.4 1174 1178.0 1165 1172.2 1178 1199.0
LAOI 10 5 666 5 666 666.0 666 666.0
LA06 15 5 926 7 926 926.0 926 926.0

LAll 20 5 1222 10 1222 1222.0 1222 1222.0

LA16 10 10 945 5 967 979.0 959 973.6 946 963.0 979 989.0
LA21 15 10 1048 7 1074 1098.8 1066 1077.4 1055 1071.2 1097 1113.6

LA26 20 10 1218 10 1281 1294.8 1220 1230.8 1218 1226.6 1231 1248.0

LA31 30 10 1784 15 1784 1784 1784 1784
LA36 15 15 1268 7 1336 1339.4 1305 1312.0 1297 1306 1305 1330.4

1. 'OPT' means the best value found so far by the heuristic researches.
2. 'NDC' means number of demand crossover using in the benchmark.

The number of N-demand crossover (NDC) is set to the maximum degree (half of the

number of demands). No mutation is set in the benchmark. Table 5.2 shows the performance

of MDGA where the number of scheduling (SCH) is used as the termination parameter. SCHs

are set to 10000, 30000, and 60000, respectively. Croce's result is shown for comparison,

which uses 30000 chromosomes. Two population sizes (POP) are set: POP=50 in SCH=lOOOO

98

for faster tennination, and POP=100 in SCH=30000 and SCH=60000 for slower tennination.

If MDGA achieves the best value so far (OPT) by applying POP=50 to some easy problem,

then the test for POP=100 is omitted. The best makespan shown in the table is selected over

five runs, and so is the average makespan.

By observing Table 5.2, MDGA is not a bad method for solving JSS problem.

Furthennore, its ability overcomes simple JSS solvers, in the sense that MDGA provides a

way to handle practical product data and then is able to produce feasible schedule.

99

5.5. Experimental Analysis

An experiment is conducted to investigate some factors and their mutual effects on applying

genetic algorithms with MOO and demand crossover (MDGA) to dynamic flexible

scheduling (DFS) problem. The result shows the limitation of MDGA and also gives some

advice on using MDOA smartly. The factors in DFS problem that might have influence on

performance of MDOA are the number of demand, routing flexibility, and evaluation

functions.

• Number of demands (ND): The number of demands increases exponentially in domain

size of DFS problem. Four levels of the factor are set in the experiment as shown in Fig.

5.11 b, which are ND=3 (nd03), ND=6 (nd06), ND=12 (nd12), and ND=60 (nd60). The

demands in nd06, ndl2, and nd60 are generated by splitting quantity of a demand in nd03

into 2, 4, and 20, respectively. The domain of nd03 is a subset of nd06, because

requirements exploded from demands in nd03 can be composed by aggregating the

requirements from demands in nd06. Similarly, nd06 and nd12 are sub-problems of nd12

and nd60 respectively.

• Resource flexibility (RF): A resource is called flexible, if it works for more than one work

centers. Resource flexibility is defined as the average number of work centers that a

resource joins. Three levels of the factor, rfDl, rf03, and rf05, are well prepared, as shown

in Fig. 5.11 c, to make the work center - resource pairs in rfO 1 and rf03 be subset of the

pairs in rf03 and rf05, respectively.

• Evaluation function (EF): Three evaluation functions are performed in the experiment,

which are makespan, service level, and tardiness.

There are 27 cases composed by 3 NDs, 3 RFs, and 3 EFs in the experiment, and each

case runs lO times. Population size 50 is set, and the number of N -demand crossover (NDC)

is set to be O.5IDI. The product data used in the experiment is shown in Fig. 5.11a. The result

of each run is evaluated when the number of scheduling (SCH) equals 30000.

We run the cases on a laptop computer with Centrino Penitum® M 0.9 Ghz CPU, and the

necessary times for running problem nd03, nd06, ndl2, and nd60 are 50, 105, 250, and 2610

seconds, respectively. If the numbers of demands are 100, 200, and 300, the necessary times

become 200, 1600, and 7500 minutes, respectively. The time needs to run a case grows up

exponentially with the length of a chromosome.

100

A01 1 25 4 wOI

2 lO 4 w04

A02 8 4 w05

0
2 28 4 w03

""0 A03 2 S wOl
(tI
"""t 2 8 5 w05 ~
r-t-o· A04 6 1 w04
:::::s 2 25 4 w03

A05 17 3 w02

2 6 4 w05

A06 1 27 5 w03

2 26 4 w03

A07 20 3 w02

2 7 4 w03

~
A04 2 50

B06 200

COl 20

No. of demands
r/<" :K2;/;J?~{k;' 2004/01l0~ (AOI, 100,!
(BOl, t 100,l 2004/0110600:00 xl
COl,! 100,! 2004/01108 10:00 Ix 1

;;{;<} ii,,{,' i·h;".SW: ·,i. ,"2. i'~,,,,<,-h;

AOI,! 50,/ 2004/01107 12:00 lx2
BOl, 50,l 2004/0110600:00 x2
:COl, 50,1 2004/01/08 10:00 Ix2

"'/?

(AOI, 25,(2004/01107 12 :00) I x 4
(B01, 25,l 2004/01/06 00 :00) ! x 4
(COl, ! 25,1 2004/01108 10 :00) I x 4
;,;:i;~:.;ii';,. ii;

i(AOI, I 5,\ 2004/0110712:00 lx20
I(B01, i 5,! 2004/0110600:00 !x20
(COl, ! 5,1 2004/01108 10:00 Ix20

(b)

N W N

I B6311 BO~ II B6611 E071

B01 1 11 3 wOI COl 20 4 wOS

2 20 3 wOI 2 21 4 wOS

B02 22 4 wOI CO2 23 2 w02

2 3 S w04 2 3 3 w04

B03 10 2 w02 C03 4 4 w03

2 18 4 w04 2 26 3 w05

B04 1 28 3 w03 C04 28 3 w02

2 2 2 w02 2 8 2 w05

B05 1 9 3 w02 COS 20 4 w05

2 3 4 w02 2 2 4 w03

B06 1 2 5 w04 C06 1 28 1 w05

2 1] 4 w03 2 14 3 w03

B07 20 4 w04 C07 4 4 w04

2 9 4 w04 2 6 3 w04

r03 2003/12/31 23:00 2004/01101 02:00
r04 2003/12/31 23:00 2004/01101 01 :00

r05 2004/01/01 00:00 2004/01101 03:00

(a)

Resource ~ ~ ~ ~ ~

Work
center @) ~ ~ @) @:>

Resource Flexibility

I {rOI,r02,r03} wOl {rOI,r02,r03,r04,r05}

{r02,r03,r04} w02 {r02,r03,r04,r05,rO I}

{r03} {r03,r04,r05} w03 {r03,r04,r05,rO 1 ,r02}

w04{r04} w04{r04,r05,rOI} w04{r04,r05,rOl,r02,r03}

w05 {r05} w05 {r05,r04,r03} w05 {r05,r04,r03,r02,rO I}

(c)

Fig. 5.11: Experiment data of (a) product data, (b) No. of demands, and (c) resource flexibility

Table 5.3 shows the best value, average value, performance, and variance of the cases.

