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Chapter 1

General introduction

1.1 Introduction

The discovery of the high-T. superconducting cuprates [1| has revived the
interest in strongly correlated electron systems, which have been studied for a
long time in connection with the study of the electronic states in the transition-
metal compounds. In the transition-metal compounds, the strong correlation
between the 3d electrons is essentially important.

On the other hand, in the intensive studies of the high-7. cuprates, it has
been shown that in order to investigate the electronic states the systematic con-
trol of the carrier concentration is important, because the occurrence of the
superconductivity is sensitive to the carrier concentration. In other transition-
metal compounds, the systematic experimental studies have been triggered by
the discovery of the high-7, cuprates. In the experimental studies, the carrier
concentration and the relative interaction strength are controlled by the chem-
ical substitution while keeping conducting networks in the transition-metal
compounds. For example, in Ca;_,Sr, VO3 one can systematically control the
relative interaction strength by changing the concentration = of Sr.

For the change of the carrier concentration or the relative interaction strength,
there is an interesting phenomenon in the strongly correlated electron systems.
It is the Mott transition, which is a transition between the metallic phase and
the strongly correlated insulating phase. The high-T, superconductivity occurs
near the transition and the property of the itinerant electronic states which
are formed on carrier doping has attracted considerable interest. On the other
hand, Ca;_,Sr, VO3 is a metallic compound which is near the transition and
the interaction-strength dependence of the electronic states has received at-
tention.




Though there have been various studies of the Mott transition for a long
time, the comprehensive understanding of the electronic states on the metallic
side of the Mott transition is still lacking, because it is difficult to treat the
strong correlation theoretically. Thus, some problems about the electronic
states remain unsolved. Omne of the problems is how the itinerant electronic
states emerges in the metallic phase near the transition.

In the thesis, we would like to solve the abovementioned problem by treat-
ing suitably the electron correlation, and to clarify the origin of the itinerant
electronic states in the metallic side of the Mott transition in the transition-
metal compounds. We consider the one-particle-excitation spectral function in
order to investigate the electronic states. We can directly obtain the occupied
and unoccupied electronic states from the spectral function.

We need to use a method by which we can properly treat the strong electron
correlation. In the present study, we use the dynamical mean field theory
(DMFT), which has been developed recently, and successfully applied to the
strongly correlated systems. In the theory, while the spatial fluctuations are
neglected, the local quantum fluctuations can be correctly treated.

We also need to use a theoretical model which is suitable to describe the
transition-metal compounds. Though the narrow 3d band is essential for the
strong electron correlation, the anion orbital can become important in the
transition-metal compounds. For example, in the high-7.. cuprates, the impor-
tance of the O 2p orbital was also pointed out, because it was clarified that
the doped hole enters in the p orbital. In the thesis, therefore, we explicitly
consider the effect of p orbital in the transition-metal compounds by using the
two-band Hubbard model.

According to Zaanen, Sawatzky, and Allen, the transition-metal compounds
are qualitatively classified into two groups by magnitude of charge-transfer en-
ergy: the charge-transfer-type system and the Mott-Hubbard-type system [2].
The high-T. cuprates belong to the former and Ca; ,Sr,VOg3 to the latter.
Using the two-band Hubbard model, we can treat the systems correspond to
the both types on an equal footing.

Let us summarize the purpose of the thesis; applying the DMFT to the two-
band Hubbard model, we investigate the change of the one-particle-excitation
spectral function: (1) the carrier concentration dependence for the charge-
transfer-type insulator and (2) the interaction strength dependence for the
Mott-Hubbard-type insulator, and clarify how the spectral intensity corre-
sponding the itinerant electronic state emerges in the metallic side of the Mott
transition. We also clarify the character of the itinerant electronic states in
each case.

This thesis is organized as follows. We first survey the studies of the MIT




in the strongly correlated systems (the Mott transition) in Section 1.2. We
focus on the problem why NiO is a non-conductor although it is expected to
be metallic in the band theory. We also review the theoretical studies of the
Mott transition. There is one of the successful example of the DMFT in the
study of the Mott transition. We briefly review the derivation of the DMFT
in Chapter 2. One can reduce the lattice problem to an effective impurity
problem by the DMFT. In the chapter, we also review the methods to solve the
effective impurity problem. In Chapter 3, we discuss the classification of the
two types of the transition-metal compounds according to Zaanen, Sawatzky,
and Allen. in Chapter 3. We introduce the two-band Hubbard model and
show the formulation of the present study in the chapter. The numerical
results for the charge-transfer-type system in Chapter 4, and those for the
Mott-Hubbard-type system are shown in Chapter 5, respectively. Chapter 6
contains the concluding remarks.

1.2 Mott transition

In the transition-metal compounds, it is well accepted that the strong Coulomb
interaction between 3d electrons is important. The insulating phase in some
transition-metal compounds cannot be explained by the conventional band
theory, and it is caused by the strong correlation between electrons. The
insulating materials caused by the strong correlation are called Mott insulators,
and the transition from a metallic state to an insulating state induced by the
strong correlation is called the Mott transition.

We briefly review the historical development in the studies of the Mott
transition in this section. First we show the important suggestion for the non-
conducting property of NiO by Mott [4, 5, 6] in Section 1.2.1. In the section, we
also introduce examples of the perovskite-type transition-metal oxides which
attract considerable interest recently. In Section 1.2.2, we review the main
theoretical studies of the Mott transition and show a successful example of the
application of the DMFT to the strongly correlated systems.

1.2.1 Mott insulator

The electronic states of the transition-metal compounds have been contro-
versial problems. One of the puzzling problems was that NiO is an insulating
compound although it was predicted to be metallic from the conventional band
theory [3, 4]. Mott discussed the problem in detail and pointed out that the
strong Coulomb interaction between 3d electrons drives the system into an




insulator [5]. This is why the Mott insulator is so named.

In the transition-metal oxide NiO (Ni**:3d®, O?:2p®), the 3d orbitals split
by a cubic crystal field into sub-orbitals, dy (doubly degenerate) and de (triply
degenerate). The energy bands consisting of dvy orbitals are partially filled in
accord with the Hund rule. According to the conventional band theory, then,
NiO is expected to be metallic. In reality, NiO is an insulator.

Mott suggested a qualitative explanation of the insulating behavior of NiO
[4, 5]. According to his explanation, the insulating property of NiO is caused
by the excitation energy required to remove an electron from a certain Ni*'
ion (leaving Ni**) and to put it on another Ni®>* ion (forming Ni*). When the
increase of the Coulomb energy is larger than the transfer energy of electrons,
the excitation energy is positive and the system becomes an insulator.

The mother materials of the high-7, superconducting cuprates are also the
Mott insulators. In LasCuO4 (Cu®*:3d%), for example, the 3d orbitals split
into dy and de, and the band consisting of dy orbitals (which further split by
a square crystal field) is partially filled. Namely, according to the simple band
theory, LasCuOy4 should be metallic. In spite of the prediction of the band
theory, the material shows the insulating behavior of the resistivity [7]. One
can dope carriers (holes) into the system by the substitution of Sr?>* for La®*.
The substitution partially changes the valence of (CuQO4)%~ to (CuO4)*~, and
carriers are doped into the CuQO, planes. Since the superconducting phase
appears only in the low-density-doping region (e.g. 0.06 < z < 0.26 for
Las ,Sr,CuOy [8, 7, 9]), it is recognized that it is important to investigate the
electronic states near the Mott transition.

1.2.2 Theories of Mott transition

The essence of the Mott transition is the competition between the local electron-
electron interaction energy and the kinetic energy of the itinerant electrons.
The simplest model that describes the competition is the Hubbard model;

Rt = —1 z (c:[,cjﬂ +Hc)+U Zc}ci;c:ﬁcil. (1.1)

<ig> i

where we assume only the nearest-neighbor hopping. In eq.(1.1), ¢ is the hop-
ping energy, and U is the on-site Coulomb interaction energy. The theoretical
studies of the Mott transition using the Hubbard model have been carried out
for a long time.

Here we first review two approaches from the opposite directions, i.e., from
the atomic limit and from the metallic limit. We then introduce a study by
the DMFT, which interpolates the two approaches.




Approaches from the atomic limit and from the metallic limit

In a series of papers, Hubbard investigated the change in the density of states
caused by the interaction. He calculated the one-particle Green’s function
using decoupling techniques and a CPA(coherent potential approximation)-
like approximation [10, 11]. He showed that the density of states splits into
two subbands when the ratio U/t becomes greater than a critical value, and
consequently the system is turned into an insulator. (Therefore, we refer to
the subbands as the upper and lower Hubbard bands.)

As the theory is guided by the principle that it should be correct in the
atomic limit ¢ — 0, it is a good approximation in the insulating region. It was
pointed out [12], however, that it fails in the metallic region; for example, no
well-defined Fermi surface exists even in the metallic phase.

Another approach is taken by Brinkman and Rice [13] on the basis of
the Gutzwiller variational wave function [14]. In the approach, the Fermi
surface exists in the distribution of occupied states when the system is metallic.
Brinkman and Rice showed that both the number of the doubly occupied sites
and the discontinuity at the Fermi surface become zero at a critical value of
U, U..

However, Yokoyama and Shiba showed that the transition does not occur
in the correct treatment of the Gutzwiller wave function; the appearance of
the transition is an artifact due to the Gutzwiller approximation [15]. This
shows that the Gutzwiller wave function is not good enough to describe the
Mott transition in finite dimensions.

Mott transition described by DMFT

A result which connects the two approaches from the atomic limit and from
the metallic limit was obtained by a method within the DMFT framework
(17, 18, 16]. The method is called the iterated perturbation theory (IPT) [19]
(see also Chapter 2). In the method, the self-energy calculated by the second-
order perturbation with respect to U is shown to become exact in both the
weak-coupling limit and the strong-coupling limit. Thus it is expected that
the method provides an interpolation scheme between the both limits [16].

In the study, it was shown that the one-particle-excitation spectrum has
three remarkable structures; the lower and upper Hubbard bands, and the
sharp peak at the Fermi level. In the Mott transition, both the width of the
sharp peak in the spectrum and the discontinuity at the Fermi surface in the
distribution of occupied states become zero at a critical value U = U, [18].

The study is one of the successful examples of the application of the DMFT
to the strongly correlated systems. We can expect that the DMFT is a useful




method to study the electronic states near the Mott transition. We derive the
DMFT in the next chapter.




Chapter 2

Dynamical mean field theory

(DMFT)

The idea of the DMFT originated from the analysis of the system in infinite
dimensions, where the self-energy of the Green’s function becomes local. In the
DMFT, the spatial fluctuations are neglected, but the local quantum fluctua-
tions can be fully considered. Namely, while the spatial correlation is treated
only as a mean field, the on-site quantum dynamics can be exactly treated.
One can reduce a problem of a lattice system to an impurity problem embed-
ded in an effective medium (the dynamical mean field). In Section 2.1, we
briefly mention the relation between the local approximation of the self-energy
and the DMFT, and derive the DMFT. We review various methods to solve
the effective impurity problem within the DMFT framework in Section 2.2.

2.1 DMFT and local approximation of the
self-energy

2.1.1 Infinite-dimensional model and local self-energy

In spite of its simple form, the Hubbard model is exactly solved only in one
dimension [20]. In two or three dimensions, there are only approximate calcu-
lations and numerical simulations for finite-size systems.

Recently, however, an important advance has been made in the infinite-
dimensional limit. The infinite-dimensional Hubbard model was first intro-
duced by Metzner and Vollhardt [21]. In order to define a non-trivial model
in which the kinetic term and the potential term are of the same order, the
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intersite hopping energy t should be scaled as t — t o< 1/4/z, where z is the
number of nearest-neighbor sites, namely, the coordination number [21].

One of the remarkable properties of the infinite-dimensional system they
found was that the self-energy of the Green’s function becomes site-diagonal
21, 22|. The property is shown by simple power counting as follows. One
of the standard methods to calculate the Green’s function of the system is a
perturbation theory with respect to the on-site Coulomb interaction energy
U. In general, the Green’s function G;;(iw,) connecting a site ¢ to a site j is
expanded by the self-energy ¥;;(iw, );

Gij(iwn) = Gy (iwn) + Z G (iwn ) Z i (iwn )G?j(iwn) + ey (2]

where G?j(iw") is the free (U = 0) Green’s function. (In the above expression,
wy 1s the Matsubara frequency defined by w, = (2n + 1)7T, where T is the
temperature and n is an integer.) For example, we consider the second order
self-energy, Sij) which includes three G?j’s. Since t is scaled by 1/4/z, G?j
involves a factor 1/\f even for the nearest sites < 7,7 >. Hence, the second

order self-energy, vIJ , between the nearest sites < 7,7 > involves a factor
(1/4/z)®. On the other hand, the summation of the nearest neighbor sites j
brings in a factor of order z. Thus, we obtain at least an overall factor of
1/4/z for the non-local second order self-energy, £.°’. One can apply a similar
argument to the higher-order terms, and finds that onl} the local contribution
(¢ = 7) survives in the infinite-coordination number limit (i.e., the infinite-
dimensional limit).

