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0.1 Introduction

Gentzen's Hauptsatz [3] is one of the most fundamental theorems in proof
theory. Its intentional meaning is that: if a derivation of first order predicate
logic is given, then we can remove the roundabouts in the derivation. Iu
the synopsis of [3], Gentzen explained the progress to get his Hauptsatz as
follows: (1) He developed a new formal system called natural deduction,
which is close to actual mathematical reasoning. (2) In consequence of
an investigation of natural deduction, he obtained the Hauptsatz. But his
system of natural deduction is not suitable to represent the Hauptsatz in
the case of classical logic. (3) In order to represent and prove the Hauptsatz
both in the case of intuitionistic and classical logic. he developed another
formal system called sequent-calculus.

Since primarily the system of natural deduction is more close to actual
mathematical reasoning in comparison with the system of sequent-calculus.
1t stands to reason that one wants to prove H;HIIITHHI/_ in natural deduetion.
The obstacle for representing Hauptsatz in Gentzen's system of classical
natural deduction, named NK, is caused by the fact that NK contains the
axioms for the law of the excluded middle. It is difficult to represent the
roundabouts included in an axiom for the law of the excluded middle.

Prawitz resolved this problem by using his system of classical natural
deduection which is obtained from the natural deduction system of the mini-
mal logic by adding the classical absurdity rule [5](6]. In this system. round-
abouts in derivations are represented as maximum formulae. If a derivation
contains no maximum formulae. then the derivation has the subformula
property, that is, the derivation is built-up only from the notions included
in the assumptions or the conclusion of the derivation. Therefore. the rep-
resentation of Hauptsatz in natural deduction is the following normalization
theorem: In the system of classical natural deduction which is obtained from
the natural deduction system of the minimal logic by adding the classical
absurdity rule, if an arbitrary derivation is given, then we can transform it
to a normal one. i.e. a derivation which contains no maximum formulae.

There is one difficulty to prove the normalization theorem above. That
15 how to define a reduction-step which removes a maximum formula in-
troduced a classical absurdity rule. Prawitz avoided this problem. He re-
stricted the system of classical natural deduction to the fragment {& (and).

(implies), ¥ (for all) }. In such restricted system, formulae applied to
the classical absurdity rule can be restricted to atomic ones. Hence the
normalization-procedure of such system is easily defined.

But the aim of investigating the normalization theorem of natural de-
duction is to represent Hauptsatz in a more natural form, i.e. in a form as
close to actual mathematical reasoning as possible. Therefore. it occurs a
question: Is there a naturel normalization-procedure for the Prawitz's sys-
tem of classical natural deduction with full logical symbols? The answer
15 “Yes”. A natural normalization-procedure for such system was given by
the author [1], and it is explained in Chapter 1 in this dissertation. Our re-

duction used in that normalization-procedure is very simple compared with




ones in the preceding works by Seldin [7][8] or by Stalmarck [9]. The main
point of our reduction is to regard the classical absurdity rule as a struc
tural rule. More precisely, the classical absurdity rule is regarded as a set of
rules corresponding with some exchanges of right and some contractions of
right in the sequent-caleulus. By using our normalization-procedure, we can
prove the normalization theorem for intnitionistic and for classical natural
deduction simultancously.

By virtue of simplicity of our reduction. we can prove that Church-Rosser
property of our reduction holds [2]. That is explained in Chapter 2 in this
dissertation. Under the condition that the normalization theorem concern-
ing our reduction holds. Church-Rosser property is equivalent to the condi-
tion that the normal derivations obtained from one derivation by applying

our reduction-steps are identical, that is, the uniqueness of the normal forimn.

This dissertation is organized as follows: Chapter 1 is devoted to the
proof of normalization theorem. In section 1.1, we introduce our system
and some notational conventions. Our system is the classical natural de-
duction system obtained from the natural deduction system of the minimal
logic by adding the classical absurdity rule, and contains all logical symbols
including the symbol for disjunction and the one for existential quantifier. In
gection 1.2, we define our reduction which is a natural extension of Prawitz’s
reduction for intuitionistic logie. In section 1.3. we extend the notion seg-
ment defined by Prawitz to our system. In section 1.4, we prove Theorem 1.
e, the normalization theorem concerning our reduction. Our normalization
theorem is one of the so called weak normalization theorem.

Chapter 2 is devoted to prove that Church-Rosser property of our reduc-
tion holds. In section 2.1. we define the notions segment-tree and segment-
wood in order to represent transformations which consist of continuous con-
tractions along segments. Such transformations, named structural reduc-
tions. arve defined in section 2.2, where the notion substitution-sequence plays
an central role, In section 2.3, we define 1-reduction by using structural re-
duction, and state the main lemma from which we have easily Theorem 2,
1Le. Church-Rosser property of our reduction. The proof of the main lemma
18 given in section 2.4,

In appendix A. we give another proof of normalization theorem of our
systen. It is obtained by using Hauptsatz for sequent-calculus, i.e. cut-
elimination theorem. If we do not want to define natural reduction in nat-
ural deduction, the normalization theorem is innmediately obtained by such
method. In appendix B. we explain another formulation of classical natu-
ral deduction which is obtained from intuitionistic natural deduction sys-
tem by adding the Peirce’s law. In this system. we can define a simple

normalization-procedure similarly to the system in our main issue.
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Chapter 1

Our reduction and its
normalization theorem

1.1 Basic definitions and notations

1.1.1 System

[n this paper. we investigate the natural deduction Systemn for the first ordex
classical logic. Our system contains all logical symbols. that is: & (and). Vv
(or), O (implies). = (not), V (for all), and 3 (there exists). The inference
rules are the introduction and elimination rules for each logical symbol. and

the classical absurdity rule. They are shown by the following schemata.

Introduction rules
A4y

- £ k-T ) o 8| (\V ]y e ‘-_-"f,
A& Ay (el AV As (VY AV A \V52)
4] 4] F(a) F(1)
[)‘ = J_ _‘ 1) \,f"f] i | _".']
;i = (e i Sk (z)
Elimination rules
| | (4] [49)
| AL & A, (&F)) 10 A3 (& Es) MV £ = = & (VE)
[F(a)]
As B A T —A A . VeF(r) JxF(z) O
: ) B -k VE) : J
B (D E) = =&) Fa) | c (3E)

Classical absurdity rule

[=A]
if

A (L)

(V1) and (IF) are subject to the restriction of eigenvariables (3].




1.1.1.1 Regularity of eigenvariables.

[t is assumed that the eigenvariable of an application of (V1) (or (ZE))
in a derivation occurs only in the subderivation of the premiss (or minor
prewmiss respectively) of the application. If a derivation /7 is transformed to
another derivation X and X does not satisfy the regularvity of cigenvaviables
mentioned above, then we make X regular by changing some eigenvariables

in X properly.

1.1.2 Regularity of (L,.).
1.1.2.1 Definition ((_L.)-regular)

In a derivation. an assumption-formula discharged by an application of (L)
i8 (L. )-regular iff it is the major premiss of an application of (=F). A deriva-
tion is (L. )-regular iff any assumption-formula discharged by any application

of (L,) in the derivation is (L. )-regular.

1.1.2.2 Fact

Let 1T be a given derivation. If IT is not (L.)-reqular. then we can transform

it toa (L, !'-Jrlf,l.-n'm' derivation.

Proof. Let a be an occurrence of a formula = A in I which is dis-

charged by an application I of (L) and is not (L.)-regular. Then. transform
4 A .

IT by replacing « with the following subderivation: It J’h where K is
an application of (-FE). and J is an application of qﬁ]‘}i which discharges
the minor premiss of K. Moreover. discharge the major premiss of K by I.
Then. the major premiss of K is (_L.)-regular. By applying this transforma-
tion for all non (L.)-regular assumption-formulae of all applications of (L)
in 7. we get a (L.)-regular derivation.O

In the rest of this paper. we treat only (L.)-regular derivations. That is
inessential restriction, because the previous fact holds. By definition of our
reduction which will be stated in 1.2, it will easily be verified that; if 11’ is
the derivation obtained by our reduction from a (L. )-regular derivation [T,
then IT7 is also (L,)-regular.

1.1.3 Notational conventions

(1) Small Greek letters . . ... are used as syntactical variables for
formmla-ocemrrences in derivations. If e s an formula-occurrence of a for-
mula A, Form(«) denotes the formula A, We make a distinction between
inference rules and applications of inference rules in derivations, If I is an
application of an inference rule in a derivation, Inf(I') denotes the inference
rule applied at 1. For example, if I is an application of (VE) in a deriva-

tion. then Inf(/7) is the inference rule (VE). When [ is an application of an
inference rule in a derivation, we call I a D-inference [3] (in [10]).




(2) Let I be a derivation. FO(IT) denotes the set of all formmla-
oceurrences in [I. Notations oa(Il). OA(ID). end(IT). END(IT), li(IT). and
LI(IT) are defined by the following:

oa(ll) = {w € FO(I) | v 18 an open asswnption of 17}
OQA(Il) = {Form(a) | « € oa(ll)}
end(IT) is the end formula-oceurrence of I7.
END(Il) = Form(end(II))
Li(IT) is the last D-inference of I7.
Namely. [2(17) is the D-inference whose conclusion is end( 7).