The 'best' values, found so far, of the evaluation functions are discovered by setting

parameters to keep MDGA in a divergence status for a long time. The average value is

measured over 10 optimal values of a case. Performance of MDGA is defined as the

difference between the average value and the best one. The variability of applying MDGA to

runs of the cases in the experiment measured by coefficient of variance (CV), denoted by J/ ji,

101

where ~ is the standard deviation and j1 the mean of the optimal values.

Table 5.3: The best and statistical results of the experiment
RF

rill 1 rill3

ND EF Best Avg. Diff. CY Best Avg. Diff.

Makespan 14338 14338 0 0.000 11073 11254 181

nd03 Service level 67 53 14 0.306 67 63 4

Tardiness 9033 9164 131 0.036 4658 5712 54

Makespan 13322 13333 11 0.008 10442 10569 127

nd06 Service level 83 76 7 0.000 83 67 17

Tardiness 6673 6976 303 0.020 1212 3420 2208

Makespan 13172 13194 22 0.002 10406 10601 195

nd12 Service level 83 73 10 0.045 100 74 26

Tardiness 6673 11667 4994 0.016 0 4246 4246

Makespan 13112 13587 475 0.003 10406 13498 3092

nd60 Service level 83 63 20 0.026 100 66 34

Tardiness 6673 76189 69516 0.046 0 52360 52360

CY Best

0.013 11073

0.158 67

0.097 4067

0.009 10390

0.000 83

0.344 313

0.003 10390

0.060 100

0.180 0

0.031 10390

0.043 100

0.140 0

rill5

Avg. Diff. CY
11352 279 0.023

67 0 0.000

5381 1314 0.160

10465 75 0.005

67 17 0.000

3713 3400 0.393

10628 238 0.004

74 26 0.034

3379 3379 0.479

11752 1362 0.007

68 32 0.033

49856 49856 0.139

Since there is an inclusive relationship between levels of ND and RF, the smaller the lot

size and the more flexible the resource, the better the best value can be found. However,

increasing ND and RF not only provide MDGA with a better chance of optimization, but also

enlarge domain size of the problem. The DFS problem with large domain size challenges the

limits of MDGA's ability. As shown in the table, increasing ND and RF improves the optimal

value at first, but it gets worse when ND and RF continue to increase.

The large ND aggravates the performance of MDGA. RF performs in a similar way with

ND except that increasing RF won't delay the response time or severely worsen the

performance of MDGA. A plant with high resource flexibility using MDGA against

uncertainty is regarded as capable of responding to a change well and efficiently.

In general, the case setting makespan as evaluation function has low variability (CV < 0.1).

Whether or not service level performs stable depends very much on the problem. For some

difficult cases like the combination of nd06 and rf03, the performance of service level

obtained by setting tardiness as evaluation function is even better than by setting service level

itself. There are n+ 1 degrees of service level if ND equals to n. Having few degree of

evaluation makes MDGA easy to converge to a degree and dull to make a step toward a better

degree. The cases setting tardiness as evaluation function has high variability (CV> 0.1) when

ND and RF are high. The solution to the high variability of tardiness is to run a case longer or

set a larger population.

102

5.6. Discussion

Tsai and Sato (2004b) showed comparisons of performance on standard job shop scheduling

problems between standard genetic algorithm (SGA) and minimal generation gap (MGG), and

between demand crossover and other crossover operators such as one-point crossover and

two-point crossover. It showed that MGG improves in average 3.5% of the performance of

SGA, demand crossover improves in average 3% of the performance of two-point crossover,

and MGG plus demand crossover improves in average 80/0 the performance of SGA plus

two-point crossover.

103

5.7. Summary

A novel genetic algorithm (MDGA) that integrates MGG and demand crossover has been

invented to solve dynamic flexible scheduling (DFS) problem. The problem is practical,

goal-oriented, resource flexible, and capable of doing rescheduling dynamically. Though

MDGA approach to DFS problem has its own value, this research is also an augmentation of

agile production planning and control system (APPCS) that only generates a feasible

schedule.

The effectiveness and correctness of MDGA have been shown by a benchmark and the

exhaustive search. The formulation of DFS problem makes the exhaustive search possible.

The response time of MDGA to DFS problem increases exponentially with the length of a

chromosome, which is determined by the shape of BOM, routing, and number of demands.

Therefore, when MDGA is applied to a plant, to estimate execution time, it is necessary to

calculate the length of a chromosome made from the BOM, routing, and demands. The

experiment suggests that if the lengths of a chromosome are 700, 900, 2000, 3000, and 4500,

then the response times will be 05 hour, 1 hour, 0.5 day, 1 day, and 5 days, respectively. A

more efficient algorithm for a huge DFS problem will be a topic of future research.

A balance between the flexibilities and the ability of MDGA is a key point to get a better

optimal value. The experiment for the example indicates that a double or triple flexibility

improves about 100/0 - 250/0 of optimal value.

Forecasting is always wrong. Reserving safety buffers for a forecasting error is not the

only way against unknown uncertainty. Forecasting revision is shown to be possible by

APPCS and improved by MDGA.

104

6 Conclusion and Future Research

6.1. Conclusion

This dissertation is composed of three parts. Agile production planning and control system

(APPCS) was proposed in the first part. In the second part, we described a universal modeling

language (UML) model of agile production planning and control (APPCM) to formulate the

concept and mechanism of APPCS. Finally, in the last part, a novel genetic algorithm called

MDGA was proposed to solve dynamic flexible scheduling (DFS) problem to produce a much

optimized schedule for APPCS.

The proposed APPCS integrates scheduling with capacity planning to produce a feasible

production plan in a planning cycle, and updates the production plan after being informed of a

change. APPCS invokes immediate rescheduling upon advance notification from customers

and/or suppliers to enhance the agility of production processes. A buffering mechanism

against uncertainty can be applied by setting safety leadtime and/or safety stock according to

a target service level. A simulation analysis showed that safety leadtime is preferable to safety

stock in most uncertain situations, especially when advance notification mechanism is

allowable. APPCS can be used as a real-time system in the sense that it makes a schedule

when a customer order arrives and reschedules when uncertainty happens.

In the formulated APPCS model, the classes Part, PartLink, Operation, WorkCenter,

Resource, Shift, Demand are used to define the product data, and classes Job, JobLink,

Assign, Task, and Supply are used to represent the production plan generate by APPCS. A

feasible production plan is generated and regenerated under some constraints that regulate the

legality of the production plan by first backward scheduling and then forward scheduling

according to a priority rule. A simulator applying APPCS model was implemented and

testified by an example. The proposed APPCM was shown to meet the requirements of

APPCS.

DFS problem is defined on the basis of product data with resource flexibility and

105

work-in-process (WIP). The production plan that is obtained by solving DFS problem is thus

practical. That WIP is used in the production plan enables rescheduling dynamically in

response to changes. The proposed MDGA integrates minimal generation gap (MOO) and

demand crossover to solve DFS problem. Though MDOA approach to DFS problem has its

own value, this research is also an augmentation of APPCS that only generates a feasible

schedule. The correctness of MDGA was partly proved by the exhaustive search, and the

formulation of DFS problem makes the exhaustive search possible. Furthermore, a benchmark

showed the effectiveness of MDGA. Reserving safety buffers is not the only way against

unknown uncertainty. Revision of a production plan is shown to be possible by APPCS and

improved by MDGA.

