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Chapter 1 

Introd uction 

1.1 Background 

Equation is an essential concept in mathematics, logic, and computer scienc . They 
are used to give definitions of objects, to specify algorithrns for cOlnputation , and 
to express mathematical knowledge. When reasoning about equations we replace 
an expression by another one that is equal. Equational reasoning with directional 
use of equations leads to the concept of term rewriting. A term rewrite systcln is a 
set of directed equations, called rewrite ru les . For exarnple , consider the following 
term rewrite system, which specifies addition (+) and the Fibonacci fUllction (fib) 
defined on natural numbers encoded by zero (0) and successor function (5): 

O+x-tx 

5 (x) + y -t 5 (x + y) 
fib (O) -t 0 

fi b (5 (0)) -t 5 (0) 
fib (5 (5 (x))) -t fib (x) + fib (5 (x)) 

By repeated applications of oriented equation, the term fib(5(5(5(0)))) rewrites 
to 5 (5 (0)) as follows : 

fib (5 (5 (5 (0)))) -t fib (5 (0)) + fib (5 (5 (0))) ----i~ 5 (0) + fi b(5 (5(0))) 
-t 5 (0 + fib (5 (5 (0)))) ----i~ 5 (fib (5(5 (O)))) 
-t 5 (fib (0) + fib(5 (0))) ----i~ 5 (0 + fi b(5 (0))) 
-t 5 (0 + 5 (0)) -> 5 (5 (0)). 

The proce s of rewriting i considered as a proof in equational reasoning. In the 
abov xample the equality of the two terms fib(5 (S (5 (0)))) and 5(5(0)) is de
rived from the equational axioms expressed by the term rewrite system . We can 
also consider the rewriting process as computation. In the above example, the 
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value 5(5(0)) of the expres ion fib(5(5(5(0)))) is C'Olnpnted b~' rewriting. rOlll 
thi viewpoint, a tern1 rewrite y tern can be regarded as a progrcll11. Theories 
of term rewriting are applied to a wide range of prol 1en18 in COlllpntation, pro
gramnling and logic- for exalnple, anal sis and irnplernentation of abstract data 
type specifications, design of functional and logic prograllllning languages anel 
automated theorem proving. 

In order to enhance the descriptive power of rewrit svstellls Yario1ls exten
sions of term rewrite systems have been propo ed. Conditional ternl rewriting 
is one of important extensions. Conditional tenn rewrite sy terns (CTR s) 'an 
be used to simulate theories spe ified by conditional equations. They were fir.'t 
studied in the theory of abstract data typ becau e specificatiolls based 011 concli
tional equations arise naturally in algebraic specifications. /[any recent propos':tls 
for programming languages that integrate functional progranlInillg and 1 gic pro
gramming paradigms can be modeled by CTRSs. A rewrit rule of a R is 
a directed equation with conditions . The condition consi t of a possibly Clllpty 
sequence of equations. For example consider the following spe 'ification f th 
function merge for merging two sorted lists into one list: 

o > x -+ F 
5 (x) > 0 -+ T 

5 (x) > 5 (y) -+ x > y 
merge( [] ys) -+ ys 
merge (xs []) -+ xs 

merge (x : xs, y : ys) -+ y : merge (x : x., ys) <== x > y ~ T 
merge(x : xs, y : ys) -+ x : merge (xs, y : ys) <== x > Y ~ F 

Here , '[]" denotes the empty Ii t and ' :" is the list constructor. We call apply 
rewrite rules provided the conditions are satisfied . To determine whether a concli
tion is satisfied, three main types of conditional rewriting ar consider d in the lit
erature: semi-equational, join and oriented ystelns. In a semi-equational systelll 
the conditions in the conditional rewrite rules ar check d by allowing rewri ting in 
both directions. In a join system the satisfiabiIity of conditions is cleterrninccl by 
rewriting to a common term. In an oriented systern condition are interpreted as 
rewriting frOln left to right . If we consider the above CTRS a .. an riented systern, 
then the two sorted lists 0 : 5 (5(0)) : [] and 5 (0) : [] are merged as follows: 

merge (O : 5 (5 (0)) : [], 5 (0) : []) -+ 0 : merge (S(5(0)) : [], 5(0) : []) 
-+ 0: 5 ( 0) : rn erg e ( 5 ( 5 ( 0 )) : [] []) 
-+ 0: 5 ( 0) : S ( 5 ( 0 )) : []. 

Note that we apply th last rule in the first r .write step b cause the condition is 
atisfied by rewriting fronl left to right: 0 > 5 (0) -+ F. Lik wise,; for the se 'ond 
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rewrite step, the satisfia bility of the condition i elctcnnine 1 b:v nnielirC'ct iOllal 
rewriting: 5(5(0)) > 5(0) ---+ 5(0) > 0 ---+ T. Recently) ori ntecl S,VstC'lllS cllH'rgcd as 
the nlost natural type of conditional rewriting when 1110cleling logic anel fUllctional 
programming, especially when allowing so-calleel extra ycuiahl ' in th conditiolls 
and right-hand sides of rewrite rules (c.g. [ALS94],[Han95] [Sl\II95]). 

A conditional rewrite systelIl is called logical if it has the sanle logical st rength 
as the underlying conditional equational ystem. Logicality is ilnportant bccause 
it implies that an equation ~ t is provable by rewriting (8 +-+* t) if ann only if it is 
valid in all rnodels of the underlying conditional equational systelIl. Con:('qucutly. 
logicality is a Illinimum requirement for quational theoreln provcr ' and declara
t iv programming languages based on conditional rewriting. loreover logicalit. 
acts as a bridge between the operational, proof-theor ~tical , and alg braic SC'lnan
tics of functional-logic programming languages (Hamana [Ham97]). Rewriting in 
a semi-equational system is very cIo e to equational r asoning in the unclC'rlying 
conditional equational system and henc it is not surprising that senIi-eqnational 
systems are logical. However, from a rewri ting point of view semi-equati nal, ys
terns are unnatural because the bidirectional usc of rewrite rule in the cOHcli tions 
goes against the spirit of rewriting . Kaplan showed that join systems arc logi aI , 
provided they are confluent (sec [Kap84]). In contrast to join syst 111' , confiuen 'e 
is insufficient for ensuring logicality of oriented systems. 

1.2 Objectives 

T he aim of the thesis is to strengthen the proof-th oretical and llloclcl-thcoretical 
basis of conditional term rewriting . More preci ely our lnain goals pursuecl in this 
thesis can be summarized a follows. 

(1) We characterize soundness and complet ness and give a rigorolls proof that 
both conditional equational logic and s lIli-equational conditional t nIl rewrit 
systems are sound and complete. 

(2) We investigate sufficient conditions for logicali ty. 
(3) We study techniques that ensure sufficient condition ' for logi ·ality. 

1.3 Structure of the Thesis 

The remainder of the thesis i organized a follows. 
In Chapter 2 we introduce basic concepts for understanding 'onditional term 

rewriting. After a hort review of definitions and basic results 011 rC'lations in Sec
tion 2.1 we provide an introduction to the thcory of abs ract rewrite SystCIIlS in 
Section 2.2. The fundamental properties which arc cornmon to all rewrite systerns 
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are discussed. In Section 2.3 we review concepts concorlling tenns. sub, tit ut ions , 
and cont xts. Section 2.4 gives the syntax and the SCBlantics of conditional rqUi.-l

tionallogic , which is the proof-theoretical basis of conditiollal tenn rewritillg. ('C

tion 2.5 contains the definition of CTRS. Three different types of rewrite S)Tst('lllS. 
semi-equational , join, and oriented systerns , are illtroduced. 

Chapter 3 is concerned with soundness and cOlnpletelless. This chapter consists 
of two parts. The first part provides a technique for proving soundness and ('0111-

pleteness. We provide a syntactic characterization of soundnes ' and COlllplC't(,IlCSS 
in Section 3.1 and we review fixpoint theorem, in Section 3.2 , for Lhe puq os(' of 
analyzing properties of a relation. The econd part I resents sOllndncss and COlll

plet ness results based on the technique 01 tained in the first part. In Section 3.3 
we give a rigorous proof of the soundness and cornpleteness of conditiollal equa
tional logic. In Section 3.4 we prove that every semi-equational CTR is sound 
and complete with respect to its underlying conditional quational sy .. tem. 

In Chapter 4 we investigate what class of join an I oriented CTRSs are sound 
and cOlnplete . The concept of logicality is introduced in Section 4.1. We also 
prove that join and oriented CTRSs are always sound in this section . Section 4.2 
is a review of known logicality results for join CTRSs. In S ction 4.3 new logi
cality results for oriented CTRSs are provided. In Section 4.4 w give sufficient 
conditions for logicality of join and oriented syst III by imposing restrictiOllS on 
semi-equational CTRSs. For understanding the principle of logicality, we Inake 
a systematic analysis of various combinations of relations which arc ind Ilced by 
diff rent types of CTRSs in Section 4.5. 

In Chapter 5 we study how to ensure sufficient conditiolls for logicality and 
also distinguish the difference betwe n properties whi h are used for a sirnilar pur
pose. Section 5.1 deal with properties related to nonnalization and propertiC's 
which ensure decidability of the rewrite relation induced by a CTRS. Se 'Lion 5.2 
is concerned with confiuence and level-confiuence. Section 5.3 deals in detail with 
properties which are used to restrict the reducibility of a term and di cuss s suf
ficient syntactic criteria for two important such properties, stability alld strong 
irred uci bili ty. 

Finally Chapter 6 concludes the thesis with sorne remarks. ection 6.1 Sllln
marizes the research contributions of the thesis. In Section 6.2 we illustrate the 
usefulness of the logicality results obtained in Chapter 4. We show that our result . 
cover two important classe of conditional rewrite syst -~rrlS con. idered by vcnhaus 
and Loria-Saenz [ALS94] and Suzuki et ai. [S 1195]. Nloreov r , w give a solution 
to an open problem by Toyama [DJK91 Problern 16] by applying one of th new 
results. 



Chapter 2 

Preliminaries 

The purpose of this chapter is to introduce ba ic concepts for understanding con
ditional tenn rewriting. In Section 2.1 we first review definitions and ba. ic results 
of relations since properties of relations are frequ ntly used in rewriting. In Sec
tion 2.2 the theory of abstract rewrite system is introduced ill order to treat rewrite 
systems in an abstract way. By taking this approach, fundarnental properties that 
are independent of the term structure become clear. Section 2.3 is concerned with 
terms, th most fundamental object for term rewriting. and notions that deal with 
the term structure such as substitutions and contexts. In Se tion 2.4 we giv tlH' 
syntax and the semantics of conditional equational logic. It provides a fonnal jus
tification for an inference in equational reasoning and is used as a proof-theoretical 
basis of conditional term rewriting. Finally, conditional term rEwrite' systel11S are' 
defined in Section 2.5. Three different type. (semi-equational join and oriented) 
of conditional rewrite systems are introduced. 

2.1 Relations 

Before dealing with rewrite systems, we first review terminology, notation , and 
properties concerned with relations. For an algebraic treatment of relations the 
reader is referred to the textbook by Schmidt and Strohlein [SS93]. 

D efinition 2.1.1 (relations) 
Let A be an arbitrary set. relation on A is a subset of the' Cartesian proehl ·t 
A x A. Consider two relation ' Rand S on A. 

• We write (a b) E R and aRb interchallgeably. 
• The empty relation is the empty set 0. 

• Th identity relation on A is defined by lelA = { (a, a) I a E }. 
• The inverse R - 1 of R is defined by R- 1 = { (b a) I (a. b) E R}. 
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• The composition R 0 S of two relations R and is the relation ddilH'cl h~' 

RoS = {(a ,c) I (a,b) E Rand (b,c) E S for SOll[1e bE A}. 
• The relation R 0 R is often written as R2. This notation is gCll('ralizecl to the 

powers of a relation: RO = Id A and RTI+ I = Rrt 0 }"l for all TI E N. 

Since the composition operation of relations is as ociativc, we call write RoSoT 
by omitting the parentheses in the expressions (R 0 S) 0 T and R 0 (S 0 T). 

Definition 2.1.2 (properties of a relation) 
Let R be a relation on a set A. 

• R is refl exive if a R a for all a E A. 
• R is symmetric if aRb implies bRa for all a, b E A. 
• R is transitive if aRb and b R c implies aRc, for all a b, c E A. 
• A reflexive, symmetric, and transitive relation is called all equivalence relation. 

Reflexivity, symmetry, and transitivity of a relation R can be exprcssed rnore 
concisely by means of inclusions IdA ~ R , R - 1 ~ R , and R2 ~ R respectively. 
Consequently, the inclusion IdA U R- 1 U R2 ~ R is another way of saying that n 
is an equivalence relation. 

Definition 2.1.3 (closure of relations) 
Let P be a property of relations . The smallest relatioll that contains R and satisfies 
P is called the P -closure of a relation R , or alternatively th \ 'losure of R with 
respective to P . 

Note that there are properties P for which P-closure does not cxist. All prop
erties defined in Definition 2.l.2 admit closures , whi h are constructively charac
terized in the following lemma. 

Lemma 2.1.4 (constructive characterization of closures) 
Let R be a relation on a set A. 

• The reflexive closure R= of R is the relation R= == R U IdA. 
• The symmetric closure Rsym of R is the relation ]"lsym = R u R - 1

. 

• The transitive closure R+ of R is the relation R+ = U nE N Rn+l . 
• The reflexive-transitiv e closure R* of R is the relation R* = IdA U R+ 

U nEN Rn. 
• The equivalence closure Reqv of R is the relation Reqv = (Rsym) *. 

Closures can also be viewed as operations. For examplc, ( . )=, ( . )sym, ( . )+ 
( . )*, and ( . )eqv are considered a operations on relations. The following lemrna 
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describes properties that are comnlon to closure operations . 

Lemma 2. 1 .5 (properties of closure operations) 
Let P be a property of relations and clp(R) the P-closllre of a relation R. For 
all relations Rand S, the operation cl p on relation satisfies t he following proper
ties. 
(1) R satisfies the property P if and only if clp (R) = R. 
(2) R ~ cl p(R) (increm entality) . 
(3) cl p(clp(R)) = clp(R) (idempotency) . 
(4) If R ~ S then cl p (R) ~ cl p (S) (monotonicity) . 

2.2 Abstract Rewrite Systems 

This section contains a concise introduction to abstract rewriting , which is a theory 
of relations defined on an arbitrary set that focuses on their computational aspect. 
For more detailed descriptions on abstract rewriting, see, for exanlple, IGop s 
urvey [Kl092]. 

Definit ion 2.2.1 (abstract rewrite system) 
An abstract rewrite system (ARS) over a set A is a relation on A. An ARS 
--+ ~ A x A is also expressed as the pair (A , --+ ) to lnake the underlying set A 
explicit . 

In the theory of ARS arrow symbols are often used to denote rC'lations because 
we consider the relation as one step rewriting (from left to right). 

Definition 2.2.2 (notation and t erminology for j \RSs) 
Let (A , --+) be an ARS. 

• If a --+ b we say that there i a rewrite step frorn a to b. 
• If a --+ * b we say a rewrites to b and we call b a reduct of a. 
• The symmetric closure --+sym of --+ is written as ~!. 
• The equivalence closure --+eqv of --+ is written as f-7 * and called conversion or 

convertibility . 
• An element a E A is irreducible if there is no element b y\ ith a --+ b. We write 

a --+! b if a --+* band b is irreducible . An irreducible element is also called 
a normal form and the set of normal forms with respect to --+ is denoted by 
NF (--+) . 

• The inver e --+-1 of --+ is denoted by f-. The relations =f- +f- . *f-, and !f-. 
are similarly defined . 
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• The joinability relation .j,. is defined by .j,. = --t * 0 * f-. So (] .j,. b holds if t h(,re 
exists an element (' E A such th(1,t a --t * c * f- b. Such an clCIllCllt (' is call cl a 
common reduct of a and b. 

• A rewrite sequence is a sequence of elelllCnts in A such that a --t b for ('\'cry 
adjacent pair of elements a and b in the scqllC'nce. 

Basic properties of ARSs are introduced in the following definitions. 

Definition 2.2.3 (confluence and related properties) 
• An ARS (A , --t) is confluent if bi *f- a --t* b2 implies bl .j,. b2 , for all ClClllCllts 

a,b1 ,b2 EA. Confluence is also called Church-Rosser property (CR). 
• An ARS (A, --t) is locally confluent if bi f- a --t b2 implie b1 .j,. b2 , for all 

clements a, bI , b2 E A . Local confluence is also called weak Church-Rosser 
property (WCR). 

• An ARS (A, --t) has unique norrnal forms (UN) if bi !f- a --t! b2 implies 
bi = b2 , for all elements a b1 , b2 EA. 

Figure 2.1 illustrates these three properti . graphically. In the figure solid ar
rows are universally quantified and dashed arrows depend on th m with existential 
quantification. Observe that using inclusions of relations , CR, WCR, and ar(' 
concisely expressed by * f- 0 --t * ~ .J,., f- 0 --t ~ .j,. and! f- 0 --t! ~ lelA respectively. 
It is clear that every confluent ARS is locally confluent. 

o o o 

/~ '/UN 
o WCR 0 0----------------·0 

~ ~ 

* 0 * * 0 * 

Figure 2.1: Properties of an AH,S. 

Definition 2.2.4 (properties concerned with normalization) 
• An ARS is strongly normalizing (S l ) or terminating if there ar no infinite 

rewrit sequences. 
• An ARS (A , --t) is weakly normalizing (W~) if every elerncnt in A has an 

irreducible redu ,t. 
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Definition 2.2.5 (completeness and semi-completeness) 
• A strongly normali%ing and confiuent ARS is called complete. 
• A weakly normali%ing and confiuent ARS is called serlLi-completc. 

It i easy to see that strongly llormalization ilnplies weak llonnalization aHel 

that completeness implies selni-completeness . 
Since confiuence is one of the most important properties in the tlH"\ory of rewrite 

syste111S, variou equivalent fonnulations of confiuellce have been studied. The fol
lowing definition is required before we state the equivalence results ill Lellllna 2.2.1. 

Definition 2.2.6 
• A subset X of A has a common reduct if there exist an a E A such that 

x --+ * a for all x EX . 
• A subset X of A is connected if x f-t* y for all x, y E ./Y. 

Lemma 2.2.7 (equivalent formulations of confluence) 
Let (A, --+) be an ARS. The following four tatements are equivalent. 
(1) --+ is confiuent, i.e. , *f- 0 --+* ~ -J,. . 

(2) The joinability relation -J,. is transitive, i.e. -J,. 0 -J,. ~; -J,.. 

(3) Every pair of convertible el ments has a common reduct i.e. , f-t* ~ -J,.. 

(4) Ev ry non-empty, finite, and connected subset of A has a ·OlIlrnon reduct. 

Proof. 
On easily shows the implication "(1) => (2)" . The proof of ' (2) => (3)" rrnploys 
an obvious equality f-t * = -J,. * and a property of closure operations -J,. * = -J,.. In orcler 
to prove the implication ' (3) => (4) , , let X be a non-elnpty, finite , and conue 'ted 
subset of A . The proof is by induction on the number of clelncnts in X. The 
case IX I = 1 is trivial. Suppose IX I ~ 2. The proof for this cas is illustrated 
in Figure 2.2. Since X is finite and connected there exist CL , b E X s11ch that 
./Y - {a} is connected and a f-t * b p. From the induction hypothesis )C - {a} has 
a common reduct c and thus we obtain a f-t* c. Thus the pair of clern nts CL and 
c has a common reduct by assumption. This is also a common reduct of X. The 
implication "(4) => (1)" is trivial. 0 

A proof of the equivalence of confiuence and property (2) , i.e. ) -J,. 0 -J,. ~ -J,. 

appeared in [Pla93]. The proof of the equivalence of confiuence and property (3) 
i.e. ) f-t * ~ -J,. was first given by Ros n [Ros73] . 

tl Graph theory tell u the exi tence of such elements. Consider the graph whose vertices are 
the elements in X and edges corre pond to the convertibility. Construct a spanning-tr e and 
then select one of its leafs. 
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,/ * 

~y~ 
~ ~ ~\ - {a} -_ '. 