LIUIT) = Inf(li(IT))

Li(1T) and LI(IT) are defined in the case that the length of I7 is greater than
I, that is, there is at least one D-inference in I7. For a formula-oceurrence
o in II, sbd(«v) denotes the subderivation of IT satisfying end(sbd(a)) = .
Let I be an D-inference in II. Notations pm(I). el(I), and de(I) ave defined
by the following:

pm(l) = {ev € FO(IT) | ex is a premiss of T}
cl(1) 18 the conelusion of I.
de(l) = {o € FO(IT) | v is discharged by I'}

_\1Ul'l-u\rr-t', i the case 1.]1:1! fufl_f] 15 Al I'Ijlllj]lh!i.llli Itllr', notations g f_u,
MJ(I), and mn(I) are defined by the following:

myj(I) is the major premiss of I.
MJ(I)= Form(mj(I))
mn(l) ={wo € FO(I) | e is a minor premiss of I}

(3) Let II, a. and t be a derivation. a free variable, and a term respec-
tively. If the figure obtained by substituting ¢ for all occurrences a in I7 is
a derivation, we denote the derivation by IT(t/a). Let A be a formula. The

: [A] . : 8 3 ; . . ol 1 [k
notation ,‘}}J 15 used in the following sitnation. that is. [A] in [A] denotes
a subset, say O. of ea(Il') satisfying that Form(c) = A holds for all & in
I1. Let ' be a derivation satisfying END(X) = A. If the figure obtained
by substituting X for all elements of the subset of oa(IT) denoted by [A] in

5
[A] is a derivation, we denote the derivation by [A]. When a derivation I7
I i

Iy (I II9)

or

I, my I,
de i

if the cardinality of pm(li(Il)) is 1. 2. or 3 respectively. The

is denoted by . it means that I7 equals to

I, 11, Il
1

notation is used similarly.

Iy '_”I]'-
A

(4) Z. NV, and N'* denote the set of all integers. the set of all non-
negative integers, and the set of all positive integers respectively. For a
finite set S, Card(S) denotes the cardinality of S§. We use U and ] to

denote disjoint suins.
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1.2 Reduction

[n this section. we define our reduction and state theorems about it. The
aim of the reduction is to remove maxinnun formmlae in a derivation and to
obtain a normal derivation. Maximum formmulae and normal derivations are

defined as follows.

1.2.1 Definition (Maximum formula)

Let II be a derivation. A formula-oceurrence pin I7 is a maximum formula
in II iff it satisfies the following conditions.

(1) p is the conclusion of an application of an introduction rule. (VE).
(3E), or (L,).

(2) g is the major premiss of an application of an elimination rule.

1.2.2  Definition (Normal derivation)

A derivation /T is normal iff it contains no maximum formula.

1.2.3 Definition (Contraction)

o define our reduction, first we define the contraction of II where IT is a
derivation satisfying that my(li(IT)) is a maximum formula. Let I be the D-
inference in I7 satisfying cl(I) = myj(li(IT)). The contraction of IT is defined
according to Inf(I). In the case that Inf(I) # (L.), the contraction is the
same with Prawitz’s reduction for the intuitionistic logic [5][6].

1.2.3.1 &j-contraction (2 = 1, or 2)

I, I I
If T = A& A K where Inf(I) = (&I) and Inf(K) = (&E;); then IT
A
contracts to the derivation 11, .

1.2.3.2 V,-contraction (7 =1, or 2)

H'.‘. i [":IIJ ["1:.’|
If I = A,V A, I, I # where Inf(I) = (VI,). Inf(K) = (VE).

x

A,l in (4] denotes de(K) N FO(II,) for each p € {1.2}: then II contracts
! I

11,
Iy
to the derivation [4;] .
IT;




1.2.3.3 D-contraction

4]
£l = i "'I;I_II”H i o where Inf(I) = (D I). Inf(K) = (D E). and [A]
B :
(4] 7
i denotes de(I): then IT contracts to the derivation 1] ;
Il -
”ij
1.2.3.4 =contraction
4]
It 1T = g I where Inf(l) = (=1). Inf(K) = (=E). and [A] in [A]
- A i, . ' ‘ i Il
B K
I,
denotes de(1): then IT contracts to the derivation (4] .
[y

1.2.3.5 VY-contraction
I /

If I =VaF(x) _ where Inf(I) = (YI). Inf(K) = (VE).and the eigenvari-
- K
F(t)

able of I is a; then IT contracts to the derivation IT,(t/a).

1.2.3.6 F-contraction
{fu ] []“irs}]

IfII =32F(x) I, whereInf(I)=(3I).Inf(K)=(3E), END(Ily) =

—— bt
F(t). and [F(a)] in “}E,”}] denotes de( K): then IT contracts to the derivation

|
_‘T‘I”_, ORI M 11 ¢ | g o s ;
!!"”" whoere [1"'1!]‘1 1 11 (.'- denotes the subset of m:t““f}#r:ﬁl which
HErh"uI 1t/ a)
naturally corresponds with [F(a)] in [F(a)] :
1

1.2.3.7 VE-contraction

-”|| 1!1’| h"_l
£ 1l = M (I3 II;) _ where Inf(I) = (VE) and Inf(K)

: \
18 an elimination rule; then 7 contracts to the derivation
”| 1”‘; ”|i . ”'_' ([ ”1]
‘!‘!” C 1] E' ] = ‘2
C '

where for each p € {1.2}. Inf(K,) = Inf(K) and de(K,) is defined natu-
rally according to de(K): and where Inf(I') = (VE) and de(I') is defined

naturally according to de([).




1.2.3.8 dJFE-contraction

Iy I I
& St (8 M (11, II3) where Inf(l) = (FE) aud Inf(K) is an
7 K
¢
”] (H-__f J”,;,I =
elimination rule; then I7 contracts to the derivation Jj, oy K
= It
(
where Inf(K') = Inf(K) and de(K') is defined naturally according to
de(K): and where Inf(I') = (3F) and de(1') is defined naturally according
to de(l).

1.2.3.9 1, .-contraction

[~ M]
I,I'T ”. £ .”ll f

M (I IIs) where Inf(I) = (L.). Inf(K) is an elimina-

K
tion rule. and [=M] in [~M] denotes de(I). Since IT satisfies the regulavity

i)
of (L,). any element of de(I) is the major premiss of an application of (=£).

Let Jy. .... J, be all the applications of (=E) whose major premiss is dis-
charged by I. if they exists. Let IT be the derivation obtained from Iy by

the transformation represented by the following diagram:
M (I, II)

= 2
n ,.

M M

K
i P "

where Inf(K;) = Inf(K), ;’u.f'(‘:’:,] = (= F). and de(K)) is defined naturally
according to de(K). These replacements are done simultaneously for all

. Tl EE ; :
p € {l.....n}. We denote by [=C] in ’”,l the set {my(J;)..... (I, ) )
i)
i ] |
['hen II contracts to [T} ’ where Inf(I') = (L) and de(I') is [-C] in
v (r
[-C]
oy

Example of | -contraction

|
2 A
(AV-4) AV-A 1 3
2= ! A B
2 ".’1 ""( .‘1 & B) A \\Ih 1”
—(AVA) AV —A BE O - 4
. :L 9 B 2 ﬁi
AV-A~ —AV B ~AV B

~AV-B ‘

contracts to
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i 3
4 B
(4 & B) A& B
1 et |
A - S -4 6 5
9 AV=4dA —AV-B -AvV-B | A B
—(=AVDB) AV =B ~(A&B) ALB
L | H S
'u‘ —I'.,f b
2 AvV=-A4 AV -B
=(—-AV-B) -AV-B
A o
—-AVaB ©

In the figures above. the formula-occurrences indexed by a natural mumnber
are discharged by the D-inference indexed by the same munber.

1.2.4 Immediate reducibility and Reduction sequence

We say that a derivation I is immediately reduced to a derivation 17" iff IT’
is the derivation obtained from IT by replacing a subderivation. say I'. of II
]"\’ the derivation to which I' contracts. A sequence I, H-_., v+ 18 called a
reduction sequence iff for all ¢, I7; is immediately reduced to I, 4.

1.3 Segment

1.3.1 Segment

We extend the definition of segment introduced by Prawitz [5] in order to
treat (L.)-contraction. Let II be a derivation.

1.3.1.1 Definition(ss;(«): segment successor of )

A partial function on FO(IT) denoted by ssp is defined as follows. Let o
be a formula-oceurrence in 7.

(1) If v is a minor premiss of an application, say I, of (VE) or (3F); then
85 (ev) 18 the conclusion of [I.

(2) If ex is the minor premiss of an application of (= E) whose major premiss
is discharged by an application, say I. of (L.): then ssp(e) is the
conclusion of 1.

(3) Otherwise. ssy(a) is undefined.

Clearly it holds that Form(ssy(a)) = Formie) if ssp(cx) is defined.

1.3.1.2 Definition (sp;(«): segment predecessor of «)

Let v be a formula-occurrence in IT. spy; («) is the subset of FO(IT) defined
by
spy (@) = {8 € FOUT) | ss(B) = ).

11




1.3.1.3 Definition (segment)

A finite sequence of formula-occurrences ... .ov, in I is a segment in 11

iff it satisfies the following conditions (1). (2). and (3).
(1) sppylom) = ¢
(2) For all 4 < n. ssjle) = ovjgy
(3) ssy(ey,) 1s undefined.

Our definition of segment is equivalent with that introduced in [1].

1.3.1.4 Definition (sdg(o, /1) segment distance from o to [7)

sy 18 a function from FO(IT) x FO(IT) to 2U {>x} defined as follows. Let
rv and /4 be formula-occurrences in I7.