As a simple consequence of the locality of the self-energy, Miiller-Hartmann
showed that, in the single-band Hubbard model, the density of states at the
Fermi level is invariant for any strength of U as long as the system is the Fermi
liquid state [23] (see Appendix E).

Using the site-diagonal self-energy, the local Green’s function can be ex-
pressed using the energy integral as

1 1

Gliwn) = ?% (G} (iwn)) L — S(iwn)’

/df pol€) : (2.2)

71+/14F_\_\(1"“" )

where pg(€) is the density of states defined by

! ivza(e—g(k)). (2.3)
Sl




In the expression, (k) is the Fourier transformation of the hopping energy in
(1.1).

2.1.2 Effective impurity problem

Making full use of the locality of the self-energy, one can construct an exact
“mean-field-type” theory of the lattice problem [16]. Let us explain one of
the procedures to obtain the “mean field” description [24, 25]. Since the self-
energy is local in eq. (2.1), the local Green’s function G(iw,) for a certain
site 7+ can be rearranged to contain explicitly only the i-site “bare” Green'’s
function G;;(iw, ), in which effects of the interaction at all the sites except the
site ¢ are included. Namely, G;;(iw, ) is expressed as;

Gii(iwn) = Guliwn) + Gii(iw, ) (iwn )Gii(iw,)
5 gh’(iu)n )E(lwn )Qii(iwn )S(iwn )gii(iwn) Sl Pelaten (24)
The formal Dyson equation of G;; is
Gii<iwn) = G?I(lw’”) ¥ ZG?J(lwn)g(lwn )gjz(l‘-‘)n)
JF

= T'E),'(iu,‘n ) b Z G?J (iwn )E(i“un )ng(lw" ) o G?ZS(I\'L)” )gﬁ(iw” X25)
¥

By the Fourier transformation for the both sides of eq.(2.5), one obtains the
expression in the wave-number space,

O (iwn) = Gy (iwn) + Gy, (iwn ) S(iwn ) (Gg (iwn) — Goi(iws)). (2.6)

By solving eq.(2.6) for U and summing the both sides on k, G;; is expressed
by

gii(iwn> — (1 o S(I“)n )gii(iwn ))Gii(iwn )) (27)
where we have used the k-summation expression of the local Green’s function
(2.2). From eq.(2.7), one can obtain the final expression of the local Green’s
function G(iw,) using G as

G (iwn) = G Yiwn) — S(iwn), (2.8)

where we omit the site index by assuming the translational invariance.

On the other hand, one can regard the expression (2.8) as the Dyson equa-
tion of the impurity model in which the bare Green’s function is given by G. In
fact, one can obtain the effective action of an impurity problem embedded in




an effective medium which is described using G. The effective action is derived
in the infinite-dimensional limit (see Appendix A):

B B o
S — / / drdr’ Z Doo(T)GHT—7" oo (T)+U
Jo Jo -

(2.9)
where 1, (Y00 ) 1s the Grassmann variable corresponding to the fermion cre-
ation (annihilation) operator at a certain site o. There is on-site Coulomb
interaction U between the fermions at the site 0. The effective action can be
interpreted as an action of a system in which G is a bare impurity Green'’s
function and the on-site repulsion exists only at the o-site. Since G includes
the information of the other sites, it plays the role of a “mean field”.

The similar simplicity also occurs in the classical spin system. In the classi-
cal spin system, it is known that the description using the usual mean field, in
which all fluctuations are neglected, becomes exact in the infinite-dimensional
(infinite-range-coupling) limit. In the present “mean field” theory, however,
one takes full account of local quantum fluctuations. Therefore the approach
is called the dynamical mean field theory (DMFT) [16].

In the DMFT framework, there are three relations (eq.(2.2), (2.8), and
(2.9)), and three unknown quantities (G(iw, ), G(iw, ), and E(iw,)). Therefore,
if one can solve the effective impurity problem (2.9), the solution of the lattice
problem can be obtained exactly by solving the self-consistent equations.

Before proceeding we give a remark. The DMFT can be derived without
taking the infinite-dimensional limit, if only one assumes the self-energy to be
local. Thus, one can regard the DMFT as an approximate method in finite
dimensions. In the thesis, we apply the DMFT to the present study regarding
it as the approximate method in which one neglects the k-dependence of the
self-energy. The approximation was shown to be excellent in three dimensions;
the result of the second-order correlation energy with respect to U for the
Hubbard model on the cubic lattice is well approximated by that of the infinite-
dimensional model [21].

2.2 Methods to solve the effective impurity
problem

The on-site quantum problem (the effective impurity problem) in the DMFT
framework still remains a many-body problem, and one has to solve the prob-
lem by an appropriate method. Several methods to solve the impurity problem
were developed in the studies of a magnetic impurity in a metal: the numer-
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ical renormalization group method [26], the perturbation theory [27], and the
quantum Monte Carlo method [28], and so on. These various methods are also
successfully applied to the effective impurity problem in the DMFT [16]. Let
us briefly review these applications. Here, we mention those examples focusing
on the applications to the single-band Hubbard model.

Iterated perturbation theory

The method in which the self-energy is calculated from G by the second-order
perturbation theory was applied by Georges et al. [17] and Zhang et al. [18].
(It is the iterated perturbation theory (IPT) mentioned in Section 1.2.2.) This
corresponds to the method used by Yosida and Yamada for the impurity An-
derson model [27]. It is shown that the (second-order) self-energy obtained
by this method becomes exact in both the weak-coupling limit (U/t — 0)
and the strong-coupling limit (U/t — oo) in the particle-hole symmetric case.
Thus, the IPT approximation is expected to provide a correct result even in
the strong-coupling regime in the special case [18|. In the case, the IPT ap-
proximation for the self-energy automatically satisfies the conservation law
of the number of particles. However, one cannot determine the self-energy by
which the conservation law is satisfied in the particle-hole asymmetric case any
more. (Recently, the modified IPT, which one can apply to the particle-hole
asymmetric case, was developed by Kajueter et al. [29].)

Numerical renormalization group method

The numerical renormalization group method was applied to solve the effective
impurity problem by Sakai and Kuramoto [30]. This is a powerful method
to study the low-temperature or low-energy limit case. One can obtain the
wave functions and the dynamical response functions by the method. Sakai
and Kuramoto applied the method to the half-filled case and calculated the
density of states of the system. However, it is difficult to extend the method
to finite temperatures.

Exact diagonalization method

Caffarel and Krauth presented a method using the exact diagonalization of an
impurity Anderson model with a finite number of sites [31]. In the method, one
approximates G(iw, ) in the DMFT with the bare impurity Green’s function of
a finite-size cluster of an impurity Anderson model; G is fitted using the finite
parameters of the impurity Anderson model. After fitting, one diagonalizes the
cluster of the impurity Anderson model, and calculates the impurity Green’s

11




function using the wave functions of the cluster. The local Green’s function
G(iw,) of the original lattice corresponds to the impurity Green’s function in
the DMFT. Thus, one can determine the final G(iw, ) self-consistently by above
procedure together with eqs. (2.2) and (2.8). One can obtain the information
about the wave functions of the original lattice problem using this method.
However, at finite temperatures, one can calculate the Green’s function only
for a small cluster. (For a very large cluster, one can not calculate it even at
absolute zero.)

Quantum Monte Carlo method

The Hirsch-Fye algorithm of the quantum Monte Carlo method [28] was used
to calculate various physical properties of the single-band Hubbard model
24, 25, 32, 33, 34, 35]. Though the method is not suitable to study the
properties at low temperatures, it is powerful to investigate the system at finite
temperatures. By using the method, the Mott transition was discussed at half-
filling [24, 25, 32, 33]. Besides, Jarrell et al. discussed the antiferromagnetic
instability near the Mott transition and obtained the spectral functions of the
one-particle excitation and the spin excitation by this method together with
the maximum entropy method [24, 25]. Saso and his collaborators calculated
the magnetization curve [34], and obtained the one-particle- excitation spec-
tral functions under a finite magnetic field by the maximum entropy method
[35].

We study one-particle-excitation spectral functions in the wide region from
the low energy to the high energy. In the thesis, we use the Hirsch-Fye al-
gorithm of the quantum Monte Carlo method together with the maximum
entropy method.

12




Chapter 3

Model and Formulation

In this chapter, we introduce the model which we use in the thesis, and show
the formulation of the calculation in the present study.

We first briefly review the Zaanen-Sawatzky-Allen’s diagram [2]|, a qual-
itative classification for the transition-metal compounds, in Section 3.1. We
introduce the two-band Hubbard model in Section 3.2. In Section 3.3, we show
the procedure to calculate the one-particle-excitation spectral functions.

3.1 Transition-metal compounds and Zaanen-
Sawatzky-Allen diagram

After the studies by Mott [4, 5, 6] and Hubbard [11], it had been vaguely
believed that the insulating phase of transition-metal compounds was caused
by the Coulomb interaction energy U of 3d electrons and the magnitude of the
gap is roughly given by U. (Such insulating materials are called Mott-Hubbard
insulators.)

However, for NiO, Fujimori et al. carried out the local-cluster (NiOg’")
calculation, and pointed out that in order to interpret the photoemission
(electron-removal) spectrum of NiO it is needed to take account of not only
the 3d band but also the ligand band [36]. In the photoemission and inverse-
photoemission spectroscopic experiments, Sawatzky et al. observed the exci-
tation gap, and concluded that the gap is not solely determined by the Ni 3d
Coulomb interaction (or the gap was not proportional to the Coulomb inter-
action), namely NiO was not a Mott-Hubbard insulator in the narrow sense
[37].

Following these studies, Zaanen, Sawatzky and Allen (ZSA) presented a
phase diagram in which the transition-metal compounds were qualitatively

13




classified [2]. They calculated the energy gap Eg,, using the impurity Anderson
model in which the transition-metal ion is treated as an impurity.

In the Mott-Hubbard theory it is assumed that the lowest charge excitation
is caused by the type djd} — d?’%?“, where ¢+ and j label sites of the
transition-metal ions and n labels the d-orbital occupation. On the other hand,
in Ref.[2], ZSA pointed out that there is another type of the charge excitation.
It is the charge-transfer-type excitation, d* — d*'L, where L denotes a hole
in the anion valence band. The charge-fluctuation energy associated with this
process is denoted by A (Fig. 3.1) [2].

3 I8 ¢

didi —

Figure 3.1: Total-energy-level diagram corresponding to an ionic ground state
and excitations [2].

In ZSA’s calculation, there are four parameters; the charge-transfer energy
A, the Coulomb interaction between 3d-electrons U, the anion valence band
width W, and the hybridization between a 3d-electron and anion valence band
t. All parameters are scaled by t. ! For a fixed W, free parameters are A and
U. The Mott-Hubbard insulators are in the region A > U and the charge-
transfer insulators are in U > A [2] (Fig. 3.2). They are distinguished by the
lowest-charge-excitation energy corresponding to Egqp,.

Since the electronegativity of the transition metals tends to increase as the
atomic number increases, A is expected to be small in Co, Ni, and Cu. Thus
it is expected that the insulating compounds of the light transition metals (Ti
and V) are the Mott-Hubbard insulators and those of the heavy transition
metals (Co, Ni, and Cu) are the charge-transfer insulators. In fact, it was

In Fig. 3.1, w denotes the d-band width, which is neglected in the impurity Anderson
model.
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pointed out that mother materials of the high-7T, cuprates are charge-transfer
insulators (see Section 4.1) [42, 43, 44, 45].

A

charge-transfer-type
' insulator

p-type |
metal Ezzﬂpoc A

Mott-Hubbard -type
insulator

Egupoc U

d-type metal

W2 X

Figure 3.2: Simple phase diagram showing the various types of insulating
and metallic states in transition-metal compounds. (Zaanen-Sawatzky-Allen
diagram [2].)

In the thesis, we study both the charge-transfer-type system and the Mott-
Hubbard-type system. We investigate the carrier concentration dependence of
the one-particle-excitation spectral function in the former, and the effect of
p orbitals in the latter. Thus, we need to consider the degree of freedom of
p orbitals, and should use a multi-band model which includes p orbitals. Let
us introduce a simple multi-band model, the two-band Hubbard model in the
next section.

3.2 Two-band Hubbard model

One of the standard models to study the strongly correlated systems is the
Hubbard model. In the model, the anion p orbital is neglected simply. Here-
after we refer to the model as the single-band Hubbard model. Since we
investigate the effect of the p orbital, the single-band Hubbard model is not
sufficient.