* a .... --~\-. b .... ---... 

(B) C 

! 
o 

(A) induction hypothesis 
(B) assumption +-1* ~ t 

Figure 2.2: Proof of Lemma 2.2 .7. 

13 

The relationship between various properties of ARSs introduced so far is SlUYl

marized in Figure 2.3. In Lemma 2.2.8 we only give proofs of sorne important 
results. 

Lemma 2.2.8 (relationships between properties of ARSs) 
(1) Every confluent ARS has unique normal forms. 
(2) Every weakly normalizing ARS with uniqne normal forms is confluent. 
(3) Every strongly normalizing and locally confluent ARS is confluent. 

Proof. 

(1) Let --+ be a confluent ARS and suppose b1 !f- a -t! b2 . \Ve have to show the 
equality b1 = b2 . Since b1 *f- a --+* b2 , we obtain b1 t b2 by confluence. The 
desired equality follows from the fact that b1 and /)2 are normal forms. 

(2) Let --+ be a weakly normalizing ARS with unique normal fonns and suppose 
b1 *f- a --+* b2 . We have to prove that bL t b2 . By weak nonnalizatioll , we 
infer the existence of normal forms Cl and C2 such that b1 --+! CL and b'2 --+! C2· 

Clearly we have Cl ! f- a --+! C2. Becau e the RS --1 has unique normal forms , 
we obtain Cl = C2 · Hence we have b1 --+! Cl = (2 !f-- b2 · Th rofore b] t b2 · 

(3) Let --+ be a strongly normalizing and local confluent ARS. By well-founded 
induction with respect to the relation --+ we prove that the ARS is conflnent. 
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SN/\WCR \VN/\ N 

I I 
S /\CR - Vv /\CR • CR • ,YCR 

completeness semi-completeness 

\ \ \ 
SN · W N 

Figure 2.3: Relationships between properties of ARSs. 

Suppose b1 *~ a -t* b2 . If a = b1 then b1 -t* b2 · If a = b2 then b1 *~ b2 . 

Rence in both cases we obtain b1 -l- b2 · Suppose a #- b1 and a #- b2 · In 
this case we have b1 *~ Cl ~ a -t C2 -t* b2 for SOllle clements Cl and (2· 

From the local confluence assumption, there exists an clement d that satisfies 
Cl -t* d *~ C2. Since a -t Cl and b1 *~ Cl -t* d, the induction hypothrsis 
yields the existence of an element e such that b l -t * e * ~ d. Because we have 
a -t C2 and e * ~ C2 -t * b2 , another application of the induction hypothesis 
yields that e -l- b2 . Therefore b I -l- b2 . 

o 

The proof of tatement (3) in the above lemrna was first given hy Newrnau 
[New42]. The more simple proof shown above stems frorn [Rue8G]. Another sirnple 
proof by Barendregt can be found in [Bar84]. 

Every element in semi-complete ARS reduces to a unique irreducible clernent 
because every emi-complete ARS is weakly normalizing and has unique nonnal 
forms. In the following definition , we introduce a notation to denote such an 
element. 

Definition 2.2.9 (unique irreducible reduct) 
L t -t be a semi-complete RS. The unique irreducible rreluct of an elernent a i. 
denoted by al 
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2.3 Terms 

The fundamental object of interest in tenn re" riting is a tenll 1 which is a S~' llt act ic 
object having structure. When we are dealing with terIn rewrite s),stellls the set 
of terms is used as the underlying set of an ARS. In this 'ectioll we dC'fine basic 
concepts concerning term, ubstitutions , and contexts in order to express and usC' 
such objects. 

Definition 2.3.1 (term) 
The set V is a countably infinite set of variables. A signature is a set F of funct 'lon 
symbols satisfying F n V = 0 where every f E F is associated with a natural 
number denoting its arity. A function ymhol of arity 0 is called a ·onstant. he 
set T(F, V) of terms built from F and V is the rnallest set such that 

• V ~ T (F , V), 
• If f E F has arity nand t l ,··· ,tn E T(F, V) , then f(t 1 , ... ,tn ) E T(F V). 

We write c instead of cO for every constant c. We abbreviate T(F V) to T when 
no confusion can arise. 

In order to enhance readability, infix notation is a llowed. If * L a binary 
function symbol, t he term *(. ,t) is also denoted by s * t. 

Definition 2.3.2 (variables contained in a term) 
Let sand t be t rms. The set Var (t) of variables contain cl III t is inductively 
defined as follows: 

Var(t) = { ~L Var (t i ) :~ ~ ~ ~(tl . .. tn) 

We also define Var(s,t) = Var( s) U Var(t) . 

Definition 2.3.3 (linear and ground term) 
A term is called linear if it does not contain multiple occurI' nces of a variable' . . 
term is called ground if it contains no variables. 

Definition 2.3.4 (root symbol) 
The root symbol of a term t is defined as follows: 

{ 
t if t E V 

root (t) = f if t = f(t 1 , ... tn). 

Definition 2.3.5 (subterm) 
Let sand t be terms. We say that s is a 'ubterm of t and write .'3 ~ t if either 
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t = f(t 1 , •• . , tn) and s is a subtenn of ti for S0111e i E {l. ... ,n} or s = t. ,Yo call 
s a proper subterm of t and write s <J t if s ~ t and s f- t. 

It is ea y to verify that the inverse ~ of the subtenll rC'lation is a well-founded 
partial order on the set of tenns. In order to distingui,jl I1nlltiple OCCU[[eIlc('S of 
the same subterm, a subterm in a ternl is identified by a position. 

D efinition 2.3. 6 (position) 
A position is a sequence of positive integers. The elnpty sequellce is denoted b~' 

E and called the root position . Integers in a position arc separated b~r a dot .. 
The set Pos(t) of positions in a term t i inductively defined as follows: 

Pos (t) = { {E} . . ~f t E V , 
{E} U { z . p I 1 :::; z :::; n, p E Pos (ti)} If t = f (t 1 .. . ,tn). 

Positions are partially ordered by :::; defined as follows : p :::; q if th re exists a 
position r such that p . r = q. In that ca e p\q denotes the position r. We write 
p < q if p :::; q and p f- q. 

Let sand t be terms and let P E Pos(t). The subtenn t ip of t at position p is 
defined inductively : 

t _ {t if p = E, 

Ip- til q if p=i·q and t=f(tl ... , tn). 

The term t[s]p that is obtained from t by replacing the subtenn at position p by .') 
is inductively defined as follows: 

[] _ { u if p = E, 

ts p - f(t 1 , . .. ,ti[s]q, .. . , tn) if p =i ·q and t=f(t 1 , ... ,tn) ' 

The set Pos (t) is partitioned into variable positions Posv (t) and non-variable 
positions Pos.r(t) as follows : Posv(t) = {p E Pos(t) I tip E V} and Pos.r(t) = 
Pos (t) \ Posv(t) . 

Observe that s is a subterm of t if and only if there exists a position P sHch 

that s = t ip' 

D efinit ion 2.3 .7 (substit ut ion) 
A substitution (J is a mapping from V to T(F , V) such that its dornain , defined 
as the set {x E V I (J( x ) f- x} is finite. The set of all ubstitution is denoted by 
~(F V) and abbrc\ iated to ~ when the signature F is clear. A substitution (J is 
a variable substitution if (J(x) E V for all .'1" E V. A variable renarning is a bijective 
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variable substitution. A substitution a is extended to tll(: lnappinga from T(F, V) 
to T(F, V) as follows: 

{ 
a(t) if t E V 

a(t) = f(a(td ... a(tn)) if t = f(t 1 ... , tn). 

We write ta instead of a(t) and we call ta an instance of t . A substitution a call 
be represented by t he set { x H a(x) I a(x) -# J;}. A substitution (J is irredu cible 
if a(x) is irreducible for all x E V. The cornposition aT of two substitutions a alld 
T is defined by aT(x) = (xa)T for all x E V. 

Definition 2.3.8 (context) 
Let 0 be a fresh constant called hole. A context i. a tenll in T(F U {D}, V) 
containing one hole. If C is a context and t is a term, then C[t] is the terIll which 
is obtained from C by replacing the holes wit h t. The set of all contexts is delloted 
by C(F, V) and abbreviated to C when t he signature F is easily inferred. 

Note that s is a su bterm of t if and only if there exists a context C snch that 
C[s] = t . 

Definition 2.3 .9 (relation closed under contexts and substitutions) 
Let R be a relation on terms. 

• R is closed under contexts if t Ru implies C[t] R C[u] for all contexts C. 
• R is closed under substitutions if t R u implies ta R ua for all substitutions a. 
• R is called a rewrite relation if it is closed under contexts and substitutions. 

Closure under contexts and closure under substitut ions aclnli t closures which 
are characterized in the following lemma. 

Lemma 2.3.10 (closures on terms) 
Let R be a relation on terms. The context closure R C and t he substitution closurr 
R of R are t he following relations: 

R C = { (C[s] C[tJ) I s R t , C E C()C, V ) }, 
RE = {( sa,ta) I sRt a E (F V )}. 

By using the closure operation introduced in this lemrna, clo 'ure under COIl
texts and closure under substitutions of a relation Rare cOllcisely eXI ressed by 
R C ~ Rand RE ~ R. So R C U R ~ R is a shorthand for the fact that R is a 
rewrite relation. 



2.4 Conditional Equational Logic 

Definition 2.3.11 (encompassment and unifiability) 
Let sand t be terms. 
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• We say s encompasses t if there exist a context C and a su bsti tu t ion a SHch 
that s = C[ta] . 

• We say sand t are unifiable if there exists a substitution a such that sa = tao 

2.4 Conditional Equational Logic 

Conditional equational logic (CEL) provides a way to fonnalize the principles of 
quational reasoning. In this section, we define the formal SystCl11 of CEL by givillg 

its syntax, proof-theoretical semantic, and algebraic sernantics. For details, se(' 
for example [vVec92]' [MT92] and [Pla93]. We begin the construction with the 
syntax . Logical assertions of CEL are expressed by conditional equations. 

Definition 2.4.1 (conditional equation) 
An equation is a pair (s , t) of ternlS. We write s ~ t instead of ( ., t). A conditional 
equation is a pair (l ~ r, c) consisting of an equation l ~ r and a finitc cqucncc 
C = S1 ~ t 1 , . .. Sn ~ tn of equations. We write l ~ r ¢:= c instead of (l ~ r, ('). If 
the conditional part c is empty, we simply write l ~ r and call it an unconditional 
equation . 

Definition 2.4.2 (conditional equational system) 
A conditional equational system (CES) over a signature F is a sct £ of conditional 
equations over ternlS in T(F, V). ACES £ over F is also denotecl by (F, £) to 
make the ignature explicit. A CES consisting of only unconditional equations is 
called an unconditional equational system or simply an equational systern ( S). 

Example 2.4.3 (conditional equational system) 
Let x , y E V and F = {O 5 , > T , F max}. Consider the following set of conditional 
equations over T(F V) specifying the maximum func t ion on the set of natural 
numbers: 

£= 

0 > x ~ F 
5(x) > 0 ~ T 

5(x) > 5(y) ~ x > y 
max (x y) ~ x 
max (x,y) ~ y 

¢:= x>y~T 

¢:= x>y~F 

The set £ i an example of a C S over the signature F. 

In order to give a formal justification for an inferene in equational reasoning, 
we introduce a proof system for CEL. The inference rule arc given in Tablr 2.4 . 
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W can derive an (unconditional) equation fro1n a gn"C'n C 
inference rules repeatedly. 

b~' applying thr 

reflexivity 

symmetry 

t ~ t [r] 

3 ~ t [s] 
t~3 

congruence 

application 

Sl~tl'··· 3n~tn [c] 
1(3[, . .. ,.'in) ~ 1(tl, ... ,tn ) 

if 1 E F is n-ary 

3lO"~tlO" ... '.)T/JJ~tnO" [a] 

lo· ~ TO" 

3 ~ t, t ~ u [t] transi t i vi ty 
3~U 

Figure 2.4: Inference rules of conditional equational logic. 

These inference rules are suitable for a graphical presentation of a proof. For 
formal analysis based on the theory of relations , it is [nore conveni 'nt to define 
the derivability as a relation on the set of terms. 

Definition 2.4.4 (provable equivalence) 
Let (F £) be a CES . We say the equation 3 ~ t is provable from £ if it can be 
deduc d using the inference rules of Table 2.4. We write 3 ~£ t in that case. The 
relation ~£ is called provable equivalence induced by E and fonnally defined as 
follows: 

~£o 

~£k+l 
U 

U 

U 

U 

~£ 

0, 

{ (t , t) I t E T(F, V) } 
{ (t , ) I .) ~£k t} 
{ (3, u) I 3 ~£k t, t ~£k u} 
{ (1 ( 3 1, . . . ,3 n), 1 ( t 1 , . . . , tn)) I 

1 E F is n-ary Si ~£k ti for 1 ~ i ~ n } 
{(lO"rO") Il~r¢=cE£, O"E :, ("O"~~£k} 
for all kEN, 

Uk EN ~£k· 

Here cO" denotes the set of equations defined by cO" = { 80" ~ to" I 8 ~ t in c}" SO 
co" ~ ~£k with c = 31 ~ t 1 , •• • ,3n ~ tn is a shorthand for 310" ~£k tlO"; ... ,3n O" ~£k tnO"· 
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We have s ';::j £ t if and only if s ';::j £/.: t for SOl1le II, E N. The InininlU111 sHch k is 
called the level of s ';::j£ t. 

Note that with the inference rules of Table 2.4 "ye can onl clcduc(' ullconditional 
equations. The reader is referred to [Se172] for inference rule for condit ional 
consequences of CESs. 

Definition 2.4.5 (equational theory) 
The equational theory of aCES £ is the set of all equations provable froIn [. 

Example 2.4.6 (proof-theoretical semantics of CES) 
Consider the CES £ defi ned in 2.4.3 . T he equation max (S(x) , 0) ';::j max(O. S(x)) is 
in t he equational t heory of £ , since it is provable froln £ as shown in the fo llowing 
deduction: 

[a] 
____ [a] 0 > S(x) ';::j F [a] 
S(x) > 0 ';::j T [a] max (O, S(x)) ~~ S(x) [5] 

max (S(x) , 0) ';::j S(x) S(x) ';::j max(O, S(x)) [t] 
max(S(x) , 0) ';::j max(O, S(x)) 

T he levels ofS (x) > 0 ';::j£ T , max(S(x), 0) ';::j£ S(x) , and max (S(x) , 0) ';::j £ max(O, S(x)) 
are 1, 2, and 4 resp ctively. Observe that each of th rn expresses th slnallcst dc'pth 
of a corresponding proof tree . 

The semant ics of equational logic is given by algebras, namely, we give Illeaning 
to yntactic constru ·ts such as terms alld (condit ional) equations. F-algrhras 
and assignments are used to assign meaning to funct ion sYInbols and variables 
respectively. If we fix an F-algebra and an assignment , t he interpretation of ev 'ry 
term is uniquely determined as an clement of the dOlnain of discourse. 

Definition 2.4.7 (F-algebra) 
Let F be a signature. An F -algebra A is a set A , call d t he carrier of A , togrthrr 
with operations fA: An ---t A for every n-ary function syrnbol f E F . The teTrn 
algebra T (F , V ) is a special F -algebra whose carrier is the set of terrns T (F , V) 
and its operations are defined by f T (F,v ) (t 1, . .. tn) = .f (tl ' .. . i tn) for ev ry n-ary 
function symbol f E F . We abbreviate T (F , V ) to T and T (F . 0) to T (F) when 
no confusion can arise . 

Definition 2.4.8 (assignment) 
Let A be an F -algebra having the carrier A . An assignrnent ~ on A is a mapping 
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from V to A. It is extended to the mapping a frOIn T(:F, V) to A as follows: 

The correctness of a (conditional) equation is clcternlined by using algebra. 
If an equation is correct, we say it is valid . In that case the interpretatioll that 
validates the equation is called a model. Fonnal definition are giv 'll lX'low. Not icC' 

that variables in conditional equations are (implicitly) universally quantified. 

Definition 2.4.9 (valid equation) 
An equation s ~ t is valid in an F-algebra A if a( ) = c~( t) for all assignnlents 0' 

on A . Alternatively we say that A is a model of s ~ t. \Ve write.') = A t if .') ~ t 
is valid in A. 

Definition 2.4.10 (valid conditional equation) 
A condit ional equation l ~ T <= c is valid in an F -algebra A if a( l) = a( r) for all 
assignments a on A satisfying a(s) = a(t) for every equation s ~ t in c. \Ve also 
say that A is a model of l ~ r <= c. 

Definition 2.4.11 (model and semantic equivalence) 
An F-algebra A is a model of aCES [; if every conditional equation l ~ T <= C E [; 

is valid in A. The variety ME of aCES [; is the ·lass of all rnodcls of [;. We write 
s = M £ t if the equation s ~ t is valid in every model of [;. The relation = M £ is 
called sem,antic equivalence induc d by [;. 

Example 2.4.12 (algebraic semantics of CES) 
Consider again the CES [; defined in 2.4 .3. We define all F -algebra A as follows. 
The carrier of A is the set N of natural numbers. Operations are defined by: 

0 , 
n + 1, 
o 
1, 

{
I if rn > n, 
o if m ~ n, 

max(m n) 

for all m n E N. The equation max (S(x), 0) ~ max (O S(x)) is valid in A , since 
max(n + 1,0) = max(O , n + 1) for all n E N. T he eqnation x > 0 ~ T is not yalid 
in A because a(x > 0) -I T A when a(x) = O. 
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Birkhoffs soundness and conlpletencss theorelll [Bir35] st atC's t h(-1 t prO\'<1 hlc 
equivalence coincides with senlantic equivalcnce for all (ulLcondi tional) ESs. The 
follo-wing theorem extends it to arbitrary C Ss. A proof of the theor(,lll is giv(,u 
in Chapter 3. 

Theorem 2.4.13 (soundness and completeness of CEL) 
Let E be a CES. Provable equivalence induced by E coincides with Se111antic cquiv
alence induced by E, i.e. , ~E = =Mc 

2.5 Conditional Term Rewrite ~;ystems 

In the previous section , we introduc d CES and defined its syntax; algebraic S('
mantics and proof-theoretical semantics. The purpo e of this section is to give the 
operational semantics of CES by conditional term rewrite systelDs and provide a 
basis for studying equational reasoning from the computational view point. For 
extensive surveys on tenn rewriting , we refer to [H080] [DJ90], an 1 [Kl092]. 

Definition 2.5.1 (conditional term rewrite system) 
A conditional rewrite rule is a conditional equation which is denoted by l ~ r ¢:: c. 

A CES consisting of conditional rewrite rules is called a conditional terrn rcw,,.ite 
system (CTRS). A CTRS consi ting of oIlly unconditiollal equations is called an 
unconditional term rewrite system or , in1ply a term rewrite systcrn (T ). 

As opposed to previous works (e.g. [Kap84] [D090]) in which the underlying 
CES is restricted , we define rewrite systems as general as possible. This enables 
a good correspondence between conditional rewriting and conditional equational 
logic. 

Conditional rewrite rules are used to rewrite terms by replacing an instance' 
of the left-hand side l with the corresponding instance of the right-hand side T 

provided the corresponding instance of the conditional part c is satisfied. To 
expre's this directed use of conditional equations we denot conditional rewrite 
rules by l ~ r ¢:: c. 

Definition 2.5.2 (rewrite relation of a CTRS) 
The rewrite relation -+n of a CTRS R is defined as follows: 
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0, 

{(C[lCJ],C[TCJ]) Il-t T <= c E R , C E= C, CJ E 2." R", f-- ca} 
for all kEN, 

Uk EN -tRk . 
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So we have s -tR t if and only if s -tRk t for orne k E= N. The lIlinilIlU1l1 'uell k 
is called the level of the rewrite step s -tR t. The subtenn lCJ in the definition of 
-tRk+1 i called a Tedex. We write s ~R t if vve want to lnake thc positioll p of 
the redex in s explicit . Note that the meaning of Rk ~- CCJ whi h detCrIl1illCS the 
satisfiability of conditions, is not fixed in this definition. 