(1) If there exists a segment 8y, ... 0, in I satisfying {«, 3} C {8;..... on ts
then sdp (. B) =y — @ where a =6, and g =14,.
(2) Otherwise. sdy (e, ) = .
Note that sdp is well-defined. Because if two segments dj..... O, AN
Tisr-s Tm include the same formula-occurrence, say 8, = 7,, then the se-
quences dy. .. .. 0, and 7,..... 7y, are identical.

1.4 Normalization theorem

1.4.1 Notations

Let e be a maximum formula in a dervivation. By ¢(e) we denote the number
of the logical symbols occwrring in v, By r(a) we denote the maximum
length of the segments whose last formula is @. By l(«) we denote the
munber of inferences below o in the derivation,

1.4.2 Definition (degree of a maximum formula)

Let o be a maximum formula in a derivation. The degree of o, denoted by

d(ex), 18 the ordered pair defined as follows:
dev) = (glev).r(er))

Degrees of maximum formulae are compared by lexicographical order.

1.4.3 Notations
Let IT be a derivation. Notations M (IT) and E(IT) are defined as follows:

(0,0}, if IT is normal,
max{d(cr) | ev is a maximum formula in IT}. otherwise.

M(IT) = {

E(IT) = {ev : a maximum formula in I7 | d(e) = M(IT)}.




1.4.4 Definition (degree of a derivation)

Let IT be a derivation. The degree of I, denoted by d(IT), is the ordered
triple defined as follows:

d(IT) = (M(II). Card(E(IT)). > lla))
(21 f'f”r

where in the case of E(IT) is empty. by 3> I{e) we mean (). Degrees of
er(Inr)
derivations are compared by lexicographical order.

1.4.5 Definition (side-set formula)

We call a formula-occurrence v a side-set formula of a formula-occurrence
A. if e is one of the minor premisses of the D-inference whose major premiss

1s 7

1.4.6 Lemma

Let IT be a grven derivation. If I s not normal, we can find in it a formula-

oceurrence «v which satisfies the following conditions.
(1) x € E(II).

(2) If 3 € E(IT); and if & 1s a seqgment in II. whose last formula is c;
then 3 s not above the first formula of S.

(3) If # € E(IT): and if § is a segment in II. whose last formula is [3;
then the first formula of § s not above nor equal to any of the side-set

fr”“f” Hh” fif (¥,

Proof. Construct a sequence vy, oo, ... of maximum formulae in II by
the following manner. Take o from the maxinnun formulae satisfying the
condition (1) and (2). If oy also satisfies the condition (3). terminate the
sequence at it. If not. take o from the maximum formulae destroying the
condition (3) for oy and satisfying the condition (1) and (2). By iterating
this construction, we obtain the sequence vy, oo, .. .. It holds that if m < n
then ev,, # av,. by induction on n — m. Therefore. the sequence ey. o, ...
is finite, Then, the last formula of the sequence satisfies all the conditions
for . O

1.4.7 Fact

Let o be a formula-occurvence in a derwation IT. If o sabisfies the conditions
of lemma 1.4.6. then it also satisfies the following condition.

(3') If 3 € E(Il). then (3 is not above nor equal to any of the side-set
formulae of ox.

Proof. Clear.0]




1.4.8 Theorem 1 (Normalization theorem)

For every dervivation II, we can construct a finite reduction sequence from

Il to a norvmal derivation.

Proof. We prove this theorem by induction on the degree of I, It 11
is not normal, we can find in 7 a formula-occurrence, say . which is one of
the maxinmnmn formulae satisfying the conditions for o« of lemma 1.4.6. Let
J be the D-inference satisfying mj(J) = p. and let I' = sbd(cl(J)). Let I’
be the derivation obtained from 7 1-)' 1'!‘]:!;1!.'ilju_ the subderivation I’ !}_\' the
derivation to which I' contracts. Then, the degree of I7’. is lower than that
of 1. In the following we show this fact according to Inf(I) where I is the

D-inference '\'““'“f.\"i“ﬁl el(I) = Ii.

Case 1. If Inf(I) = (&[I) or (VI): Because u satisfies the condition (1) for
v of lemma 1.4.6, it holds that

(M(IT). Card(E(IT))) > (M(IT"). Card(E(IT")))
This leads d(IT) > d(II").

Case 2. If Inf(I) = (VI;) or (3I) (i = 1 or 2): Because pu satisfies the
conditions (1) and (2) for a of lemma 1.4.6. it holds that

(M), Card(B(IT))) > (M(IT'). Card(E(IT")))
This leads d(IT) > d(IT').

Case 3. If Inf(I) = (D I) or (=1): Because p satisfies the conditions (1)
and (37) for a of lemma 1.4.6 and fact 1.4.7. it holds that

(M), Card(E(IT))) > (M| ). Card(E(IT')))
This leads d(IT1) > d(IT").

Case 4. If Inf(I) = (VE). (FE). or (L.): Let 8; be the formula-occurrence
in I which is the conclusion of J. Let &y be the last formula of a

seginent in [I which includes 6 as its member.

Case 4-1. If oy is not a maxinnun formula in I7: Because p satisfies the
conditions (1) and (37) for a of lemma 1.4.6 and fact 1.4.7. it holds
that

(M(IT). Card(E(I1))) > (M(IT"), Card(E(IT")))

This leads d(IT) > d(I1').

Case 4-2. If 4y is a maximum formula in I7: It holds that d(dn) < M (IT).

sice:

(a) If Inf(J) = (VE) or (IE), then there exists a segment in 1T whose
first formula is above or equal to one of the side-set formulae of y
and whose last formula is 8g. This leads d(dg) < M (). because
i satisfies the condition (3) for ev of lenuna 1.4.6.

14




(b) Otherwise, it holds that g(d;) < g(p). This leads d(dg) < d(p) =
M(II).

Let &y be the maximum formula in 7' which corresponds with dg. Then
it holds that d(dg) < M(II). since g(dg) = g(dp) and r(dy) < r(dgy) + 1.

Case 4-2-1. If n’ll_ﬁ.;;} < M(IT): Because p satisfies the conditions (1) and

(37) for ev of lemma 1.4.6 and fact 1.4.7. it holds that
(M (). Card(E(IT))) > (M| Iy, Card(E(IT") ))
This leads d(IT) > d(IT").

Case 4-2-2 If -’!'fr"-nr = M(II): Foreach o in E(II). we define a maxinmin
formula +" in 11" as follows:
(a) If ¥ is p, then ¥ is 8.

(b) Otherwise, ¢ is the maximum formula in 1" which corresponds
with ¢. (Since fi satisfies the condition (3') for o of fact 1.4.7.

exactly one formula-occurrence in II' corresponds with ¢.)
For d(dy) = M (IT). it holds that E| T = ir." e E(II) } Therefore.
(i) (M(IT). Card(E(II))) = (M(IT"). Card( E(IT"))).

Next, we compare [(¢') with [(+). If ¢ is p. then I(y) > l(¢)'): since
1 is above oy, Otherwise, () > L(4)"); since u satisfies the condition
(37) for « of fact 1.4.7. Therefore.

(11) Z l(ev) > Z Ilev).

acE(I) ac (I

From (i) and (ii), we obtain that d(IT) > d(II'). O




Chapter 2

Church-Rosser property of
our reduction

2.1 Segment-tree and segment-wood

2.1.1 Segment-tree

To prove theorem 2 in 2.3. i.e. the Church-Rosser property of our reduc-
tion. we will introduce in the next section an extended reduction (1.e. the
structural reduction) which consists of VE-. 3E-, or | ~contractions :lgl[llir'il
continually for a free of formula-occurrences in a derivation. Next we give
the ]Jl'r.'l'i!-il' definition for the notion free mentioned above.

2.1.1.1 Notation (FO"(IT))
We denote the set FO(IT') x {0.1} by FO"(II).

2.1.1.2 Definition (sgt : segment-tree)

Let v be a formula-occurrence in I7. and T a subset of FO™(IT). The relation
“T' 15 a seqment-tree at cv in I " holds iff one of the following conditions
(a). (b). or (¢) holds. It is defined by induction on the number of formula-

occurrences above o,
(a) T ={< o,0 >}

(b) sppla)={B1.....] I} # ¢ where [3; # 3; if i # j: and
I'={< a. 0>} Ui uEh T, where T), is a segment-tree at /3, in IT for
cach p € {1..... 7n}.

(¢) « is the conclusion of an application of (L.): spy(a) = ¢ and
Ty, (S <] St

We use the notation sgt for the abbreviation of segment-tree.




2.1.1.3 Facts

Let 7' be a sgt at v in IT. The following facts (1).....(8) are easily verified.
(1) € .0 > T
(2) Eractly one of the conditions (a). (b). or (¢) in definition 2.1.1.2 holds.
(3) < f.1 >l Hul,uhf,» < 1.0=€ T.
(4) < 3.0 > T implies sdy(3.0) € NV,

(5) .-'j < . 0=>eT. .wf”i.l'_ v) E NV, and .m"”f’;, (v) € NY: then < v.[) >€

Ty

(6) IfU isasgt at @ in I and TNU £ ¢: then < v. 0 SE U or < (1.0 >€
T

(7) If I is a subderivation of I satisfying o« € FO(I'). then T is a sgt at
o an I

(8] Ty ey T, are sgt’s at a formula-occurrence v in I, then \J, <<, T}

is also a .-u_r)f at o in ”

2.1.1.4 Some definitions

If T is a sgt at o« in IT, then the construction of T is uniquely determined.
Namely, first by fact (2) of 2.1.1.3 we can determine which condition (a).
(b). or (¢) holds in the definition 2.1.1.2; and second by fact (6) of 2.1.1.3.
in the case of (b), we can determine 7),'s uniquely except for their order.