APPCS was proposed and modeled by UML to use the product data of modem ERP

packages, to invoke production planning by applying time-bucket approach, to take into

consideration WIP, and to incorporate the changes into the production plan. MDOA was

proposed to provide a goal-oriented optimal production plan. Therefore, the three parts of this

dissertation were shown to achieve the five requirements mentioned in problem formulation

(section 1.2).

106

6.2. Future Research

The topics for future research are as follows.

(l) Applying APPCS to service industry

Since business processes of service companies have something in common with

production process, APPCS can also be applied to banks, city halls, or fast food restaurants

where customers are waiting for different but well-defined service items by various staffs.

Each service item has a sequence of operations that have to be processed by different work

groups. There are many staffs in a work group, and each staff in the work group can be

responsible for processing an operation. A staff can join in different work groups according to

hislher capability.

A customer will be asked and also helped by a staff to order a service item on the arrival

of the customer. The priority of customers is determined by their arrival times. A schedule of

service is generated and optimized according different goals. The possible one connecting to

service level is to minimize customer waiting time, which is defined as the difference between

actual waiting time and estimated total processing time. Rescheduling is invoked when a new

customer is arriving or for the delay of a staff.

By applying APPCS, customers know the possible waiting time, and thereby they can

keep waiting their service without anxiety. The capability and necessity of a staff can be

verified by a statistic analysis of the periodical service records. The verification also

encourages the staffs to improve their skill and capability. The whole business processes

including staff allocation can be improved by a simulation of the past requested services. That

is APPCS seems to open a new door to analysis and design of service industries.

(2) Comparison of time-bucket approach and real-time approach

Time-bucket approach and real-time approach are the two alternatives of production

planning provided by APPCS. Real-time approach takes advantage of the flexibility to

produce a better production plan. Time-bucket approach is preferable if purchasing cost or

order changing cost is important. For making a right scheduling policy, it is important to get

some beneficial results from the comparison of the two approaches in more detail.

(3) The importance of the quality of quasi-optimization

Genetic algorithm (GA) is a heuristic algorithm that does not guarantee finding any

optimal solution. The execution time of GA (or number of scheduling times in MDGA) before

107

it enters some local optima is a variable to determine the quality of quasi-optimal solution, i.e.

the difference between the optimal solution and quasi-optimal solution. Most of the researches

are trying to improve quality of quasi-optimization for most of the NP-hard problems.

According to APPCS, rescheduling is invoked to produce a new production plan each time a

change is reported. It is doubtful that whether or not the quality of quasi -optimization can be

improved by setting quality of quasi-optimization to be rather high from the start. For

example, a rather high degree of resource utilization achieved by minimizing the makespan

might not be flexible enough to produce a new production plan for the next change. Contrarily,

the makespan might be shorter if the resource utilization is not so squeezed at first.

If there is an adverse effect on the quality of quasi-optimization under uncertainty by

setting a high quality of optimization from the start, it is better to set a lower one to have a

better performance and dramatically shorten the execution time. Hence, an experiment is

necessary to make clear the relationship between the result quality of quasi-optimization and

the setting quality due to the influence of changes.

(4) The optimization of the whole supply chain

The optimization of a node in a supply chain is not necessary the optimization of the

whole supply chain. Moreover, no matter how optimized of some nodes in a supply chain, if

the whole supply chain is not optimized, the effect of optimization of the nodes might be

trivial. Toyota system has been successful in optimizing the whole supply chain 'by the so

called just-in-time approach. Can we say that the optimization processed in all nodes in a

supply chain makes the optimization of the whole supply chain? If not, what the optimization

of the whole supply chain should be, and what should the nodes respond to the optimization

policy of the chain. Together with the impacts brought about by changes in a supply chain,

these topics are complicated but important for the nodes to determine their production plans.

(5) Applying APPCS optimization to a plant with large scale scheduling

The time needed to run a case of MDGA grows up exponentially with the length of a

chromosome. For example, if the lengths of a chromosome are 700, 900, 2000, 3000, and

4500, then the response times will be 05 hour, 1 hour, 0.5 day, 1 day, and 5 days, respectively,

for processing 30,000 chromosomes. The ability of the MDGA is enough for the current

research and the future researches (1), (2), and (3). However, if there is a need to apply

APPCS to solve a huge DFS problem in a plant with large scale scheduling, a genetic

algorithm with a hierarchical structure coding seems to be necessary to replace the current

coding.

108

References

[1] AI-Hakim, L., An analogue genetic algorithm for solving job shop scheduling problems,

International Journal of Production Research, 39 (7) 1537-1548, 2001.

[2] Aytug, H., Khouja, M., and Vergara, F. E., Use of genetic algorithms to solve production

and operations management problems: a review, International Journal of Production

Research, 41 (17) 3955-4009,2003.

[3] Croce, F. D., Tadei, R., and Volta, G., A genetic algorithm for the job shop problem,

Computers & Operations Research, 22 (1) 15-24, 1995.

[4] Dagli, C. H. and Sittisathanchai, S., Genetic neuro-scheduler: A new approach for job

shop scheduling, International Journal of Production Economics, 41,135-145,1995.

[5] Hastings, N.A.J. and Yeh, C.H., Job oriented production scheduling, European Journal

ojOperational Research, 47, 35-48, North-Holland, 1990.

[6] Hatchuel, A., Saidi-Kabeche, D., and Sardas, J.C., Toward a new planning and

scheduling approach for multistage production system, International Journal of

Production Research, 35 (3), 867-886, 1997.

[7] Hegedus, M. G. and Hopp, W. J., Setting procurement safety lead-times for assembly

systems, International Journal of Production Research, 39, 3459-3478, 2001.

[8] Hopp, W. J. and Spearman, M. L., Factory Physics - Foundations of Manufacturing

Management, 2nd edition, McGraw-Hill College, 2000.

[9] Kacem, I., Hammadi, S., and Borne, P., Approach by localization and multiobjective

evolutionary optimization for flexible job-shop scheduling problems, IEEE Transactions

on Systems, Man, and Cybernetics - Part C: Applications and Reviews, 32 (1) 1-13,

2002.

[10] Lee, H. C., Dagli, H., A parallel genetic-neuro scheduler for job-shop scheduling

problems, International Journal oj Production Economics, 51, 115-122, 1997.

[11] Nearchou, A. C., The effect of various operators on the genetic search for large

scheduling problems, International Journal of Production Economics, 88 (2) 191-203,

109

2004.

[12] OMG, OMG Unified Modeling Language Specification (Action Semantics)-V1.4, 2002.

[13] Orlicky, 1., Material Requirements Planning, New York, McGRAW-HILL BOOK, 1975.

[14] Plossl, G. W., Managing in the new world of manufacturing, Englewood Cliffs, NJ:

Prentice-Hall, 1991.

[15] Sanchez, L. M., Nagi, R., A review of agile manufacturing system, International

Journal of Production Research, 39(16), 3561-3600, 2001.

[16] SAP, SAP Rl3 IDES 4.6, functions manual, 2000.

[17] SYMIX, OrderLinks 3.5, Integration Guide, 1998.