In the thesis, we consider the two-band Hubbard model. The model has
two atoms (sites) per unit cell, i.e., the lattice structure is different from the




perovskite-type structure. However, we believe that the two-band Hubbard
model is sufficient to study the effect of the anion orbital as long as we do not
treat the effects of the band structure or the symmetry of the wave functions.

The two-band Hubbard model is defined on a bipartite lattice which con-
sists of two sublattices. We denote the sublattices as M and L. The sublattices
M and L correspond to the transition-metal ion sites and the ligand anion (O)
sites, respectively. The Hamiltonian of the model is defined as follows;

Haa=s 3 3 (dl,p,g +Hec)+eqg Y, dl,dw L pzTng

L 1€EM, o l€L,o

+ Uy dei dei, Sl
i1 Tll !
ieM

where the operators d;, ((II,) and py, (p,t) annihilate (create) fermions with
spin o on sites (€ M) and [(€ L), respectively. Throughout the thesis, we
refer to the fermions in the above expression as "holes’, because the hole rep-
resentation is useful for the description of the high-T, cuprates.

R s v
LT
& UAH_ |L ‘

d

Figure 3.3: Schematic representation of the two-band Hubbard model.

The transfer energy is expressed by t which is defined between the nearest
two sites on the M sublattice and the L sublattice. The on-site Coulomb
interaction energy on the M site is expressed by Uy. The charge-transfer energy
A is defined by A = ¢, — g4 where ¢4, is the d(p)-orbital energy. We set the
d-orbital energy to be lower than the p-orbital energy, i.e., A > 0. Schematic
representation of the two-band Hubbard model is shown in Fig. 3.3.

3.3 Formulation

We show a set of equations of the Green’s functions in the self-consistent pro-
cedure of the two-band Hubbard model in Sec. 3.3.1. In the procedure, we
calculate the imaginary-time local Green’s function by the Hirsch-Fye algo-
rithm of the quantum Monte Carlo method (Appendix B.1), and obtain the
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spectrum from the imaginary-time local Green’s function by the maximum
entropy method (Appendix B.2).

In Section 3.3.2, a method of the calculation of the one-particle-excitation
spectral function by the single cluster of the two-band Hubbard model is shown.
We will compare the one-particle-excitation spectral functions obtained by the
quantum Monte Carlo method and the maximum entropy method with those
by the single-cluster calculation in Section 4.2 and 5.2.

3.3.1 Self-consistent equations in DMFT

We mainly calculate the d (p)-component of the spectral function p?)(w),

1

w) = —=ImG¥P)(w + i6)]5-04, (3.2)
T

where GU?)(w + i6) is the d(p)-component of the retarded Green’s function.

The d(p)-component of the local Matsubara Green’s function is defined as the

Fourier transformation of the imaginary-time local Green’s function G4 (7) ;

Gliwg ) = /Berd(r)eW, Gd(T)E—<TT[dm(T)d,L(O)]>, (3.3)

0
: 4 i , t
GP(iw,) = J drGP(1)e“"", GP(1) = —(T:|pis(T)P,(0)]),  (3.4)
where T is the imaginary-time ordering operator, w, = (2n + 1)7/f3 is the
Matsubara frequency and 3 = 1/T is the reciprocal temperature (here we
set the Boltzmann constant kg = 1). Since we assume a paramagnetic phase
of the system, the spin indices of the Green’s functions are omitted. In the
above expression, the expectation values are calculated by the grand canonical
—B(H—pN

partition function = = Tre ) where s is the chemical potential and N

is a number operator of the d- and p- holes; N = e dl,d,-(, B i p):ph,.
By using the self-energy ¥(iw, ) of the d-hole, the local Matsubara Green’s
functions are expressed as follows;
Wi ~Fifs — &5

di{z = 1 =
es) ./( VpO(V)(iwn + p— g — S(iwy))(iwn + 1 — €p) — v*
@iwn) = [ avpo(v)

iw, + p— g — X(iw,

(iwn + p — €q — B(iwy))(iwn + p — &) — V%

In eq.(3.5), po(v) is the density of states in the case of Uy = 0 and A = 0,
1

po(v) = EZ&(V—S([@))‘ (3.6)
k
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where £(k) is the Fourier transformation of the hopping energy in (3.1), and Ny,
is the number of sites. Only po(v) has the information of the lattice structure
in the DMFT. In the present study, we assume a semi-circular density of state;

it & {<2ﬂ>1m (for |v] < 2¢)

; (3.7)
0 (otherwise).

The merits of using the semi-circular density of states are that (1) we can

precisely define a gap in the spectral functions and (2) we can calculate the
integral for v in eq.(3.5) analytically.

The d-component (pd(w)) and the p-component (ph(w)) of the density of
states for Uy = 0 are expressed as follows [38];

d(p)
/’op (w) = {

(©)

p)(w —€4)) (for 0 < (w —&,)(w — €a) < 482),

(otherwise).
(3.8)
We show the structures of them in Fig. 3.4. In Fig.3.4, I is given by (v/ A2 + 16t2—
A)/2 from eq.(3.8).
2() ) T T H T
e N7 ]
S i
7 |
- 1.0} Hy ]
S &) ]
< P
0.5¢ S -
0.0 TSN o
-5 -2 -1 0 1 2

Figure 3.4: Spectral functions for U; = 0, A = 3, and nyy = 1; solid and

broken lines denote d-component and p-component, respectively. The vertical
thin line show the position of the chemical potential.

In the DMFT, we introduce the Green’s function G(iw,) which has the
information about the effective medium excluding the “impurity” site (see
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Chapter 2). We can express the d-component of the local Green’s function by
using ¢;
G4(iwn) ™" = G(iwn) ™! — (iwy). (3.9)

After carrying out the integral in (3.5) analytically, we have a set of the equa-
tions by eliminating ¥(iw, ) from (3.5) and (3.9) as follows; [38]
"'n~1 = .n e *tsz“wn,
i A R e (3.10)
GP(iw,) = Wy + @ — & — G iy, ).

If we calculate G from G, we can complete the self-consistent procedure
in the DMFT. We use the Hirsch-Fye algorithm of the quantum Monte Carlo
method (see Appendix B.1) to calculate G¢ from G.

We explain the procedure of the Hirsch-Fye algorithm within the DMFT
as follows. For an appropriate initial G (iw,),

1. G(iw,) is obtained from G%(iw,) (through GP(iw,)) using eqgs.(3.10);
2. G(m), the inverse Fourier transformation of G(iw, ), is calculated;

3. the new Green’s function G¢_ () is obtained by the Hirsch-Fye algo-
rithm from G(7;);

4,438 (iw, ), the Fourier transformation of G%__(7;), is calculated; and

new new

5. G4 (iw,) is used as new input of the procedure 1.

new

74 . (iw, ) coincides with G4 (iw, ).
After the convergence, we obtain the one-particle-excitation spectral function
p(w) from G?(7;) by the maximum entropy method. The formulation and the
reliability of the maximum entropy method are discussed in detail in Appendix
B.2.

The self-consistent procedure is iterated until G¢

3.3.2 Single-cluster calculation

The Green’s function in the spectral representation cannot be obtained by the
quantum Monte Carlo method and the maximum entropy method. Namely,
we cannot directly obtain the initial and final electronic states of the one-
particle excitations from the spectral functions calculated by the methods. In
order to analyze the spectral functions obtained by the quantum Monte Carlo
method and the maximum entropy method, we also carry out another type
of the calculation by which we can obtain the initial and final states of the
one-particle excitations.

19




We calculate the d-component of the spectral function using a cluster con-
sisting of one “transition metal” site and z “O” sites. Since electrons are
localized in the insulating states, the translational invariance, which is ne-
glected in this single-cluster calculations, is not so essentially important as in
metallic states. Thus it is expected that the single-cluster calculations give
reliable results for insulating states. The calculation by using a single cluster
have been successfully applied to the analysis of the photoemission spectra
of the insulating transition-metal compounds [36] and of the undoped high-T,
cuprates [39, 40].

The Hamiltonian of the single cluster is defined by

f z
)H(‘ =8 e — Z Z(dipla i H() Sheves) Z (11(1(,
\/;1:1 o loa
+ &Y Y o+ Udldidld,. (3.11)
=1 w&

We solve the Schrodinger equation for the cluster Hamiltonian (3.11),

He|¥m)) = B |90, (3.12)

m

where |¥(")) is the mth excited n-particle eigenstate, and E{™) is the cor-
responding eigenvalue of the cluster. The d-hole spectral function pd(w) at
T = 0 can be calculated by

1 2 2] 5
) = 52 NERl|e)Pow - (BY - B))

o!

+ [ 2Od, |5, 6w — B")), (3.13)

where |¥(%)) is the vacuum state. (The one-particle ground states \Ilglg), ot =]
, 1) are doubly degenerate.) The first term in the square brackets represents
the hole-addition (or photoemission) spectrum and the second term the hole-
removal (or inverse photoemission) spectrum.
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Chapter 4

Charge-transfer-type systems

In this chapter, we study the charge-transfer-type systems, in which the 3d
Coulomb interaction energy U, is larger than the charge-transfer energy A.
The high-T, superconducting cuprate is a typical charge-transfer-type system.
One of the important problems is how the itinerant states are formed when the
carriers are introduced into the insulating mother material. In order to solve
the problem, we study the doping dependence of the one-particle-excitation
spectral functions in the two-band Hubbard model.

In Section 4.1, we briefly review the results of the high-energy spectroscopic
experiments, and other theoretical studies which treated the spectral functions.
Then we show the purposes of the present study. The numerical results are
shown in Section 4.2; we show the one-particle-excitation spectral functions
in the insulating phase and the carrier number dependence of them in the
metallic phase. Finally, we give a summary and discussion in Section 4.3.

4.1 Introduction

In the high-T. cuprates, a lot of experimental studies have been carried out
to clarify the character of the itinerant electronic states. The high-energy
spectroscopy is one of the important methods to investigate the electronic
states, because one can directly obtain the occupied or unoccupied electronic
states from the transition probability of the one-particle excitation. It has
indeed revealed [41] that (1) the doped carriers enter O p-orbitals rather than
Cu d-orbitals [42, 43, 44, 45]; and that (2) the d-p hybridization between the
O p- and Cu d-orbitals is strong [40].

However a comprehensive understanding of the formation of the itinerant
electronic states on carrier doping is still lacking. For the doped system the
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various models were suggested [46]: for example, (i) the doped charge-transfer-
type insulator model where the chemical potential simply shifts as in a rigid-
band picture, (ii) the impurity-band model where a narrow impurity band is
formed within the charge-transfer gap, and (iii) the filled-gap model where the
charge-transfer gap is simply filled up.

In the high-energy spectroscopic experiments it was shown that when the
carriers are doped into the system the spectral weight transfers from the high-
energy region to the low-energy region [47, 48|, and the change of the spectral
functions is different from a simple rigid-band picture (i); in the rigid-band
picture the spectral weight does not transfer.

However, it is still unclear whether the narrow peak appears or not on car-
rier doping; Romberg et al. concluded that no narrow impurity states were ob-
served in their electron energy-loss spectroscopic experiments on Las ,Sr,CuQO4
(LSCO) [49]. On the contrary, in valence-band photoemission spectroscopic
experiments on LSCO, Fujimori suggested the formation of the localized states
and the narrow impurity band within the charge-transfer gap [41].

On the other hand, many theoretical studies have been also carried out to
investigate the change of the electronic states on carrier doping. In the several
studies using the d — p model, which is one of the models which describes the
CuO, plane [50, 51|, the itinerant electronic state which appears on carrier
doping was investigated.

The studies by using infinite-Uy models showed that the new electronic state
is formed in the charge-transfer gap [52, 53, 54], and that the quasiparticle-
like excitation peak appears and the charge-transfer gap is filled up [55] as the
carrier concentration increases.

By the exact diagonalization of the two-dimensional cluster of 2 X 2 unit-cell
system [56] and the one-dimensional cluster of CusO43 [57], it was concluded
that there is the peak structure corresponding to the singlet state caused by
the d — p hybridization in the insulating phase, and the Fermi level shifts into
the peak and the system becomes metallic.

In the above theoretical studies, it was shown that in the metallic phase
the peak structure exists near the Fermi level. However, there are differences
between these results for the changes of the spectral function near the Mott
transition; in the studies using the infinite-U; model the peak structure near
the Fermi level is absent in the insulating phase and grows with doping, and
in the studies using the finite-size cluster the Fermi level shifts into the peak
which already exists in the insulating phase.

Thus, there are some open questions. (1) Does a sharp peak structure
emerge near the Fermi level when the carrier concentration increases 7 (2)
Does a singlet-state peak in the charge-transfer gap already exist at ny = 17
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In the present study, we would like to answer the above questions and to
clarify the character of the itinerant electronic state in the metallic phase.