Let T be a sgt at o in IT. We define two subsets of FO(IT) denoted by
top(T) and nf(T'). and also define a natural number denoted by len(T): by
induction on the construction of 7. In the following definitions of fop(T).
ulfl'.-"]. and len(T): (a). (b). and (¢) means 1'1'5[:('['!1\"'1}’ (a). (b). and (¢) in
the Definition 2.1.1.2.

Definition (fop(T'): tops of T')
Case (a): top(T) = {a}
Case (b): top(T) = U <<, top(T})

Case (¢): top(T) = ¢

Definition (nf(7'): negation-friends of T')
Case (a): nf(T)=¢
Case (b): Let I be the D-inference satisfying el(I) = .

nf (T) = Ul__:!’_ - Hf{‘f}.ﬂ if Inf(I)=(VE) or (3F)
Wikd) = de(I) U U, <<, 0f(T}) it InF )= (i)

Case (c¢): of(T)=¢




Definition (len(T'): length of T')
Case (a): len(T) =1
Case (b): len(T) = 1 + max <<, len(T),)

Case (c): len(T') =2

2.1.2 Segment-wood

We will introduce a notion segment-wood. This is used for the inductive
definition of the continual reduction for a sgt at a maximum formula in a
derivation.

2.1.2.1 Definition (connectable formula-occurrence)

A formula-occurrence o in IT is connectable in IT iff it satisfies one of the

following conditions (1) or (2).
(1) v = end(Il)
(2) There exists a D-inference I in IT; such that Inf(I) = (=FE). mn(l) =
{av}, and my(I) € oa(IT).
2.1.2.2 Definition (sgw: segment-wood)

Let W obe a subset of FO™(IT). W is a segment-wood in [7 iff it satishies one
of the following conditions (a) or (b).

(a) W =0

(b) There exists mutually distinet formula-occurrences oy, ..., vy, in 11
and subsets T7..... T, of FO™(IT) such that:
(bl) for all p.g € {1..... nt. Form(ey,) = Form(ay):
(b2) forall p € {1,..., n}. cy, is connectable in IT. and T}, is a sgt at

(xy in II;
and (b3) W =U<,<, T)-

We use the notation sgw for the abbreviation of segment-wood.

2.1.2.3 Definition (cmp(W): component of W)

For a sgw W in I, cip(W) is the finite set of formulae defined by
emp(W) = { Form(a) | There exists & € {0.1} such that < a.k >€ W}

2.1.2.4 Definition (1t(W): roots of W)

For a sgw W in IT. rt(W) is the subset of FO(IT) defined by

rt(W) ={w € FO(II) |< .0 >€ W and « is connectable in 7 }
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2.1.2.5 Facts

Let W obe a sgw in [I. The following facts (1).....(6) are casily verified by
using the facts 2.1.1.3.

(1)
0. if W=¢,

L. otherwise.

Card(emp(W)) = {

(2) If emp(W) = {A}, and if I is an application of (V1) or (3E) in IT:
then the eigenvariable of I does not occur in A.

(3) Let o be a connectable formula-occurrence in I and T' a sgt at 3 in

I. Then, < .0 >€ T implies v = /3.

(4) If W # ¢: then the formula-occurrences ... .., and the subsets
Ty.....T, of FO™(I) in (b) of definition 2.1.2.2 are uniquely deter-
mined except for their order.

(5) LetWy, ... . W, besgw’s in IT satisfying that Card(UJ,<,<, emp(W,)) <
1. Then. |- H<h W), is a sqw in IT and emp(Uy<p<n W) = Ur<pen cnp(W))

(G) If cv 15 a connectable formula-occurrence in I, and if I' is a subderiva-
tion of II satisfying oo € FO(I'); then o is connectable in T.

2.1.2.6 Definition (W)

Let W be a sgw in [T and I' a subderivation of IT. W[, is the subset of
FO™(IT) defined by W (=W n FO™(I').

2.1.2.7 Fact

Let T be a sqt at v in IT where v is a connectable formula-occurrence in I1
(so. T 15 o .HIF,IH'J, and let I' be a subderivation nf II. Then. 7"—: 1S a Ssqiw in
I' and emp(T [ ) C cmp(T).

Proof. We prove this fact by induction on the construction of T.
Case 1. If « € FO(I'): Using fact (7) of 2.1.1.3 and fact (6) of 2.1.2.5. we
have T'[p(ie. T) is a sgw in I' and emp(T'[p) = emp(T).

Case 2. If v ¢ FO(I'):

Case 2-1. If 7 C {< &,0 >. < o, 1 >}: It holds that T[p= ¢.

Case 2-2. If T' = {< .0 > }UlJ;- p<n Ip where spy(a) = {fi,..../ 1.} # ¢.
f; # B if i # j, and T), is a sgt at 3, in 11 for all p € {1,....n}: Suppose

shd(a) = Ho_ (L II2)

Case 2-2-1. ]i"lfm‘ all z € {0,1.2}, end(I") ¢ FO(II,): Tt holds that
'll‘.[f — ‘_'r]-

Case 2-2-2. If not: Suppose end(I') € FO(II;). and let P = {p €
sl nt | f, € FO(I;)}. Then. T[p= UI}'__;,';’}.[; holds. By fact (7) of
2.1.1.3 and fact (6) of 2.1.2.5. and by induction hypothesis: we have for all
p€ P.T[pisasgwin I" and emp(T,[r) C emp(T,)(= emp(T)). Therefore,

19




by fact (5) of 2.1.2.5. we have T'[; is a sgw in I' and emp(T[ ;) C emp(T).
[
2.1.2.8 Fact

Let Wobe a sqw in IT and I' a subderivation of II. Then, W[ is a squw in
I" and emp(W [p) C emp(W),

Proof. By fact 2.1,2.7 and (5) of fact 2.1.2.5.

2.1.2.9 Some definitions

Let W be a sgw in IT. We define three subsets of FO(IT) denoted by top(W),
on(W), and nf(W). In the following definitions of top(W). on(W). and
nf(W): (a) and (b) means respectively (a) and (b) in the definition 2.1.2.2.

Definition (fop(W) : tops of W)
Case (a): J'u‘,rr[”'| = b

Case (b): top(W) = ;- f:;/:l‘f;,j

P<y
Definition (on(W): open negation of W)
Case (a): on(W) = ¢

Case (b): For any 7 € FO(IT). # € on(W) is equivalent. to the following
condition. That is, there exists « € (W) \ {end(II)} such that
= mj(I) where I is the D-inference satisfying mn(I) = {a}.

Definition (nf(W): negation-friends of W)
Case (a): nf(W)=¢

Case (b): nf(W) = on(W) U . p<n W (T))

2.2 Structural reduction

[ this section, we define the structural reduction. It is applied for a sgt T
at a maximum formula in a derivation where len(7') > 1. The structural
reduction is an extension of VE-, 3F-, and L.-contractions in the follow-
ing meaning. One application of V-, JE-, or L.-contraction removes a
maximum formula g in a devivation IT up to the elements of sp (). The
structural reduction for a sgt 7' at a maximum formula g in a derivation
where len(T') > 1 removes  up to the elements of top(T'). In order to define
the structural reduction, we introduce a method to substitute a derivation
for a sgw in a derivation.
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2.2.1 Substitution-sequence
2.2.1.1 Definition (substitution-sequence)

Let IT and @ be derivations and W a sgw in II. We call the sequence
< II,W.0 > a substitution-sequence iff it satisfies the following conditions
(a), (b), and (¢).

(a) Any eigenvariable occurring in one of the derivations I and © does

not ocewr in the other.
(b) LI(@) is an elimination rule. and my(Li(@)) € oa(E).

(¢) emp(W) C{MJ(L(E))}

2.2.1.2 Definition (Pg, EL, €2, F¥, FP)

Let S be a substitution-sequence < II.W.,0© >, By the following clauses
from Case 0 to Case 2. we define a derivation denoted ]-.\' Pe¢: two sub-
sets of FO(Pg) denoted by C‘l- and L“f: and two injection from FO(IT) to
FO(Pg) denoted by F& and F¥: where they satisfy the following condi-

_ MI(L(@)) (@) 6)
tions (a). (b), (c), and (d). Suppose @ = END(O} —. and let
Q= Card(mn(li(@))).
(&)
i END(®), if < end(IT).0 > W,
END(Pg) = e i )
END(Ps) { END(IT),  otherwise.

(b) If @ > 1. then for all & € £L it holds that sbd(«) is identical with ©:
otherwise, £ = ¢. If Q = 2. then for all 7 € £2 it holds that sbd(J3)

is identical with @s: otherwise. £2 = .

(END(@)). if v € on(W).

(¢) Forall o« € oa(Il). Form(FL () = ¢ .
Form/(e). otherwise.

(d) ea(Pg) = {fi () | x € oa(Il)} U s (1.2} 1) oalshd(c))

~')

Pg. £, €2, FL, and F¥ ave defined by induction on the length of I7.

Case 0. If W = o:
Pe = II.