Different rewrite relation can be associated with a given CTRS depending 011 

the interpretation of conditions. The most common interpretation. are 'hcckillg 
conditions by convertibility (H *), joinability (.1.), and reduction (-t *) . For other 
interpretations the reader is referred to [DOS88a]. 

Definition 2.5.3 (types of CTRSs) 
In semi-equational CTRSs satisfiability of conditions is defined as convertibility: 

In join-equational CTRSs conditions are interpreted as convertibility: 

In oriented CTRSs satisfiability is checked by reduction: 

Similarly to the definition of provable equivalence induced by aCES ( e[ini
tion2.4.4),cCJdenotesthe et{sCJ~tCJ I s~t in c}. So,forexarnplc,cCJ~HRk 
with c = SI ~ t 1 ,· ·· , Sn ~ tn is a shorthand for SlCJ H;<-k tICJ ... Sn CJ HRk L7I CJ. 

The classification of CTRSs by interpretation of the conditional part goes back 
to Berg tra and Klop [BK86] who use the tenninology type I , II anel III for scrni
equational, join , and orient d system respectively. Semi-cquational CTRSs are 
also called natural in the literature and join CTRSs are sOInetilT1CS called standard. 
In thi thesi we follow the terminology used in [DOS88a]. 

In the following chapters we frequently COlTlpare different types of CTR,Ss asso
ciated with the same CES. Hence it is convenient to rnake thc explicit notational 
convention of writing R ' (Rj RO) if R is considered a, a serni-cquational (join 
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oriented) CTRS. Furtherrnore wc abbreviat -7RS to --ts (J.R o to to ' H R J to Hj , 

etc .). We write Rand -7R if sOll1cthing applies to all three kinds of CTRSs (e.g. 
when defining properties of CTRSs) . 

Example 2.5.4 (conditional rewriting) 
Consider again the CES [ defined in 2.4.3 and let R = [ . \\ e ha\'e 

o > 5(0) -7R F, 
max(0 , 5(0)) -7R 5(0) , 

max(max(O 5(0)) , 0) -7R max(5(0) 0). 

The level of each rewrite step is 1, 2, and 3 respectivel
v 

• 

We don 't put any restrictions on the distribution of variables anlong the dif
ferent parts of conditional rewrite rules. In particular, we allow so-calleel extra 
variables in th right-hand sides as well as in the conditions of conditional rewrite 
rules . 

Definition 2.5.5 (extra variable) 
An extra variable in a conditional rewrite rule l -7 r {:::: C i. a variable in Var (T, r) 
which does not occur in l. 

CTRS with extra variable naturally appear in the progral1Huillg applications. 

Example 2.5.6 (CTRS with extra variable [DOS88a]) 
Consider the following CTRS , which specifie an efficient algorithm for compllting 
the Fibonacci numbers: 

R = { fib(O) -7 (0, 5(0)) } 
fib(5(x)) -7 (z, y + z) {:::: fib(x) ~ (z, y) . 

In this CTRS z is an extra variable because it does not appear in thc left-haud 
side of the conditional rewrite rule. 

Following [ H94], we introduce a classification of CTRSs by the distribution 
of extra variables in condit ional rewrite rules. 

Definition 2.5.7 (distribution of extra variables) 
Let R be a CTRS. Every rewri te rule l -7 r {:::: c E R is classified according to the 
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distribution of variables alnong l , T , and c as follows: 

type requirelnent 
1 Var(T) U Var(c) C Var(l) 
2 Var(T) ~ Var(l) 
3 Var( T) ~ Var( l) U Var( c) 
4 (no restrictions) 

An n-CTRS contains only rules of type n. So a 1-CTRS contains no extra vari
ables, a 2-CTRS may contain extra variables only in the conditions, a 3-CTRS 
may have extra variables in the right-hand sides provided they appear in the cor
responding conditional part. Every CTRS is a 4-CTRS. 

The ARS (T(F, V), --+n) can be associated with a CTRS (F R). So all the def
initions and the properties of ARSs explained in Section 2.2 carryover to CTRSs. 
In th next chapter, we will see that the relation --+n defined in Definition 2.5.2 
coincides with the minimum solution satisfying the following implication. 

l --+ T ¢: C E R , C E C, a E ~, R ~ ca ===> C[la] --+n C[Ta] (2.1) 

Note that the above implication may have no minirnurn solution if we define the 
satisfiability of the conditions R ~ ca differently, as shown in the following exaln
pIe . 

Example 2.5 .8 (ill-defined rewrite relation [Klo90J) 
Consider the CTRS 

R={a--+a ¢: b~b}. 
b--+b ¢: a~a 

and interpret the satisfiability of conditions as reduction to a nonnal from: 

Then implication (2.1) is satisfied by two different minimal sol u tions --+n = {(a , a) } 
and --+n= {(b, b)}. Hence, in general it is not possible to characteriz(~ the rewrite 
relation by the minimum solution to implication (2.1). 



Chapter 3 

Soundness and Complete ness 

An ARS over terms can be used to define a provability relation associated with 
a given CES. One of the most important properties of a provability relation is 
soundness and completeness, namely, the property that all provable (by nleans of 
the ARS) equations are correct (with re pect to the CES) and all correct equatiollS 
are provable. Hence the provability relation can be interchanged with semanti 
equivalence in sound and complete ARS . 

This chapter consists of two parts. First , we provide tools which nlake the 
task of proving soundness and completeness easier. Based on the results obtaincd 
in the first part , we prove that both CEL and CTRSs are sOllnd and cornpleLc. 
In Section 3.1 our attention is directed to the selnantic aspc t of souudness and 
completeness. We provide a sufficient condition for soundness and 'ornpleteI1(1ss 
which can be applied to any ARS and give a syntactic characterization of sC'nlCllltic: 
equivalence. In Section 3.2 we review the fixpoint theorenl and present a Inethocl 
to analyze properties of a relation which depends on a lattice theoretic properLy. 

sing the results obtained in these two sections we give a proof of soundness and 
completeness of CEL in Section 3.3 and a proof of the s mndness and complC'tcn 'ss 
of semi-equational CTRS in Section 3.4. 

3.1 Characterizing Semantic Eq'uivalence 

Consider an ARS which defines a provability relation m terms associated with a 
CES. The purpose of this section is to investigate how to nsure the soundness 
and completeness of the ARS and to give a syntactic chara terization of s ITlallti . 
equivalence. We begin the investigation with a formal definition of the soundness 
and completeness of an ARS. 
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Definition 3.1.1 (soundness and completeness of an ARS) 
Let (F , £) be a CES and (T(F, V) , rv) all RS over the set of tenns. \Ye sa~' the 
ARS rv i sound with respect to the CES £ if rv ~ = M[ and complete wit h 1'( Slwct 
to £ if = M £ ~ rv. 

Congruence and applicability are important notions 'ollcrrn illg relatio1ls 011 

terms in characterizing the selllantic equivalence = M £ . 

Definition 3 .1.2 (congruence) 
(1) A r lation rv on T(F, V) is compatible if f( S1, '" :' sn) rv f(tl,'" in) for all 

function sYlnbols f E F having arity n and for all tenns S l ... ,8n t l , ·· · , tn 
that atisfy S1 rv t l, . .. Sn rv tn. 

(2) A compatible equivalence relation on the set of tenns is called a congruence. 

Definition 3.1.3 (applicable relation) 
Let (F , £) be a CES and rv a relation on T(F , V). The relation rv is applicable to 
£ if la rv 1'a for all conditional equations l ~ r ¢:: c E E and substitutions a such 
that ca C rv. 

The following basic properties concerning sernantic. will be used in the proof of 
Theorem 3.1.6, which provides a sufficient condition for the soundness of an A B. 

Lemma 3.1.4 ( substitution transfer) 
a(ta) = aoa(t) for all F-algebras A , assigllnlCnts a OIl A substitutions a anel 
terms t. 

Proof. 
By structural induction on t. 

Lemma 3.1.5 (basic property of semantic equivalences) 
Let A be an F-algebra and £ aCES. 
(1) = A and = M £ are congruences that are closed under substitutions. 
(2) = M £ is applicable to £. 

Proof. 

D 

The proof of property (1) is straightforward. Substitution transf r (Lerllrna 3.1.4) 
is u cful to show that = A is closed under substitutions. In order to prove property 
(2) uppose l ~ r ¢:: c E £ and ca ~ = M £ · We have to show hat 1a = M £ ra. Let 
A be an arbitrary model of £ and a an arbitrary assignnlent on A . By applying 
substitution transfer to ca ~ = M£ \\ e know that a 0 a( s) = a 0 a(t) for all .' ~ L 
in c. Since A E ME, we obtain a 0 a(l) = a 0 a(r). Substitution transfer yields 
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Ci(l(J) = Ci(r(J). Therefore l(J = M£ r(J. o 

Theorem 3.1.6 (soundness of an ARS) 
Let [ be a CES and f"J an ARS over ternlS. If f"J ~ = for every 'ongrllrnce = that 
is applicable to [ then f"J is sound with respect to [. 

Proof. 
According to Lemma 3.l.5, = M£ is a congruence which is applicable to [. HCllCC , 

we have f"J ~ =M£ by assumption. 0 

Next we investigate how to ensure the cOlnpletcnesc; of an RS. The proof of 
the compl teness theorem (Theorem 3.l.11) becomes easier by considering validity 
in the quotient term algebra. 

Definition 3.1.7 (quotient term algebra) 
Let == be a congruence. The carrier of the quotient term algebra Q= for == is t br 
quotient set Q= given by Q= = T(F V) / == . The operations of Q= are defined 
by fQ = ([td =, . .. [tn ]=) = [f(t1, . .. tn )]= for every n-ary function sYlnbols f E F . 
The natural mapping v= for == is the assignment on Q= defined by v=(x) = [xh:: . 

Note that it i po sible to construct the quoticnt set Q= betallS(~ a congnH'llce 
is an equivalence relation. Compatibility of the congrucnce == guarantees tIl(' well
defined ness of the operations of Q=: Suppose 81 == t 1) ... ) S n == tn. The 'ompati
bility of == yields f(Sl . . . i STJ = f(t 1 , ... ) tn). Hence we have' [j'CS'l ... ) .)n)]= = 
[f(t1 ... t n )]=. 

The natural mapping is used in the proof of the cornpleteness theorcIIl to dr
compose an assignment on the quotient term algebra into two mappings. 

Lemma 3.1.8 (property of the natural mapping) 
Let = be a congruence and s ) t terms. 
(1) v=(t) = [t] =. 
(2) v=(s) = v=(t) , [s] = = [t] =, and S == t are equivalent. 

Proof. 
Property (1) is proved by structural induction on t. Property (2) is all easy tOIl
sequence of (1). 0 

Lemma 3.1.9 (decomposition of an assignment on Q=) 
Let == be a congruence and t a term . If a suhstitution (J and an assiglllllcnt 0: on 
Q= ati fy (J(x) E a(x) for all x E Var (t) then a(t) = v~(t(J). 

Proof. 
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By structural induction on t. Lemnla 3.1. can be eI:llployed for thr basr casr 
t E V. 0 

The next lemma provides the Inost ilDportant result for cOlllpletrlless, stating 
that the quotient tenn algebra i a IDodel of a given CES. 

Lemma 3.1.10 (property of a quotient term algebra) 
Let E be a CES and == a congruence that is applicable to E. The quotirllt ten)} 
algebra for == is a model of E, i.e. , Q= E ME. 

Proof. 
Let l ~ T ~ c E E and a an assignment on Q=. Assume ~(s) = (f(t) for all .'3 ~ t 
in c. We have to show that a(l) = ~(T). In order to decompose the a.sigrllncnt C\:, 

let eJ be any substitution with the following two properties: 
• eJ(x) E a(x) if x E Var(l , T) U Var ( c), 
• eJ(x) = x otherwi e. 

We decompose a (Lemma 3.1.9) and use the property of the natural nlapping 
(Lemma 3.1.8(1)). Now the statelnent we have to prove is: [leJ] = = [TeJ] == . The 
assumption becomes: [seJ]== = [teJ]== for all ~ t in c. We obtain leJ == TeJ fr01n this 
assumption using the property of th natural mapping (Lemlna 3.1.8(2)) and the 
applicability of == to E. Therefore [leJ]== = [TeJ]==. 0 

1 ow we are ready to give a sufficient condition for the cornplrt.elless of all ARS. 

Theorem 3.1.11 (completeness of an ARS) 
Let E be a CES and rv an ARS over tenDS. If rv is a congrucn ·e that is applicablr 
to E, then = M£ ~ =Q~ ~ rv and hence rv is cornpl te with re. pect to E. 

Proof. 

S =M£ t ¢? \fA E ME S = A t (definition of =M£) 
::::} S =Q~ t (Q", E ME by Lemma 3.1.10) 
¢? \fa: V -7 Q", ~( ) =~(t) (definition of =Q~) 
::::} u", (s) = u", (t) (Urv : V -7 Q", ) 
¢? Srvt (Lenuna 3.1.8(2)) 0 

Combining the two theorelns we can give a ufficicnt condition for ensuring 
the soundness and completeness of an ARS. 

Corollary 3.1.12 (soundness and completeness of an ARS) 
Let E be a CES and rv an ARS . If rv is the srnallrst congruence that is applicable 
to E, then rv is sound and cOlnpletc with respect to E, i.e. , rv = = Mc 
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An easy consequence of this theorelTI i the followillg SYllt actie charactcrizat ion 
of t he semantic equivalence = M£ . 

Corollary 3.1.13 (characterization of semantic equivalence) 
Let [ be a CES. T he. en1antic equivalence = M£ is the slnallest cOllgnl('nC(' that is 
applicable to [. 

3.2 Fixpoint Theorem for Relations 

In the previous section we abstracted the selnantic part of the soundness and ("0111-

pletene s of an ARS . Hence it remains to analyze yntactic properties of relatiolls. 
In this section we review the fixpoint theorem, which provides a tool to analyze 
properties of an iteratively constructed object. The results of this section can be 
applied to characterize both the provable equivalence of a CES and th rewrite 
relation of a CTRS because they are defined by an iterative construction. For a 
detailed description on t he fixpoint theorern , see, for exarnplc [ P90] and [vVec92]. 

Since our aim is to analyze properties of relations , we specialize the dornain of 
the discu. 'sion to t he set of relations. 

Definition 3.2.1 (complete set of relations) 
We call a set C of relations complete if C is closed under unions anel intersectiolls , 
i. e. U X E C and n X E C for all subset X S;;;; C. 

Example 3.2.2 (complete set of relations) 
Let A be an arbitrary set . The set Pow (A x A) of all relations on is cOlnpl('tc. 
Given a relation Ro S;;;; A x A, the set { R S;;;; A x A I Ro S;;;; R} of all n~latiollS 011 

A containing Ro is also complete. 

Ob erve t hat (C S;;;;) is a complete lattice for every compl(,te set C of rclatiolls. 
ow we construct a sequence of relations by iterat ive applications of a fUllction 

and define a relation as the least upper bound of this sequence . 

Definition 3.2.3 (iterative construction of a relation) 
Let C be a complete set of relations and cI> : C ---t C a functioll. The relation ---t¢ 

is defined as follows: 

..ie, 
cI>( ---t<Pk) for all kEN, 
U kEN---t<Pk = U kEN cI>k (..iC) . 

H re ..ic is t he smallest relation in C. 
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Ionotonicity and continuity are two inlportant latticc theorctic proper! ies 
which the function for iterative construction should satisfy. 

Definition 3.2.4 (monotonicity) 
Let C be a complete set of relations. A function <P : C -t C is nW1Lotonc if R ~ 
implies ~ (R) ~ ~ (S) for all relations R, SEC . 

Definition 3.2.5 (chain) 
A sequence (Rn I n E N) of relations i called a chain if Ri ~ Rj for all i. j E N 
such t hat i ~ j , or equivalently, Ri ~ ~+l for all i E N. 

Lemma 3.2.6 (chain by monotone function) 
Let C be a complete set of relations. If ~ : C -t C is a monotone function thell 
t he sequence (-t<I>k IkE N) of iteratively constructed rellations is a chain. 

Proof. 
To show t hat (-t<I>k IkE N) is a chain , we prove -t<I>k ~ -t<I>k+l for all kEN by 
induction on k. If k = 0 then we have -t<I>k = ~c ~ -t<I>k+I ' Suppose k 2: l. 

sing the induction hypothe is and the monotonicity of~ . \VE' obtain ~(-t<Pk _ J ~ 

~(-t<I>k)' Therefore -t<I>k ~ -t<I>k+l by definition. 0 

Definition 3.2.7 (continuity) 
Let C be a complete set of relations . A function ~ : C -t C IS contir/,v,ou.c; if 
~(UiEN Ri ) = UiE N ~(Ri) for every chain (Ri liE N) on C. 

Th next lemma is useful for proving the continui ty of a lTIOnotone functioll . 

Lemma 3.2.8 (relationship between monotonicity and continuity) 
Let C be a complete set of relation and ~ : C -t C a fun tion. 
(1) <P is monotone if and only if UiEN ~(Ri) ~ <P(UiEN R i ) for every chain 

(Ri liE N) 0 n C. 
(2) ~ is continuous if and only if ~ is monotone and ~(UiEN RJ ~ UiEl'J <P(RJ 

for every chain (Ri liE N) on C. 

Proof. 

(1) For t he proof of the "=}' direction , suppo e <P is rnonotone and consid'1' an 
arbitrary chain (~ liE N) on C. Clearly the inclusion RJ ~ UiEI! Ri holds for 
all j E N. By the monotonicity of ~ we ha\ <P(Rj)~: <P(Ui Ef~ Rd for all j E N. 
From this inclusion and the fact that UiEN <P(RJ is the least upper bound of 
the set {~(Ri) liE N } the desired illclusion UnE:N <P(Rn) ~ <P(UnEfl Rn) is 
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derived. For the ';<=" direction, suppoSe' R ~ S with R. S E C. \Y(' han' to 
show that 1>(R) ~ 1>(S). Consider the' chain (Ri liE 1'1) sllch that Ro = R 
and Ri = S for all i ~ 1. By assunlption U iEN 1>(Ri) ~ <D(Ui EN RJ. FrOlll 
t he construction of the sequence (Ri liE 1'1) we infer that UiEN 1>(Ri) = 

1>(R) u 1>(S) and 1>(UiEN Ri ) = 1>(S). Therefore 1>(R) U 1>( ) = 1>( ) and 
hence 1>(R) ~ 1>(S). 

(2) By property (1) and the definition of continuity. 

D 

The following results are useful when the function for iterative cOllstruction is 
defined by a combination of several function . 

Lemma 3.2.9 (monotonicity of combined functions) 
Let C b e a cOlnplete set of relations and suppose two functions 1> l , <P2 : C ---t C cHr 

monotone. 
(1) The function 1> defined by 1>(R) = 1>1 (R) U 1>2(R) is monotone. 
(2) The function 1> defined by 1>(R) = 1>2 (1) l (R)) is monotone. 

Proof. 
Straight forward . 

Lemma 3.2.10 (continuity of combined functions) 

D 

Let C be a complete set of relations and suppose two functions 1> 1,1>2 : C ---t C arC' 
cont inuous. 
(1) The function 1> defined by <P (R) = 1>] (R) U 1>2 (R) is contilluouS. 
(2) The function 1> defined by 1>(R) = 1>2 (1)1 (R)) is continnous. 

Proof. 
Straightforward . D 

The following two lemmata are the key to the fixpoint the'orcnl for relations. 

Lemma 3.2.11 
Let C be a complete set of relations and 1> : C ---t C a monotone function. If a 
relation R E C satisfi es 1>(R) ~ R, t hen ---t<f> ~ R. 