[18] Sato, R., Meaning of Dataflow Diagram and Entity Life History - A Systems Theoretic

Foundation for Information Systems Analysis: Part 2, IEEE Transactions on Systems,

Man, and Cybernetics, 27,11-22,1997.

[19] Sato, R. and Praehofer, H., A discrete event model of business system- A Systems

Theoretic Foundation for Information Systems Analysis: Part 1, IEEE Transactions on

Systems, Man, and Cybernetics, 27, 1-10, 1997.

[20] Sato, R. and Tsai, T., An agile production planning and control with advance notification

to change schedule, International Journal of Production Research, 42 (2) 321-336,

2004.

[21] Scheer, A. W., Business Process Engineering, 2nd edition, Springer, 1994.

[22] Shobrys, D. E., White, D. C., Planning, scheduling, and control system: why cannot they

work together, Computers and Chemical Engineering, 26, 149-160, 2002.

[23] Silver, E. A., Pyke, D. F., and Peterson, R., Inventory Management and Production

Planning and Scheduling, 3rd edition, New York, JOHN WILEY & SONS, 1998.

[24] Tsai, T. and Sato, R., A UML model of agile production planning and control system,

Computers in Industry, 53 (2) 133-152, 2004a.

[25] Tsai, T. and Sato, R., An Agile Genetic Algorithm for Solving Job Shop Scheduling

Problem, Proceedings of the 8th Pacific Asia Conference on Information Systems 2004

(PACIS2004), 2004b, Compact Disk.

[26] Tsai, T., Sato, R., and Terano, T., A genetic algorithm with MGG and demand crossover

to solve dynamic flexible scheduling problem, European Journal of Operational

110

Research, submitted.

[27] Tu, Y., Production planning and control in a virtual One-of-a-Kind Production company,

Computers in Industry, 34, 271-283, 1997.

[28] Vollmann, T. E., Berry, W. L., and Whybark, D. C., Manufacturing Planning & Control

Systems, 4th edition, Boston, Irwin/McGraw-Hill, 1997.

[29] Wang, L., Zheng, D., An effective hybrid optimization strategy for job-shop scheduling

problems, Computers & Operations Research, 28 (6) 585-596, 2001.

[30] Whybark, D. C. and Williams, J. G., Material requirements planning under uncertainty,

Decision Sciences, 7, 595-606, 1976.

[31] Wight, 0., Manufacturing Resource Planning: MRPII, Essex Junction, Vt.: Oliver

Wight Ltd., 1984.

[32] Yamamura, M., Satoh, H., and Kobayashi, S., An analysis on generation alternation

models by using the minimal deceptive problems, Journals of the Japanese Society for

Artificial Intelligence, 13 (5) 746-756, 1996. (in Japanese)

[33] Yeh, C-H, Schedule based production, International Journal of Production Economics,

51,235-242,1997.

111

112

Appendixes

Appendix A: UML Model

The formulation is described by universal modeling language (UML) and illustrated by class

diagram, state chart diagram, and sequence diagram. The UML is a language for specifying

visualizing, constructing, and documenting the artifacts of software system, as well as for

business modeling and other non-software system. It is composed of foundation, behavioral

elements, and model management packages. A package is a grouping of model elements. The

foundation package defines the constructs to abstract a static model.

A.I: Model Management

Model management is used to manage the modeling of a complex system. A system can be

divided into several subsystems according to their functions. If a subsystem is too

complicated to be described by some modeling tools or the result of modeling is hard to

understand, then it should be subdivided into some smaller systems. Fig. A.2 shows a

template of the presentation of model management.

Package S

Package S.B I
II

Depende~.sy/ D
iI J./ Model S.B.l !l

Dependency""",,, D

Package S.A ~ Model S.B.2

Fig. A. 1: Notations used in model management

Package

A package contains a group of model elements that are used to describe the package. The

113

model element includes models and packages. A package is shown as a large rectangle with a

small rectangle (a tab) attached to the left side of the top of the large rectangle. In UML, a

package is used to typify a system or a subsystem, and therefore the package hierarchy is a

strict tree.

Model

A model captures a view of a physical system. Different models of the same physical

system show different aspects of the system. A model is notated using the ordinary package

symbol with a small triangle in the upper right corner of the large rectangle.

Dependency

A dependency indicates a semantic relationship between two model elements including

system, package, and model. A dependency is shown as a dashed arrow from

• Access: The granting of permission for one package to reference the public elements

owned by another package.

• Refine: A historical or derivation connection between two model elements with a

mapping between them.

A.2 : Use Case Diagram

A use case diagram shows the relationship within a system and their actors. Fig. A.2 shows a

template of the use case diagram.

Model or class

Association

Association Actor
Use case B

Actor

Fig. A. 2: A template of use case diagram

Use case

Use cases represent the functionality provided by a system or a class. A use case is shown

as an ellipse containing the name of the use case.

114

Actor

An actor is a set of roles that users of a system can play when interacting with the system.

The standard icon for an actor is a "stick man" with the name of the actor below the icon.

Association

An association is the participation of an actor in a use case. Instance of the actor and

instances of the use case communicate with each other. An association between an actor and a

use case is shown as a solid line between the actor and the use case. It may have end

adornments such as multiplicity.

A.3: Class Diagram

A static data structure is a set of elements including interfaces, packages, classes, associations

among the classes, and even instances including objects and links. These elements are used to

describe the static structure of a package. A class diagram is a graphic view of the static data

structure. The division of the presentation into separate diagrams is for graphical convenience

and does not imply a partitioning of the package itself. Fig. A.3 shows the elements in a class

diagram.

Class A {ordered} Class B

- attribute: Type 1 ~ Association 0 .. *
+ attribute: Class

role of role of /

+ operationX()
class A class B + operationX()

- operationY(arg): Type

I ~ ~ aggregatio
association

Association Class C

n

Specific Class E
- attribute: Type Class D

+ attribute: Type
- attribute: Class

+ operationY(arg): Type

Fig. A. 3: A template of class diagram

Class

A class is an entity for a set of objects with similar property, behavior, and relationships.

The property of a class is described by attributes. The behavior of a class is demonstrated by

operations. A class is drawn as a solid-outline rectangle with three compartments separated by

horizontal lines. The top compartment holds the class name; the middle compartment lists its

115

attributes; the bottom compartment lists its operations.

Attribute

An attribute is to represent a property of a class. A class has a set of attributes and an

object of the class is generated by providing a value to each attribute. For example, name,

height, and weight are attributes of human class that is defined for some purpose. A human

object has a value for each of those attributes. An attribute is defined by specifying name, data

type, visibility, multiplicity, and initial value in UML.

The syntax for an attribute is:

"visibility attributeName: dataType [multiplicity] = initiaIValue".

• The "visibility" specifies whether the attribute can be seen and referenced by other model

elements. It can be '+' public visibility that provides reference for all the model elements,

'#' protected visibility for the descendent elements, '-' private visibility for only the object

itself, and ',...,' package visibility for the elements in the same package.

• The "attributeName" is a string used to represent or identify an attribute in a class. Thus,

there is no identical attribute name in a class.

• The "dataType" is either a class name or the primitive data type defined in some

programming languages. If the data type of an attribute is a class, then the value of the

attribute is also an object of the class.