— s
=L —4ir )]

7

el
Co

e

FU and FP are the identity mapping on FO(II).
s Pl

Case 1. If W # ¢ and the length of IT is 1:

p_\ ES (‘)
;:‘11 — ‘-_“:: - ;",_ il (&) . [].
(‘1\[‘ = {l’ H.l‘”(‘)] J} ;[["1 L*‘-: = (- \I. (‘) == 1‘
é.‘_l = : end (@) :l} and 2'.1;":. = {”“f’[(‘)g}}_ O =2,

.)I




.)["i (end(Il)) = mj(li(Pg)).
.F.{J(rmﬂf}r‘]] end(Pe).
Case 2. If W # ¢ and the length of I is greater than 1;
“ln [“'| J”_'] | q I Ti ! . .
- . Let I, ¢ ¢ substitunon-sequencoe
END(IT) R =k
defined by S, =< II,. W[y .0 > for each r € {0,1, 2}.

Suppose I =

Case 2-1, If < end(11),0 >¢ W:
Case 2-1-1. If end(ITy) & on(W):

Ps

" (Pg, IP-‘., )
P‘, == - B

END(T)  ©
where Inf(K) = LI(Il) and

de(K) = U {fi () |ex € de(li(IT)) N FOUIL,)}.

For all I € {1,2}.&¢ = U Es. .

UE 2

FU(end(I1)) = FP(end(IT)) = end(Ps).
For all » € {0,1,2}. and for all @« € FO(II,):
.,-ri lev) = }..irin'_l and .}L“{Jfrrl = .'Flhini.
Case 2-1-2. If end(Hy) € on(W):

pg = 2(END©) P,

K

where Inf(K) = (= F).

For all I € {1,2}, €4 = &5 .

Fllend(IT)) = FP(end(I)) = end(Ps).

Fllend(Iy)) = FL(end(11y)) = mj(K).

For all a € 1".(.){1’)‘” i.}ri (cx) :_')L"il[ri] and _'/C‘_’:i[rtil = }_,{:[r}'l_
Case 2-2. If < end(11).0 > W
Case 2-2-1. If end(IT) & top(W ):

Pg (Pg Ps.)
P = [} el | § -
® END©)
where Inf(K) = LI(Il) and
delK) = U {.'Fi-l (ev) | v € de(le(IT)) N FO(IT,)}.

D<r<2
Forall 1€ {1,2}.£6= |J &.
N<p<2
Fllend(IT)) = FP(end(I1)) = end(Ps).
For all r € {0.1.2}. and for all o« € FO(I1,);
Flla)= fif () and FP (o) = fﬂf: (cv).
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Case 2-2-2. If end(Il) € top(W ):

Ps, (Ps, Ps,) %
Pg = END(IT) (O 6y)

END(®)
where Inf(K) = LI{IT).

de(K) = U {fif'lrr} [ ev € de(li(II)) N FO(II,.)}.

< p<?

Inf(l) = LI(@). and de(I) is identical with de(li(@)) as the subset of
U<y FO(O,).

Ee=E& = ¢ if @ = 0.
E¢ = mn(I)UUp<,- El and €2 = ¢. 0 =1,
For all 1 € {1.2}.&% = {m} UUpe, <2 E . if Q = 2.

where, in the case of Q = 2. oy and a9 are formula-occurrences of Py

satisfying that mn(l) = {ay, s} and o) stands on the left hand of ws.

}'i (end(II)) = my(I). _';Ilir’{r nd(IT)) = end(Pg).
For all » € {0.1,2}. and for all @« € FO(II,);
Fé(a) = .'F.f,l_#n! and F¥(a) = _'Fi:!m_

2.2.2 Structural reduction
2.2.2.1 Definition (structural reduction)

Let [T be a derivation satisfying that my(L(IT)) 18 a maximun formula in
II. and let T be a sgt at mg(l(I)) in II satisfying len(T) > 2. Then.
the structural rveduction of I with 7" is the transformation of IT to the
derivation Ps where the substitution-sequence S is defined by the following.
Suppose I = ”“!_‘,‘i.l:,i:: 1 I”j J K . Let @ be a derivation defined by @ =
END(Ily) (I, IIs)
END(IT)
cal with de(K) as a subset of FO(II,) U FO(II;). Then. the substitution-
sequence S is defined by § =< II.T.0@ >. We call this substitution-

K' where Inf(K') = Inf(K), and de(K') is identi-

sequence the accompanying substitution-sequence of the structural reduction

of IT with T.

2.2.2.2 Notation

17 25 I denotes the fact that the derivation II' is obtained by the struc-

tural reduction of I with T

2.2.2.83 Facts

We have the following facts (1) and (2) by definition.
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(1) Let ev be a formula-occurrence in a derwvation II satisfying that o is
the conclusion of an application of (VE), (E'), or (L.). Then, there

exests exactly one sgt T al oo an IT such that len(T) = 2.

(2) Let IT be a derwation satisfying that mj(U(IT)) is a mazimum formula
and is the conclusion of an application of (VE), (E), or (L.). Sup-

£ ST e
pose IT contracts to II'. Then. it holds that 11 o " where T is the

sgt at mj (L)) in IT satisfying len(T) = 2.

n - . . e SH(T) ;
At the end of this section, we will state the fact that; it I — I1" lholds.
then there exists a reduction sequence from IT to II' consisting of VE-, 3E-.

and L. -contractions (for subderivations).

2.2.2.4 Notation

For a derivation [T, we denote the set of all sgw’s in [T by SGW (I ).

2.2.3 Mappings

_ SR(T) _ _
When I + IT" holds, we often need to use the naetural mappings from

SGW(II) to SGW(II') and from oa(Il) to oa(Il'). In order to represent
such mappings. we define the mappings CSy. 0S5, CS%. and 0S8t for a
substitution-sequence S.

2.2.3.1 Definition (CSy, 0S¢, CS%, 08%)

Let S be a substitution-sequence < II.W. @ >. For U € SGW (II) satisfying
UNW = ¢, ("“)'IL{E'I is the subset of FO™(Pg) defined by

CSL(U) = {< FP(0).k >

< 0.k >€ U)

For v € oa(IT)\on(W). ().H'L{n? is the subset of oa(Pg) defined by Uﬁ'lLlu ) =
[Fela)). For Ve SGW(O), ('.ql':-! V') is the subset of FO"(Ps) defined by

Uteq1.2) Ua, £ {<in(0). k>
U{< FS(0).k >|< 0.k >€ W}, if < end(@),0 >V,

< .k >€ ]-‘[.t-r,}

CS%(V) =

Uieqr.2) Uneet {< ia(0). k >|< 0.k >€ V[g,}. otherwise,
where for each [ € {1.2} and for each X € €%, 4y is the canonical bijection
from FO(6;) (C FO(®)) to FO(shd()\)) (C FO(Ps)). For 3 € oa(@) \
g (L(@))}. Uh’j“:-t_.-’i'} is the subset of oa(Psg) defined by

5 U‘.. “'I{.’.\{j)‘}}. ifa‘l - I"f)[("}_l\l.
)Sa(f) = ) *
O35 =\ Usesa {in(8)),  if B € FO(O2),

o

where 2y i1s defined as above.




2.2.3.2 Facts
Let S. U. ev. V. and /3 be given as above. Then. we have the following facts

(1).....(4) by definition.

(1) ”“, c ()HL{HJ. then Formic!) = Formla). If 3" € 0S%(/3). then

Form/(/4") = Form(/1).

na(Pe) = u ”.‘!'i,-l'rtll: U U.S'.':i'.f}.l Ll -:}_i I".I'[
oe A

el =conill
where A = oalH)\ on(W) anid B = oal@)\ {f:fjlf'xn'(-)_||:-.
(3) CSe(U) and ( ‘\‘: (V) are sqw’s in Pg. Morecover, the following facts

hold
emp(CS(U)) = emp(U).

on(CSs(U)) = |J 0Ss(0).
feanil’™)

cmpi (",‘r'lil V)) C cmpl V).

U 0S%(6) U U IFE)), if < end(©).0 > V.,

O=onl ) e onl W

U U.";i (¢). otherunse.

Heon( )

onl f’."a"'.:l‘.‘u =

< end(Ps).0 > CS(U) iff < end(l).0>€ U.

< end(Pg).0 >€ CS%(V) iff (-:'_' end(©).0 >EV and < end(I1),0 > W).

2.2.3.3 Definition (CSyp, OSpyp)

Let IT'" be the derivation obtained from a derivation IT by the structural
. ; R SR(T) ., . Iy (I IIs)
reduction of II with T, i.e. I — II'. Suppose [T = <N — , and

END/(IT)
let S be the accompanying substitution-sequence of the structural reduction
of II with T'. For W € SGW(Il), CSpy+(W) is the subset of FO™(IT")
defined by

CSur(W)= CSL(W [n,)U CSZ(W \ W[y,

For o € oa(IT). OSp(ev) is the subset of ea(IT") defined by

0S (), if « € FO(Il,).
().‘*'I'C:in}, otherwise.

OSpria) = {




2.2.3.4 Facts

Let [T, T, II'. W. and e be given as above. Then. we have the following
facts (1).....(4) by the previous facts 2.2.3.2 and by definition.

(1) If o' € OSyp(ev), then Form(ed) = Form(ey).

(2)
oa(ll')= || OSpria).

acoalll)
(3) CSp (W) is a sgw in II'. Moreover, the following facts hold.

emp(CS pp(W)) = emp(W ).

on(CSppr(W)) = U OSnr(d).

feonl( V)
(4)
< end(IT").0 >€ CSpr(W) iff <endlIl).O>e W.
2.2.4 Relationship between structural reductions and con-
tractions
2.2.4.1 Fact

Let S be a substitution-sequence < . W.0 >, Let Vi and Vo be sqw’s in 11
satisfying ViUVo =W and ViN Vo = ¢. Let S' and S* be the substitution-
sequences defined by S! =< II.V1.© > and 8% =< P, CSe:i(Va).0 >.
Then, it holds that P = Pee.