Proof. 
We prove that ---t<Pk ~ R for all kEN bv induction on k. If k = 0 we have ---tcp/.; = 

-Lc ~ R. Suppose k ~ 1. We have ---tIPk = 1>( ---tcP/.;_I) by definition. Cornbining 
t he induction hypothesis with the monotonicity of 1> yields 1>( ---t<f>/.;_I) ~ 1>(R). By 
assumpt ion 1>(R) ~ R. Therefore we obtain ---tIP/.; ~ R. D 
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Lemma 3.2.12 
Let C be a cOlnplete set of r('lations and <I> : C ---+ C a continuolls fUllction. The 
relation ---+<p is a fixpoint of <I> i.e. , <I> ( ---+<p) =---+<1>. 

Proof. 
We have ---+<p = U kEN ---+<Pk by definition and thus cI>(---+.p) = cI>(Uk EN ---+<Pk)' FroIll 
the continui ty assunlption, we obtain <I>( U kEN ---+<[>J = UkEN cI>( ---+<pJ. Csing the 
definition of ---+<[>, we continue as follows: U kEN CD( ---+<Pk) = Uk EN ---+q)A'+1 = ~c U 

U kEN ---+<Pk+l = U k EN ---+<Pk = ---+<[> . Therefore we conclude that CD( ---+<f» =---+<1> . 0 

Now we are ready to state the main theorem of this section. 

Theorem 3.2.13 (fixpoint theorem for relations) 
Let C be a complete set of relations and <I> : C ---+ C a continuou. fUllction. The 
relation ---+q:, is the slnallest relation that satisfies <I> ( ----t<[» ~ ----t<f>. 

Proof. 
By Lemma 3.2.11 and Lemma 3.2 .1 2. 0 

We conclude this section with an xplanation of how to apply the fixpoint 
theorem to the analysis of a relation. Consider a cOlnplet set C of relations aHel 
a relation R E C which is iteratively constructed. Our goal is to chanu:teriz(' tll(' 
relation R by a property P on C. We analyze the relation R by the following t lnf'c 
steps: 
(1) Find a function <I> : C ----t C such that R = UnEN <I>n (~c) . 
(2) Prove the continuity of <I>. As a consequence we obtain the fixpoint charac

terization R = n{ X Eel <I>(X) ~ X} by Theorem 3.2.13. 
(3) Relate CD with P and prove the equality R = n{ X Eel P{-Y) }. 

3.3 Soundness and Completeness of CEL 

Based on the technique introduced in the previou two sections, we give a proof of 
the soundness and completeness of CEL, which is defineel in Section 2.4. The goal 
of t his section is to prove that, for every CES (F, E) , the ARS (T(F, V) , ~[) is 
sound and cOlnplete. In order to characterize provable equivalence by the fixpoillt 
t heorem, we introduce a function <P [ for iterative construction. 

Definition 3.3.1 (function <I>[ ) 
Let (F , £) be a CES. Define the function <p[ on the set of relations over tenns: 
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Here , five operations ( . ) [r], ( . ) [5], ( . ) [t], ( . ) [c], and ( . ) [a] arC' clrfillrcl as follows: 

R [r] IdT(F,v) , 

R [5] R - 1 

R [t] R2 , 
R [c] { (f ( 3 1 , ... ,8n ) , f (t1 ' ... , tn )) I 

f E F , fis n-ary 3j Rtj for 1 ~ j ~ n} , 
R [a] {(la, ra) Il ~ r <= c E £ , ca~. R}. 

Using the function <P£, the definition of provable equivalence (Definition 2.4.4) ('an 
be reforrnulated as follows: 

~£o 0 , 
r--.J r--.J [r] U r--.J [5] U r--.J [t] U r--.J [c] U r--.J [a] 
r--.J£k + l r--.J£k rv£k r--.J£k rv£k rv£k' 

<P£(~£J for all k E N 

~£ UkEN ~£k = UkEN <P£k(0). 

ext , we prove that <P£ is monotone and continuous. 

Lemma 3.3.2 (monotonicity and continuity of <P£) 
Let £ be aCES . 
(1) The function <P £ is monotone. 
(2) The function <P£ is continuous . 

Proof. 
By repeated applications of Lemma 3.2.9(1) we learn that a function constructed 
from monotone functions by means of unions is also rnonotone. The sarne ar
gument is applied to continuity using Lemma 3.2 .10 (1) . Hence we have to show 
the monotonici ty and continuity of the five operations ( . ) [r], ( . ) [5], ( . ) [t], ( . ) [c], 

and ( . )[a] introduced in Definition 3.3.l. Monotonicity is easily proved. We ouly 
show the continuity of ( . ) [a]. The continuity of other operations can be sirni
lady proved. For the proof of continuity we use th monotonicity of ( . ) [a] with 
Lemma 3.2.8(2). So let (~ liE N) be an arbitrary chain 011 the set of relations on 
terms and suppose la (UiEN ~) [a ] ra for some conditional equation l ~ r <= c E £ 
that satisfies c = 31 ~ t 1 , ... 3n ~ tn· \Ve have to show that la (UiEN Rl [a]) ra. 
The inclusion ca ~ UiEN Ri holds by the definition of ( . ) [a] and hen 'e we have 
3ja(U iEN Ri)tja for all j E {I ... ,n}. So there i. mj E N for every j E {I , ... ,n} 
such that 3ja Rmj tja . Letting m = max{ml ... m n} , \ve obtain sJa Rmtja for all 

j E {I . .. n} and thus ca ~ Rm. By the definition of ( . ) [a] we have la Rm [a] Ta. 
Therefore la (UiEN Ri [a]) ra. 0 

Since the function <P£ is continuolls , an application of the fixpoint theorcll1 
yields the following characterization of provablr equivalence. 
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Lemma 3.3.3 (fixpoint characterization of provable equivalence) 
Let E be a CES. The provable equivalence ';::::!,£ induced by E is the slllallcst rclat iOll 

such that <I?£ (';::::!,£) ~ ';::::!,£ . 

Proof. 
By the continuity of <I?£ and the fixpoint theoreln for relations (Thcorelll 3.2.13). 
o 

For t he soundness and completeness of CEL, it remains to relate the inclusion 
<I? £ (';::::!,£) ~ ';::::!,£ with the desired property. 

Lemma 3.3.4 
Let (F , E) be a CES and R an arbitrary relation on the set of tenns . 
(1) R is a congruence if and only if R [r] U R [s] U R [t] u 11[c] ~ R. 

(2) R is applicable to E if and only if R[a] ~ R. 
(3) R is a congruence that is applicable to E if and only if <I?£ (R) ~ R. 

Proof. 
(1) and (2) are straightforward . From these two properties and the definition of 
<I? £, property (3) is easily inferred . 0 

The conjunction of the preceding two lemmata yields the following chara 'teri
zation of provable equivalence, which is equivalent to soundness and cOlnplrt )nC'ss. 

Corollary 3.3.5 (characterization of provable equivalence) 
Th provable equivalence ';::::!,£ induced by aCES E is the smallest congruenc(' that 
is applicable to E. 

Theorem 3.3.6 (soundness and completeness of (~EL) 
Conditional equational logic is sound and complete, i.e. , ';::::!,£ = = M [ for all CESs 
E. 

Proof. 
By Corollary 3.3.5 and Corollary 3.l.12 . o 

3.4 Soundness and Completeness of Semi-Equational 
CTRSs 

In thi section we prove soundness and completeness of serni-equational CTRSs, 
which is defined in Section 2.5. We regard the convertibility relation indu ·eel by 
a CTRS as t he provability relation of the CTRS. So our goal of this section is 
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to prove that , for every emi-equational CTRS (F, R) the AR (T(F, V) H~) 

is sound and conlplete. Before dealing with the conycrtibility rC'latioll, \\T first 
analyze the rewrite relation induced by a seIni-eqllational CTRS. \Yc begin the 
analysis with the definition of a function for i terati ve COllstru ·tiOll. 

Definition 3.4.1 (function ~R) 
Let R be a CTRS. Define the function ~R on the set of relations over tenllS. which 
is used to construct the rewrite relation of the serni-equational CTRS

i 
as follows: 

Here, operation ( . ) R is defined as follows: 

-tR {(la,ra) Il ~ r <= c E R, ca ~ H * }. 

Using the function ~R ' the definition of the rewrite relation of a serni-equational 
CTRS (Definitions 2.5.2 and 2.5.3) can be refornlulated as follow: 

~R( -tRk ) for all kEN, 
Uk EN ~Rk(0). 

Next, we prove that ~R is Inonotone and ·ontinuous. 

Lemma 3 .4 .2 (monotonicity and continuity of ~R) 
Let R be a CTRS. 
(1) ~R is monotone . 
(2) ~R is continuous . 

Proof. 
Froln Lemma 3.2.9(2) and Lemma 3.2 .10(2) we learn that composition of functions 
preserves both monotonicity and continuity. Hence it is sufficient to show th 
monotonicity and continuity of the two operations introduced in Definition 3.4.1. 
Since the operation ( . )eqv is a closure operation it is monotone. One ed,sily verifi '5 

that the op ration ( . )R inherits monotonicity from ( . )eqv. The operation ( . )C 
is also Inonotone because it is a closure operation. The the contill11ity of ( . )R is 
obtained 'imilarlv to the ( . ) [a] operation in the proof of LCIllnla 3.3.2, except that 
we use the continuity of ( . )eqv which is easil shown. The continui y of ( . )C is 
straightforward. D 

Since the function ~R is continuous, an application of thc fixpoint theorem 
yields the following characterization of the rewrite relation. 
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Lemma 3.4.3 (fixpoint characterization of the rewrite relation) 
Let R be a CTRS. 
(1) 4.)R( -tR) = -tR· 

(2) -tR is the smallest relation that satisfies 4.)R (-tR) ~ -tR' 

Proof. 
Property (1) follows from Lemma 3.2.1 2 using the lnonotonicity of CPR. Proprrty 
(2) is derived from the fixpoint theoreln (Theoren1 3.2.13) using the (,Olltilluit~· of 

CPR· D 

In order to characterize the rewrite relation of a sClni-eqnational CTR by 
properties of relations, it is convenient to introduce a propcrty for CTRSs which 
is similar to the notion of applicability for CEL. 

Definition 3.4.4 (applicable relation) 
Let (F, R) be a CTRS and -t be a relation on T( J=- , V). The relation -t is 
applicable to the semi-equational CTRS R S if la -t ra for all conditional equaLioll 
l ~ r ¢: c E R and substitutions a that satisfy ca ~ B*. 

Lemma 3.4.5 
L t R be a CTRS and -t an arbitrary relation on the set of tenns. 
(1) -t is closed under contexts if and only if -tc ~ -t. 

(2) -t is applicable to the semi-equational CTRS R S if and only if -t R ~ -t. 

Proof. 
Straightforward. D 

Combining the preceding two lemmata yields a useful characterization of the 
relation -tR (associated with the semi-equational CTRS R S). 

Lemma 3.4.6 (characterization of -tR) 

Let R be a CTRS. The relation -tR is the snlallest relation that is hoth closed 
under contexts and applicable to the semi-equational CTRS R S. 

Proof. 
Since -tR is the fixpoint of CPR by Lelnrna 3.4.3 (1), we have CPR (-tR) = -tR 

and thus (-tR R)C = -tR by definition. Hence , using the rnonotonicity and 
idempotency of the context closure operation ( .)C w can 'oIllpllte as follows: 
-tRC = ((-tRR)C)C = (-tRR)C = -tR' Thercfore, -tR is closed under contexts 
by Lemma 3.4.5(1). Moreover, by using the increlnentality of ( .)C we obtain 
-tRR ~ (-tRR)C = -tR' Hence -tR is applicabl' to f,~S by Lerllma 3.4.5(2). It 
remains to show that -tR is the smallest relation satisfying the two properties. 
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So let -+ be a relation which is closed under context and applicable to R S
. \Y(' 

have to show that -+R ~ -+. FroIn LelnIna 3.4.5 and the Illollotonicity of ( . )c. we 
inf I' that (-+R R)C ~ -+c ~ -+ and hence <P R ( -+) = -+ by definition. The clesired 
inclusion -+R ~ -+ follows froIn Lemma 3.4.3(2). D 

Due to this I mma we can avoid proofs by induction on the level of conditional 
rewrite steps in th next chapter. 

Before proving the soundness and cOlnpleteness of sClni-equational CTR Ss wc 
n ed some preparation. 

Lemma 3.4 .7 (property of equivalence closure) 
Let R be a relation on terms. 
(1) If R is closed under contexts, then Reqv is also clo cd under contexts. 
(2) If R is applicable to a senli-equational CTRS R S

, then Reqv is also applicable 
to R S

, 

Proof. 
Property (1) follows from the inclusion (Reqv)C ~ (RC)eqv and property (2) i cluc' 
to the inclusion (Reqv)R ~ (RR)eqv . Both inclusion.' are asy to prove. D 

Lemma 3 .4.8 (relationship between context closure and compatibility) 
Let R be a reflexive and transitive r lation on ternlS. ]"{ is closed uIlclcr contexts 
if and only if R is compatible. 

Proof. 
The direction "=}' is proved by induction on the number of argnments for ('vpry 
function symbol. The proof of the direction <=' is by stru 'Lural indll tiOll on 
contexts. D 

ow we can give a characterization of the convertibility H~ , which is eqllivalellt 
to soundness and completeness. 

Theorem 3 .4 .9 (characterization of H;') 
Let R be a CTRS. The relation H~ is the smallest congruence that is applicable 
to the semi-equational CTRS R s. 

Proof. 
According to th characterization of the rewrite r lation (Lemma 3.4.6) the rewrite 
relation of a s mi-equational CTRS R S is closed uIlcler contrxts and applicable to 
RS. So H~ inherits these two prop rtie .. from the rewrite relation 1 y Lemma 3.4.7. 
Hence H;' is a congruence by Lemma 3.4.8. It relnains to show that H~ is the 
smallest relation. Let rv be an arbitrary congruence that is applicable to R S

• VV 
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have to show that H~ ~ rv. Since congruence is refiexive anel transitiYe, rv is 
closed under contexts by Lemma 3.4.7. An application of the characterization of 
the rewrite relation yields that ~n ~ rv because rv

eqv = rv . Therefore H~ C rv 

by the monotonicity of ( . )eqv and the equality rv
eqv = r"..J . 0 

Corollary 3.4.10 (soundness and completeness of R S [Kap84]) 
Every semi-equational CTRS R is sound and complete, i .e. , H~ = = Mc 



Chapter 4 

Logicality .of CTRSs 

From the viewpoint of algebraic semantics, semi-equational CTR Ss have the nice 
properties of soundness and completeness, as we have observed in Section 3.4. 
Hence they have the nice proof-theoretical property of logicality, rneaning that 
their provability relations corresponds exactly with the provable equivalen·e of 
the underlying CES. However, from the computational viewpoint, senli-cC}llational 
CTRSs are unnatural becaus satisfiability of the conditional part of conditional 
equations is checked by bidirectional rewriting which goes against the, pirit of 
rewriting. The aim of this chapter is to investigate what classes of jOill and oriented 
CTRSs are sound and complete . 

In Section 4.1 we introduce the notion of logicality, characterize the rewrite 
relations of CTRSs, and prove that join and oriented CTRSs are always sound. 
Section 4.2 is a review of known logicality results for join CTRSs. New logicality 
results for oriented CTRSs are provided in Section 4.3 In Section 4.4 we give suffi
cient conditions for logicality of join and oriented systems by irnposing restrictions 
on semi-equational CTRSs. In Section 4.5 w systematically cornpare various pairs 
of relation induced by different types of CTRSs for understanding the principle of 
logicality. The results presented in this chapter are based on the joint work with 
J. A venhau , C. Loria-Saenz and A. Iiddeldorp (cf. [Y LS~I99] [Y .. LS1\197]). 

4 .1 Logicality 

In the previous chapter we observed that CEL is sound and conlpl teo Hence for 
the purpose of ensuring soundness and completeness of a CTRS , it is sufficient to 
compare the logical strength of a CTRS with C L. We call a CTRS logical if it 
has the same logical strength a CEL. 
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Definition 4.1.1 (logicality) 
A CTRS R is called logical if the relations ';::jn and +--+n coincide. 

The tenninology logicality stems fronl [BG89] although the study of the concept 
dates back to Kaplan [Kap84]. Logicality is an irnportant property becanse it 
entails that (bidirectional) rewriting i sound and cornplete with respect to the 
underlying CES. Hence logicality implies that an equation s ';::j t is provable by 
rewriting (s +--+n t) if and only if it i valid in all models of the underlying CES. 
Logicality of semi-equational CTRSs was first proved by Kaplan. 

Theorem 4.1.2 (logicality of semi-equational CTRl-Ss [Kap84]) 
Every semi-equational CTRS is logical. 

Proof. 
By the characterization of provable equivalence (Corollary 3.3.5) and the character
ization of the convertibility induced by a semi-equational CTRS (Theoreln 3.4.9). 
o 

Corollary 4.1.3 (logicality of non-semi-equational CTRSs) 
Let R be a CTRS. 
(1) The join CTRS Rj is logical if and only if +--+j = +--+;. 
(2) The oriented CTRS RO i logical if and only if +--+~ == +--+;. 

From Corollary 4.1.3 we learn that it is important for ensuring logicality of 
non- emi-equational CTRSs to conlpare the relations +--+~, +--+j*' and +--+; . Hence , in 
thi chapter , we compare various relations which are induced by different types of 
CTRSs and derive logicality results. For that purpo e, characterizations of r write 
relations are frequently applied. So w extend the result for semi-equational CTRSs 
(Theorem 3.4 .3) to join and oriented CTRSs. 

Definition 4.1.4 (applicable relation) 
Let (F , R) be a CTRS and --+ be a relation on T (F , V) . The relation --+ is 
applicable to R if la --+ ra for all conditional equation l --+ r <= c E R and 
substitutions a that satisfy R ~ ca. 

Lemma 4.1.5 (characterization of rewrite relations) 
Let R b a CTRS. The rewrite relation --+n induced by R is the smallest relation 
that is both closed under contexts and applicable to R. 

Proof. 
\V already proved the r suIt for semi-equational CTRSs in Theorem 3.4.3. The 
re ults for join and oriented CTRSs are similarly proved. 0 
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Lemma 4.1.6 (logical strength of CTRSs) 
For every CTRS R we have -to ~ -tj ~ -ts' 

Proof. 
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We prove the inclusion -to ~ -tj by using the charactrriza tion of -t (Lelllllla -1.l.5). 
Since -tj is clos d under contexts by the characterization of -tj. it suffices to show 
the applicability of -tj to RO. So suppo e l -t r ¢= c E R and a is a substitution 
with ca ~-tj. Since -tj ~ tj) ca ~ -tj implies ca ~ tj. Hence wc obtainla -tj ?'(J 

from the characterization of -tj. The proof of the inclusion -tj ~ -ts is siIllilar: 
we use Lemma 4.l.5 and the inclusion ts ~ H;. 0 

This lemma tells us that every join and oriented CTRS is sound since its 
corresponding semi-equational CTRS is sound . Nevertheless they arc not always 
complete as examples in the subsequent sections illustrate. In the next scction, we 
review known logicality results in an uniform way to clarify sufficient conditions 
that guarantee completeness of join and oriented CTRSs. 

4.2 Logicality of Join CTRSs 

W start our review of logicality results with join CTRS . Join CTRSs necd not 
b logical, as shown in the following example. 

Example 4.2.1 (join CTRS lacking logicality) 
Consid I' the CTRS 

{

a -t b 
R= a -t c 

d -t e ¢= b ~ c 
} 

We have d -ts e since b sf- a -ts c. However , d -tj e doc,' not hold because the 
condition b tj c is not satisfied . Hence d Hj e does not hold either. 

Note that the above Rj lacks confluence. Kaplan observed that this is essen
tial. From the proof of the theorelll blow w know that confiucnce is a Ilatural 
requirement for the logicality of non-semi-equational CTRSs. The point is that 
convertibility can be transformed into joinability, using the confiuence assurnption. 