4.2 Numerical results

In the present section, we mainly show the numerical results of the one-particle-
excitation spectral functions obtained by the quantum Monte Carlo (QMC)
and the maximum entropy (ME) methods ! .

We first survey the overall structure of the electronic states by plotting the
number density of the electrons against the chemical potential, in Section 4.2.1.
In Section 4.2.2, we show the spectrum at n¢,; = 1, where it is expected that
the system is in the charge-transfer-type insulating phase. The spectra in the
hole-doped and electron-doped cases are shown in 4.2.3 and 4.2.4, respectively.
The results of doping dependence of mass enhancement are shown in 4.2.5.
Throughout the present section, we mainly treat the case with U; = 5 and
A = 3. (The energy is scaled by t.)

4.2.1 u — n plots
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Figure 4.1: Plot of the total hole number density n, (solid circles), the d-
hole number density ny (open circles), and the p-hole number density n, (solid
squares) against the chemical potential. (j is defined in the text.)

We show the number density n of holes as a function of the chemical potential
i [38]. Hereafter, we refer to such a plot as a ¢ — n plot. We mainly show

'W; refer to the spectral function obtained by the QMC and ME methods as the QMC-
ME spectral function.
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i —n plots at 3 =8 and L = 32.

In Fig. 4.1, we show a typical g — n plot. (The statistical error of the
i — n plot is discussed in Appendix B.1.) Note that the chemical potential is
measured from d-level ¢, in the figure; we define i = pu — 24.

A remarkable fact is that a plateau develops at ny,, = 1 for 0.5 < 1 S 1.5.
This implies that there is a gap and the system is an insulator at ny,; = 1. The
gap E,,, is estimated as Fg,, >~ 1. As is expected, it is a charge-transfer-type
insulator at ny,y = 1, because (1) when the total number density increases from
Niot = 1 (jt & 2), the d-hole number density remains almost constant ng ~ 1
before the p band is filled, and (2) the gap F,,, increases as a charge-transfer
energy A increases (Fig. 4.2).

Figure 4.2: Plots of ny, against pu for various A; A = 2 (open circles), 3 (open
squares), 4 (open triangles).

4.2.2 Spectral functions : insulating phase

We first show the spectral functions for insulating phase. Hereafter, we put
e, = 0. We mainly show the data at 3 = 8 and L = 64.

In Fig. 4.3, we show the spectral functions for ny,y = 1.00. We find that
two large peaks develop around w ~ ¢4 and around w ~ g4+ Uy in p(w); they
should correspond to the lower Hubbard band (LHB) and the upper Hubbard
band (UHB), respectively. On the other hand, the p-hole spectral weight is
almost concentrated around w = &,(= 0). * Both d- and p-hole spectral
functions have a gap; it is the charge-transfer (CT) gap. The CT gap develops

2Tn the calculation of the p-component of spectral function p?(w) by the ME method, we
should use the statistical errors for G?(7;) themselves. However, we use the statistical errors
for G4(7;) for those for G?(7;) for simplicity.
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between the LHB and the p-band. The chemical potential is in the CT gap,

and the system is in the insulating phase. *

I ey T T T T T T T T T T

0.8} ]

0.6 | ]

p(w)

0.2+

Figure 4.3: Spectral functions for the d-component (solid circles) and the p-
component (open circles) in the insulating phase ny; = 1.00 at © = —2.0. The
vertical thin line show the position of the chemical potential.

It is expected that the distance between the LHB and UHB increases as
U,y increases and the CT gap develops as A increases. The QMC-ME spectral
functions for the various sets of parameters, (Uy, A), are shown in Figs. 4.4.
We find that the results are indeed consistent with the above expectations.

In Fig. 4.4, we also compare the spectral functions with those obtained by
the single-cluster calculation. In each case, we can find that the positions of
the spectral lines agree with the positions of the main peaks in the QMC-ME
spectra. It suggests that the single-cluster calculation is valid in the insulating
case.

The most remarkable fact in Fig. 4.4 is that the d-hole spectrum p?(w) has
a peak just below w = ¢,. We investigate the hole-addition state corresponding
to the peak by the single-cluster calculation. We analyze the case with U =5
and A = 3 in detail (Fig. 4.4(a)) (see Appendix D). The ground state \Ilgla)
at nyy = 1 is dominantly a |d') state (|a?|?> = 0.92). The line corresponding
to the peak (w = —0.8) we are interested in is caused by the transition to a
a®|? = 0.76). The spectral line

appears below w = ¢,, because \I!gl) reduces its energy eigenvalue by the d-p

singlet state ¥\") dominated by a |d!p') state (

3Strictly speaking, there is a finite intensity at the chemical potential. However, we refer
to the present case ni,t = 1 as an insulating phase, because the intensity at the chemical
potential is smaller than 10~°.
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hybridization. This can be understood from the perturbation theory in the
d — p hybridization energy t applied to the single cluster. For Uy > A > t,
the energy of \IJBQ shifts from ¢4 to ¢4 — t*/A and that of \I/g“)) shifts from
Ept+Eqtoe, + 64— 22 /(1/(Uz— A) + 1/A). Thus, the spectrum line appears
w=¢e,—2t%(1/(Us— A)+1/(2A)) < &,. The absolute value of the energy gain
of \Ilgz) corresponds to the energy difference between the (d'p') triplet state
and )", and it tends to be the exchange energy 2Jx = 2t%(1/(Ug— A)+1/A)
between a localized d-spin and a p-hole.

U=5, A=3

(a)

plw)

Figure 4.4: Comparison of QMC-ME spectral functions (solid line) with those
obtained by the single-cluster calculation (hatched bars) for various sets of
parameters, Uy and A ; (a) (Ug, A) = (5,3), (b) (6,3), (c) (6,4), and (d) (7,4).

We can thus conclude that the central peak of p%(w) in the QMC-ME
spectrum is dominantly caused by the hole-addition excitation from a d' state
to a local d'p' singlet state. Hereafter, we refer to the peak as the local d — p
singlet peak.

In Fig. 4.4, the LHB and UHB are observed at the positions slightly lower
than ¢; and higher than e; + Uy, respectively. (The lower Hubbard level
and the upper Hubbard level become ¢4 and ¢4 + Uy in the atomic limit.)
For U; > A > t, the energy of the state which is dominantly |d?) shifts
from 2e4 + Uy to 264 + Uy + 2t2/(Ug — A). Thus, the hole-removal excitation
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energy corresponding to the LHB (d' — d°) becomes 4 — t?/A < £4 and the
hole-addition excitation energy corresponding to the UHB (d' — d*) becomes
ea+Us+22/(Us— A)+ /A > e+ Uy .

4.2.3 Hole-doped case

In Figs. 4.5 we show the d-hole spectral functions p?(w) and the p-hole spectral
functions pP(w) for different values of ny: from nyo; = 1.00 to 1.28.

e e i s S

(a) n “:] 00 (¢) N n = 1.16

0.8}

0.8}

i
(u=-2.0) (u=-1.0)
P
0.6} i1
041 i
bt
02 [
|
—_ \.
) 0 S~ >
é ! v ; R e e
(b) n =103 (d) 4 n =128
0.8 !”‘! (u=-1.4)1 08 r’, (u=-0.8) 1

Figure 4.5: Carrier number dependence of the d- (solid circles) and the p- (open
circles) components of the spectral functions: (a) ny; = 1.00 (x = —2.0), (b)
1.03 (—1.4), (c) 1.16 (—1.0), and (d) 1.28 (—0.8).

It is remarkable that when the system is doped with holes, a new peak de-
velops below the local d — p singlet peak, and the chemical potential shifts into
the new peak. As the hole number increases, the new peak is sharply evolved,
while the intensity of the LHB is decreasing (Figs. 4.5(b) and (c)). It shows
that the spectral weight for the higher-energy-scale excitation transfers to the
region near the chemical potential, and forms the sharp peak corresponding to
itinerant states. In the metallic state, the p-hole spectral weight at the chem-
ical potential is nearly the same as the d-hole spectral weight (Fig. 4.5(d)).
This implies that p-holes and d-holes are strongly hybridized to form itinerant
states.
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In Fig. 4.6, we show the evolution of the new peak in the total spectral
function pyoi(w) = p?(w) + pP(w). This shows that the new peak grows rapidly
and the CT gap is filled up as the number density of holes increases.

We have found that upon doping a peak emerges near the local d — p
singlet peak and the corresponding electronic state becomes itinerant, and the
itinerant state is formed by the strong hybridization between p-holes and d-
holes. These suggest that the itinerant state in the metallic phase originates
from a d — p singlet state.

1
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Figure 4.6: Carrier number dependence of the total spectral function pyo(w):
(a) Nyt = 1.00 (. = —2.0), (b) 1.03 (—1.4), (c¢) 1.16 (—1.0), and (d) 1.28
(—0.8).

The suggestion is also supported by the exact diagonalization (ED) method
within the DMFT framework (see Appendix C) [58]. In the method, we can
obtain the information of the electronic state in the present model by inves-
tigating the corresponding electronic state in the impurity Anderson model
which approximate the effective impurity problem in the DMFT. Figures 4.7
show the spectral functions obtained using the ED method (the ED spectra)
[58]. We show the ED spectra at the same chemical potentials as those used
in the calculation of the QMC-ME spectra (see Fig. 4.5). Though the spectral

function can be calculated at any temperature for N, = 5, * only the results

4Since one has to use the Lanczos method for the large-size cluster, the calculation for
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at J = 8 are shown here. We have found few changes of the spectrum even
at lower temperatures [58]. In the figures, é-function peaks are replaced by
Lorentzian peaks with the width = 0.1.

p(w)

S}

Figure 4.7: The ED spectra at various chemical potentials: (a) u = —2.0, (b)
—1.4, (¢) —1.0. Solid and broken lines indicate the d- and p-component of the
spectrum, respectively.

We find that the all main peaks in the QMC-ME spectrum, such as the
UHB, the LHB, the local d — p singlet peak, and the large peak around w ~
e,(= 0) in pP, also appear in the ED spectrum. ° In the insulating phase

N, larger than 5 can be carried out at only absolute zero.
®Though one cannot distinguish the metallic phase and the insulating phase by only the
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(Fig. 4.7(a)), there is a peak caused by the transition from a d' state to a d'p'
singlet state just above the gap. (The peak corresponds to the local d — p
singlet peak in the QMC-ME spectrum.)

When the carriers are introduced into the system, the chemical potential
shifts simply into the peak (Fig. 4.7(b), 4.7(c)). In the case of Fig. 4.7(c), in
the impurity Anderson model, the initial state of the one-particle excitation is
dominantly the singlet state between the 'impurity orbital’ and the ’conduction
electron’ (see Appendix C). Since the 'impurity orbital’ corresponds to the d
hole in the original model, it has been shown the initial state is a d — p singlet
state [58]. It implies that the itinerant state in the metallic phase has the d —p
singlet character.

4.2.4 Electron-doped case

We have also studied the electron doped case, i,y < 1. The QMC-ME spectral
functions are shown in Fig. 4.8. We cannot find any remarkable changes in the
p-component on electron doping. According to the p — n plot of the system
(see Section 4.2.1), in the case of nyy < 1, the p-hole number density n, is
almost zero. Thus, it is expected that the electron doping does not affect the
p-band.

As electrons are introduced, the structures of the hole-addition spectrum
(w > p), such as the UHB peak, are leveled and turned into a broad single-peak
structure. On electron doping, the CT gap is also filled in and the chemical
potential shifts into the LHB peak. Then, the system becomes metallic (the
spectrum has a finite intensity on the chemical potential). In this case, how-
ever, a prominent peak is not observed at the chemical potential; the chemical
potential simply shifts into the LHB peak. The change in the chemical po-
tential is thus asymmetric with respect to hole and electron doping in the
charge-transfer-type insulators.

One of the possible reasons why the peak structure is not observed in
the electron-doped case is the peculiar band structure of the present model
(Section 3.3.1). In the free (U; = 0) case, no peak structure forms at the
chemical potential. Even in the interacting case, since the d-hole correlation
effect decreases for the electron-doped case in the present model, it is possible
that the peak structure does not appear in the electron-doped case. Another
possibility is that the temperature in the present results is so high that the
peak cannot be observed. A further study is needed to investigate these points
in detail (see also Section 5.2.2).

spectral functions, we refer to the case at x4 = 2.0 as the insulating phase, for convenience.
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Figure 4.8: Carrier number dependence of the d- (solid circles) and the p- (open
circles) components of the QMC-ME spectral functions in the electron-doped
case (ot < 1): (a) nyor = 1.00(p = —2.0), (b) 0.97(—2.8), (c) 0.93(—2.9).