Proof. By induction on the length of 7.0

2.2.4.2 Definition (supp(W): support of W)

Let W be a sgw in II. supp(W) is the sgw in IT defined by
supp(W) ={< .0 >€ FO(IT) | v € 1rt(W)}

2.2.4.3 Fact

Let S be a substitution-sequence < II.W.@ >, If S" is the substitution-
sequence defined by 8" =< II, supp(W),© >: then, it holds that there ea-
ists a reduction sequence from Pgr to Ps consisting of VE-. 3E-, and L.-
contractions (for subderivations).




MIL(@)) (@) ©2)

Proof. By induction on Card(W). Suppose @ = END(G)
Case 0. If W = ¢: Clean.

Case 1. If Card(rH(W)) = 1: Without loss of generality. we can assimmne
that »H{(W) = {end(Il)}.

Case 1-1. If supp(W) = W: Clear.

Case 1-2. If supp(W) # W, L(ll) = (L), and < end(IT).1 >¢ W;: Sup-

11
pose [T = .’:',\'.")I;H? . Then, there exists a sgw W in [, such that
W = {< end(IT).0 >} UW,. Let Sy and S be the substitution-
sequences defined by Sy =< ). Wy, @ > and Sai==Ilg. supp(Wy). @ >.
Iy
an, [{"H. 18 :rl' I]u‘ l':|1'|11 !".‘_-\-.Ui HI |(‘)| I")gl . [,f'r H be :l;|' qi.-g'i\'n-
END(@)
tion obtained from Pg by (L.)-contraction. Then. I’ is of the form
P'\"
©__ . and by induction hypothesis, there exists a reduction se-
END(®)
from I1' to the derivati Pss P isting of VE
mee 1o the derive —— = Me¢. consisting of VLE-.
quence nrom Lo 1 erivation F_\T)lj(—Jl Consistin
AFE-. and L.-contractions.
Case 1-3. If supp(W) £ W, h(Il) = (L,), and < end(Il).1 >€ W; ie. if

W = {< end(IT),0 >, < end(Il'),1 >}: Easy.

Case 1-4. If supp(W) # W and L(Il) = (VE) or (3E): Similarly to the

case 1-2.

Case 2. If Card(rt(W)) > 1: Take two sgw’s in IT. say V| and V5, satisfying
that W =1V UWe. ViNVo = d. Vi # ¢, and Vo # ¢. Let X be the
substitution-sequence defined by X =< II, V) U supp(V5).® >. Let
Y). Yo, and Y3 be the substitution-sequence defined by

Yi =< II, supp(Va), 0 >, Yy =< Py,, ('H‘]t-. (supp(V1)).© >,

and
}.:{ = IP\I. (‘.“;h[ll.[}.(') >,

Using fact 2.2.4.1, we have Py = Py, and Py = Py,. It holds that
Card(CS, (V1)) = Card(V)) and that supp( GS3 (1)) =( 83 (supp(V))).
Hence, by induction hypothesis, there exists a reduction sequence from
Py, to Py,. i.e. from Pg to Py, consisting of VE-, 3E-. and L.
contractions. Similarly. we have the existance of a reduction sequence
from Py to Pg, consisting of VE-, 3F-, and L .-contractions. This
leads the result.O
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2.2.4.4 Fact
Let II'" be the derivation obtained from a dervivation IT by the structural

: e SR(T) s
reduction of II with T, i.e. I — II'. Then. there exists a reduction

sequence from I to I’ consisting of VE-. dE-. and L.-contractions (for

subderivations),

Proof. By fact 2.2.4.3.0

2.3 l-reduction and Church-Rosser property

[n this section. we define 1-reduction to prove the Church-Rosser property
of our reduction. The definition of l-reduction is an extension of that of
Girard [4. pp135].

2.3.1 Mappings for essential reduction

2.3.1.1 Notation (// = ')

When a derivation 7’ is obtained from a derivation /T by &-. &9-. V-, Vo-.

" - - . FR
v-, or 3-contraction: we denote the fact by [T = II’.

2.3.1.2 Definition (CEy, OE )

Let IT and IT" be derivations satisfying [T ER II'. For W € SGW (IT) and

for o € oa(ll). CE (W) and OFE ;(«) ave the subset of FO™ (") and the

subset of oa(Il') respectively. defined by the following clauses (1).....(6).
(1) If II" is obtained from IT by &-contraction (I = 1 or 2): Sl]]-inn«v
I, I,
I = Ay & Ao . Then. II' = I} . Let i be the canonical bijection
Ay

from FO(Il}) (as a subset of FO(IT)) to FO(II'). Then. CE (W)
and OF p(ex) are defined as follows,

{<il0).k >|< 8.k >€ W[p,}

CEp(W) = 1__1{-—.:: end(IT').0 ‘.“*'}. if < end(I1).0 > W.
{<i(l).k >|< 8.k > W[y}, otherwise.
”!""‘H{l"}:{{,”“!}' if o € !"(J{[}:I'].

. otherwise.
(2) If II' is obtained from II by Vi-contraction (I = 1 or 2): Suppose
Do (4] [4) it
= AV As I I . Then. IT' = ['U] . Let ¢ be the canonical

C I,
bijection from FO(II}) (as a subset of FO(IT)) to FO(Il;) (as a subset
of FO(I1")). Let A be the subset of FO(II') defined by

A= {i(0) | 0 € de(li(IT)) N FO(I,))}.
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For each A € A, let 4y be the canonical bijection from FO(IT;) (as a
subset of FO(II)) to FO(sbd(\)). Then, CE (W) and OF () are

defined as follows.

< i(f).hk >|< Bk >e Wy U {< ). b >|< bk > W[y )
{ 1
=

U{< end(IT').0 >}. if <end(Il).0 > W.
CEp (W) =
{\.Z' J[n{”; Sl ik >€6 “|” } &) U l < ).k >l< .k >€ H[” g'
e A
otherwise.
i)}, if w € FO(II}).
OF 1 (tv) = < . if v € FO(II,,) where -:f.mj' =102
Useatinle) }. if o« € FO(II}).
(4]
(3) If IT" is obtained from IT by D-contraction: Suppose I = Hy I _
=3 AT D 1,
B
I
Then: = [‘J . Let ¢ be the canonical bijection from FO(Ilj) (as a
1T

subset of FO(IT)) to FO(IIl,) (as a subset of FO(II')). Let A be the
subset of FO(II') defined by A = {i(#) | # € de(I)}. For each X € A,
let 25 be the canonical bijection from FO(II) (as a subset of FO(IT))
to FO(sbd(A)). Then. CE (W) and OF () 1s defined as follows.

{<ilf).k >|< 0.k >€ Il”;;,,} :J U {<iy(f).k >|< 0.k > W]p i
AEA
U< end(IT').0 >}, if < end(ll).0 > W,
CEp(W) =
{<i(0).k >|< 0.k > W[p, U U {<ir(0).k >|< 0.k > W[, 1.

AE A

Er!]]i‘l'\'.'im‘.

{i[fi}}, if o € FO(II).
U\_ i{a_\{flf}. if v € FO(II,).

()!‘,‘”{rl] — {

(4) If II" is obtained from IT by —-contraction: Similarly to the case (3).

(5) If I'" is obtained from II by V-contraction: Similarly to the case (1).

(6) If II' is obtained from IT by F-contraction: Similarly to the case (2).
2.3.1.3 Facts

Let II, IT'. W, and « be given as above. Then, we have the following facts
(1).....(4) by definition.

(1) If o' € OF j(ev), then Form(o') = Form(a).
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oalll'y = || OEp(w).

aeoul 1)
(3) CE (W) is a squw in II', Moreover, the following facts hold.

cmp( CE (W) C emp(W).

on(CEp(W)) = U OF (ev).

aconl W)

(4)
cend(I1').0 > CEp (W) iff < end(1l).0 > W.

2.3.2 1l-reduction
2.3.2.1 Definition (1-reduction)

Let IT and II” be derivations satisfying END(I1') = END(II) and QA(Il") C
OA(IT). The transformation of IT to II' is called 1-reduction iff it satisfies
one of the conditions (1). (2). (3). or (4) below. We denote by II Lo 11’
the fact that the transformation of I to II" is a l-veduction. l-reduction is
defined inductively with a mapping from SGW (M) to SGW (II'). denoted
by ('ff'. and with a mapping from ea(IT) to the power set of oa( "), denoted
by Off'; where (.!TI and ()H' satisfy the following conditions (a). (b). and
(e).

(a) For all @ € ealll) and for all 7 € ():.r:.rli.‘t]. Form(oe) = Formi(/3)

holds.
(b)
“ffit"a‘”lv_ U U;; ley)
acoal Il
(¢) Forall W € SGW (IT). r'mm(‘ffff'ln-“ C cmp(W) and f!ffl.l"ll.';";l W) =
U..- on(W f-JHI(H] hold.