Theorem 4.2.2 (sufficient condition for -tj = -ts) 

Let R be a CTRS . If Rj is confluent then -tj = -ts ' 

Proof. 
We already know that -tj ~ -ts . For the reverse inclusion we use the character
ization of rewrite relations (Lemma 4.l.5). Since -tj is closed under contexts we 
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only need to show the applicability of -tj to R S
. So 11 t 1 -t T <= (' E R anel a 

a substitution that satisfies cO" ~ +-+j. vVe have to show that la -tj Ta. By the' 
confluence assumption we obtain +-+j ~ -l-j and thu ' lO" -tj 1"a follows fr01n the 
characterization of -tj. 0 

Corollary 4.2.3 (logicality of join CTRSs [Kap84]) 
Every confluent join CTRS is logical. 

4.3 Logicality of Oriented CTR~;s 

Logicality of oriented CTRSs is the main topic of this chapter. For oriented CTR s 
confluence is not sufficient for ensuring logicality, as shown by the following eXClm
pIe. 

Example 4.3.1 (confluent oriented CTRS lacking logicality) 
Consider the CTRS 

R={a-tc } 
b -tc <= c~a . 

We have b -ts c since c s~ a. However, b -to c dt s not hold because the 
condition c -t~ a is not satisfied. Hence b +-+~ c dor.s not hold either. Note that 
RO is confluent. 

In semi-equational systems, the right-hand side of couditions lllay be rewritrn 
for checking the satisfiability of the conditions . However, it is not allowed to rewrit 
the right-hand sides of the conditions in oriented systerns. s a consequence, to 
impose restrictions on reducibility of th right-hand sides of the conditions is crucial 
for ensuring logicality of oriented systems. 

Definition 4.3.2 (normality) 
Let R be a CTRS . A term t is called normal if it is ground and does not encornpass 
any left-hand side l of a conditional rewrite rule l -t r <= c in R. The latter 
requirement means that t is irreducible with respect to the unconditional TIlS 
obtained from R by dropping all conditions. We say that R is nor-rnal if every 
right-hand side t of an equation s ~ t in the couditional part c of a onditional 
rewrite rule l -t r <= c in R is normal. 

ormal oriented system were called to be of typ IIIn by Bergstra and Klop 
[BK86] . ote that every normal term is irreducible and also that Ilonnali ty is 
a decidable property of finit CTRSs. It is easy to see that the CTRS R in 
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Exarnple 4.3 .1 i not a normal CTRS . If we illlPOS the syntactic restrictioll of 
norrnality to the CTRS, logicality of oriented CTRSs dircctly' follows frOlu the' 
result in the previous section . This is becausc the rewrite step of a Ilonnal Ori('lltccl 
CTRS coincides with that of the associated join CTRS. 

Theorem 4.3.3 (equivalence of rewrite relations by normality) 
Let n be a normal CTRS. If n° is confluent then -to = -tj = -ts' 

Proof. 
According to Lemma 4.l.6 we have -to ~ -tj. In order to prove th H'"crse 
inclu ion we employ Lemma 4.l.5. Since -to is clo. ed under contexts we only lleed 
to show the applicability of -tj to ns. So let l -t T <= c E n and a a ubstitution 
such that ca ~ f-tj. We have to shovv that la -tj Ta . By the confluence aSSlllllption 
we obtain f-tJ ~ -1--j and thus la -tj Ta follows fronl the characterization of -tj. 
Hence -to = -tj and thus n j is also confluent. Froln Theorem 4.2.2 we obtain 
-tj = -ts ' Hence -to = -tj = -ts' 0 

Corollary 4.3.4 (logicality of normal CTRSs) 
Every confluent normal oriented CTRS is logical. 

In the presence of extra variables in the right-hand sides of the conditional 
rewrite rules, normality is too strong a require111cnt. Such extra variables appear 
naturally in applications of conditional rewriting (e.g. [ALS94] [BG 9], [Han9o]. 
[SMI95]). There are two ways to weaken the normality reqllirerneut in orol
lary 4.3.4. We weaken normality by imposing the operational requir ment of weak 
normalization on CTRSs or replacing it with other syntactic requirements OIl 
CTRSs. The following key lemma, which gives a more abstract sufficient condi
tion, is useful for ensuring the logicality of oriented CTRSs. 

Lemma 4.3.5 (sufficient condition for logicality of oriented CTRSs) 
Let n° be a confluent oriented CTRS. If for every l --t T <= c E n and every 
substitution a that satisfies ca ~ -1--0 there exists a substitution T such that 
(1) a(x) -t~ T(X) for all x E V and 
(2) CT ~ -t~ 
then -to ~ -ts ~ -to 0 -1--0 hence n° is logical. 

Proof. 
The inclusion -to ~ -ts follows from Lemma 4.l.6. For th inclusioll -ts ~ -to 0 -1--0 

we use the characterization of -ts (Lemrna 4.l.5). The proof of this in 'lusion is 
sketched in Figure 4.l. Sine r flexive-transitive closure and eonlposition preserve 
closure under contexts, -to 0 -1--0 is closed under contexts . It rcnlains to show the 
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\;j ~t In c _ =-10 

* SCJ e • tCJ lCJ TCJ \ A)/ 
0 (B) 

(B) -U- (C) 

* * * ST • tT =} IT ~ rT 

(A) confluence 
(B) assum ption 
(C) Lemma 4.1.5 

Figure 4.1: Proof of Lemma 4.3.5. 

applicability of -to 0 to to R S
. So let l -t T <= c E R dnd CJ a substitution such 

that CCJ ~ (-to 0 totqv = f-+~. \i\e have to show that lo· -to 0 to Ta. Conflucncc 
of R O yields CCJ ~ to. By assumption there exists a substitution T such that 
CJ(x) -t~ T(X) for all x E V and CT ~ -t~. Th latter statement implies IT -to TT. 
The first statement implies lCJ -t ~ lT and rCJ -t ~ rT. Therefore lCJ -to 0 to rCJ. D 

ow we discuss logicality of oriented CTRSs with weak normalization assllInp
tion. 

Definition 4.3.6 (strong irreducibility) 
Let R be a CTRS. A term t is called strongly irreducible if tCJ is irreducibl for 
every irreducible substitution CJ. We say that R is 'trongly irreducible if every 
right-hand side t of an equation s ~ t in the conditional part c of a conditional 
rewrite rule l -t r <= c in R is trongly irreducible. 

ormal CTRSs are clearly strongly irreducible. ote that irreducibility dr-
pends on the rewrite relation associated with R , so it is possible that an orient d 
CTRS R O is strongly irreducible wh reas the corre ponding join CTRS R.i is not. 
Because it is undecidable whether a term is irreducible with respect to a CTRS 
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[Kap84], strong irred uci bili ty is undecidable ill gelleral. . d('cicla hIe suffici('ut con
dition is presented in Defini tion 4.3.9 below. The following logica Ii ty theon'Ill relies 
on the possibility to reduce both sides of an equation in the conditiollal part to 
irred uci ble terms. 

Theorem 4.3.7 (logicality of oriented CTRSs by normalization) 
Every strongly irreducible weakly normalizing confluent oriented TTIS R O satis
fies the inclusion ---to ~ ---ts ~ ---to 0 to and hence is logical. tl 

Proof. 
The inclusion ---to ~ ---ts is from Lemma 4.1.6. Let RO be a strongly irreducible 
weakly normalizing confluent oriented CTRS . We use Lenllna 4.3.5. So let l ---t r <= 
C be a conditional rewrite rule of RO and a a substitution that satisfies ca ~ to. 
We have to define a substitution T such that 
(1) a(x) ---t; T(X) for all x E V, and 
( 2 ) CT ~ ---t; . 

B cause RO is confluent and weakly normalizing, every ternl t reduces to a unique 
irreducible term tto and hence we can define T as T(;:r;) = a(.1:)to for all L E 

V. Property (1) is clearly satisfied . Let S ~ t be an equation ill c. vve have 
sa to ta o From (1) we infer that sa ---t; ST and ta ---t; tT and thus ST H~ tT. 

Since T is irreducible by construction, tT is irreducible by th \ strong irreducibility 
assumption. Confluence of R O yields ST ---t; tT. We c mclucle that property (2) 
holds. 0 

Example 4.3.1 shows that Theorem 4.3.7 cannot be strengthened by dropping 
the trong irreducibility requirem nt. The following example shows the necessit 
of weak normalization. 

Example 4.3.8 (necessity of weak normalization) 
Consider the CTRS 

n={ f(a) ---t a 
a ---t a } 

g(x) ---t b <= a ~ f(x) . 

We have a sf-- f (a) and thus g( a) ---ts b. However , since there is no term t sHch 
that a ---t; f(t) th relation ---to coincides with the rewrite relation induced hy the 
uncondi tional TRS S = {a ---t a f (a) ---t a}. Hence g( a) H; b docs not hold and 
hence R O is not logical. Clearly the TRS S and thus RO is confiuent. Furtherrnorc. 
RO is strongly irreducible because there is no irre 11lcible term t such that f (t) IS 

reducible . 

tIThis result originates from [ALS93]. 
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Definition 4.3.9 (absolute irreducibility) 
Let R be a CTRS. A tern1 t is called absolut ely irredu cible if 110 IloIl-\'ariable sl1b

term of t unifies (after variable renaming) with the left-haud side 1 of a conclitional 
rewrite rule l -t r ¢= c E R. We say that R is absolutely irreducible if (\Y(\r~ ' 

right-hand side t of an quation s ~ t in the conditional part c of a cOllclitiollal 
rewrite rule l -t r ¢= c in R is ab olutely irreducible. 

Unlike strong irreducibility, absolute irreducibility does not deprlld all the 
rewrite relation associated with R. That is to say, absolute irreducibility is a 
property of CESs. Note that every normal CTRS is absolutel irreducibl but not 
vice-versa. 

The CTRS RO of Example 4.3.8 is not absolutely irreducible since tlw right
hand side f(x) of the condition a ~ f(x) in the rule g(x) -t b ¢= a ~ f(x) is 
unifiable wi th the left-hand side f (a) of the rule f (a) -t ell. everthelc. even if we 
strengthen strong irreducibility to absolute irreducibility, we callnot di. p nse with 
weak normalization in Theorem 4.3.7 as shown by the following example. 

Example 4.3 .10 (necessity of weak normalization) 
Consider the CTRSt2 

a -t b 
b -t a 

f(a b) -t c 
g(x) -t d ¢= c "" f(x , x) } 

We have c sf- f(a b) sf- f(a, a) and thus g(a) -ts d. However , since there is no 
term t such that c -t ~ f (t, t) the relation -to coincides with th rcwrit' r latioll 
induced by the unconditional TRS 5 = {a -t b, b -t a, f(a , b) -t c}. Clearly 
g( a) +-+ s d does not hold. Hence n° is not logical. ote that 5 and thus RO is 
confluent. Furthermore n° is absolutely irreducible because the t 'rm f(x , x) cloes 
not unify with f ( a, b) . 

The non-linearity of the term f(x , x) in the above exanlple is ('sscntial , as we 
will see in Section 5.3. 

Since in applications of conditional rewriting weak n( rmalization is often a s -
vere restriction , e.g. CTRSs that model (lazy) functional programs are not weakly 
nOfl11alizing in general we are especially interested in a sufficient condition for 
logicality of oriented CTRSs that does not rely on weak norrnalization. The abo\ e 
examples show that the problen1 with strong and absolute irr clu 'ibility is that 
the structure of the right-hand side. of equations in the conditional parts ar not 

t2This example refutes [ALS93 Theorem 5.2] 
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preserved under reduction. For instance, in EXa1l1plc -1.3. we ha\'(' f(a) ---10 a 
destroying the structure f (-). Absolute irreducibility guarantee's that the struc
ture of t he right-hand sides of equations in the condi tiollal parts is pn'sC'l'YC'el h~' 

one-step reduction but not by many- ,top reduction: in Ex;.unple .J.3.10 we' have 
f(a a) ---10 f (a b) ---10 c destroying f ( .. ). 

The condition defined below guarantees that the structure of the right-hauel 
sides of equations in the condit ional parts i preserved by lnany-. tep reductioll. 

Definition 4.3.11 (stability) 
Let R be a CTRS. A term s is called stable ifp tI. Pos.r(s) whenever sa ---1~ t ~R u. 

for all ubstitutions a, terms t and u, and po itions p. \Ve say that R is stable 
if every right-hand side t of an equation s ~ t in th conditiollal part (' of a 
conditional rewrite rule l ---1 r ¢= c in R is stable. 

The structure preservation of stable terms is formally expressed in the followillg 
lemma . 

Lemma 4.3.12 (structure preservation of stable terms) 
Let R be a CTRS. If s is a stable term and a ---1~ t then 
(1) root( salp) = root (tl p) for all p E Pos.r(s), and 
(2) salp ---1~ tip for all p E Posv( s) . 

Proof. 
We use induction on t he length of t he reduction sa ---tn t. The case of zero 

length is trivial. Suppose sa ---1n t' ~R t. The proof of this case is illustrated in 
Figure 4.2. Stability yields q tI. Pos.r(s) and hence there exi. ts a q' E Posv(s) such 
that q' :s; q by property (1) of the induction hypothesi . In order to prove property 
(1) , suppose p E Pos.r( s) . From q' i p and q' :s; q we infer t hat root( tlp ) = root (tl p), 
The induction hypothesis yields the desired result. Suppose P E Posv(s) for the 
proof of property (2). It suffices to show that tip ---1n t ip by induction hypothesis. 

If p = q' t hen tip q\q') R tip otherwise tip = tip' 0 

The next lemm a expre ses the fact that for conflu ent CTRSs t he substitutioll 
part of an instance of a stable term can be consistently reduced. This property 
plays a crucial role in the proof of one of our main results (Theorern 4.3.16 below). 

Lemma 4.3.13 (consistent reduction from a stable term) 
Let R b a confluent CTRS. If s is a stable ternl and sa ---1n t then there exists a 
substitut ion T such that 
(1) a(.1:) ---1n T(X) for all x E V, and 



4.3 Logicality of Oriented CTRSs 

S 

a 

(2) t-+nST . 

Proof. 

* q 
sa t f t 

(A) 

q' 

q 

6 *6 • L~ 
(A) 

q\q' 

6 *& .~ . )\ 
, , 

(A) . .. induction hypothesis 

Figure 4.2: Proof of Lemma 4.3.12 . 

49 

} Pos.r(s) 

+- Posv(s) 

If S is a ground term then it must be irreducible and hence any substit ll tion T 

satisfies both requirements. Suppose s is not ground. Let:r; be' an arbitrary 
variable in s and define Ax = {t ip I Sip = :r; }. See Figure 4.3 . Since' a(:r;) -+n 'U 

for every 'U E Ax by part (2) of Lemma 4.3 .12, the set A x consists of pairwise 
convertible terms. Since it is finit e and nOn-elTlpty, confluence yields a ternl 'Ux 

such that 'U -+n 'Ux for all 'U E Ax. Now define T as follows: 

r(x) = { ~(x) if :r; E Var(s), 
otherwise. 

It is easy to see that this T satisfies both requiren1ents. o 

Stability alone is not enough for ensuring the logicality of confluent not nec
essarily weakly normalizing oriented CTRSs. This is shown in the next exarnple. 



4.3 Logicality of Oriented CTRSs 
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Example 4.3.14 
Consid r the CTRS 

* * sa t <'iT 

* ------: 
(B) • ------: 

* 

(A) ... stability and Lemma 4.3.12 
(B) ... confluence 

Figure 4.3: Proof of Theorem 4.3.13. 

R = { a ---t f(a ) } 
g(x) ---t b <= f(x) ~ x . 
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T 

We have g(a) ---ts b since f (a) sf-- a. Since there is no term t such that f(t) ---t: t, 
the relation ---to coincide with the r '" rite relation induced by the single rewritc' 
rule a ---t f(a) . Hence RO is confiuent and g(a) H~ b docs not hold. Tote that R O 
is stable since variables are trivially stable. 

Definition 4.3.15 (well-directedness) 
A sequence S1 ~ t 1 , . .. ,Sn ~ tn of equations is well-directed if Var (sj) n Var (t i ) = 0 

for all i, j with 1 :s; j :s; i :s; n. We say that a CTRS R is well-clirected if the 
conditional part c is well-directed for every conditional rewrite rule l ---t r <= c E R. 

All example CTRSs introduced in this chapter except the one of Example 4.3.14 
are well-directed. ormal CTRSs are trivially well-directed. We are now ready for 
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the main theorem of this srction . 

Theorem 4.3.16 (logicality of oriented CTRS without normalization) 
Every stable well-directed confluent oriented CTRS R O sa tisfies t he inc! usion --7 0 ~ 

--78 ~ --70 0 -J-o hence logical. 

Proof. 
The inclusion --70 ~ --78 follows from Lelnma 4.l.6. Let R O be a stable wrll
directed confluent oriented CTRS. We use Lenlnla 4.3.5. So let l --7 T ¢:: C be 
a conditional rewrite rule of RO and a a , ubstitution that satisfies ra ~ -J-o. Let 
C = Sl ;:::::; tl ... , n;:::::; tn· We have to define a substitution T such that 
(1) a (x) --7 ~ T (x) for all x E V, and 
(2) CT ~ --7~ . 
To this end we will inductively construct substitution TO,... Tn such that for all 
i wi th 0 :::; i :::; n. 
(3) a(x) --7~ Ti(X) for all x E V, and 
( 4 ) S j Ti --7 ~ t j Ti for all 1 :::; j :::; i. 
Letting TO = a, properties (3) and (4) are trivially satisfied for i = O. Let 'l 2:: l. 
From the induction hypothesis confluenc and tability of RO , and Lelllnia 4.3.13 
we infer the exist nee of a ub titution Bi such that SiT'i-l --7~ tiBi and a(x) --7~ 
Bi(X) for all x E V. See Figure 4.4. From th induction hypothesis we obtain 
a (x) --7 ~ Ti-l (x) for all x E V. Henc confluence yields tcnns 'U x for :E E V 
such that Ti - I(X) -t~ U x ~f- Bi(X ) . Partition the set of variables V into VI = 
Var(t i ) n U1:Sj<i Var(tj ), V 2 = Var(ti) \ U 1:Sj<i Var (tj ) and V3 = V \ Var (t i ). ow 
define Ti as follows: 

if x E VI, 

if x E V2 , 

if x E V3. 

We claim that Ti has properties (3) and (4). For property (3) we distinguish three 
cases . If x E VI then a(x) -t~ Ti - l(X) by the induction hypothesis Ti - I(X) --7~?Lx 
by construction of u x , and U x = Ti(X) by definition of Ti. If x E V 2 then a(x) --7~ 
Bi(X) by construction of Bi and Bi( X) = Ti(X) by definition of Ti . If.7: E V3 then 
a(x) --7~ Ti - I(X) by the induction hypothesi and Ti - I(X) = Ti(.7:) by definition 
of Ti· Hence in all cases we obtain the desired a(x) --7~ Ti(X) . For property (4) 
we r ason as follows . Let 1 :::; j :::; i. By well-directedncss Var (sj) n Var (ti ) = 0 

and thus Var(sj) ~ 113 . Consequently :ijTi = SjTi - l by definition of Ti. So it 
remains to show that SjTi - 1 -t~ tjTi. \Ve distinguish two cases. If 1 :::; j < i 
then SjTi - 1 --7~ tjTi-l by the induction hypothesis and tjTi - l --7~ tjTi because 
Var(tj ) ~ VI U V3 Ti-I (X) -t~ U x = Ti(X) for .7: E \ / L, and Ti - l (x) = Ti(X) for 
x E \ 3. If j = i then SjTi - l -t~ tjBi by construction of Bi and tjBi --7~ tjTi because 
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(A) .. . induction hypothesis 
(B) Lemma 4.3 .13 
(C) ... confluence 

Figure 4.4: The proof of Theorern 4.3.16. 

Var(tj ) ~ VI U V2 , Bi(X) --+~ U x = Ti(X) for .X E V"l' and Bi(X) = Ti(.X) for .X E V2 . 

This concludes the induction step. 
Now we define T = Tn . Since properties (3) and (4) for i = n are equivalent to 

propertie (1) and (2), we are done. 0 

Since normal CTRSs are well-directed Theorem 4.3.4 is a special case of The
orem 4.3.16 . 