4.2.5 Mass enhancement factor

Finally, we estimate the mass enhancement from the imaginary part Im¥(iw, )
of the self-energy. We define the mass enhancement factor (or inverse of the
renormalization factor) Z ! as follows;

. 9Z(iwn)

il |
Oiw,,

(4.1)
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n Im¥(ir/B) — ImX(—in/3)
2r /5

which is a measure of the dynamical mass enhancement.
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Figure 4.9: Carrier number dependence of Z~! at different temperatures: 3 =
4 (L = 32) (solid circles), 3 = 8 (L = 64) (solid triangles) and § = 16
(L = 64) (solid squares). The inset shows doping dependence of the imaginary
part Im¥(iw, ) of the self-energy at 3 = 8 (L = 64) : nyt = 1.00 (open circles),
1.01 (solid circles), 1.03 (solid squares), 1.08 (solid diamonds) and 1.16 (solid
triangles).

In Fig. 4.9, we show the mass enhancement factor against ny.(> 1) at dif-
ferent temperatures. We find that as the system approaches to an insulating
phase, the effective mass of a d-hole is strongly enhanced. Besides, at lower
temperature, Z ! is rapidly enhanced. This implies that the heavy quasipar-
ticles are formed near the insulating phase at lower temperatures.

We also compare the mass enhancement factor in the hole-doped case with
that in the electron-doped case in Fig. 4.10. The mass enhancement factor is
increasing as ny, tends to 1 in both cases. While the enhancement factor is
suppressed rapidly as the electrons are doped (n < 1), however, it is still
large away from ni, = 1 in the hole-doped case (ni, > 1). The correlation
in the hole-doped case is thus more effective than that in the electron-doped
case.
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Figure 4.10: Carrier number dependence of Z ! in the hole-doped case (no >
1) and the electron-doped case (ny; < 1) at 3 = 8 (L = 64). The inset
shows the imaginary parts Im3¥(iw, ) of the self-energy in the hole-doped case
(n4t = 1.01 : open circle) and the electron-doped case (0.99 : solid circle).

4.3 Summary and discussion

Summary

To summarize, we have calculated the spectral functions of the two-band
charge-transfer-type system, and have obtained the continuous carrier number
dependence of the spectral functions from the insulating phase to the metallic
phase. We have studied the changes of the spectrum for the low-doping region
which cannot be realized by the finite-size cluster.

What we have found are:

(1) When the total number density ny¢ = 1, a gap develops and the chem-
ical potential is in it, and the system becomes a charge-transfer-type insulator
for Ut ATt

(2) In the insulating phase, there already exists the local d — p singlet peak
in the charge-transfer gap. In the total spectral function pi(w), the peak is
not so prominent.
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(3) As holes are doped, another new peak develops just below the local d—p
singlet peak, while the spectral weight in the high-energy region transfers to
the low-energy region. The chemical potential shifts into the new peak and
the system becomes metallic.

(4) The itinerant state continuously evolves from the d — p singlet state.

(5) In the electron-doped case, a peak structure at the chemical potential
is not observed. Moreover the change of the spectrum is different from the
hole-doped case; while the UHB peak structure broadens, the LHB peak still
remains and the chemical potential simply shifts into the LHB.

(6) The behavior of the mass enhancement factor Z ! is also asymmetric
with the hole- and electron-doped case. The values of Z ! in the hole-doped
case are more strongly enhanced than those in the electron-doped case.

Discussion

The mass enhancement factor should be compared with the coefficient v of
the temperature-linear term in the electronic specific heat. The experimental
results of the high-T, cuprates show the asymmetry of the values of v; 7
of the electron-doped cuprates [59, 60] is smaller than that of the hole-doped
cuprates. [61] It is qualitatively consistent with our results. In the experiments,
however, v is not increasing when the system approaches to the Mott transition
(59, 60, 61] in contradiction to the present results. This may suggest the effect
of the momentum dependence of the self-energy becomes more important near
the Mott transition.

The d'p' singlet state in the present results corresponds to the d°L singlet
states in the electron representation. The existence of the d°L local singlet
states in the high-T, cuprates was inferred from a photoemission experiment.|62]
The authors emphasized that the singlet states preexist in the insulating phase.
Numerical calculations for the cuprates [39, 40, 56, 57| also showed the for-
mation of the local-singlet states in the insulating phase. Our calculations are
consistent with those results.

Some other theoretical studies by using the d —p model with the limit U; —
oo show that there is no structure in the charge-transfer gap (i.e., between the
LHB and the p-band) in the insulating phase and the new state arises around
the Fermi level inside the charge-transfer gap only when the carriers are doped
into the system [52, 53|. The behavior that the peak structure emerges near
the Fermi level is consistent with our results.

We conclude that our result suggests a picture which connects the existence
of the local d — p singlet peak in the insulating phase and the emergence of the
new peak structure corresponding to the itinerant state in the metallic phase.
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Zhang and Rice [63] claimed that the electronic states of the high-T, cuprates
could be described in terms of the local-singlet states moving around the sys-
tem. We have found the local d — p singlet peak appearing below w = ¢,. It
is caused by the energy gain of the strong hybridization between a d-hole and
a p-hole. We have also clearly shown that the itinerant states in the metal-
lic state originate from the local d — p singlet states in the insulating phase.
These results imply that the itinerant states locally have the character of the
singlet states, and suggests the following scenario of the formation of the itin-
erant state; once holes are introduced, the local singlet states overlap with
one another and form itinerant states, and the system turned into a metallic
phase. The results supports the description of the metallic phase in terms of
the local-singlet states for the low energy behavior.
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Chapter 5

Mott-Hubbard-type systems

In the Mott-Hubbard-type systems, the energy level of the 2p orbital in the
ligand anion lies away from the Fermi level and the charge-transfer energy A
is larger than the Coulomb energy U; between 3d electrons. The compounds
of light transition-metal, Ti, V, and Cr belong to this type of materials.

In this chapter, we study the behavior of spectral functions and clarify
how the spectral weight changes near the Mott transition when the ratio of
the Coulomb energy to the 3d band width changes in the Mott-Hubbard-type
system.

We briefly review some experimental results and theoretical analyses of
the Mott-Hubbard-type transition-metal oxides, and show the purpose of the
present study in Section 5.1. The numerical results of the Coulomb-energy
dependence of the spectral functions are shown in Section 5.2. In the section,
we also show the results of the mass-enhancement factors. In Section 5.3, we
summarize and discuss the present results.

5.1 Introduction

Fujimori et al. studied the evolution of the spectral function in SrVO3, LaTiOs,
and YTiO4 by the photoemission spectroscopic experiment [64]. The strength
of the effective electron correlation (the ratio of the Coulomb interaction energy
to the 3d band width) increases in the order StVO3 — LaTiO3 — YTiOs. It
was reported that the spectral weight is transferred from the region near the
Fermi level to the high-energy region with increasing the effective electron
correlation.

Inoue et al. then carried out a systematic study of Ca; ,Sr,VOj3 [65]. Both
CaVO; and SrVOj; are metallic. The correlation effect in CaVOj3 [66, 67] is
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larger than that in StVO; [68]. In Ca; ,Sr,VOj3, one can control the ratio of
the Coulomb interaction energy to the 3d band width by substitution of Ca
by Sr [65]. (The ratio of the Coulomb interaction energy to the band width
increases when = decreases.) Inoue et al. reported that as the interaction
becomes strong, (1) the weight is gradually transferred to the high energy
region, and (2) the spectral intensity near the Fermi level simply decreases. The
latter fact is in partial contradiction to the theoretical result for the single-band
Hubbard model; in the model while the integrated intensity near the Fermi
level decreases, the value of the spectral intensity at the Fermi level should be
invariant. The authors ascribed the discrepancy to the k-dependence of the
self-energy, which is neglected in the infinite-dimensional model.

In the present study, we study the effect of the p orbital in the change of the
spectral intensity at the Fermi level by using the two-band Hubbard model.
In the two-band Hubbard model, even if the self-energy is k-independent, the
intensity at the Fermi level is not always invariant (see Appendix E). We also
investigate how the spectral function changes in the present two-band model
when the carriers are doped into the Mott-Hubbard-type system. In the study
of the single-band Hubbard model by the DMFT [25], it was reported that a
narrow resonance peak appears near the Fermi level when the filling decreases.
We compare the results of the present study with those obtained using the
single-band model, and discuss the consistency and the difference between the
single-band and two-band model.

5.2 Numerical results

We first show, in Section 5.2.1, the u — n plots (see also Sec. 4.2.1) for var-
ious parameters to survey the overall structure the electronic states of the
present system. After showing a typical spectrum of the Mott-Hubbard-type
insulator, we show the evolution of the spectral functions when the Coulomb
interaction energy Uy becomes strong in Section 5.2.2. We also compare the
spectra with those obtained using the single-cluster calculation. Finally, the
doping dependence of the spectral functions are shown in 5.2.3. %

Throughout the present section, we fix the charge-transfer energy as A = 4.

Tn the present section, we refer to the fermions which we consider as “holes” to avoid
the confusion, although in the real Mott-Hubbard-type perovskite transition-metal oxides
the stable electron configuration of the transition-metal ion (Ti3* or V*1) is 3d1.
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5.2.1 p —n plots

In Fig. 5.1, we show a typical i — n plot of the Mott-Hubbard-type system at
B =8 and L = 32. In the plot, a plateau is observed at ny,; = 1 in addition to
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Figure 5.1: Plot of the total hole number density ny (solid circles), d-hole
number density ny (open circles), and p-hole number density n, (solid squares)
against the chemical potential for U; = 2.5.

4.0 : . - 2 . .
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Figure 5.2: Plot of the total hole number density ni: against the chemical
potential for various Uy; Uy = 1.0 (open circles), 1.5 (solid circles), 2.0 (open

squares), and 2.5 (solid squares).

a plateau at ny,; = 2, which corresponds to a conventional band gap. We find
that ng is increasing faster than n, in the region ny > 1. Thus, the plateau
means that the Mott-Hubbard gap develops at nys = 1. We also find that as
the strength of U, increases, the Mott-Hubbard gap increases (Fig. 5.2).
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5.2.2 Spectral functions : U; dependence

We first show a typical spectrum in the Mott-Hubbard-type insulating phase.
Figure 5.3 provides the spectral functions of d- and p-components for Uy = 2
(hereafter we show the data for L = 64). We find that there are large peaks
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Figure 5.3: Spectral function of d- (solid circles) and p-components (open
circles) for Uy = 2 at p = —3.5 and 3 = 8. The vertical thin lines show the
position of the chemical potential.

around ¢4(= —4), €4 + Uy(= —2) in the d-component, and ¢,(= 0) in the
p-component. These peaks should correspond to the lower Hubbard band
(LHB), the upper Hubbard band (UHB), and the p band, respectively. The
Mott-Hubbard gap develops between the LHB and the UHB, and the chemical
potential sits in the gap; the intensity at the chemical potential is smaller than
1072,

The U, dependence of the spectral functions is shown in Fig. 5.4(a) and (b).
It is clearly shown that the Mott-Hubbard gap develops as U, increases. The
intensity of the UHB of the d-component decreases and the spectral weight
transfers to higher-frequency region. It is also observed that the intensity
of the p-band decreases and the spectral weight transfers into the band gap
between the UHB and the p-band in the p-component spectrum. The behavior
is understood qualitatively as follows. In the present case of A = 4, as the
strength of Uy is increasing and is close to A, the difference of energy of the
hole addition excitation to the UHB and to the p-band is decreasing. Thus, the
intensity of the UHB is suppressed as Uy increases, while that of the p-band is
enhanced. The band gap between the UHB and the p-band is filled up.
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We cannot find a sharp peak structure at the chemical potential for any
value of U;. This is a marked difference from the results obtained for the
single-band Hubbard model by Jarrell et al. [25]. This point will be discussed
in Section 5.3.
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Figure 5.4: (a) d-components and (b) p-components of spectral functions (solid
lines) for the various Uy; Uy = 1.0,1.5,2.0, and 2.5 (from top to bottom). For
comparison, we also show the spectra for Uy = 0 obtained analytically (broken
thin lines). Note that we set the origin of frequency to the chemical potential.

Figure 5.5 provides the comparison of the d-component of the spectral
functions obtained using the QMC and ME method with those obtained using
the single-cluster calculation. For each value of Uy, both of the two peaks
(referred to as the LHB and UHB so far) in the spectrum obtained by the
QMC and ME methods are consistent with the two large peaks obtained by
the single-cluster calculation. The lower peak corresponds to the hole-removal
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excitation dominated by d' — d° and the upper one corresponds to the hole-
addition excitation dominated by d' — d*. (For example, |a?|*> = 94.7% in the
one-particle ground state and |a|?> = 84.3% in the two-particle ground state
for Uy = 1.0. The meaning of the coefficients a? and a? is shown in Appendix
D.) Therefore it is reasonable to call the two large peaks the lower and upper
Hubbard band, respectively.
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Figure 5.5: Comparison of the d-component of spectral functions obtained
using the QMC and ME methods (solid line) with those obtained using the
single-cluster calculation (hatched bars) for the various Uy; (a) Uy = 1.0, (b)
1.5, (¢) 2.0, and (d) 2.5. The vertical thin lines show the position of the
chemical potential.