(1) IT and IT" are identical. In this case, (";f’ and ()f;' are defined as
follows.
For each W € SGW (IT), Cll'(W)=W.
For each ev € oa(lIl). (Ji}”{n] — {n}_

(2) IT and II' are of the form My ‘“1! i) K and Ui LI_'!? IT;) K
respectively, where I7,, — H:_ (for all p € {0.1.2}), Inf(K") =

- ot AL .
Inf(K). and de(K') = Up<,<o Unede( i )nroi,) Op, («). In this case,
(";’f’ and l'_);;] are defined as follows.

For each W € SGW (IT).

cffw)y= |J ("f;{f'[H'i‘,,l_]u{«: end(IT'), k >|< end(IT).k >€ WIUE

0<px2
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(3

where

E (< end(Il'),1 >}, f Inf(K)=(L.),de(K)Nnf(W)+# ¢, and de(K') = .
SR [ otherwise.

For each p € {0.1,2} and for each o« € oa(ll)N FO(I,). (JJ,'TII'HI =

O’ (@).

f‘l!r] '!1”|'|
IT is of the form M I (ITs II3) where Inf(I) is an intro-
= K
duction rule and Inf(K) is an elimination rule; and
Iy () i -
M o omy o B
i E K’

where 7, e H;J (for all p € {0.....3}). Inf(I') = Inf(I). de(I") =
o U::_':'l'ru. Inf(K') = Inf(K). and de(K') = Ua<p<s Uaedet KinFoL,) ””I"'H.'.
In this case, (."ff;: and ”HI are defined as follows. Let A be the
1T}, [”:1 '
derivation M I (T, ”*{J . Foreach W € SGWI(II).
1 = — I
('I,{,!.I W)= CEA(W') where

”‘? U”, B iI‘I';;_J.Iil.'ll—]r‘rr1i__|{*3_ r!.frh._.l],[‘ :?>}. if < end(IT).0 >E W .

e s
Un<p<g € ”; (Wla,). otherwise.

For each p € {0.....3} and for each o € oa(II)N FO(II,,). Of' () =
n {)I:."\[(iﬁ

e, (a)
I

Iy (M, IIs)

I is of the form Kk where Inf(K) is an elimination

A
rule and LI(I) is (VE). (3E). or (L,.): and
' ' / Sh ;"”'J' TH)
m (mom) Cag 7
A
where 1T, . IT, (for all p € {0.1.2}). Inf(K') = Inf(K), de(K') =
i -

U<p<2 Uacdet i )nroqi,) Oy (). and T is a sgt at end(Iy) in I
satistying len(T) > 1 and [ m('::l'['i’ii > 1. In this case. ('{‘2.‘; and
o, (@ m)

i = 1
and T the sgt C;0(T) at end(IT}) in 1T, For each W € SGW (II).
Cl (W)= CS5(W') where

”;f“ are defined as follows. Let A be the derivation

I
= {Ul.‘. p<2 O (Wi, ) U{< end(A),0 >}. if < end(I),0 >€ W,

Vs AR : ,
Uo<p<o € ”,r- (Wln,). otherwise,
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For each p € {0.1,2} and for each «v € oa(ll') N FO(I1,). H}r}rr[nl =
n OS5 e (H).

)i r
f r!”JI (e

2.3.2.2 Notice

T - = oo | ’ i = e
When dervivations [T and [T’ satisfying I — II" are given: it is assumed
; : | . . .
that the constrmction of I — ”J is also ZFivell, and so. the munber of the
clauses in definition 2.3.2.1 used in the construction of I — II' is uniguely

determined.

2.3.2.8 Notation (|II — II'|, LC(IT — IT'))

Let IT and 17" be derivations satisfying I — II'. We denote by |IT — IT'|

the number of the clauses in definition 2.3.2.1 used in the construction of
o2 l._ H’ ’.'\|_n.,” wi :11':111[1' iJ\ !(11” l_

09

.3.2.1 used in the construction of I7

= IT") the last clause in definition

L, o,

2:3.2:4 Fact

If a derivation IT is H!:m.‘r,’:r;.frf_.l; reduced to o derivation IT'. then it holds
I '
that II — II".

Proof. By fact (2) of 2.2.2.3.

2.3.2.5 Fact

If a derivation IT is I-reduced to a devivation II'. i.e. Il — II'. then there
cxists o reduction sequence from IT to IT'

Proof. DBy fact 2.2.4.4.

2.3.2.6 Notation

Let II. II'. and I" be derivations. For a mapping f from SGW(II) to
SGW(II') and a mapping ¢ from SGW (IT") to SGW (IT"). gof denotes the
mapping from SGW (IT) to SGW (II") defined by gof (W) = g(f(W)). Also.
for a mapping F from oa(Il') to the power set of oa(I') and a mapping G
from oa(ll’) to the power set of va(ll”). GoF denotes the mapping from
oa(IT) to the power set of oalIT") defined by GoF (&) = |y, ey G(A). We
use these notations also in the case of partial mappings.

2.3.2.7 Main Lemma.

. I | ! . 1]
If 1l L. I and IT = I" hold, then there exists a derivation IT™ such
that II' == 0", 1" == 0", ¢l"oCll' = G o CJ", and Ol 0 OF' =

"

" o ol"
0f: 0 0fF .




Main Lemma will be proved in the next section. The following theo-
retn, i.e. the Church-Rosser property of our reduction, can be easily proved
using fact 2.3.2.4. fact 2.3.2.5. and Main Lemuna.

Theorem 2. (Church-Rosser property) If two finite reduction se-
quences I, ..., X and I, .... X" are given, then we can construct two finite
reduction sequences X, ..., A and X', ..., A for some derivation A

2.4 Proof of Main Lemma
2.4.1 Lemmata

[t now remains for us to establish the [al'lmt' of Main Lemma. The essential

parts of the proof are obtained from Lemma A (2.4.1.2) and Lemma B

(2.4.1.9):

2.4.1.1 Notation (W < V)

Let W oand V be sgw's in a derivation. We denote by W < V' the fact that
WV and rt(W) = (V) hold.

2.4.1.2 Lemma A

IFIT - 1, Lom == ') is (2), T 22 2, and ' £ ' hold; then.

_‘ —I- ,‘_.:’, ('_{t?f'ﬁ('f‘,.” = (_'f‘,I“rU(_.ffw, H.I.H.f| f)_.\'-"'.-()f‘,‘lr‘r = f)]'.,-.l.';"l‘-f.jlr'rlr'rl fJH.I"h"

2.4.1.3 Lemma B

Let S be a substitution-sequence < II.W.0 >, and let V' be a sqw in II
satisfying W < V. If I — II" and @ — @ hold, and let S’ be the
substitution-sequence defined by S' =< ' V'.@" > where V' = ('!‘}"IH"I.'
then, the following facts (a),....(¢) hold.

[t J .P\' : IP&,‘"
(h) For all U € SGWI(IT) satisfying U NV = ¢. it holds that (";:‘"' o
CSL(U) = CcsLioCH (U).

y ’ Per . ; '
(¢) Forall o € oa(II)\on(V). it holds that Op'008 (o) = 0Sge0]] (w).

Qe

WPgt _ ~a
(d) fJ,,: o(Sﬁ = (.‘1‘:-,0( e

(&

(e) For all « € 0a(@) \ {my(li(@))}. it holds that U;::" 008%(a) = 0S%io

08 ().




2.4.1.4 Remark

Lemma A and Lemma B are proved using some facts stated in the following.
We state these facts in an abbreviated form. Namely. the commutativity of
mappings on sgw’'s and on open assmmptions (e.g. (b). (¢), (d). and (e) in
Lemuna B) is not represented in these statement. But all these facts stated
in the following are hold with such commutativity.

2.4.2 Some facts

2.4.2.1 Fact

If 11 s IT' holds and let a and t be a free wariable and o term respectively

satisfiung H(1/a) becomes a derivation: then 't/a) is a derivation. and
|

IM(t/a) — I'(t/a) holds.
Proof. By induction on |1 £y [1'.o
2.4.2.2 Fact
Let £ and ["} be derivations satisfying END(X) = A. Let P be the subsct
of oalIl') de Hrrf!ff’hﬁ [A] in [f}J . Suppose that X = 3" and ltf} . I lHl'
hold where [A] in ]”:IJ denotes the subset of oa(I1'), say P'. defined by P’ =
2 7y
Uiep ()f;"mﬁ. Then, we have [A] = [4] .
1 17’
Proof. By induction on |17 e IT'|. In the case that LC(11 — IT") is
(4). we use the following fact. That is. if S and X are substitution-sequence
. A A
defined by S =< [Bl.w,[Bl 5 and X =< [B].W.[B] >. then it holds that
I e BRI
y I
Py = [B] where we define [B] in D] using 0SSt and 08%.0
’r\\ P\

2.4.2.3 Fact

Let S be a substitution-sequence < II.W.0 >, and let V' be a sqw in II
s , , | ! v .

satisfying W < V. If @ — @' holds. and let S" be a substitution-sequence

defined by 8" =< II,V.O" >; then, Py - = Py holds.