4.4 Equivalence of Different Types of CTRSs 

In the previous section we presented restrictions on join and oriented CTRSs which 
ensure logicality. In this section we present sufficient conditions for logicality of 
join and oriented CTRSs by imposing conditions on semi-equational CTRSs. 

Theorems 4.2.2 and 4.3.3 state that --+j = --+5 for all confluent join CTRSs 
and --+0 = --+5 for all confluent normal CTRSs. Hence confluent join and normal 
CTRSs are not only logical but satisfy all properties of the corresponding serni
equational CTRSs. W develop criteria for 'emi-equatioual C RSs which ensure 
that --+j = --+5 and --+0 = --+5' 

In the first part of this section we present conditions on semi-equa ional CTRSs 
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which ensure that ---tj = ---ts. The following exanlple shows that, ulllike tIl(' situa
tion for join CTRSs, confluence of selni-equational CTR Ss is not sufficicllt for this 
equality. 

Example 4.4.1 (confluent semi-equational CTRS with ---tj i- ---t s ) 

Consider the CTRS 

{

a ---t b } 
R = a---tc . 

b ---t c <¢= b ~c 

We have b ---ts c since b +--t; c. However , b ---tj C does not hold because the' condition 
b -l-j c is not satisfied. Note that R S is confluent but Rj is not. 

In the above example we have ---tj i- ---ts but this is not sufficient for the nou
logicali ty of Rj. Actually, the abov Rj is logical because we have' +--t j = +--t;. But 
adding the rewrite rule d ---t e <¢= b ~ c to R reveals that confluenc of R S is 
not sufficient for logicality of Rj. One way to recover the equality of ---tj and ---ts 
and hence logicality of Rj is to impose on semi-equational systems, in addition to 
confluence the property defined below. 

Definition 4.4.2 (decreasingness [DOS88aJ) 
A CTRS R is decreasing if ther exists a well-founded order >-- such that 
(1) ---tR ~ >-- , 
(2) C> ~ >--, and 
(3) Za >-- sa and Za >-- ta for allZ ---t r <¢= c E R , ~ t in c, and a E (F V). 

Decreasing CTRSs are terminating and, when there are finit ly many rewrite 
rules , have a decidable rewrite relation. Note that the CTRS in the above cxalnple 
is terminating but not decreasing. 

Theorem 4.4.3 (sufficient condition for ---tj = ---ts) 

L t R be a CTRS. If R S is confluent and decreasing then ---tj = ---ts' 
Proof. 
From Lemma 4.l.6 we know that ---tj ~ ---ts ' For the reverse iudusion we show 

---tj t whenever s ---ts t by well-founded induction on with respe t to the orde'r >-
which shows that R is decreasing. By definition.') = C[Za] and t = C[ra] for SOIne 
rewrite rul Z ~ r <¢= c E R , context C and substitution a such that ca ~ H:. 
Confluence of R S yields ca ~ -l-s. \\ e have 8 = C[la] C::: fa and Za >-- 'Ua, va for all 
u ~ v in c by decreasingness. Because >-- contains ---ts it follows that, for all u ~ v 
in c, all terms in ua -l-s va are Slnaller than s. Hence repeated application of the 
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ind uction hypothesis yields ca ~ tj and therefore s ---tj t. o 

Dershowitz and Okada [D090 , Theoreln 2.3] showed that tj = t s for (ly(lry 

decreasing semi-equational CTRS. related result by DeL howitz rt ell . [0 n, 

Theorem 3] states that if a semi-equational CTRS R S is dcereel ing then confillcllc(' 
of R S implies confluence of the corresponding join CTRS Rj. TheorclIl 4.4.3 gell
eralize t hese two results b cause if R S is confluent and clrereasing then ---tj = ---ts 

and thus tj = ts and Rj inherits confluence from R S
. 

The proof of Theorem 4.4 .3 employs induction on the well-founded order that 
shows decreasingness. Ind uction on the level of rewri te steps i. also possi blr , 
provided we strengthen the confluence requirenlent. 

Definition 4.4.4 (level-confluence [GM86]) 
A CTRS R is level-confluent if the relation ---tRk i confluent for every kEN. 

Lev I-confluence is a fundamental proI erty for ensuring the o111pleteness of 
condi tional narrowing in the presence of extra variables (cf. [G lV186] and [rv1H94]). 

Theorem 4.4.5 (sufficient condition for ---tj = ---ts) 

Let R b a CTRS. If R S is level-confluent then ---tj = ---t s . 

Proof. 
From Lemma 4.l.6 we know that ---tj ~ ---ts' For thE' reverse inclusion we show that 
---tSk ~ ---tjk for all kEN by induction on k . The base case is trivic 1. Lrt k 2:: 1 
and s ---tSk t . By definition there exi ts a conditional rewrite rul l ---t T <= C E R , 
a substitution a , and a context C such that s = C[la], t == C[Ta], and ca ~ H ; k_ J' 

An application of the induction h pothesis yields ca ~ Hjk _ l' Since Rj is levcl
confluent we obtain ca ~ tjk - l' Hence s ---tjk t. 0 

In t he second part of thi section we present conditions on semi-equational 
CTRSs which ensure t hat ---+0 = ---ts ' The following example shows that the 
condit ions in the prece ling two theorenl are insufficient for ensuring this equality. 

Example 4.4.6 (confluent semi-equational CTRS 'with ---tj i:- ---t s ) 

Consider t he CTRS 

R = { ~ : ~ }. 
c ---t d <= a ~ b 

We have c ---ts d since a ---ts d sf- b. However c ---+0 d docs not hold brcau 'e the 
condition a ---+~ b is not satisfied . Note that R S is level-c( nfluent and decrrasing. 
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The decreasingness assunlptioll is rather E'vere because it excludes extra \'cui
abIes in 'onditional rewrite rules. For the purpo of alllowing (~xtra variables, we 
introduce a much weaker restriction. 

Definition 4.4.7 (semi-decreasingness) 
A CTRS R is semi-decreasing if there exi ts a well-founded order >- . atisf~'illg the 
following three conditions. 
(1) -+n ~ >- . 
(2) C> ~ >-. 
(3) If l -+ r ~ c E R, a E ~(F, V) and sa ~ ta for all s ~ t in c, thcn la >- sa 

for all s ~ t in c. 

Note that every decreasing CTRS is semi-decreasing, but not viCe-YCI'. a. 

For the equality -+0 = -+s we need to restrict the reducibility of instanccs of 
the right-hand side of conditions in conditional rewrite rules. 

Definition 4.4.8 (right-independence) 
A CTRS R is right-independent if Var( t) n Var (l r) = 0 for ev ry l ~ T ~ (' E R 
and every s ~ t in c. 

It is easy to see that both normal CTRSs and CTRSs with no extra variables 
are right-independent . 

Theorem 4.4.9 (sufficient condition for -+0 = -+s) 
Let R be a CTRS. If R S is confluent, semi-cl creasing, strongly irreducible , and 
right-independent then -+0 = -+s-

Proof. 
From Lemma 4.1.6 we know that -+0 ~ -+s. For the reverse in 'lusion we show 
s -+0 t whenever s -+s t by well-founded induction on s with resp ct to thr order 
>- which shows that R S is semi-decreasing. By definition s = C[la] and t = C[ra] 
for some rewrite rule l ~ r ~ c E R, context C and sul stitution a that satisfi s 
ca ~ +-+;. Define a sub titution T as follows: 

T(X) = {a(x) 
a(x)-l-s 

if X E Var(l , r) , 

otherwise. 

ote that a(x )-l-s is well-defined because R S is confluent and weakly norrnalizing 
(by semi-decreasingness). We have CT ~ +-+;, la = IT and ra = TT. Becaus R S is 
confluent strongly irreducible, and right-independ nt , we obtain ('T ~ -+;. Since 
s = C[lT] ~ IT >- UT for all U ~ v in c by semi-decreasingness, we obtain CT ~ -+~ 
as in the proof of Theorem 4.4.3. Therefore s -+0 t. 0 
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The strong irreducibility requirenlent is e. sC'ntial because the sellli-cquatloual 
CTRS of Exanlple 4.4.6 is confluent, senli-decreasing, and right-illdependent. The 
following example hows that we cannot dispC'n~ e with right -inclcpelldcllce in the 
preceding theorem. 

Example 4.4.10 (necessity of right-independence) 
Consider the CTRS 

R = { f(x) =: ~ ¢= b ~ x } 

Vve have f(a) ~s b but not f(a) ~o b. It is not difficult to , how that R S is 
(semi-)decreasing confluent and strongly irreducible. fbght-ind Cl pendellce is not 
satisfied though. 

Note that the oriented CTRS RO in th above exanlple is logical. It turns 
out that every oriented CTRS for which the corresponding semi-equational TRS 
is confluent, semi-decreasing, and strongly irreducible is logical. In other words, 
right-independence is not essential for logicality. The proof of this result is an easy 
consequence of the following theorem which states that 'RO and R S have the saIne 
computational power. 

Theorem 4.4.11 (sufficient condition for ~~ = ~~ ) 
Let R be a CTRS. If R S is confluent 'emi-decreasing and strongly irrrducibic 
h i I 

t en ~~ = ~~ . 

Proof. 
We show that t ~~ t..l-s for all terms t, from which thE~ equality of ~~ and ~~ 
is ea ily derived. W use well-founded induction on t with respect to the order 
>- which shows that R S is semi-decreasing. If t is irreducible we hav nothin g to 
prove. Suppo e t is reducible. We distinguish two cases . 
(1) Suppo a proper ubterm s of t is reducible. So t = C[s] for some Ilon-ellipty 

context C. We have t >- s by the subtenn property and h nce s ~t 8..l-s by 
the induction hypothesi and the fact that s #- s..l-s. Closure under ('ontex s of 
~o yields t = C[s] ~t C[ ..l-s] · Because >- contains ~o we have t >- C[s..l-s] 
and thus C[s..l- ] ~~ C[s..l-s]..l-s by the induction hypothesis. onfluence of R S 
yields C[s..l-s]..l-s = t..l-s· Therefore t ~t t..l-s· 

(2) If no proper ubterm of t is reducible then there nlllst be a rewrite rul' l ~ 
T <= c E R and a substitution a such that t = la and ca ~ H;. Define the 
substitution T by T(X) = a(x)..l-s for all variables x .. Clearly CT ~ H;. Let 
U ~ v be an arbitrary equation in c. Confluence and strong irreducibility of R S 

yields UT ~; VT and thus UT C= VT. Be 'allse R S is SE lni-decreasing we 01 tain 
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IT :>- 'UT. Since t -t; IT, we have t ~ IT and thus t :>- ZiT. HCllce we cue ill 
a position to apply the induction hypothesis , which yields liT -t~ liT ts = PT. 

We conclude that CT ~ -t~ and therefore IT -to 'fT. This illlpli('s that l cannot 
be a variable for otherwise T(l) would be redu ible and that contradicts the 
construction of T. Because proper subterIns of t are irreducible. we obtain 
t = la = IT and consequently t :>- rT. not her application of the induction 
hypothesis yields rT -t~ rT ts· Hence t -tt rT ts = tts by confluence. 

o 

Corollary 4.4.12 (sufficient condition for logicality of oriented CTRSs) 
Let R be a CTRS. If R S is confluent, selni-decreasing, and strongly irrednciblc 
then R O is complete and logical. 

Employing induction on the level of rewrite steps rather than on the orcler which 
comes with semi-decreasingness enables us to weaken the serni-clccreasingness r -
quirement in Theorems 4.4 .9 and 4.4.11 to level-weak normalization provided we 
strengthen confluence to level-confluence and strong irreducibility to level-str llg 
irred uci bili ty. 

Definition 4.4.13 (level-weak normalization) 
A CTRS R is level-weakly normalizing if the relation ---1'Rk is weakly nOrIualizing 
for every kEN. 

Definition 4.4.14 (level-strong irreducibility) 
Let R be a CTRS. A term t is called level- strongly irreducible if, for all kEN, ta 
is irreducible with re pect to -tRk for every substitution a that is irredncible with 
respect to -tRk· We say that R is level-strongly irreducibl if every right-hand 
side t of an equation s ~ t in the conditional part c of a condit ional rewrite rul 
l -t r ¢= c in R is level-strongly irreducible. 

Note that every level-strongly irreducible term is strongly irreducible bllt not 
Vlce-versa. 

Theorem 4.4.15 (sufficient condition for -to = -ts) 

Let R b a CTRS. If R S is level-conflu nt , level-weakly normalizing 1 v I-strongly 
irreducible, and right-independent then -to = -ts. 

Proof. 
From Lemma 4.1.6 we know that -to ~ -ts. For the reverse inclusion we show 
-tSk ~ -tOk by induction on k ~ O. The base case is trivial. Let k ~ 1 and s -tSk t. 
By definition there exi ts a rewrite rule l -t r ¢= c E R , a substitution a, and a 
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ontext C uch that s = C[la], t = C[r-a], and ra ~ +--+;k - l' Define' a substitution 
T as follows: 

if x E Var(l,r), 

otherwise. 

Note that a(x )tSk - 1 is well-defined becau e R S is level-confiue'nt and loyd-\\' akly 

normalizing. We have CT ~ +--+;k - l' la = IT and Ta = TT. Be'causo R S is 10\'('1-
confiuent, level-strongly irreducible , and right-independent, "ye obtaill CT ~ -t:

k
_

1
• 

An application of induction hypothesis yields that CT ~ .-+ ;k- l' Tlwrcforc .'i -tOk t. 
o 

Note the similarity between the proofs of Theorems 4.4.9 and 4.4.15. The' ne'xt 
re ult is the level-version of Theorem 4.4.11. 

Theorem 4.4.16 (sufficient condition for -t~ = -tD 
Let R be a CTRS. If R S is level-confluent, level-strongly nonnalizing, and lcvcl
strongly irreducible then -t~ = -t~ . 

Proof. 
We show that t -t;/c tts/c for all term t and k ~ O. This irnplie. -t~/c = -t!k' FrOln 
the latter equality the equality of -t~ and -t~ is easily derived. We use induction 
on k. If k = 0 then t = ttsk ' Suppose k > O. We use the second induction on L 

with respect to the well-founded order >-= (-ts/cU l»+ . 1ft i. --+sk-irrccluciblC' then 
t = ttsk as before. Suppose t is -tSk -reducible. \ e distingnish two case's. 
(1) Suppo e a proper subterm s oft is -tsk-reducible. So t = C[8] for sonIC 11011-

empty context C. We have t >- s by definition of >- and hence.') -t~. s-!-s;.. by 
the second induction hypoth sis and the fact that. -# sts

k
' losnre under 

contexts of -ts/c yields t = C[s] -t~ C[S-!-Sk] ' We hay C[stsk] -t;k C[stsJ-!-s;.. 
by the s cond induction hypothesis. Level-confluence of RS yields C[stsk]-!-Sk = 
ttsk' Therefore t -t tk ttsk' 

(2) If no proper subterm of t is -tSk -r du 'iblc then there must be a rewrite rule 
l -t r ¢= C E R and a sub titution a uch that t = la and ca ~ H;k _J ' D fin 
the substitution T by T(X) = a(x)tsk_1 for all variable. x . Clearly CT ~ H:k_

1
• 

Let u ~ v be an arbitrary equation in c. Level-confiuence and 1 vcI-. 'trollg 
irr ducibility of R S yields UT --+~k-l VT. The first induction hypoth .. i yiclls 
UT -t;k _l (UT)-!-Sk _l = VT. Hence IT -to;.. TT. This implies that l cannot b) 
a variable, for oth rwise T(l) would be -tOk -reducible and that contradicts 
the construction of T. Because proper ubtcrn1s of tare -tSk -irreducible we 
obtain t = la = IT and consequently t >- TT . n application of the s('cond 

induction hypothesis yields TT --+;k rT -!-Sk' Hence t --t ~k TT tSk = t ts
k

' 

o 
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Corollary 4.4.17 (sufficient condition for logicality of oriented CTRSs) 
L t R be a CTRS. If R S is level-conflu ent, level-strongly nonnalizing, and lcvrl
strongly irreducibl then R O is (levcl- )cOInpletc and logical. 

We cannot weaken th level-strong normalization requireTIIC'llt in ThC'orclIl '-1...1.16 
and Corollary 4.4.17 to level-weak normalization. This i shown ill thE' following 
example . 

Example 4.4.18 (necessity of level-strong normalization) 
Consider the CTRS 

a-t b 
a -t c <= a ;:::::; b 

R = d -t b <= a ;:::::; b 
b -t x <= d ;:::::;x 

e -t f <= b ;:::::; c 

W have e -ts f but not e +--t~ f. It is not difficult to how that R S is level
confluent , level-strongly irreducible, and (level-)weakly normalizing. ote that R S 

L not level-strongly normalizing as b -tS2 b. 

The final result of this section, which does not rely on any nonnalization rC'
quirement, is also proved by induction on the level of rewrite steps. 

Theorem 4 .4.19 (sufficient condition for -to = -ts ) 

Let R be a CTRS. If R S is level-confluent stable well-directed , and right-indepC'nclC'llt 
then -to = -ts' 

Proof. 
From Lemma 4.1.6 we know that -to ~ -ts' For the reverse inclusion we show 
-tSk ~ -tOk by induction on k 2:: O. The base case is trivial. Let k 2:: 1 and.) -tSk t. 

By definition there exists a rewrite rule l -t T <= C E R , a substitution CJ , and a 
context C such that s = C[lCJ] t = C[TCJ] and CCJ ~ +--t;k _ l' VYe arc going to dC'fine 
a substitution T such that 
(1) lCJ=lT TCJ=TT, and 
(2) CT ~ -ts* . 

k-l 

Let C = Sl ;:::::; tl ... , Sn ;:::::; tn · We will inductively define substitutions TO, ... ,Tn 

such that for all 0 :s; i :s; n 

(3) CJ(X) -t;k_l Ti(X) for all x E V 
( 4 ) l CJ = l Ti, T CJ = TTi, an d 
(5) 'jTi -t ;k-l tjTi for all 1 :s; j :s; i. 
Then by defining T = Tn we obtain properties (1) and (2). FroIn the induction 
hypothesis and property (2) we know CT ~ -t~k_l' Ther forC' .) = C[lTJ -tOI.-
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C[rT] = t by propcrty (1). Letting TO = 0", propcrties (3) (5) arc triyially satisfied 
for i = O. Let i ~ 1. Fronl the induction hypothesis , IcYcl-C'onfiucnc(' and st a bili t~, 
of R S

, and Lcrnnla 4 .3.13 wc infer , sinlilar to the proof of Th('on'lll 4.3.16. thc' 
existcnce of a sub titution ()i such that iTi- l -7:1.: _ 1 fi()i and O"(.r) -7:/,0_1 ()i(.t) for 
all x E V. From the induction hypothcsis wc obtain a(.r:) -7:/,0 _ 1 Ti - l(.1') for all 
x E V. Hcnce lcvel-confiucnc yields for cvery x E V a COIllmon -7:k_1 -r duct U .r of 
Ti-l(X) and ()i(X). Partition the set of variables V into 1

r

l = Var(tdnUl ~j <i Var(t
j

) , 

V; = Var(ti) \ Ul~j<i Var (tj ), and V3 = V \ Var (t i ). Now dcfine Ti as follows: 

if x E VI, 

if .1: E V2 , 

if x E 1/3 . 

vVe claim that Ti has propertics (3)- (5) . For propcrty (3) we distinguish threc cases. 
If x E Vl thcn O"(x) -7:n _ 1 Ti-l (x) by the induction hypothesis , "'i - l (:r) -7:

k
_

1 
u'x 

by construction of ux , and U x = Ti(.T) by dcfinition of Ti. If x E V2 then O"(:r;) -7;1.: _1 
()i (x) by construction of ()i and ()i (x) = Ti (x) by definition of "'i. If x E 1 3 thrn 
O"(X) -7;1.:_1 Ti - l(X) by the induction hypothesi ' and Ti-l(X) = Ti(X) by definition 
of Ti · Hcncc in all cases we obtain the d sired O"(x ) -7;;1.:_1 Ti(X). Ncxt w show 
property (4) . By right- indepcnd n 'c neither l nor r contain' variabl 's occurring in 
ti and hence we have Var( l, r) ~ V3. From thc induction hypothesis and defini tion 
of Ti we obtain lO" = lTi and rO" = rTi . For property (5) we reason as follows. 
Let 1 ::; j ::; i . By well-directedne s Var(sj) n Var(td= 0 and thus Var (''ij) ~ 
V3· Consequently SjTi = SjTi-l by definition of Ti' So it renlains to show that 
SJ"Ti-1 -7s* tJTi. We distinguish two cases. If 1 ::; j < 'i then SJ"Ti - l -7s~ t j "T1 - 1 1.:-1 1.: - 1 
by the induction hypothesis and tjTi - l -7;1.: _ 1 tjTi be 'ause Var (tj ) ~ \.Ij U \- :3, 
Ti- l(X) -7;1.: _ 1 Ux = Ti(X) for x E VI, and Ti-I(.1:) = Ti(X) for ~r; E V3. If j = i then 
SjTi-l -7;n_l tj()i by construction of()i and tj()i -7;1.: _ 1 tjTi becausc Var (tj ) ~ VlUV2i 

()i(X) -7;1.: _ 1 Ux = Ti(X) for x E VIi and ()i(X) = Ti(X) for x E V2. This concludcs 
the induction step. D 

Corollary 4.4.20 (sufficient condition for logicality of oriented CTRSs) 
Let R be a CTRS. If R S is level-confluent, stable, well-directed and right-independcnt 
then R O is logical. 