We also find that the percentage of the |d*) state in the final state of the
UHB decreases as Uy increases. For U; = 1.0, the percentage of the |d?) state
is 84.3% and that of the |d'p') singlet state is 15.2%. On the other hand, for
U; = 2.5, the former is 68.4% and the latter is 30.2%. This result supports
the qualitative explanation for the decrease of the intensity of the UHB in the
QMC-ME spectrum for large Uj.

Since the single-cluster calculation is valid only in the insulating phase, as
mentioned in Section 4.2.2, it is not suitable to investigate the itinerant state
near the chemical potential in the metallic phase for Uy < 1.5. Namely, we
cannot answer the question whether a sharp peak structure is formed at the
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chemical potential or not by using only the single-cluster calculation.
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Figure 5.6: Spectral functions of d-hole for A = 4 and various U, at 3 = 16
(L = 64); Us = 1.0, 1.5, and 2.0 (from top to bottom). Note that we set the
origin to the chemical potential.

Figure 5.7: Plot of the mass enhancement factor Z ! against Uy at 3 = 8 (solid

circles) and 3 = 16 (solid squares). The inset shows the imaginary parts of
the self-energy at 3 = 8 for the various Uy; Uy = 0.5 (solid circles), 1.0 (open
circles), 1.5 (solid squares), 2.0 (open squares), and 2.5 (solid triangles).

A peak structure can be observed if the temperature is further decreasing.
In Fig. 5.6, we show the spectral functions for various Uy at 3 = 16. Even
at the lower temperatures, however, a sharp peak structure at the chemical
potential is not observed. This point is later discussed in detail.

43




Mass enhancement factor

We investigate the correlation effect on the mass enhancement factor Z 1,
which has been already defined by eq.(4.2) in 4.2.5. We show the Uz-dependence
of the mass enhancement factor in Fig. 5.7. We find that the mass enhance-
ment factor increases as Uy increases. At the lower temperatures, the effective
mass is strongly enhanced.

5.2.3 Spectral functions : doping dependence

It is also expected that the similar metal-insulator transition occurs and the
itinerant electronic states are formed when carriers are introduced into the
system. We study the evolution of the d-component of the spectral function
on carrier doping as we did for the charge-transfer-type system.

n =1.00

pl(m)

0.6
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Figure 5.8: Spectral functions of d-hole for various total hole density n¢. at
B = 16; (a) nyt = 1.00, (b) 1.01, (c¢) 1.02, and (d) 1.04. The vertical thin lines
show the position of the chemical potential.

Figures 5.8 provide the d-components of the spectral functions for various
values of the total hole density n,. We find that a peak structure is formed
and growing at the position just below the UHB when the total hole density
Niot increases . The chemical potential shifts into the growing peak. This
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implies that the change of the spectrum is not rigid-band-like and the peak
structure which corresponds to the itinerant electronic state emerges when the
carrier concentration increases.

5.3 Summary and discussion

Summary

To summarize, we have studied the spectral functions and the mass enhance-
ment factor near the Mott transition in the two-band Mott-Hubbard system.
What we have found are the following.

(1) As U, increases the Mott-Hubbard gap develops at the chemical poten-
tial in the spectral function.

(2) For any value of Uy, a sharp peak structure has not been observed at the
chemical potential. The intensity at the chemical potential simply decreases,
and the spectrum has a dip around the chemical potential as U, increases.

(3) The mass enhancement factor increases as Uy increases.

(4) A narrow peak structure is formed at the chemical potential when the
carrier concentration increases in the two-band Mott-Hubbard system.

Discussion

There are some possible explanations why a sharp peak is not observed when
U, increases. One of them is that the band structure of the model is peculiar.
In the present model, when U; = 0, the chemical potential does not sit in
the maximum of the free band at ny = 1 (see Fig. 3.4 in Section 3.3.1).
The whole band width is only narrowed by the renormalization effect for a
small U,;. In the present case, for a small U, even if the whole band width
is narrowed by the renormalization effect, the structure near the chemical
potential is almost invariant, i.e., it does not form a peak structure. (On
the contrary, for the single-band Hubbard model in the half-filled case, the
spectrum at the chemical potential becomes a sharp peak which corresponds
to the narrowed whole band, because the chemical potential always sits in the

maximum of the band.)

On the other hand, for a large Uy, the peak structure cannot be observed
when the temperature is so high. Jarrell reported that the peak structure at
the chemical potential is very sensitive to the temperature [25]. In the study
of the two-band Hubbard model using the modified IPT (see Section 2.2) [69],
it was also pointed out that the peak structure near the chemical potential




rapidly diminishes, and no trace of the peak is found when the temperature is
comparable to the width of it.

We estimate the width of a possible peak at lower temperatures at the
chemical potential. The quasiparticle band width T'* is renormalized by the
electron correlation as I'* = ZT', where I is the band width in the free system.
If we take the d-band width of the free two-band model as T' (see Fig. 3.4), T’
is estimated as I' >~ 0.83 for A = 4. Note that we take t = 1 as the energy
unit (see Section 3.3.1). Thus, the quasiparticle band width I'* is estimated as
I'"=ZI' ~ 0.15 (for U; = 2.5) at T' = 0.125 (3 = 8). Namely, the temperature
T = 0.125 is comparable to a possible band width of the quasiparticle. At the
lower temperature 7" = 0.0625, the effective mass is strongly enhanced. For
U; = 2.0, a possible band width is estimated as I'* ~ 0.08. It shows that
even at the lower temperatures (7' = 0.0625) the possible band width is also
comparable to the temperature. Thus, for a large Uy, the peak structure can
be suppressed by the temperature in the present results.

It is a future problem to study the effect of band structure in detail. In order
to obtain a definite conclusion about the formation of the peak structure in the
spectral function, it is also needed to study the system at lower temperature.

We have found that the mass enhancement factor increases as Uy increases
in the present results. In the experimental result, however, it was reported
that the mass enhancement factors estimated from the specific heat coeffi-
cient, the Pauli-paramagnetic susceptibility [70], and the photoemission spec-
trum [65, 71] are not so enhanced when the correlations become strong in
Cay_,Sr,VOj3. In the experimental study by the photoemission spectroscopy
(PES), the mass enhancement factor is estimated by fitting PES data with
the spectrum in which one assumes the phenomenological self-energy. In the
result, when the local self-energy is assumed, the effective mass is strongly
enhanced. Thus, it was pointed out that it is difficult to explain the effective
mass in the real system without considering the k-dependence of the self-
energy [65]. Besides, in Ref. [71], Inoue et al. suggested that it is important
to consider the long-range interaction in order to explain the absence of the
large mass enhancement. It is still an open problem whether the effective mass
near the Mott transition is enhanced or not in the presence of the long-range
interaction.

On the other hand, in connection with the analysis of the PES spectrum,
it was also pointed out the importance of the randomness and surface effects
in the sample materials. [72, 73|. Sarma et al. pointed out that with taking
into account the inhomogeneity of real systems one can provides results which
are in agreement with the experimental results even if one assumes that the
self-energy is local. This shows that the inhomogeneity of real systems can be
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important to analyze the spectrum obtained by the high-energy spectroscopic
experiments quantitatively, although the effect of the long-range interaction
may also be important.

In the carrier concentration dependence of the spectrum, the formation of
the narrow peak at the chemical potential implies that the renormalized band
of quasiparticle characterized by a certain energy scale (which corresponds to
the width of the peak) is formed when the carrier concentration increases.
The similar behavior was also observed in the spectral function obtained by
the DMFT in the single-band Hubbard model [25]. This suggests that the
description of the system in terms of the single-band model is valid as long as
we consider the low-energy region.
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Chapter 6

Concluding remarks

Throughout the thesis, we calculate the one-particle-excitation spectral func-
tion, and study the electronic states near the Mott transition in the two-band
Hubbard model by the DMFT framework.

We have shown that the change of the spectral function on carrier doping is
not rigid-band like one, and the peak structure corresponding to the itinerant
electronic states emerges near the chemical potential in the metallic side of
the Mott transition. These results suggest that the itinerant electronic state
is characterized by the energy scale corresponding to the width of the sharp
peak at the chemical potential.

It is also shown from the results that the quantum Monte Carlo method
and the maximum entropy method within the DMFT framework are useful to
describe the behavior of the spectral function near the Mott transition.

When we discuss the physics in the low-energy scale such as the dispersion
of the quasiparticle near the chemical potential, or the physics in the case
that the antiferromagnetic fluctuation becomes strong, the momentum depen-
dence of the self-energy becomes important, and an improved approximation
1S necessary.

However, we can conclude that the description of the strongly correlated
system using the DMFT is valid as long as we do not treat the properties in
the low-energy region. We would like to emphasize that the DMFT is one of
the useful methods to treat the correlation effects.

Future problems

There are some future problems.

e We need to consider a more realistic model, in which we treat the degen-
eracy of the d orbitals or the realistic band structure, in order to study
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the Mott transition or other phenomena in the real transition-metal com-
pounds.

In order to discuss the property at lower temperatures, the quantum
Monte Carlo method is not suitable. We are also interested in the method
by which we can investigate the property of the system at low temper-
ature including absolute zero within the DMFT framework (e.g. the
modified IPT method [29]).
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Appendix A

Derivation of the effective
action

In this appendix, we show the derivation of the effective action in the infinite-
dimensional limit [16]. We consider the single-band Hubbard model for sim-
plicity.

The Hamiltonian of the single-band Hubbard model is defined as follows;

H=- ) fij(('jﬂ(’j(, + H.c.) + UZ(‘]LT(’“CLC,-L — ;12(?1,01-(,. (A.1)
<1,j>,0 ) io

The partition function Z of the system is expressed by
Z = Tre#M (A.2)

s gty Aliny i

=  lim Tr{e
N — o0

= lim TrZy,
N — o0

where € = 3/N. In the path-integral formulation, the partition function Zy is
expressed by the Grassmann variables { 1,9 } as follows;

N 7(n+1) 7.(n)
i (n n wi(r T U’i(r (n - T(n- n
o= [ B {Tosttasten o (2200000 sz, i)
S =l o i
(A.3)
where K ({90}, {\™}) is the “Hamiltonian” expressed by the Grassmann

variables, and L"_’,f-;) and 1/75(',’) in K are arranged in the normal order. We obtain
the path-integral expression of Z as follows;

Z = /HDL’_’H,D@/’,-(,C’S. (A.4)
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where S is the action defined as;
3
S = / dr (A.5)
Jo

0 1
{Z Vio(T) | 72 — 1) Yio(T) = D tithia(T)Yjo(7) + U Z pir( )iy ()i (1) }-
ot o

Let us consider the effective action S.g defined by

1 [afs T 1 i &
ae——scmu::oWwJ = E/Hiiopllo’/"iapwiae S. (AG)

First, we divide S into three parts;

S = S g AR (A.7)
0 o - ‘
. /0 (lT{Z Yoo (T 5= — 1)V0oo (T) + U Yo1(T) Vot (7)o, (7)o (T)},
AS = 7/ dr {Ztuv{ﬁ’m l/’oa )+ 11’0(7 f'} (A8>

= - A dT{Z Z%m ’)10’ )+ ﬁiU(T)l‘/’iU(T)}'

where S(® denotes the action excluded a certain site o. and Nic = tioWoo and
Mie = tiolos. We calculate the effective action as follows;

oy | = z
bof /Hm’DU’iaDU”mf’*s(o)e’AS =" g e =0, o o)
§ o

Z
()’Seﬂ’
Lk Zeﬂ'
where < - .- > is defined by
1y i ] —5(0)
—/H,iobwmmm---c . (A.10)
i o
Carrying out the cumulant expansion,
o 22 \
c-ma B S LT O T S (A.11)
n=1

o4




we can obtain the effective action as follows;

St = ), Y /H{i}{j}dﬂa sl dry, - cody () oo, (5 e () e (1)

n 1 1]t

jl"'jn
(0) ¥ - ’ ‘
Gr]mix( G190 0 s Tzn,le,....T]'n)"{—bo, (AIZ)
jl"jz
where
0 i 7 ; ,
G(gl?uz.n (Tivy oo Tini Tivs o2 Tin ) =< Wiy (T51) - Bi (1395 (15 ) -+ - s (13,) >
31+
(A.13)

Let us estimate each term in n-summation of (A.12) by simple power counting.
Note that n; ~ 1/,/z because of the scaling of ¢;; ~ (1/4/2)7l.