• The "[multiplicity]", represented by lI[ower-bound .. upper-bound]", specifies the

allowable number of attribute values for a class. For example, multiplicity of 'hand'

attribute is "0 .. 2" for a 'human' class. The term may be omitted, in which case the

multiplicity is "1 .. 1" (exactly one).

• The "initiaIValue" is the value assigned to an attribute when an object is created.

Operation

An operation is a procedure that an object of the class may be requested to perform. The

procedure being invoked changes values of some attributes or lunches other operations

sequentially or synchronously.

An operation has a name, a list of arguments, and a return value. It is denoted by

"visibility operationName (argumentList): return Value Type " .

• The "visibility" specifies whether the operation can be seen and invoked by other model

116

elements. It can be '+' public visibility that limits the invocation to all the model elements,

'#' protected visibility to the descendent elements, '-' private visibility to only the object

itself, and ',,-,' package visibility to the elements in the same package.

• The" operationN ame" is a string used to represent or identify an operation in a class. Thus,

there is no identical operation name in a class.

• The "argumentList" is a comma-separated list of parameters, which hold values that can

be accessed by elements within the procedure of the operation. A parameter can be

represented by "parameterName: parameterType " , which shows name and data type of

the parameter.

• The "return ValueType" specifies the data type of the value returned by an operation. It is

either a class name or the primitive data type defined in some programming languages.

Association

A link is an ordered n-tuples of objects (Xl, X2, ... , xn), where Xl, X2, . .. , Xn are instances

of respective classes C}, C2, ••. , Cn. An association is an entity to represent a set of links.

The classes might not be different. An n-ary association is an association among three or more

classes; while a binary association is an association among exactly two classes.

An association can be described by an association name and two or more association ends.

An association end is an end of an association where it connects to a class. Role name,

multiplicity, ordering, navigability, and aggregation indicator are attributes of an association

end.

• Role name: It is a string that indicates the role played by the class connecting to the

association end. A class plays different roles in different associations. For example, a

human class in a school plays the roles of student, staff, and teacher. The visibility

indicator ('+', '#', '-', and ,~,) is specified in front of a role name to show the visibility of

the association traversing in the direction toward the role name.

• Multiplicity: It specifies the allowable number of links that a role can play in an

association. It is denoted by "'[lower-bound .. upper-bound]". A single start (*) denotes the

unlimited nonnegative integer range.

• Ordering: If the multiplicity is greater than one, then the set of related links can be

ordered or unordered. Various types of ordering can be specified as a constraint on the

association. end. If the ordering of links is important for an association, "{ ordered}" is

specified on the association end.

• Navigability: An arrow may be attached to the association end to indicate that navigation

is supported toward the class attached to the arrow. Navigation is suppressed with

navigability in both directions, show arrows only for associations with one-way

navigability.

117

• Aggregation indicator: A binary association connecting a 'whole' class with a 'part' class

defines a 'whole-part' relationship, which requires an object of the part class be included

in at most one object of 'whole' classes at a time. If there is exact one of such 'whole-part'

association for a 'part' class, then the association is composite and the 'whole' class is

called a composite class. If there is more than one of such association, then the

association is an aggregate and the 'whole' class is called an aggregate class. An

aggregation indicator is to represent the type of 'whole-part' association of an association

on the association end of the 'whole' side. A hollow diamond is attached to the association

end to indicate aggregate, and a solid diamond is used to represent composite.

Association class

An association class is an association that also has class properties, such as attributes or

operations. An association class is shown as a class symbol attached by a dashed line to an

association path. The name in the class symbol should be the same with the name of the

association.

Generation

Generation is the taxonomic relationship between a more general class and a more specific

class. It is shown as a solid-line path from the more general class to the more specific class

with a large hollow triangle at the end of the path where it meets the more general class.

A.4: Collaboration Diagram

A collaboration contains a collection of instances, relationships, and messages among the

instances. A collaboration diagram illustrates a collaboration with instances, relationships, and

messages of the collaboration to describe the realization of an operation. Fig. AA shows the

components in collaboration diagram and followed it the description of the components.

Actor

An actor in a collaboration diagram represents the person, software, hardware, or other

agent external to the system that is interacting with the system.

Instance

An instance is an object of a class that is charted by a class diagram. An instance playing

the role defined by a class is depicted by an object box with the identification string

"objectName : className". The 'objectName' may be omitted. In this case, the colon should

118

be kept with the class name. This represents an anonymous object of the given class given

identity by its relationship.

multiple objects
I

message() --... role
object: class

1: var :~eration()
: class

I-

Actor
2: message(var) +

«self»
role

2.1* [i:=1 .. n): operatiOn(arg)+ [: class
object: class

2.1.1 [x>yt create() {new}

Fig. A. 4: A template of collaboration diagram

Multiobject

A multiobject represents a set of objects on the "many" end of an association. This is used

to show operations and messages that address the entire set, rather than a single object in it. A

multiobject is shown as two rectangles in which the top rectangle is shifted slightly vertically

and horizontally to suggest a stack of rectangles.

Link

A link is a pair of object references. It is also an instance of an association. A link is

shown by a line between object boxes. Its name string follows the syntax of an object playing

a specific role. A role name may be shown at each end of the link.

Message

A message is a means of communication between two instances connected by a link. The

link is used for transportation of the message to the target instance. A message will cause an

operation to be invoked, or an instance to be created or destroyed. Message is shown as

labeled arrows placed near a link. The arrow points along the line in the direction of the

receiving instance. The label has the following syntax: "sequenceTerm: return Value :=

messageName (argumentList)".

A 'sequenceTerm' is a dot-separated list of numbers following a condition string denoted

by "nl.n2 nz*[condition]", where ni is an integer number. Each integer represents a level

of procedural nesting within the overall interaction. The sequence of integers represents the

sequential order of the massage within the next higher level of procedural calling. For

119

example, "3.1.4" is after "3.1.3" within the level "3.1". The "*[condition]" indicates an

iteration, and "[condition]" shows a branch.

The "messageName" is the name of the operation to be deployed on the receiving instance,

or the signal of creating or destroying an instance. The "(argumentList)" is a comma-separated

list of arguments enclosed in parentheses. Each argument is a source instance, an attribute of

the instance, a link from the instance, or a local variable. The "return Value" is the value

returned at the end of the communication. It can be used as arguments to of the subsequent

messages. If the message does not return a value, then it is omitted.