Theorem 4.4 .19 does not hold if we drop the right-indepcndence r 'quirerllent. 
Even stronger, in contra t to the situation in Corollary 4.4.12 without right
indepcndenc we lose logi ality. This follows from Example 4.4.10 sin R S is 
level-conflnent stable, and wcll-dirccted. 
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4.5 Systematic Analysis of Different Types of Re
lations 

In the previous sections we inve tigated various sufficient conditions for logicality. 
For a better undcrstanding of the principle 'which i hidden in the proofs of logi
cality results, we make a systematic comparison between various pairs of relations 
induced by different types of CTRSs. We start our analysis with an extellsion of 
the soundness result. 

Theorem 4.5.1 (soundness results) 
Let R be a CTRS. 
(a) -to ~ -tj ~ -ts· 

(b) Vk E N -tOk ~ -tjk ~ -tSk ' 

Proof. 
Part (a) is already proved in Lemma 4.1.6. Part (h) is easily proved b indu ·tiOll 
on k. Similarly to the proof of (a), the inclu ion -t ~ J, ~ H* is applied. 0 

The following theorem give sufficient conditions for the equality of the two 
rewrite relations induced by a semi-equational system and the corresponding join 
system. The following abbreviations arc used in the the )rem: CR (confiurn('(') 
(decreasingn ss), and LCR (level-confluence). 

Theorem 4.5.2 (relationships between R S and Rj) 

Let R be a CTRS. 
(A) R S:CR,D V R j:CR ~ -ts = -tj. 

(B) R S:LCR V Rj:LCR ~ Vk E N -tSk = -tjk' 

Proof. 
Statement (A) is already proved. We already know (B) for semi-equational sys
tems . The result for join systems is easily proved by induction on k. 0 

Guided by Table 4.1 , we prove various inclusions. Table 4.1 sUlnrnarizrs all 
the sufficient conditions for ensuring various combinations of inclusions. \ e have 
already discussed (a) and (b) in Theorem 4.5.1. Thcorern 4.5 .2 provid s the results 
(A) and (B). It remains to investigate the relationships between oriented systclns 
and other types of 'ystems which are indicated by (1) - (10) . 

s we observed in Sections 4.3 and 4.4 , the key idea for proving that a relation 
in an oriented system can simulate other type of CTR is to find a Sll b,'ti tu tion 
such that the conditions are satisfi d by unidirectiollal rewriting. The following 
lemma abstracts the pattern of finding such a substitution. 
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c --++ + --++ 
- S --+j 0 c ts t· to - .I 

c --+s --+. --+0 - J 

--+s - (A) (3) --+S - (A) (7) --+s (A) (9) 
--+. 

J ( a) (1) --+. 
J ( a) (5) --+. 

J (a) (9) 
--+0 (a) ( a) - --+0 (a) (a) - --+0 (a) (a) 

c --++ + + 
- SI.: --+ik --+ Ok C --+Sk --+jk --+Ok - c tS,l.- tj,l.- to,l.--

--+S,l.; - (B) (4) --+Sk - (B) (8) --+S,l.- - (B) (10) 
--+j,l.: (b) - (2) --+jk (b) - (6) --+j,l.- (b) (10) 
--+Ok (b) (b) - --+0,1.. (b) (b) - --+Ok (b) (b) 

Table 4.1: Comparing different types of rewrite relations. 

Lemma 4.5.3 (orientation lemma) 
Let --+ be a confluent ARS over terms, C = 31 ~ t1 . .. . ,Sn ~ tn a sequence of 
equations, V a set of variables satisfying Var (ti ) n 11 = 0 for all i with 1 ~ i ~ n, 
and 0" a substitution such that cO" s;: +-1*. If either 

• --+ is weakly normalizing and ti is strongly irreducible for all i with 1 ~ i ~ n 
or 

• ti i stable for all i with 1 ~ i ~ nand C is well-directed. 
then t here exists a substitution T with the following three properties. 
( 1 ) CT s;: --+ * . 
( 2 ) 0" ( x) --+ * T ( x) for all x E V. 
(3) 0" (x) = T (x) for all x E V. 

Proof. 
T he resul t based on weak normalization and strong irreducibility is obtaiIl(~c1 sinl
ilarly to the proofs of Theorems 4.3.7,4.4 .9, and 4.4 .15 . Th result based on sta
bili ty and the restriction on variable distribution is shown sirnilarly to the proofs 
of T heorems 4.3 .1 6 and 4.4.19 . 0 

We introduce sufficient conditions that enable lL to apply the orientatioll 
lemma. 

Definition 4.5.4 (unidirectionality ) 
A CTRS R is called unidirectional if either 

• R is weakly normalizing and strongly irreducible or 
• R is stable and well-directed . 

A CTRS R is called level-unidirectional if either 
• R is I vel-weakly normalizing and lcv I-strongly irreducible or 
• R is stable and well-directed. 
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Note that w do not use the level version of L tability for thr drfiuition of lc\"('l
unidirectionality becaus stability is equivalent to level-stabilit y as wr will obscr\"r 
in Section 5.3. 

The orientation lernlna is applied to right-indepeudC'llt TRSs by taking l ' = 

Var(l , r) for every conditional rewrite rule l -1 T <= C E= R. For C RSs withollt 
right-independence r striction, we take V = 0 instead. A weakrr rcstrict iOIl 011 t 11(' 
right-hand side of the conditions is weak right-independence defincd below. For 
weakly right-independent CTRSs we take 1 r = Var(l ) in the oricntation lellllll<l . 

Definition 4.5 .5 (weak right-independence) 
A CTRS R is weakly right-independent ifVar(t)nVar(r) = 0 for c\,('ry l ~ T <= C E 

R and s ~ t in c. 

In the next theorem the following abbreviations are usc 1: CR (conflucnce'), 
LCR (level-confluence), SD (semi-decreasingness) , D (unidirectionality) L D 
(level-unidirectionality) , N (Normal), RI (right-independ nce) , WRI (weak right
independence) . 

Theorem 4.5.6 (comparing different types of rewrite relations) 
(1) R: N V R.i:CR SD ,UD RI V R O:CR, D RI =? -1j = -10 , 

(2) R:N V Rj :LCR LUD,RI V RO:LCR,LUD,RI =? Vk E N -1jk = -10k ' 

(3) R S:CR,SD, D ,RI V RO:CR UD,RI =? -15 = -10, 
(4) R S:LCR,LUD,RI V R O:LCR LUD RI =? Vk E N -1 S k = -10k ' 

(5) Rj:CR,SD , D,WRI V R O:CR,UD ,WRI =? -10 ~ -1j ~ -1~. 
(6) Rj:LCR LUD WRI V R O:LCRiL D WRI =? Vk E N -10k ~ -1,ik ~ -1tk . 

(7) R S:CR,SD ,UD WRI V R O:CR,UD vVRI =? -10 ~ -1s ~ -1t · 

(8) R S:LCR,L D,WRI V R O:LCR,LU ,WRI =? Vk E N -10k ~ -1Sk ~ -10k ' 

(9) R O:CR,UD =? -10 ~ -1j ~ -1s ~ -10 0 to · 
(10) R O:LCR,L D =? Vk E N -10k ~ -1jk ~ -1Sk ~ -*Ok 0 tok . 

Suffici nt condition given in Theorelns 4.5.1 4 .5.2 and 4.5.6 cov'r all the re
sults which compare rewrite relations except Theorem 4.4.16 and Theorern 4.4.1l. 
The results which compare a relation induced by a serni-equational systrm with a 
relation induced by another type of system imply logicality. So w obtain a new 
logicality result from statelnent (10) . Moreov r , the logicalit ' result obtained frorn 
statement (8) generalizes Corollary 4.4.20 since 'vveak right-indrpclldrnce follows 
from right-independence . Theorem 4.5.6 is not only useful for logicality but also 
for proving that a certain (le\ el- )property is preservcd between clif-fcrent types of 
CTRSs. 
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We conclude this section by making a cOlnpal'ison between t hc logicali ty 1'('sul ts 
for join and for oriented syst ms. \Vith every join CTRS R w(' can associatc a 
corresponding orient d CTRS using the following transfonnatioll. 

Definition 4.5.7 (transformation from join CTRSs to oriented CTRSs) 
Every CTRS R is transformed into O(R) as follows: 

if and only if 

where Xl, .. . ,Xn are fresh and pairwise distinct variables. 

Lemma 4.5.8 (transformation from join CTRSs to oriented CTRSs) 
Let R be a CTRS. 
(1) -'tR) = -'t o (R)o . 

(2) '1/ kEN -'tRt = -'t o (R)Z' 

Proof. 

Property (1) is an easy consequence of property (2) , which IS cClsily proved by 
induction on the level k. 0 

By using this transformation, every join CTRS is transformed into a stablc 
well-directed and right-independent oriented CTRS. Becaus confiucIlce is pre
served under the transformation by the above lonma, Theorem 4.3.16 can be 
considered as a generalization of Corollary 4.2 .3. In the sam fashion , Theorerns 
4.4.9 and 4.4 .19 generalize Theorems 4.4.3 and 4.4 .5, respectively. 



Chapter 5 

Ensuring Sufficient COrJLditions for 
Logicality 

In order to give sufficient conditions for logicality, various properties arc used and 
newly introduced in the previous chapter. The purpose of thi chapter is to study 
how to ensure those properties . vVe also study the difference b tween properties 
which are used for a similar purpose. 

Section 5.1 deals with properties r lated to normalization , ,'uch as decreasing
ness semi-decreasingnes , termination, and weak normalization. We also review 
how to ensure decidability of the rewrite relation induc d by a CTRS. In Sec
tion 5.2 we review how to ensure confluence and level-confluence. In Section 5.3 
we study properties which are used to restrict the reducibility of a term. Sufficient 
syntactic criteria for stability and strong irreducibility arc discussed. 

5.1 Termination and Decidability of Rewrite R e
lations 

Existing techniques for proving termination of TRSs are naturally applied to 
CTRSs by considering their unconditional v rsions. 

D efinition 5.1.1 (unconditional version of a CTRS) 
The unconditional version of a CTRS (F, R) is the unconditional TRS (F Ru) 
where R u is the set of unconditional rewrite rules obtained from R by dropping 
all the conditions: 

Ru = { l -t r I l -t r ¢= c E R }. 
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The termination of a given CTRS R follmvs frOlll t he terIninatioll of its 11Il

conditional version Ru becau e the inclu ion ---1R ~ ---1 Ru is al\\'a~Ts satisfied. For 
survey papers of existing techniques for proving tenninaJion of R s, w(' r('[r[ to 
[Der87] and [Ste95]. 

Conditional rewriting is more cOInplicated than unconditional rewriting be
cause the satisfiability of the conditions is checked recursively. Even if the r<'\\Titr 
relation of a CTRS is terminating, the evaluation procedure Inay not tenllillatc 
because of the recursive evaluation of the conditions. Kaplan showed that e\'('ll for 
finite complete CTRS. without extra variables, it is undecidable whether a t CrIll 
is r ducible or not (cf. [Kap84]). In order to avoid inHnite recursive e,"aluation. 
several properties which are strong r than termination hav been proposrd. De
creasingness (see Definition 4.4.2) is an example of such property for join TR s. 

Theorem 5.1.2 (decidability by decreasingness [DOS88a]) 
Let R be a join CTRS consisting of finitely many conditional rrwrit rules. If R 
is decreasing then it has the following propertie 
(1) R is terminating. 
(2) The rewrite relation ---1R is decidable. 

Simplifyingness of Kaplan [Kap87] and reduc ivi y of Jouannaucl and vVald
mann [JW86] are sufficient conditions for decreasingne.:s. Note that the d('cr('(ls
ingness of a CTRS relies on the rewrite relation. Hence it is affe ·t('d by the 
interpr tation of the conditions as shown in the following exarnple. 

Example 5.1.3 (decreasingness of different types of CTRSs) 
Consider the CTRS 

R = {~ : ~ ¢= b ~ a}. 
The decreasingness of the oriented CTRS R O can be shown by meaus of the well
founded relation that satisfies a >- b c >- b and c >- a. However both the 
semi-equational CTRS R S and the join CTRS Rj arc not cl Teasing be ausc they 
are not t rminating. 

Observe that proving termination by unconditional version IS not powerful 
enough to show the termination of RO in the above example. 

Lemma 5.1.4 (decreasingness of different types of CTRSs) 
Let R be a CTRS . 
(1) If R S i decrea ing then Rj is decreasing. 
(2) If Rj is deer asing then RO is decreasing. 
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Proof. 

By the soundnes. result --+0 ~ --+j C --+5 (Lelnnla 4.l.6) and the cldiuition of 
decreasingness (Definition 4.4 .2). 0 

It is ea y to see that a CTRS with extra variables in its conditional rewritr 
rules is non-decreasing. Ganzinger introduced qllasi-redllctiYr CTRSs in order to 
translate order-sorted specifications into oriented CTRSs with extra variables. In 
quasi-r ductive CTRSs we can avoid infinite recursive evaluation. 

Definition 5.1.5 (quasi-reductivity [Gangl]) 
A CTRS R is called quasi-reductive if there exi ts a well-found d order >- such 
that >- is a rewrite relation with the following properties: 
(1) la (>- u C»+ Sia for all 1 ::; i ::; n such that ja >- = tja for all 1 ::; .i < i 
(2) la >- ra if Sia >-= tia for all 1 ::; i ::; n 
for every conditional rewrite rule l --+ r <= S1 ~ t 1 , .. . , Sn ~ tn E R and a E 
~(F, V). 

Lemma 5.1.6 (property of quasi-reductive CTRSs) 
If a CTRS R is quasi-reductive with respect to a well-founded order >-, then thr 
inclusion --+n ~ >- holds and henc R i terminating. 

Proof. 

We can prove that S --+i? t ilnplies S >- t for all terms s, t by induction on 8 with 
respect to >- . 0 

For the purpose of ensuring the decidability of the rewrite r lation inducrd 
by a quasi-reductive CTRS, Ganzinger introduced detenninistic TRSs, in which 
restricted use of extra variables is allowed. 

Definition 5.1.7 (deterministic CTRS [Gangl]) 
A CTRS R is called deterministic if every l --+ r <= S I ~j tl ... , 8n ~ tn E R is a 
conditional rewrite rule of type 3 and 

i - I 

Var(Si) ~ Var(l) u UVar( Sj,t j ) 
j = l 

for all i with 1 ::; i ::; n. 

In [Gan9I] and [ALS94] it is shown that cleterrninistic quasi-reductive CTRSs 
have a decidable rewrite r lation when there are finitely many rewrite rules. 
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Theorem 5.1.8 (decidability by quasi-reductivity [Gan91]) 
Let R be an oriented CTRS consisting of finitely lllany conditional rewrite rlll('s. If 
R i .. deterrninistic and quasi-reductive , then the l'cwri tc rC'lat ion -+R is dccidablc. 

The following lenlma ulnmarizes the relationships between dccreasingucss, 
quasi-reductivity, semi-decreasingness, and tennillatioll . 

Lemma 5.1.9 (semi-decreasingness and related properties) 
(1) Every decreasing CTRS is semi-decreasing. 
(2) Every quasi-reductive CTRS is semi-decrea ·ing. 
(3) Every semi-decreasing CTRS is terminating. 
(4) If a join CTRS Rj is decreasing then the trallsfonTled oriented C RS O(R)O 

is semi-decreasing. 

Proof. 
(1) and (2) are obvious by definition . (3) follows from LeIlIIlla 5.l.6. (4) IS a 
consequence of Lemma 4.5 .8(1). 0 

The remaining properties of interest in this ection are strong norrnalization 
(termination), weak normalization , and the corre ponding level-properties. In Scc
tion 2.2 we already observed that strong normalization iUlplics weak nonnalizatioll 
and hence level-strong normalization implies level-weak normalization. The n('xt 
lemma clarifies the relationship between strong nonnalization andlevd-strong nor
malization . 

Lemma 5.1.10 (strong normalization and level-strong normalization) 
Every strongly normalizing CTRS is level-strongly nonnalizing. 

Proof. 
Let R be a strongly normalizing CTRS. For a proof by contracli'tion, suppose 
there exists a 1 vel kEN su ·h that the relation -+1<.1. aclrrli ts an infinite rewrite 
sequence. Since the inclusion -+1<.k ~ -+1<. holds by defini.tion -+1<. also achnits an 
infinite r write sequence. This contradicts the strong normalization of R. 0 

Level-strongly normalizing CTRSs need not be strong normalizing as shown in 
the following example from [ IH94]. 

Example 5.1.11 (strong normalization and level-strong normalization) 
The CTRS 

R = { f(x) -+ f(g(x)) ¢:: f(a) ~ f(x) } 

is not strongly normalizing because it admits the infinite r(,write sequence f(a) -+1<.1 
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f (g (a)) -+n2 f(g(g(a))) -+n3 .... Ho-wever , the relations -+R" arr strongly nOrInal
izing for kEN. 

The relationships between properties concrrnecl with llorInalizatioll is SlllllIlla
rized in Figure 5.l. Here we use the following abbrrviations: D (dC'crcasingue'ss), 
QR (qua i-reductivity) , SD (semi-decreasingncss) , SN (s rong nonnalization). \\,N 
(weak nornlalization), LSN (level-strong normalization), LW... (level-weak nOrIllal
ization). 

D --___ t SD --_t SN --_t \VN 

/ \ 
QR LSN--LW 

Figure 5.1: Relationships between propertie concerned with nonnalizatioll. 

5.2 Confluence and Level-Confluence 

In this section we study how to en ure confluence and level-confluence' of CTRSs. 
We first review confluence criteria which rely on termination assumption. The 
notion of critical pair is important to ensure the confluence of CTRSs. 

Definition 5.2.1 (critical pair) 
Let l -+ r {= Sl ~ t 1 , ... ,Sn ~ tn and lf -+ r' {= s~ ~ t~, . . . S~I ~ t~1 be two COIl

ditional rewrite rules in a CTRS R uch that they do not share variables (aftcr 
renaming). Suppos there exist a position p E PosF(l) satisfying the following 
properties: 

• if the two rules are renamed version of the same rule in R then pit, 
• lip and lf are unifiable by a most general unifier a. 

We call the conditional equation 

a conditional critical pair of R. conditional critical pair .) ~ t {= c of R is 
convergent if sa -t.n ta for all a E ~(F, V) such that R ~ ca. 
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For terminating uncondi tional TRSs, cOllfl urllCC is guaranteed by the conver
gence of all critical pairs [KB70] . Dershowitz and Plaisted grlleralized this result 
to CTRSs. 

Theorem 5.2.2 (confluence of R S with termination [DP88]) 
A terminating semi-equational 2-CTRS is confl llent if all its conditional critical 
pairs are convergent . 