Lo = TG
Since ¢ # j and 7, j # o, the distance between 7 and j is |i—j| = 2 at least.
The summations give a factor of order z; 3, ~ z and b M R e R

Since Gf-;)) ~ (1/4/z)" 7!, we obtain the overall factor of n = 1 term as

- (0) 2
Z ")i"]jGij 2 =
i vz

(A.14)

2. (2 n=24(60)

(a) (2-1): the case in which 4,7, k, [ are all different.

Since Gi?g, ~ (1/y/2)F31(1//2)*(1//Z)1 ~ 273 and a factor

2% 1s given by four summations; 3, ~ z, iR Sl B RS gy )
and >, ~ z — 4, we obtain the overall factor as
24 0 4]
Iy 1]1-7)]-'7),\.7]1G5jz,, ~ZzT. (A.15)
ijhl

(b) (2-2): the case in which ¢ = j and 7 # k,1
Since Gi?,\,)l ~ (1/4/2)*(1//2) ~ 272 and a factor 23 is given

by three summations; >3; ~ z, ¥y ~ 2z —1,and ¥, ~ 2z — 2, we
obtain the overall factor as
LR (0 L
o 7)i7]i7);\.1)1C1§I-,3, T o (A.16)
ikl




It is shown similarly that the overall factor of each term is at least of
the order of (1/z)*'. Thus, only n = 1 term, i.e., the term of the two-
point cumulant survives in the limit z — oco. Hence, we can obtain the final
expression of the effective action in the infinite-dimensional limit;

St = Z// d7d7 Gip (T)0j0 (T )CUU(T,T')

0 s "
+ /0 dT{Z Uoo D /L)Q/ ( ) i (Jl/”o’(T)lpoW (T)wol(T)'lf’J’ol(T)}f (A17>

8 _ n
—/0 . "drar’ wa )GTHT = )00 (T) + Ut (7) 01 (T) %oy (T)80) (T),

where G is defined by

grl(T—T/)E(S(T_TI) thof Gz;]()r (7, T) (A18)




Appendix B

The Hirsch-Fye algorithm and
the maximum entropy method

In Section B.1, we show the Hirsch-Fye algorithm [28] of the quantum Monte
Carlo method to solve the effective impurity problem in the DMFT as men-
tioned in Section 2.2. We can obtain the imaginary-time local Green’s function
of the system by the algorithm. In order to obtain the one-particle-excitation
spectral functions from the imaginary-time local Green’s function, we use the
maximum entropy method [74, 75, 76]. The detailed explanation of the maxi-
mum entropy method is given in Section B.2.

B.1 Hirsch-Fye algorithm of the quantum Monte

Carlo method

B.1.1 Hirsch-Fye algorithm

In the Hirsch-Fye algorithm (28], we start from a Hamiltonian which describe
a system of an impurity interacting with conduction electrons.

H = HO+H1>

H = U (’n‘%n‘f -3, nfﬁ) . (B.1)

In the DMFT, the impurity site, of which occupation number is described by
n?, corresponds to a certain site o on the original sublattice M of the two-band
Hubbard model, and the degree of freedom described by Hj correspond to the

effective medium (the dynamical mean field) excluding the site o.
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By using the Suzuki-Trotter breakup, the partition function of the system
is approximated for large L > 1 (L is the Trotter number) as follows;

L
7z = TreiBH:TrH(’ R (B.2)
1=1

L
~ TI'HeWATHO(’”ATHl.
=1

(B.3)

where A7 = 3/L. We decouple H; by the discrete Hubbard-Stratonovich
transformation with Ising variable s as,

d d
Tos =+ T
e A™H1 — exp {ATU (n?nff il L ) } (B.4)

2
= lz /\s(n$+'nid)
= 5 ‘ € -
Bxlt

(B.5)

where ) is defined as cosh A\ = e27V/2,

The local Green’s function G4(7;) of the d-hole at the discrete time 7, =
(Il = 1)A7 (I =1,...,L) is obtained as the Monte Carlo expectation value of
the element ¢(I,1') of the Green’s function matrix for a certain configuration
of {s;}. According to Hirsch and Fye, there is a relation between the Green’s

function matrix elements for any two Ising variable configurations, {s;} and

{si};

g(LU) = g(Ll) + D (g(1,1") = dun)(Xer o) — 1)g'(I", 1), (B.6)

1

where g and ¢’ are the matrix elements for two Ising variable configurations {s;}
and {s;}, respectively. One of the most remarkable features of the algorithm is
that the Monte Carlo samples g(l,1') are produced by only the equation (B.6)
of ¢g(1,1') themselves.

The Ising variable configurations are generated with a renewal probabil-
ity R(s; — ;). The renewal probability is also determined only by g(I,1')

themselves;
filg — &) = L4+ (1 — gl (e 0 = 1), (B.7)

Thus, we need not consider degree of freedom of the conduction electrons
explicitly. Namely, if one only gives the expression of the bare Green’s function
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as an input of the procedure, one can calculate the full Green’s function by
the algorithm. The remarkable feature enables us to use the algorithm within
the DMFT framework, because we have to calculate the local Green’s function
G%(7) only from G(7) in the DMFT.

B.1.2 Implementation of the quantum Monte Carlo
method

In the results of the thesis, we show one-particle-excitation spectral functions
only for the fixed value of L. This is because we have not found the distinctive
differences in the spectral functions obtained by the maximum entropy method
for the different values of L (see Fig. B.1. The parameters are as follows;
Usg =5 A=3 p=—10and § = 8). In the practical calculations we set

0.4

0.1

Figure B.1: L-dependence of the d-component spectrum for L = 32 (solid
circles) and L = 64 (open circles).

L = 64 mainly.

In the Monte Carlo sampling procedure, we divide the samples into Ny;,
groups (bins), each of which has M samples, and measure the standard devi-
ation among the Ny;, bins. The measurement is usually carried out at every
other Monte Carlo step in order to reduce the correlation between the sam-
ples. When the system is close to an insulating phase, the acceptance rate is
small ( < 0.35). In such a case we make the measurements at every 4 steps.
Repeating the measurements, we collect M = 4000 ~ 5000 samples in a bin
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and take Ny, = 200 bins. That is, we take 8 x 10° ~ 1 x 10® Monte Carlo
samples.

0.6 S

n[ul
0.5F ]
5 1.16 ]

[T

0.4 o 1.00

-Gd(‘tl)
S

Figure B.2: Imaginary-time Green’s function —G%(7;) with the statistical error
oy for nyw = 1.16 (open squares) and 1.00 (open circles) at 3 = 8 (L = 64).
The parameters are Uy = 5 and A = 3.

We calculate the expectation values G¢(7;) as follows. First, we define the
Monte Carlo sample ¢g'")(1) at i-th Monte Carlo step with a random integer Iy
(1<Ilg <L),

@y — ) 9+ —1,1r) (for x < L-1+41)
e { —g(lg —L+1—-1,lg) (for lg >L—-1+1), E5)

where g(1,1') is the Green’s function matrix element for a certain configuration
of the Ising variables (see Section B.1.1). The random integer Iy is produced
for any ¢"(1) at every Monte Carlo step. Second, we calculate G%(7) as the
arithmetical mean values of g(”(l)?

d e ((k—1)M +4)
o) e Z MZ(] )\(1). (B.9)

The statistical error o; for G%(7;) is expressed as

1 Niin

o 30 (1) — G(m))? B.10
v T -
= N N = D) k;(J (1) = G%(m)) (B.10)
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where §(*)(1) is defined as

RUE Z\—IZQ(M ko 1% (B.11)

In the present study, the absolute errors are in the range from 104 to 103
and the relative errors are in the range from 102 to 10~! (Fig. B.2).

(a)

0.5F

0.0
-1

Figure B.3: Plots of the d-hole number density n,; with statistical errors for
(Us, A) = (a) (5,3) and (b) (2.5,4) at 8 =8 (L = 32).

The statistical errors in the p — n plot are shown in Figs. B.3. It is shown
that the error becomes larger near the insulating phase.
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B.2 Maximum entropy method

B.2.1 Fundamental formulation

In order to obtain the one-particle-excitation spectral function p(w) from G(7),
we have to carry out the analytic continuation. (Throughout this section, we
omit the superscript d on p or G.) The analytic continuation problem is
equivalent to the inversion of the transformation from p(w) to G(7);

=Tl

A

St | B.12
1+e P ( )

G(r) = [~ dwp(w)

One calculates G(7) by the quantum Monte Carlo simulation and obtains
the data {G(7)}. Thus, they are subject to statistical errors. In eq.(B.12),
the behavior of the kernel in the integral for large |w| becomes as follows;

€7‘r..u e(ﬂ*'l’)w { e v (w o iz OC)

(B.13)

— e
1+ e -Bw €/3w +1 e*(@*"')‘w‘ (w Lais, —OO>

Namely, the value of the kernel becomes exponentially small for large |w|.
Thus, in the integral, the information about p(w) (the structure of the spec-
trum) for large |w| is 'screened’ by the kernel. These facts suggest that there
exist innumerable p(w) that 'reproduce’ G(7) (or fit the data). Therefore it is
difficult to infer the correct p(w) from data obtained by the quantum Monte
Carlo simulation. For example, in the least-squares method, we obtain the
optimal p(w;) at discrete points w; (¢ = 1,..., N,) by minimizing y? defined
by

e~ TIwi 2
G<Tl) - Z —75;/)(%)&4:,
2 7 L4e :
=D : : (B.14)
I /1

where, o; is the statistical error of G(77) and Aw; is the appropriate integration
weight associated with a discrete frequency w;. In the method, however, the
information about the positivity (p(w;) > 0) and the sum rule (3; p(w;)Aw; =
1) is not considered. Thus, there is a risk to obtain a non-physical p(w;).
Namely, to minimize y? is not always the best way to infer p(w;).

In the maximum entropy method [74, 75, 76|, the information-theory en-
tropy S is introduced to consider the positivity and the sum rule of p(w;). The
entropy 1s defined as

5= (pw — m(w;) = plw) In 22 ) Aw;, (B.15)

m(w;)
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where m(w;) is a default model. One gives a default model, which satisfies the
positivity and the sum rule, as an input. The entropy is defined relative to
the default model m(w;) for p(w;). If we are completely ignorant about p(w;)
except for the positivity and sum rule before obtaining the Monte Carlo data,
we take m(w;) to be flat in the frequency range of interest [76]. Since S take
its maximum value, S = 0, at the case of p(w;) = m(w;), we determine the
optimal p(w;) by minimizing F defined by

(V)

F= %—QS, (B.16)
where Y? is defined by eq.(B.14) and « is a Lagrange multiplier determined
from classic maximum entropy criterion [75, 76, 77] (see Section B.2.3). We

can obtain the optimal p(w;) from the simultaneous equations,

oF
dp(w;)

=0 (for all 7). (B.17)

B.2.2 Implementation of the maximum entropy method

We calculate the spectral function in the frequency region of interest; wy, <
W < Wmax. We discretize w into w; (¢ = 1,...,N,), where w) = wpin, Wy, =
Wmax- Lo describe well the spectral function in the frequency region near the
chemical potential p, we use the discretization defined as follows;

WN_+1 = M,
=l : .
Wr_<j41 = p—€ 1 (for* 1D N_J
]_
i 4
WN_+i+1 = p+ 0Oy (160 L= § e G
r—

where N, and N_ are determined from N, + N_. = N, — 1, |(wmax — 1)/ (1t —
Wmin )| = N4+ /N_. The coefficient C, and C_ are determined from w; = wpn,
WN, = Wmax- We choose » = 1.1. As for the wyax, Wnin and N, we choose the
value of them case by case. (For example, we take N, = 61 for the L = 64
Monte Carlo data.)

In the practical procedure, we use the flat model as the default model, i.e.
m(w) = 1/(Wmax — Wmin) = const., because in the procedure of searching the
solution we do not have any prior knowledges except for the positivity and the
normalization of the spectral functions (see Section B.2.1). We have confirmed
that there is few differences between the spectra obtained by using different
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default models; the flat model which has no information and a “three peak”
model which has a certain information such as the positions of the peaks (Fig.
B.4). (In the “three peak” model, we assume that the spectrum is the (nor-
malized) summation of three Gaussian spectra such as e (“"“‘)2/(2"2)/\/ 2wo?
with (w*,0) = (-3.5,1.0),(—0.5,0.5),and(2.5,1.0), respectively.)

(.3 v

0.5

— T

0.4

0.4} ]

0.3

m(m)

0.3}

pY(w)

0.2 1

0.1

Figure B.4: Comparison of d-component spectra at § = 8 (L = 64) obtained
from different default models; the flat model (solid circles) and the “three
peak” model (open circles) which is shown in inset (see text). The parameters
are i =" amd N =r3y

It is shown that (1) one can obtain the feature of the spectrum without
any prior information except for the positivity and the sum rule, and (2) the
formation of structures is not due to the prior information such as the position
of the peak.