120

Appendix B

A method of the operations is listed in the appendices for reference. The procedure of the

method here is described in terms of programming logic and set theory by assuming Part,

PartLink, Operation, WorkCenter, Resource, Shift, Demand, Job, JobLink, Assign, Task,

and Supply as existing tables. In some of the procedures, suppose S is a set of elements,

S.add(i) method adds a job i to the set, S.delete(i) removes a job i from the set, S.getO gets

the next element and remove it from the set, and S.search(c 1, c2, ...) searches the set for an

element with conditions c 1, c2,

B.1: Methods of Resource Class

Task Resource.getPrevFreeTask (dueEnd: Epoch, length Time)
II Returns a task represents a free interval of the resource that is located before an epoch (dueEnd) and
of a specified length
Task tk:= NEW Task();
FORsfE {SlsEthis.shift&s.startEpk<dueEnd} DESCENDING BY sfstartEpk

IF sf jinishEpk< dueEnd THEN dueEnd:= sf jinishEpk;
K:= {kl kE sftask&k.startEpk<dueEnd};
tk.finishEpk:= Max { t I tE [sfstartEpk, dueEnd] & (V kEK) tfl [k.startEpk, kjinishEpk] };
IF tkjinishEpki-Null

tk.startEpk:=Max {kjinishEpklkEK & kjinishEpk<tkjinishEpk};
IF tk.startEpk= Null THEN tk.startEpk:= sfstartEpk;
IF length < (tkjinishEpk- tk.startEpk)

tk.shift :=sj;
RETURN tk;

END IF
ENDIF

END FOR
RETURN Null;

Task Resource.getNextFreelnterval (dueS tart: Epoch, length Time)
II Returns a resource's free interval that is located after an epoch and of a specified length
Task tk:= NEW Task();
FORsjE {flfEthis.shift&fjinishEpk>dueStart} ASCENDING BY sfjinishEpk

IF sfstartEpk> dueStart THEN dueStart:= sfstartEpk;
K:= { kl kEsftask & kjinishEpk> dueStart};
tk.startEpk:= Min { t I tE [dueStart, sf jinishEpk] & (V kEK) tfl [k.startEpk, kjinishEpk] };
IF tk.startEpki- Null

tkjinishEpk:= Min { k.startEpk I k EK & k.startEpk> tk.startEpk };
IF tkjinishEpk= Null THEN tkjinishEpk := sf jinishEpk;
IF length < (tk.finishEpk- tk.startEpk)

tk.shift := sf,

121

RETURN sk;
ENDIF

ENDFOR
RETURN Null;

B.2: Methods of Job Class

Epoch Job.getDueFinishEpk ()
II Return the due finish epoch ofajob, which is the earliest one among its requesting jobs.
Epoch dueEpkForRequestJob := Min {jl.reqJob.startEpk Ijl E this.reqJobLink};
Epoch dueEpkForDemand:=Min{ d.dueEpkl dE this.meetDemand};
RETURN Min (dueEpkForRequestJob, dueEpkForDemand);

Epoch Job.getDueStartEpk ()
II Return the due start epoch of ajob, which is the latest one among its supplyingjobs.
RETURN Max {jl.supJobjinishEpkljIE this.supJobLink};

Qty Job.getRequestQty ()
II Return the total independent requirements and dependent requirements ofajob
RETURN (I {jl.supQtylJIE this.reqJobLink} + I {d.reqQtyldE this.meetDemand});

Qty Released.getDisposableQty ()
II Return the disposable (assignable) quantity of ajob

.. ':~J.P:r.1I~\J fothiR,WlIRR.r -dhb~6f1.flIRR[z,1W~t£)9)!} -S/yw..£Lbo;{)9),Vw£.thi~rYl'Y1iL~~w.n)1/)·

Boolean Joh.ifAllSupJohScheduled ()
II Return true if all the offer jobs of ajob is in the "scheduled" state
FOR sjl E this.supJobLink

IF sjl.supJob.netReq-:j:.O AND sjl.supJobjinishEpk=Null THEN RETURN (False);
ENDFOR
RETURN (True);

Boolean Joh.ifAllReqJobScheduled ()
II Return true if all the request jobs ofajob is in the "scheduled" state
FOR ALL rjl E this.reqJobLink

IF rjl.reqJob.netReq-:j:.O AND rjl.reqJob.startEpk=Null THEN RETURN(False);
END FOR
RETURN (True);

void UnreleasedJob.netPlanning ()
II Net requirement planning a job
Epoch dueEpk:= this .getDueFinishEpk();
Qty reqQty:= this .getRequestQty();
AssignableJob := { rj I rj EReleasedlob & rj.part= this.part &

rjjinishEpk~dueEpk & rj.getDisposableQty() > 0 };
FOR aj E AssignableJob DESCENDING BY ajjinishEpk

Qty assignQty := aj .getDisposableQty();

122

Assign asg:=NEW Assign (plnJob= this, wipJob=aj, asgQty=assignQty);
this.wipAssign.add(asg);
ajplnAssign.add(asg);
IF reqQty> ass ign Qty

asg.asgQty := assignQty;
reqQty:= reqQty- assignQty;

ELSE
asg.asgQty := reqQty;
reqQty:=O;
BREAK;

END IF
END FOR
this.netReq := reqQty;
RETURN

void Unre/easedJob.backwardScheduling ()
II Execute scheduling of ajob backwardly from the due finish epoch of the job
Epoch dueFinishEpk:= this.getDueFinishEpk();
IF this .part.operation = 0

this jinishEpk:= dueFinishEpk;
this .startEpk:= dueFinishEpk- this.part.procureLeadTime;

ELSE
FOR opr E thispart.operation DESCENDING BY opr.oprNo

Time reqTime :=opr.setupTime+opr.processTime x this.netReq;
Resource res:= opr.process Wkctr.chooseResource (dueFinishEpk, reqTime);
WHILE reqTime> 0

Task tsk:= res.getPrevFreeTask(dueFinishEpk);
reqTime:= reqTime-(tskjinishEpk-tsk.startEpk);
IF reqTime < 0

tsk.startEpk:= tsk.startEpk-reqTime;
tskjob := this;
tsk.operation := opr;
this.task.add(tsk);
tsk.shift.task.add(tsk);
dueFinishEpk:= tsk.startEpk;

ENDWHILE
END FOR
this .startEpk:= this part.backwardScheduling(dueFinishEpk, this .netReq);
this jinishEpk:= Max { tkjinishEpk I tkE this . task };

END IF
RETURN

void Job.jorwardScheduling (now Epoch)
II Execute scheduling of ajob forwardly from the present time or from the due start epoch of the job.
IF this.part.operation=0

this .startEpk:= now;
this jinishEpk:= this .startEpk+ this .part.procureLeadTime

ELSE
Epoch dueStartEpk:= this .getDueStartEpk();

123

FOR opr E this.part.operation ASCENDING BY opr.oprNo
Time reqTime :=opr.setupTime+opr.processTime x this.netReq;
Resource res :=opr.processWkCtr.chooseResource (dueStartEpk, reqTime);
WHILE reqTime > a

Task tsk:= res .getNextFreelnterval(dueStartEpk);
reqTime := reqTime-(tskjinishEpk-tsk.startEpk);
IF reqTime < a THEN tskjinishEpk:= tskjinishEpk+ reqTime;
tskjob := this;
tsk.operation := opr;
this .task.add(tsk);
tsk.shift.task.add(tsk);
dueStartEpk:= tskjinishEpk;

ENDWHILE
ENDFOR
this jinishEpk:= dueStartEpk;
this .startEpk:= Min { tk.startEpk I tkE this . task };

ENDIF
RETURN

void UnreleasedIob.cancelPlanning ()
II Canceling the result of job planning
this.netReq := 0;
DESTROY this.wipAssign;
FOR sjlEthis.supJobLink

sjl.supQty:= 0;
RETURN

void UnreleasedIob.cancelScheduling ()
II Canceling the result of job scheduling, which is either backward scheduling or forward scheduling
this.startEpk:= Null;
this jinishEpk:= Null;
this. mee tBySupply: = Null;
DESTROY this.task;
RETURN