Proof. By induction on the length of I7. We prove this fact in the
case that end(ll) € top(W) and end(IT) & top(V') hold, since other cases

are straight-forward. Now we assume that. Suppose IT and @ are of the form
Il {J'h ”-3] y A {('}| f")-_:ﬁ

; pand = _3CC-.
A 5]

) respectively. Then. Pg and Pgr are
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> . PH" [Pq' PH"J .pu_' {'P_u’ Pl-. ]
of the form A (@, ©,)and _"0 [ 2
B B
where S, =< II,W([p,.@ > and S, =< II,.V[y,, 0" > for each p €
10.1,2}. Let Vph and Vi be sgw's in IT satisfying that V = VUV, Vianv) =
¢, and rt(Vy) = {end(Il)}. Define substitution-sequences X and X, for
cach P E -Il]. l‘f} I’.\" K= rjl."[,l-"],l")J > and .-\—l,, =< J(!J.,. ]-'_| !‘”, e > for
cach p € {0,1.2}. Denote sbd(mj(li(Ps))) by Ay. From the condition
end(IT) € top(W) and the definition of Vi and Vi. we have Wy < Vi[g

respect i\'r>|‘\'_

for each p € {0.1.2}. Hence, by induction hypothesis, we have Pg, —, Py,
for each p € {0,1.2}. Therefore, we have Ay - = Py using the clanse (2)
for LC(Ag — Py ), since Py is of the form 2, IP; < . Let T be
the sgt at end(4Qp) in 4y defined by ‘

T ={< end(Ay). k >|< end(Il), k >€ Vy} U U CS¢ (Volm,).

<p<?

and let T' be the sgt at end(Py) in Py defined by 77 = (f\ (T"). Define
a .‘4111-'-'Til111iuh—.-:l'lltll‘lu'v Y' by Y =< 'P\,',-’",(—)' >. By mduction hypoth-

esis (about commutativity of mappings) for I7,, we have T = ('h':\ (V).
Hence, by fact 2.2.4.1, P¢ = Py holds. On the other hand. we have
. T (@, @) Sr1) .
Ps — Py because Px (€ 2) — Py holds where we suppose
B
n e @) : |
=2 O ©) Tyerefore, Ps—s Por holds.D

B

2.4.2.4 Fact

Let IT and X be derivations satisfying 11 B8 5. Let S be o substitution-
sequence < [I.W.0 >, and X the substitution-sequence defined by X =<
3. CE(W).© >. Then, Ps 2% Py holds.

Proof. By definition of CE ;.0

2.4.2.5 Fact

Let S, X, and Y be substitution-sequences < IILW.@ >, < II.Vi.A >.
and < @, Vo, A > respectively; satisfying W NV, = ¢. Let S and X be
the substitution-sequences defined by S =<y ('._H'I\-LH"].'P\ > and \ —<
P, ('H_L[‘-] Y14 (“H{'H-}L;‘. >. Then. P‘; = P‘. holids.

Proof. By induction on the length of 7.0

2.4.3 Proof of lemmata

Now we prove Lemma A, Lemma B, and Main Lemma.
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2.4.3.1 Proof of Lemma A

- Iy (M)

Since 1 2 3. I is of the form M l (Il IIy) where Inf([l)

= K

is an introduction rule and Inf(K) is an elimination rule. Then. IT' is of
I, (1) |

the form M (15 I3) where I, — H:, for each p € {0.....3}.

A
because LC(11 L IT') is (2) and Inf(l) is an introduction rmle. Then,

using fact 2.4.2.1 and fact 2.4.2.2, we have the result.O
2.4.3.2 Proof of Lemma B
By induction on [IT —— II'|.

Case 1. LC(IT — IT') is (1): Use fact 2.4.2.3.

Case 2. LC(II — II') is (2): Similarly with the proof of fact 2.4.2.3.

Case 3. LC(IT - IT") is

3): Use fact 2.4.2.4.

Case 4. LC(IT - I') is (4): Use fact 2.4.2.5.0

2.4.3.3 Proof of Main Lemma.

By induction on |II — II'| + |II iy i/ id §

Case 1. LC(IT — IT') is (1): Take IT” for I"".

Case 1'. LC(IT — IT") is (1): Similarly to the case 1.

Case 2. LC(II — II') and LC(IT — I1") are (2): Suppose IT. IT', and
;'lf” ;!]'l"[)i‘l}ll"f‘lll'l]l .I(!” ‘l'r[[ [!I_”‘ -!l'r” I.f!-r| !]_JI lr]” |!"!| ll“_‘.l
A A A
respectively, where for each p € {0.1.2}. II,, L3 T, and II, — I
hold. Then by induction hypothesis, for each p € {0.1.2} there exists

and

- : ) = | ; LI A
a derivation IT)' such that I, — IV, O] — I, Cp! oCph’ =
] L ! I | » P
e 5 L () mu !
(”,’J.' ol H,J. , and ()”‘f U(J”; — r')”,'J.’ ""‘”H,J. hold. Let II" be the deriva-

oy e my)

tion of the form Then. the result holds for this

A
"[!.[Hf.
Case 3. LC(II — II') and LC(II == ") are (3): Suppose II is of the
Iy | ”| )
form M (I> II4) . and suppose II" and 1" satisfy that
A
I, (IIY) Iy (mIy)
/ R ! 1" iy LR "
M (I, 1}) — I’ and M (I HYy— i,
- A A
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where for each p € {0,....3}. 11, =5 I, and II, 7 hold.

Then by induction hypothesis, for each p € {0.....3} there exists a

. | | I Wit i
derivation H:,” such that H:_ o O i = .-",";,j. ¢ ”:‘_ o( i,
3 L2 ' I 1! 1 HY
y R S - roo " : - R " - " y .
( i © ( 1, - and UH,’. H”J_ = “H,'.’ o ()H,. hold. Let ™ be th

derivation satisfying

oy () -
M oy myy = [
A

Then. by Lemma A (2.4.1.2), the result holds for this 17"

Case 4. One of the LC(IT — II') and LC(IT — ") is (2) and the other
is (3): Similarly to the case 3.

Case 5. LC(II — II') and LC(II — I") are (4): Suppose II is of the

form Ty f..”; 13) and suppose 1" and 11" satisfy that
I/ I r \.}"..r"'l'.l [
o, (I II;)>" "y, 17’
A
and

oy (I my) SRCm (T
A
: where for each p € {0.1,2}. 1T, — IT), and 1T, L IT'! hold. and
where T, and T arve sgt’s at end([ly) in 11, satisfying le n(Th) > 1.
le ul(':f{:'['f';}l > 1, len(T») > 1. and f.‘;a[(".‘r::'l'f“_‘ll > 1. Then, by
iduction hypothesis, tor all p € {0.1,2} there exists a derivation ”_-’.”

- . g o " T S ¢ A 1 A AT 1 2B

such that I, — IL7, II) — II7, Cni oLy, = (H'_-- oCy). and
ki 1 e 1 = - )

(J”.J O fJ”JII = fJ”J,J, \"()”:I I1Hll1_ L[‘f 1" !r[' fht' h_:,’t at rHI“ ”-“;' 111 1””
P 3

defined by T' = T} U T5, and let T" be the sgt at end(I])") in I

defined }J.\"
I L
i ° 0, (T) = (

Al
154

o L
A oCp (T

: ; : g : r.r T ."ff] I Iﬂ:f]
Let. @" be the derivation of the form END(1Ty) l”.' ”_—. L cand
S the substitution-sequence defined by § =< I.T".0" >. Let 0"
be the derivation Pg. Then by Lemma B (2.4.1.3). the result holds for

this 17",

Case 6. One of the LC(1I - L I1") and LC(IT = ") is (2) and the other
is (4): Similarly to the case 5.0




Appendix A

A remark on normalization
theorem

Our main subject of Chapter 1 was how to define, in the system of classical
natural deduction. a simple reduction-procedure which removes masimun
formmulae in derivations. But to remove maxinmm formulae in a derivation
of our system of classical natural deduction, it is suffice to use Gentzen's
cut-climination theorem for the sequent-calculus LK [3]. Notice that the
following fact holds.

Fact. If a cut-free LK-derivation P whose end-sequent S is of the form
- TN o Ay — By.....B, is given. then we can construct a devivation Il of
our system of classical natural deduction satisfying the following conditions

(1). (2). and (3).
LN OALTT) =LA e oy B =B )

1. if the succedent of the s quent S is empty.

(2) END —
(8) END(H) { B,. otherwise.

(3) IT 1s normal.
Proof. By induction on the length of P. O

By using the fact above. we obtain the normalization theorem of our system

of classical natural deduction in the following form:

Theorem (Normalization theorem). If a derwation IT is given. then
we can construct a normal derwation IT' such that OA(IT') = OA(IT) and
END(IT") = END(II).

Proof. Suppose QA(Il) = {Ay.....A,} and END(Il') = B. First. we can
construct a LK-derivation P whose end-sequent is of the form Ay..... A, —
B; where in the case that B = L. the sequent Ay...... A, — B stands




for the sequent .-h ...... A, — . Next. |i_\‘ using the cut-elimination the-
orem for LK. we can construct a cut-free LE-derivation P' whose end-
sequent is the same with that of P. Then. by using the previous fact, we
can construct a normal dervivation I’ such that OQA(Il') = OA(Il) and
END(II') = END(IIT). O
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Appendix B

A remark on Peilrce’s law

The classical natural deduction for which Seldin proved the normalization
theorem in [8] is obtained from the natural deduction system of the intuition-
istic logic by adding Peirce’s law. To that system, our reduction-procedure
can be applied. The regularity of Peiree’s law is defined similarly with that

of (L.) 1.1.2. We represent the contraction for Peirce’s law briefly by the
following diagram:
s b {-! M (0, ©s)
T DDA D
contracts to A
M 7 ¢ :
M (@) 6y) i M _ (@) 6s)
' D p D
D

where Inf([l) is Peirce’s law and Inf(K) is an elimination rule. With the
appropriate definition of segments. the normalization theorem can be proved

siilarly to that of Chapter 1.
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