We use the classic maximum entropy criterion [74, 75, 76, 77| to determine
the Lagrange multiplier a (see Section B.2.3). We have also confirmed that
the spectrum is not so sensitive for the exact value of o (Fig. B.5).
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Figure B.5: Comparison of d-component spectra determined from different a:
a = 6.8 (solid circles), 5 (open squares), and 20 (open circles).

B.2.3 Classic maximum entropy criterion

From a Bayesian statistical point of view, the maximum entropy procedure is
an inference process in which one searches for p(w;) that maximizes the condi-
tional probability distribution function (PDF) P[p|G,m]. The PDF P[p|G,m]
shows how probable a certain form of p(w;) is when Monte Carlo data G(7;)
and the default model m(w;) are given. Using Bayes’s theorem, P[p|G, m] can
be written as

P|p|G, m| x P|G|p, m|P|p|m]. (B.18)
The first term on the rhs is the likelihood function P[G|p,m] & e X/2. Ac-
cording to the information theory, it is known that P[p|m| has the form,

6,(\5‘

Plp|m,a] = 1 (B.19)
| | Zs(a)
where Zg(a) is the normalization constant and Zg(a) = (27 /a)™«/2 (N, is the
number of the discrete points of w;).

To get the posterior PDF P[p|G, m| we have to integrate out the parameter

Q,

Plp|G,m| = / daP[p|G, m,a|Pla|G,m)]. (B.20)
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The PDF P[a|G,m] represents how probable that the parameter a takes a
certain value when the data G(7;) and the default model m(w;) are given. If
Pla|G,m] is sharply peaked at a certain value aq of a, we have

Plp|G,m] >~ P[p|G, m, ay|Play|G, m] x P|p|G,m, ). (B.21)

It is therefore reasonable to determine the value of o to be ay. To calculate
Pla|G,m] we again use Bayes’s theorem; it can be expressed by the multiple
integral of p(w;),

Pla|G,m] /DpP[G\p]P[p)m,aJ, (B.22)
where Dp stands for the measure of the integral. Estimating the functional

integral by the Gaussian approximation around the optimal p(w;) which we
denote by p(w;), we have

In Pla|G,m] o ln/Dpe“S X/2 _1n Zg(a) + const. (B.23)
1= Q
o (YS’p:’g+ 5;111 ; + const.,
where A, are the eigenvalues of the Hessian matrix
*(x*/2)
Ve(wi) 7771/ plw;) (B.24)
dp(wi)dp(w;) T
Thus, the optimal value o of a is determined by
Jln Pla|G,m] TR W
— =S + = =i B.25
Oln « e PadT 2 ; Qg + An ( )

This is the classical maximum entropy criterion.
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Appendix C

Exact diagonalization method
within the DMFT framework

We show the procedure to solve the effective impurity problem in the DMFT
framework using the exact diagonalization method [31] in this appendix.

As pointed out in Section 2.1.2, one can regard G(iw,) in the DMFT as
a bare impurity Green’s function of an impurity model. In the procedure,
one approximates G(iw,) with a bare impurity Green’s function GY4(iw,) of a
finite-size cluster of an impurity Anderson model which is defined as follows;

N, N»
IHAn(l = €0 z dj;d(r il Z 51('11‘0(:10 T Z 1'}((11('10 il Cl";rda') o erjd*\dj.di' (Cl)

i=ilya: =0

The model consists of the 'impurity’ level g and the levels ¢; (I = 1,2,..., Ny)
of the 'conduction electrons’ hybridized with the impurity by V;. The ’'im-
purity’ in eq.(C.1) corresponds to the local degree of freedom in the DMFT,
respectively. The free Green’s function of the d-electron is defined by

1
0 ‘
GAnd(lwﬂ) = N, ‘/.2 (CZ)
. 1
Wn, — €9 — f o
=1 1eis. &1
We determine 2N, + 1 parameters {eg,&;, Vi(l = 1,2,..., Ny)le; < ep < -+ <

en.} by fitting G(iw,) with G},4(iw, ), namely, by minimizing y* with respect
to the parameters. We define y? as follows;

X* = 3 [(Ghagliwn)) ™ = (Glawn)) [ (C.3)
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After fitting, we diagonalize the finite cluster of the impurity Anderson
model (C.1) with determined parameters, and calculate the N-particle eigen-
vectors J()E\\ )> and corresponding eigenvalues KQ) = E,(:) — uN of Hppnga —puN

in the (N, + 1)-site cluster. Note that N = T di(lg + Z}\f]ﬁ CI,C,(, is the
number operator of the fictitious particles in the cluster of the impurity An-
derson model, and it should not be confused with that of holes in the original
lattice of the two-band Hubbard model. (Hereafter we refer to the cluster of
the impurity Anderson model as the impurity Anderson cluster.)

By using the full set of states ‘d)i?} we can calculate the local Green’s
function G¢,

1 : / L(N) A(N) 1
dys () gt (V)20 —KD ~K{N
2™ (1, ) = EZ Z |<(9iN ‘(]I‘(PE‘N)W(@ s RS -(N) (N)y?
N 1wy — (Am - AJ‘N )
(C.4)

where = = Tre #X. The Green’s function is used to determine a new G iter-
atively. The iteration is continued until convergence is attained. Finally, we
can obtain the Green’s function in the spectral representation by the analytic
continuations of G4(iw,) and GP(iw, ).
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Appendix D

Perturbative solution in
single-cluster calculation

We summarize the property of the solutions for the single cluster of the two-
band Hubbard model (3.11). For the Schrodinger equation (3.12), the one-
particle ground state \WB?) and the corresponding energy E(()l) are expressed
as follows:

%6r) = a’ld") +a?lp"), (D.1)
1 . :
E) = S(eptea— VA H4AP) = ca+ 8y, (D-2)

where we define the energy gain |63"] (6{" < 0) of (Y due to the hybridiza-
tion with the p-level. The singlet states at n, = 2 are expressed by

) = a2|d2) + al|d'p') + a22|p?). (D.3)

m m

. . D) o . .
The corresponding eigenvalues E(?) are determined by an eigenvalue equation,

(BN —26,) (B —(2ea+U))( B} ~(ep+2a)) — 20 (ER (2644 U )+ ES) —2¢,) = 0.
(D.4)

For U = 5 and A = 3, the values of coefficients of the one-particle ground state

wave function are [a?|> = 0.92 and |a?|> = 0.08. We also show the coefficients

of the singlet wave functions corresponding to the peaks of the result (Fig.
4.4(a)) by the QMC and ME methods in the table.

W ’add 2 ’adplz ‘(IppP
={}.8 0.15 0.76 0.09
20 0.72 0.05 0.23
0.12 0.20 0.68




The peak at w = —0.8 in Fig. 4.4(a) is caused by the transition to the d'p'
singlet state. We define the energy gain \(‘)[()2)} ((5(()2) < 0) of the d'p' state;

B =, + 5+ 85, (D.5)

Because this gain |6(()2)] is larger than }(581)\. the spectrum line appears below
W =€y, 1€, at w =g, + (3(()2) — (‘)81)(< €p). (In the present result for U = 5 and
A=3E"=-33and EY = —-4.1)

In the case with U > A > t,

and then

9 1 1
(2) (1) 942
0p — 0y = —2t 3+ =} D.8
& - o (=% +55) (D)
The difference E,>) — E(()Z) = —(5(()2) of the energy between the triplet state
(Et(“) = £, + £4) and the singlet state tends to be 2Jk, the exchange energy
between a (localized) d-spin and a p-hole.




Appendix E

Spectral intensity at the Fermi
level

We show that the spectral intensity at the Fermi level in the single-band Hub-
bard model is invariant as long as the system is the Fermi liquid state provided
the self-energy is local [23], while that of the two-band Hubbard model de-
creases even though the self-energy is local. We follow Luttinger [78] to derive
the above conclusions.

First, we consider the single-band Hubbard model. According the Lut-
tinger’s theorem, as long as the system satisfies the Fermi liquid condition
(Im¥(w) vanishes more rapidly than w), the expression of the total number
of particles Ny, using the Green’s function can be rearranged in the absolute
zero limit as follows;

]Vtot = ZTZGk(iwn)eiwnﬂﬁﬂoif (E1>
ko

iwn

= Z TZ(iwﬂ F e &g E(iwn))"lei“’”‘gyhm
ko iwn

1
— —=>"Im In(eg, — e + ReX(0) — i6)|s—o+ (as T — 0)
T
ko

1 .
= —— D arg(eg — er + ReZ(0) — i6)|5-0- (E.2)
kq

= ZH(SF — & — ReR(D}).
ko




The last expression implies that the Fermi surface determined by

€L = €r — ReX(0), (E.4)
and it does not change from that in the free (U = 0) case. (The Fermi surface
in the free case is determined by ¢, = ep.) On the other hand, using the

one-particle spectral function p(w), Ny is expressed by
0
]Vtot = 17\/YL Z/ d\’.&.}/)(\,&‘)T (E:))
o — 00

where Ny is the number of sites. One can rearrange the expression (E.3) using
the density of states D(e) = 3, (e — €g,) /Ny as

Pl 16 1 Z/jo deD(€)8(ep — € — ReS(0)) (E.6)

0
= N,/Z/f deD(e + ep — ReZ(0)).

(E.7)

One can obtain the value of the spectral intensity p(0) at the Fermi surface by
comparison of eq.(E.7) with eq.(E.5) as

p(0) = D(er — ReZ(0)). (E.8)

On the other hand, the value of the spectral intensity po(0) at the Fermi surface
in the free case is expressed as pg(0) = D(el) Thus, it has been proved that
the spectral intensity at the Fermi surface is invariant as long as the system
is the Fermi liquid in the single-band Hubbard model with the k-independent
self-energy [23].

Let us carry out the similar procedure to treat the two-band Hubbard
model. In the two-band Hubbard model, we should consider the matrix rep-
resentation of the Green’s function as

- lw, + 1 — &g — B(iw,) —v o
G (iwn) = ( ; : S Ty R > ,, (E.9)
Vs Wy + 1 — &
where vy, is the Fourier transformation of the d — p hybridization term of
eq.(3.1) in 3.2. The rearrangement of the expression of the total number N,
can be carried out in the similar way to the single-band case, and one obtains
the expression corresponds to (E.2) at the absolute zero as follows;

Nysir= 2k > ImTrln =R eRUY = e i
L Vi Ep — EF — 10

§—0+

(E.10)




The expression corresponding to (E.3) can be obtained by diagonalizing the
matrix in the natural logarithm in (E.10) as

Niot = Z O(er — Ek) (E.11)
ka,‘y:i

where E;c is the eigenvalue of the matrix in (E.10) and defined as

E (€p+Ea+7 A2+41/’2€:). (E.12)

N | =

7 =
=
In the above expression, &; and A are defined as €4 = €4 + ReX(0) and A=
A — ReX(0), respectively.

One can obtain the similar expression to eq. (E.7) of the spectral intensity
at the Fermi surface in the two-band Hubbard model as follows;

> [T awDw)s(er — BV(v)), (E.13)

o=+

where we defined E7(vg,) = E;c Hereafter, we assume that the Fermi level
is in the lower band (y = —) and consider the spectral intensity per spin.
Thus, we take only v = — in the y- summation and omit the spin summation
in (E.13). By rearranging the é-function in (E.13), the last expression of the
spectral intensity at the Fermi surface can be obtained as follows;

[" wDw)s(ee—E-(v)) = VB tlor—spller ~84) o
L \/(EF*Ep)(EF—c:d)

(E.14)
On the other hand, according to the expression (E.11), the Fermi surfaces
in the free case and the interacting case are determined by ¢p — E~(v) = 0
and ) — Ey (v) = 0, respectively. (E{(v) is the dispersion in the free case.)

Namely, the relation which is satisfied by ¢p and ReX(0) is expressed by
(EF _ Ep)(EF == gd) = (52 e Ep)(gg‘ =iE Cﬂd)~ (E15)

Using the relation, we can finally estimate the spectral intensity at the Fermi
surface for small Re¥(0) in the interacting case as follows;

/fo dvD(¥)b(eg — B~ (v)) (E.16)
VA2 + 4(ed — £,)(eh — €4) ReX(0)A
i D(4/(ep — €p)(eh — ¢ - —
S — &) — ) (Vied = ep)(eb ~ e~ gy




where we assume A > ReX(0). It implies that the spectral intensity at the
Fermi surface of the two-band Hubbard model with the k-independent self-
energy in the interacting case is smaller than that in the free case as long as
ReX(0) > 0, because the term (e — &,)(e% — £4) is always positive.
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