B.3: Methods of Demand Class

void Demand.buildIobLinks ()
II This method constructs a request-supply relationship between jobs of a demand.
Jobjb :=NEW Job (part = this.part);
jb.meetDemand.add(this);
this.supJob :=jb;
Job LSet :={jb }, TSet:= 0;
WHILE LSet-:j:. 0

Job rj := LSet.get();
Job k:= TSet.search(part=rj.part);
IF k=Null

124

TSet.add(j);
FOR spl E rj .part.supPartLink

Job sj:=NEW Job (part=spl.supPart);
LSet.add(sj);
JobLinkjl :=NEW JobLink(reqJob=rj, supJob=sj);
rj.supJobL ink. add Ul);
sj.reqJobLink.addUl);

END FOR
ELSE

FOR rjlEj.reqJobLink
rjl.supJob := k;

DESTROY rj;
END IF

ENDWHILE
RETURN;

void Demand.planningScheduling (now: Epoch)
II Planning and scheduling of a demand to generate a feasible plan for the demand
IF this.supJob # Null

this .cance IP lanningScheduling(now)
ELSE

this.builcUobLinks();
Job PSet:={ this.supJob}, BSet:=0;
Boolean ret:= True;
WHILE PSet#0 OR BSet#0

THREAD
UnreleasedJob pjb := PSet.get();
pjb.planning();
IF pjb.netReq> 0

BSet.add(pjb);
FOR sjl E pjb.supJobLink

PartLink pI:= PartLink.search(reqPart= pjb.part, supPart=~jl.supJob.part);
sjl.supQty :=pI.rate xpjb.netReq;

END FOR
ENDIF

END THREAD
THREAD

UnreleasedJob sjb :=BSet.get();
sjb.backwardScheduling();
IF sjb.startEpk<now

ret:= False;
FOR sj/ E sjb.supJobLink

IF sj/.supJob.ijAllReqJobSchedu/ed() = True THEN PSet.add(sjl.supJob);
ENDFOR

END THREAD
END WHILE
IF ret= False

Job CSet:={ this.supJob}, FSet:=0;
WHILE CSet#0

125

Unreleased10b cjb := CSet.get ();
cjb.cancelScheduling();
IF cjb.supJobLink= 0

FSet.add(cjb);
ELSE

FOR sjl E cjb.supJobLink
CSet.add(sjl.supJob);

END IF
ENDWI-llLE
WHILE FSet:f:.0

UnreleasedJob sjb:= FSet.get();
sjbforwardScheduling(now);
FOR ALL rjl E sjb.reqJobLink

IF rjl.reqJob.ijAllSupJobScheduled() = True
FSet.add(rjl.reqJob);

ENDFOR
ENDWHILE

ENDIF
RETURN

void Demand.cancelPlanningScheduling (now: Epoch)
II Canceling the result of planning and scheduling of a demand
Job CSet :={ this.supJob };
WHILE CSet:f:.0

UnreleasedJob cjb :=CSet.get();
IF cjb.startEpk> now

cjb .canceIScheduling();
cjb.cancelPlanning();

FOR sjlEcjb.supJobLink
sjl.supQty :=0;
IF sjl.supJob.startEpk:f:.Null

CSet.add(sjl.supJob);
END FOR

END WHILE
RETURN

126

Appendix C

C.l: The Total Number of Legal Permutations on Requirements in Rq

The size of the set SQ depends on the size of the set Rq, and the shape of graph Grq on Rq.

An example of the graph is shown in Fig. 5.3. The graph is split into two branches b1=(rq},

rq2,"" rq7), b2=(rq8, rQ9,"" rq14), and both branches have two sub-branches bll=(rQ3,

rq4, rq5), b12=(rq6, rq7), and b21=(rqlO, rqlb rqI2), b22=(rql3, rq14), respectively.

The requirements in a branch is regulated by precedence constraints, but no such

constraint exists among branches of the same level, e.g. bll and bl2 . A permutation on

elements of the lower-level branches determines a sequence of the higher-level branch.

Let N = {rq; >~=\ and M = {rq;)~:I be two legal sequences of requirements. A sequence

V = {rqj >::m is a legal permutation on {rq;} ~:\ u {rqj };'=\ if V - {rqj r:. = N and V - {rqi} ;=1 = M ,

where '-' is a function removing the elements in a set from a sequence without changing order

of the sequence. The various requirements, whose precedence relation within M and N is

unchanged, can be viewed as the same requirements in permutation. Hence, the total number

of permutations is (m+n)!/m!n! or C,:l+n.

For example, C:+2 = 10 legal permutations of bI is determined by permutations on

requirements in bll and b12. In a similar manner, b2 also has 10 permutations. There are

C;+7 = 3,432 legal permutations for a permutation of bI and a permutation of b2. Size of the

set of legal sequences ISQI in Fig. 5.4a is thus 10xIOx3432=343200.

C.2: The Number of Requirement Aggregations for a Sequence of

Requirements

Assume there are n requirements with the same operation that are linked together somewhere

in a sequence. The n requirements can be put into 1, 2, ... , m (m:S; n) baskets with each basket

having (CI, C2, ... , em) requirements. For example, 6 requirements can be put into 3 baskets

by ways of (4, 1, 1), (3,2, 1), and (2, 2, 2). The number of alternatives to distribute n

requirements into m baskets with each basket having (kl' k2, ... , km) requirements is

requirements is equal and 2:::~=\ bi = m. For example, there are (C;C.2C.)/(2!x H) = 15 ways to

put 6 requirements into 3 baskets by way of (4, 1, 1). The numbers of ways for the other

cases (3, 2,1) and (2,2,2) are 10 and 15 respectively.

127

There are 7 groups of 2 requirements with the same operation linked together in the

sequence sqi shown in Fig. 5.4b. Each group has 2 ways of aggregation, i.e. either aggregate

or not, hence IQAj I == 27 == 128 .

C.3: The Number ofWIP Allocations

Let's first consider the problem of allocating q units of a WIP to n requirements with each

requirement having Ci (i=l..n) units such that I,;=IC; == q and Ci is a natural number. This

problem can be viewed as permutation of q units of WIP and n different requirements. Let '0'

represent a WIP, ri (i=1..n) a requirement, and the permutation 'rIo 0 0 rs r3 0 ' shows

Cl=O, cs=3, and C3=O, i.e. the number of WIP before a requirement represents the allocated

quantity. Since 'rIo 0 0 rs r3 0 ' and 'rs 0 0 0 r3 rIo ' represent the same set of WIP

allocation, the precedence relation of requirements in a sequence must be fixed to avoid such

duplication. Total number of permutations is thus (q+n)!/q!n! or C:+n
•

Assume I Wpl=u, and (ql, q2, ... , qu) are the quantities of WIP allocated to number of

allocation. The number of possible allocations for the case shown in Fig. 5.4d is C:+2 == 45 .

128

List of Papers

Journal Papers

1. R. Sato, T. L. Tsai, An agile production planning and control with advance notification to
change schedule, International Journal of Production Research, 2004, VOL. 42, No.2,
321-336.