In join and oriented systems, termination is not sufficient for confluC'nce evell if 
all critical pairs are convergent as exemplified in Exalnple 4.4.6. Dershowitz rt aJ 
strengthened the termination assumption to decreasingness for rrcovering the con
fluence of join CTRSs. In [ALS94] it is shown that quasi-reductive strongly irre
ducible deterministic oriented CTRSs arc confluent. This rrsult is slightly grnc'r
alized in the following theorem. 

Theorem 5.2.3 (confluence of Rj and RO with decreasingness) 
(1) A decreasing join CTRS is confluent if all its conditional critical pairs arc 

convergent [DOS88a] . 
(2) A semi-decreasing strongly irreducible determini tic oriented CTRS is ·onflu

ent if all its conditional critical pairs arc conv rgent. 

Note that statement (1) can be considered as a speciaJl case of (2) hecause rvrry 
decreasing join CTRS R can be transformed into the equivalrut oriented CTRS 
O(R), which satisfies all the requirements in (2). In [DOS88b] sufficient conditions 
for the confluence of terminating join CTRSs arc pres nted. 

xt we review confluence crit ria which rely 011 orthogonality illstead of ter
mination . 

Definition 5.2.4 (orthogonality) 
A CTRS R is left-linear if, for every conditional rewrite rule l ---t r <= c E R the 
left-hand side l is a linear term. _ CTRS i called orthogonal if it is lrft-linear and 
has no conditional critical pairs. 

Orthogonality was first applied for ensuring confluence of unconditional TRSs 
in [Ros73]. The following theorem is it ' extension by 0 Donnell to CTRSs. 

Theorem 5.2.5 (confluence of R S by orthogonality [O'D77]) 
Every orthogonal semi-equational 2-CTRS is confluent. 
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Bergstra and Klop sho\ved that orthogonality is not s'llfficicIlt for t hc conti 1W11('(' 

of non-selni-equational CTRSs. 

Example 5.2.6 (non-confluent orthogonal CTRSs [BK86]) 
The CTRS 

R - { a -t f(a) } 
- f(x) -t b <= x ~ f (x) 

is left- linear and has no cri t ical pairs, hence orthogonal. Vie have b R f- f (f (a)) -tR 

f(b) but neither b .!-j f(b) nor b .!-o f (b) is satisfied. T herefore both Rj and R O arC' 
not confluent . 

Suzuki et ai. [SMI95] introduced the notions of proper orientation and right
stability to provide syntactic criteria for ensuring the level-confluence of oricnted 
CTRSs. Note t hat the definition of right-stability here is slight ly 1110dified by using 
stabili ty. 

Definition 5 .2.7 (proper orientation and right-stability) 
An oriented CTRS R is called properly oriented if every conditional rewrite rule' 
l -t r <= S1 ~ t l , .. . , Sn ~ tn E R with Var( r) ~ Var ( l) satisfies 

i - 1 

Var ( Si) ~ Var(l) U U Var ( Sj, tj) 

j = 1 

for all 1 .s i .s n . An oriented CTRS is called right-stable if every conditional 
rewrite rul l -t r <= S1 ~ t l , . .. , Sn ~ tn satisfies 

i - I 

(Var( l) U U Var( Sj, tj) U Var( i) ) n Var(t i ) = 0 
j = 1 

and ti is a linear stable term , for all 1 .s i .s n . 

Theorem 5.2.8 (confluence of R O by orthogonality) 
(1) Every orthogonal normal oriented 2-CTRS is level-conflucnt [BK86]. 
(2) Every orthogonal properly oriented right-. table 3-CTRS is level-confluent 

[SMI95]. 

ote that (1) is a special case of (2) because every normal oricnted 2-CTRS is 
a properly oriented right-stable 3-CTRS. 

Another way to ensure the confluence of CTRSs is rnodularity. If a property 
of CTRS is modular we can prove t he property by a divide and conquer approach. 
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fodularity of confluence was first proved by TO,YcUllC1 [ToyS?]. ~Iidcl('lclorp ('x
tended Toyama's result to CTRS . . 

Theorem 5.2.9 (modularity of confluence [Mid90]) 
Let (RI' F I ) and (R2 F2) be both semi-equational 2-CTRSs or both join 2-CTR s 
and suppose FI n F2 = 0. Then: 

(RI' F 1) and (R2' F2) are confluent <===> (Rl U R 2, F] U F2 ) i, confluent. 

Yamada ct al. proved that level-confluence is a n10dular property of CTRSs. 

Theorem 5.2.10 (modularity of level-confluence [YMI95J) 
Let (RI' F I ) and (R2' F2) be join 2-CTRSs and suppose Fl n F2 = 0. Thcu: 

(RI' Fd and (R2' F2) are level-confluent <===> (Rl UR2 , .FI UF2 ) is levrl-conftuC'ut. 

5.3 Stability and Strong Irreducibility 

In this section we study relationships between various properties which arc usC'cl 
to restrict the reducibility of a term. 

Because stability depends on the rewrite relation associated with a TRS , it 
is an und cidable property. As a sufficient syntactic condition for stability, w(' 
introduce trong stability. 

Definition 5.3.1 (linearization of a term) 
A term t is called a linearization of if t i linear and ta = s for sorne variahlc 
substitution a. 

Definition 5.3.2 ( strong stability) 

Let R be a CTRS. A term t is called strongly stable if every linearization of t is 
absolutely irreducible . 

Note that it is suffici nt to te t one (arbitrary) linearization for absolut Irre
ducibility when checking strong stability. One easily verifies that, trong stability 
implies absolute irreducibility. In order to prove that strong stability inlplies sta
bility, we introduce the following property. 

Definition 5.3.3 (t-irreducible term) 

Let R be a CTRS and t a term . A term is called t-irreducible if it is an instance 
of a linearization of t, and no instance of a lin arization of t can be contractrd at 
a po ition in Pos.r(t) . 



5.3 Stability and Strong Irreducibility 73 

Lemma 5.3.4 (property of a t-irreducible term) 
L t R be a CTRS and t a term. Every reduct of a t-irrcducible tcnn IS also 
t-irreducible. 

Proof. 

Let be a t-irreduclible term and suppose s ~~ , '. 'Ve show that s' is t-irre<iucihlr 
by induction on the 1 ngth of s ~~ ' . The casc of zero length is trivial. Suppose 

s ~~ u ~n s'. The t-irreducibility of s and the induction hypothesis yirlcis thr 
existence of a linearization t' of t such that 
(1) u = t'CJ for som substitution CJ and 
(2) no instance of t' can be contracted at a po ition in POSF(t). 
We have to show the existence of a substitution T such that ,I = t'T. FroIn property 
(2) there exists a position q E Posv(t) such that q :::; p. Define the suhstitution T 

as follows: T(X) = Slq if tlq = x, T(X) = CJ(x) , otherwise. This is well-defincd since 
t' is linear. Clearly we obtain '= t'T. 0 

Lemma 5 .3.5 (syntactic criteria for stability) 
Let R be a CTRS. Every strongly stable term is stable. 

Proof. 
p Let be a strongly stable term and suppose SCJ ~n t ----+n u. We have to ,how 

that p rf- POSF( S) . For that purpose we prove the 8-irredllcil ility of t. Sin'e every 
reduct of s-irreducible tenn is also s-irreducible by Lenllna 5.3 .4 , it suffices to 
show that SCJ is s-irreducible. Let s' be an arhitrary linearization of 8 . By strong 
stability of s, no instance of s' can be contracted at a position in PosF (-,,) . WC' also 
have to show the existence of a substitution T su ·h that 8CJ = S ' T . The dcsirC'cl 
result is obtained by the following definitioll: T(X) = CJ(y) if .X E Var(8), sip = :r; 

an d sip = y; T (.1:) = x if x E V \ Va r ( s ) . 0 

Stable tenns are not always strongly stable as shown in the following exalIlp lC' . 

Example 5.3.6 (stability and strong stability) 
Consider the (unconditional) TRS R = {f(a b) ~ c}. The terrrl f(x , x) i' stab1c~ 
because f(t , t) is irreducible for all terms t. But it is not strongly stable because 
the linearization f(x , y) unifies with the left-hand side f(a , b). 

In the context of programming, the notion of constructor is important to dis
tinguish function symbol' which are used to express data. 

Definition 5.3.7 (constructor term) 

Let (F, R) b a CTRS. A function syrnbol f E F is call ed a COrL.'itructor if root(l) f. 
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f for every conditional rewrite rule l -t r ¢= c E R. A tenn built [rolll COllstrnctors 
and variables is called a constructor term if there is no conditional rewrite' rule 
l -t r ¢= c E R such that lEV. 

Lemma 5.3.8 (syntactic criteria for stability) 
Let R be a CTRS. 

(1) Every linear absolutely irreducible tenn is stable. 
(2) Every constructor term is stable. 
(3) Every normal term is stable . 

Proof. 

Linear absolutely irreducible terms, constructor tenns , and HOrInal tenllS are al
ways strongly stable by definition. H nee they are stable by Lemma 5.3.5. 0 

Consider again Example 4.3 .10. The term f(x, x) in the conditional part of the' 
last rule of the CTRS R is absolut ly irreducible but it is not stable. Since R is 
well-directed, Lemma 5.3.8(1) shows that the non-linearity of the ternl f(x , x) is 
essential for the non-logicality of R. 

Example 5.3.9 (stability and related properties) 
Consider the CTRS 

R = { f(a , b) -t g(a) ¢= a ~ b }. 

The four terms g(a) , f(a , a) g(x) and f(a g (x)) ar strongly stable hene stable by 
Lemma 5.3 .5. The term g(a) is an example of a normal constructor tenn . incc 
f is not a constructor symbol, f(a , a) is not a constructor tenn but it is nonnal. 
The term g(x) is non-normal because it contains a variable but it is a constrnctor 
term . 

In Definition 4.5.4 we defined level-unidirectionality using. tahility. Since sta
bility depends on the rewrite relation, it seems more natural to us' level-stability 
defined below instead of stability. But it turns out that b\ 0 notions arC' equivalellt. 

Definition 5.3.10 (level-stability) 
Let R be a CTRS. A term s is called level-stable if p rt. POSF(S) whenever sa -t;'k 

t ~Rk U, for all kEN, substitutions a, terms t u, and positions p. We. ay that 
R is stable if every right-hand side t of an equation s ~ t in the conditional part 
c of a conditional rewrite rule l -t r ¢= c in R is stable. 

Lemma 5.3.11 (level-stability and stability) 
Let R be a CTRS. A term t is stable if and only if it is level-stahle. 



5.3 Stability and Strong Irreducibility 75 

Proof. 

The '¢=' direction is proved by contradiction. So let s be a levrl-stablc t()nn that 
is non-stable. By defillition there exist tenns t , 1/. alld a posi hon ]J E POSF (8) 
such that sa --+;. t ~R 'Lt. Because this rewrite sequence is finite, there is a 

maximuln level kEN satisfying sa --+;.).. t ~Rk u. This contradict ' the lC'\'cl
stability of s. The "=}" direction is aL '0 proved by contradiction using the inclusion 
Vk E N --+Rk ~ --+R· 0 

N ext we investigate relationships between strong irred uci bili ty and ot h('r prop
erties. 

Lemma 5.3.12 (strong irreducibility and related properties) 
Let R be a CTRS. 
(1) Every stable term is level-strongly irreducible. 
(2) Every absolute irreducible term is level-strongly irreducible. 
(3) Every level-strongly irreducible term is strongly irreducible. 

Proof. 

(1) We can show that level-stability implies level-strong irreducibility by an easy 
proof by contradiction. An application of Lelnrna 5.3.11 yields the desired 
result. 

(2) The proof is by contradiction. We use the inclusion Vk E N --+R
k 
~ --+R' 

(3) Straightforward . The equivalence t E NF(--+R) ¢} Vk E 1'1 t E NF( --+Rk) IS 

useful. 

o 

From statements (2) and (3) in this lemma we know that ah olute irreducibil
ity is a sufficient syntactic criteria for both strong irreducibility and level-. trong 
irreducibility. The following example show that all implications in Lemlna r: .• 3.12 
are strict . 

Example 5.3.13 (level-strong irreducibility and related properties) 
Consider the CTRS 

R={ 
a --+ b 

f(a , b) --+ c 
f(a , a) --+ c 

The term f (x x) is level-strongly stable because the condition of the last rule 
is not satisfied. However , it is neither stable nor absolute irredu ible: we have 
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f (a, a) --'tR f(a, b) --'t C and f(x, x) is unifiable with the left-hand side f(a. a) of the 
last rule . 

Example 5.3.14 (strong irreducibility and related properties) 
Consider the CTRS 

n={ 
a --'t b 

f(b) --'t c 
b --'t c 

The term f (x) is strongly irreducible because f(t) is irreducible WhelWYCl' t is an 
irreducible term . However, it is not level-irreducible because f(b) ~ NF( --'tRJ l 
notwithstanding b E N F (--'tRl) ' 

Figure 5.2 summarizes the relationships between various properties investigated 
in this section. Here we use the following abbreviations : N (normal) , SS (strongly 
stable), S (stable), LS (level-stable) AI (ab '01 u tely irred uci ble) , LSI (level-strongly 
irreducible), and SI (strongly irreducible). 

LS 

I 
constructor --_I SS --_I S 

/Iin:~ \ 
N AI --I LSI ·'--1 SI 

Figure 5.2: Relationships between properties concerned with irreducibility. 



Chapter 6 

Concluding Remarks 

vVe conclude this thesis with orne remarks . In Section 6.1 we SUITllnarizc thc rc
search contributions of the thesis. In Section 6.2 the usefulness of the logicality rc
suIts is illustrated. We show that our results cover two irnportallt classc ' of CTRSs 
considered by Avenhaus and Loria-Saenz [ALS94] and Suzuki ct ai. [SIvII95], en
suring their soundness and completene s. Nloreover , we give a solution to an OP('Il 

problem by Toyama concerning confluence of CTRSs. 

6.1 Research Contribut ions 

In order to strengthen the proof-theoretical and nlodel--theoreti al basis of 'ondi
tional term rewriting, we have ,tudied logicality of CTR s. The research contri
butions of this thesis are summarized as follows: 

• We gave a rigorous proof of the soundness and cOlnpletcness of both con
ditional equational logic and senli-equational CTR"Ss based on the syntactic 
characterization of semantic equivalence (Theorerlls 3.3.6 and 3.4.10). 

• We established a method for proving logicality, and hence soundness and 
completeness of join and oriented CTRS (Corollary 4.1.3). 

• We provided a uniform proof of known logicality resul ts based on the 'harac
terization of rewrite relations of three types of CT:RSs (Corollaries 4.2.3 and 
4.3.4) . 

• We developed new sufficient conditions for logicality of oriented syst.elns with 
weak normalization assumption (Theorem 4.3.7) and without norrnalizatioll 
assumption (Theorem 4.3.16). 

• W propo 'ed sufficient conditions for the propcrty that two diff rent type's 
of CTRSs have the same rewrite relation (Theorelns 4.4.3 4.4.5 , 4.4.9 and 
4.4.15) and have the. arne computational power (Theorems 4.4.11 and 4.4.16) 
by imposing restrictions on semi-equational CTRSs. 
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• We systematically analyzed variou cornbinatiolls of rf'lations induc('d b~· dif
ferent types of CTRSs (Theorenls 4.5.1, 4.5.2, and 4.5.6) . 

• We studied techniques to ensure sufficient conditions for logic-alit)·. 

type requirements Theol"('ln / C()rolhLr~· 
semi-equational 

JOIn 

oriented 

Rj: CR 

R s . { CR + D 
. LCR 

{ 
{ 

WN + SI 
R O : CR + S + WD 

LCR + LWN + LSI 
CR + SD + SI 

LSN + LSI 
LWN + LSI + WRI 
S + WD + WRI 

Table 6.1: Summary of logicality result .. 

~.l.2 

-1.2.3 
4.-1.3 
4.4.5 

4.3.7 
-1.3.16 

4.5.6(10) 
4.4.12 
4.4.17 

4.5.6( ) 
4 .5.6(8) 

Sufficient conditions of logicality di cus ed in this thesis is sUllllnarizccl in Ta
ble 6.l. The following abbreviations are newly introduced in Lhe tabl: LCR 
(level-confluence) WD (well-directedne s), and WRI (weak right-independence). 

6.2 Remarks on Applications 

At the end of this thesis we discuss the usefulness of the newly obtained logi
cality results . First we show that the class of CTRSs proposed by Sl1z11ki ct ai. 
in [SMI95] falls within the scope of Theorem 4.3 .16 . This class can b(~ view'eI 
as a computational model for functional logic programming languages with local 
definitions such a let-expressions and \\There-constructs. 

Theorem 6.2.1 (logicality of level-confluent CTRSs) 
Every orthogonal properly oriented right-stable CTRS is logical. 

Proof. 
According to Lemma 5.2.8, every CTRS in this class is levC'l-confluent and hence 
confluent . Right-stability implies stability and proper orientation ilnplies \\'c11-
directedness . Therefore logicality follows frorn Thcorem 4.3.16. 0 
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Suzuki elnploys the above theorClIl in his proof of the cOlllplrtclless of narrowing 
for the class of orthogonal properly oriented right-stable CTRSs (scr [Snz9 ]). 

Theorem 4.3.7, the other new sufficient condition for the logi("alit~ of ori
ented TRSs, covers the class of CTRSs studied by Avcnhaus and Loria- <"l('nz (srr 
[ALS94]). This class is useful for studying the (unique) tenninatioll beha\'iollr of 
well-moded Horn clause programs [G\i\T92]. 

Theorem 6.2.2 (logicality of confluent CTRSs) 
Let n be a semi-decreasing strongly irreducible deternlinistic oriented CTRS such 
that all conditional critical pairs of n are convergent. Then n is logical. 

Proof. 
According to Lelnma 5.2.8 every CTRS in this class is lrvcl-confluellt and br11ce 
confluent . Selni-decreasingness impli s weak nonnalization and strong I ,t nnill
iSIn implies strong irreducibility. Hence the conditions of Theorem 4.3.7 arc ful
filled. D 

The results which compare two different types of relation (TheoreIn 4.5.1 , 
Theorem 4.5.2, Theorem 4.5.6) are useful for proving the (lev 1-)confiuence of a 
CTRS from the confluence of anoth r type of CTRS. Consider the follovving OpCll 
problem by Toyama [DJK91, Problem 16]: 

nder what conditions doe confluence of a nonnal oriented TRS 
follow from confluence of the corre ponding semi-equational CTRS? 

Special case of Theorem 4.5.6 provide solutions to this probl Ill. 

Theorem 6.2.3 (preservation of confluence) 
Let n be a normal CTRS. 
(1) If n s is confluent and semi-decreasing then n° is conflucnt. 
(2) If n s is level-confluent then n° is level-confluent. 

Proof. 
As discussed in Section 5.3, normality implies both strong irrrclllcibility and stabil
ity. Because every right-hand ide of the conditional part in a conditiollal rrwritr 
rule of a normal CTRS is ground n is both right-iuclependcllt and well-directed. 
Therefore statement (1) follows from Theorem 4.5.6(3). FroIn Thcorcln 4.4.19 we 
know that n° is confluent if n s is level-confluent. The strong r result (2) follows 
from Theorem 4.5.6(4). D 

From Theoren1 4.5.2 we know that a seIni-equational CTRS is leyd-confluent 
if and only if the corresponding CTRS is level-confluellt. This result enables lIS 
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to extend the modularity of level-confluence (Theol"C'ID 5.2.10) to thE' case of selni
equational CTRSs. 

Theorem 4.5.6(10) hows that if an oriented CTRS n° is IC'\-el-C'oufluC'llt alld 
level-unidirectional then the equality +Sk = +h = +01,: holds for C'very IC'\'el kEN. 
Hence the syntactic sufficient conditions for level-confluence of oriented TRSs 
by Suzuki et al. (Theorem 5.2.8(2)) can be also applied to ensuring thC' levcl
confluence of join and semi-equational CTRSs. 
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