2. T. Tsai, R. Sato, A UML model of agile production planning and control system,
Computers in Industry, 2004, VOL. 53, 133-152.

3. T. Tsai, R. Sato, and T. Terano, A genetic algorithm with MGG and demand crossover to
solve dynamic flexible scheduling problem, European Journal of Operational Research.
(Submitted)

Conference Papers

4. T. Tsai, Ryo Sato, A Formulation of the Iterative Process Prototyping Methodology, Fifth
International Conference Asia-Pacific Region of Decision Sciences Institute 2000
Proceedings, 2000, Compact Disk.

5. 1£~ ;ft, i:r..t .t.1~, MRP .. ("tt~~J.! T b t:' :; t, A 7' 0 --e A ~jJJ{;J~¥fti.M-*Jf t: ~ lv'

---c (On analysis of dynamic property of a business process with MRP), ~1ftt~ ~*
2000 if-tk-$.~OOEJtJtge-*-k*-fl~~, 2000, 98-101. -

6. 1£~ ;ft, i:r..t t..1~, e-Business t: 1t 7' 7 1 1- .:r.. - /' '7 t, :; ;j /' r C') 7t*Jf-t~tt ~ t=- ~
C') .:L~{;J~ t: ~~$t.;t t: Jl.M(Engineering concepts and development for the analysis and
design ofe-business and SCM), 1t5j!~ fl ~~11~~*:/ AT f-,. • Itt~~r,:/ /' it':; '71.>.
2000 ~~jz~X~, 2000, 217-222.

7. TungLun Tsai, Ryo Sato, The Comparison of Safety Lead Time and Safety Stock in MRP
System (MRP t: b tt b *~ I) - F)7 1 f-,. t: *~1±,* ~ tt~ t: ~ lv' ---C), ~1ftt* ~
* 2001 if-~-$~OO~1Lge-~k*-f~~~, 2001, 215-218.

8. 1£ ~ ;ft, i:r..t .t.1~, :£ & t: 0 :; A T -1 ~ A C') iJj£1}- A 'T :; ;:L - I) /' ~'. (Integrated
scheduling for production and logistics), ~1ftt*tt~* 2001 ~~-$~OOEJt1Lge-~k*
-t~~~, 2001, 268-271.

9. i:r..t .t.1~, 1£~ ;jt, A Simulator for Agile Production Planning and Control System
(APPCS t: b ~t b :/ ~ ;:L v -)7 ~{Jt~), ~~Ittfft~* 2002 if-~$-~OOEJt1Lge-~k
*-ft~~, 2002, 242-245.

129

10. T. Tsai, R. Sato, A UML model for agile production planning and control system,
Proceedings the 6th Pacific Asia Conference on Information Systems 2002 (PACIS2002),
2002, Compact Disk.

11. 1ii,i. ~, *- ~ 1~, -=-It ~Z, A 'r ~ ::L - I) / ~"t: 1 .;::tJ.i -tt~ : l' 1 ~ / {'r '1

r t: I) 7 Jl,;)7 1 ~ 7i -}\. (J) rtt((Schedule based production planning: comparison of
time bucket and real time planning), ~~ltt$Ji~% 2003 if-;;ff..$~ooutJt1e-:k:k.%-t
t~~, 2003, 396-399.

12.1tr.,i. ;fE, ~t ~~, -=-It ~Z, 'J'Jf *-, EJ fl-tt~~~(J) t:. ~ rJ) ERP ~ JfJ ~\.; 'tf
$Ji :/ A -r ~ 7i ~J~-quickIPP (Information Systems Methodology for Planning Activity
with ERP - quickIPP), ~~Itt~~% 2003 if-fx~~OOMtJL1£-:k:k.%-tt~~, 2003,
174-177.

13. *- jfl{~, 1tr.,i. ;fE, A Scheduler for Agile Production Planning and Control System
(APPCS t: ;J::; tt .; A 'r ~ ::L - 7 rJ)1k~), ~~'tt$Ji~% 2003 Jf-fx.$~OOh1tJL1£-:kk
%-t~~, 2003, 178-181.

14. T. Tsai, R. Sato, An Agile Genetic Algorithm for Solving Job Shop Scheduling Problem,
Proceedings of the 8th Pacific Asia Conference on Information Systems 2004
(PACIS2004), 2004, Compact Disk.

15. ~t ~1~, 1ii.,i. ;jE, Applying GA with MGG and Demand Crossover to the Optimization
of Production Planning and Scheduling with WIP and Resource Flexibility (WIP t: ~ 1ft
.::r.. ~ JR I) An t:.::t i.i A -7 :; ::L - I) / ~" ~ M- < ?Jt 1id19 7 Jl,; ::1' I) A," ~ : -r'"'7 / F ~ 0

A;f -/-\ t: MGG ~ JfJ Iv\'; GA), A 'r:;::L - I) / ~" • :/ / ~ ~::L '7 ~ 2004 "$51iJ~
j(~,2004, 111-116.

Discussion Papers

16. Ryo Sato, TungLun Tsai, An agile production planning and control with additional
purchase orders, Institute of Policy and Planning Sciences Discussion Paper Series No.
982, University of Tsukuba, 2002, April.

17. T. Tsai, R. Sato, A UML Model of Agile Production Planning and Control System,
Institute of Policy and Planning Sciences Discussion Paper Series No. 999, University of
Tsukuba, 2002, July.

18.1ii,i. ;fE, ~t ~1~, -=-It ~:Z, IJ'Jf *-, ERP ~ JfJ Iv\ -C 1::' :; q, A -70 -e A ~ it I)
ili i" t:. ~ (J) 'tt~:/ A -r ~ 7i~~ : quickIPP, Institute of Policy and Planning Sciences
Discussion Paper Series No. 1017, University of Tsukuba, 2003.

130

	0001
	0002
	0003
	0004
	0005
	0006
	0007
	0008
	0009
	0010
	0011
	0012
	0013
	0014
	0015
	0016
	0017
	0018
	0019
	0020
	0021
	0022
	0023
	0024
	0025
	0026
	0027
	0028
	0029
	0030
	0031
	0032
	0033
	0034
	0035
	0036
	0037
	0038
	0039
	0040
	0041
	0042
	0043
	0044
	0045
	0046
	0047
	0048
	0049
	0050
	0051
	0052
	0053
	0054
	0055
	0056
	0057
	0058
	0059
	0060
	0061
	0062
	0063
	0064
	0065
	0066
	0067
	0068
	0069
	0070
	0071
	0072
	0073
	0074
	0075
	0076
	0077
	0078
	0079
	0080
	0081
	0082
	0083
	0084
	0085
	0086
	0087
	0088
	0089
	0090
	0091
	0092
	0093
	0094
	0095
	0096
	0097
	0098
	0099
	0100
	0101
	0102
	0103
	0104
	0105
	0106
	0107
	0108
	0109
	0110
	0111
	0112
	0113
	0114
	0115
	0116
	0117
	0118
	0119
	0120
	0121
	0122
	0123
	0124
	0125
	0126
	0127
	0128
	0129
	0130
	0131
	0132
	0133
	0134
	0135
	0136
	0137
	0138
	0139
	0140
	0141
	0142
	0143
	0144
	0145

