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Chapter 1 

General introd uction 

1.1 Introduction 

The discovery of the high-Tc superconducti時 C叩凶es[1] has revived the 

interest in strongly correlated electron systems， which have been studied for a 
long time in connection with the study of the electronic states in the transition-

metal compounds. 1n the transition-metal compounds， the strong correlation 
between the 3d electrons is essentially important. 

On the other hand， in the intensive studies of the high-Tc cuprates， it has 
been shown that in order to investigate the electronic states the systematic con-
trol of the carrier concentration is important， because the occurrence of the 
superconductivity is sensitive to the carrier concentration. 1n other transition-

metal compounds， the systematic experimental studies have been triggered by 
the discovery of the high-Tc cuprates. 1n the experIInental studies， the carrier 
concentration and the relative interaction strength are controlled by the chem-

ical substitution while keeping conducting networks in the transition-metal 

compounds. For example， in Cal-aSra V03 one can systematically control the 
relative interaction strength by changing the concentration X of Sr. 

For the change of the carrier concentration or the relative interaction strength 

there is an interesting phenomenon in the strongly correlated electron systems. 

It is the Mott transition， which is a transition between the metallic phase and 
the strongly correlated insulating phase. The high-Tc superconductivity occurs 

near the transition and the property of the itinerant electronic states which 

are formed on carrier doping has attracted considerable interest. On the other 

hand， Cal-:rSra V03 is a metallic compound which is near the transition and 
the interaction-strength dependence of the electronic states has received at-

tention. 
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Though there have been various studies of the .Mott transition for a long 

time， the comprehensive understanding of the electronic states on the metallic 
side of the Mott transition is still lacking， because it is difficu1t to treat the 
strong correlation theoretically. Thus， some problems about the electronic 
states remain unsolved. One of the problems is how the itinerant electronic 

states emerges in the metallic phase near the transition. 

In the thesis， we would like to solve the abovementioned problem by treat-
ing suitably the electron correlation， and to clarify the origin of the itinerant 
electronic states in the metallic side of the Mott transition in the transition-

metal compounds. We consider the one-particle-excitation spectral function in 

order to investigate the electronic states. We can di:rectly obtain the occupied 

and unoccupied electronic states from the spectral function. 

We need to use a method by which we can properly treat the strong electron 

correlation. In the present study， we use the dynamical mean五eldtheory 
(DMFT)， which has been developed recently， and successfully applied to the 
strongly correlated systerns. In the theory， while the spatial fluctuations are 
neglected， the local quantum fluctuations can be co:rrect1y treated. 
We also need to use a theoretical model which 1.S suitable to describe the 

transition-metal compounds. Though the narrow 3d band is essential for the 

strong electron correlation， the anion orbital can become important in the 
transition-metal compounds. For example， in the high-Tc cuprates， the impor-
tance of the 0 2p orbital was also pointed out， because it was clarified that 
the doped hole enters in the p orbital. In the thesis， therefore， we explicitly 
consider the effect of p orbital in the transition-meta.l compounds by using the 

two-band Hubbard model. 

According to Zaanen， Sawatzky， and Allen， the transition-metal compounds 
are qualitatively classi五edinto two groups by magnitude of charge-transfer en-

ergy: the charge-transfer-type system and the Mott-Hゆ bard勺 pesystem [2] 

The high-Tc cuprates belong to the former and Cal-xSrx V03 to the latter. 

Using the two-band Hubbard model， we can treat the systems correspond to 
the both types on an equal footing. 

Let us summarize the purpose of the thesis; applying the D MFT to the two-

band Hubbard model， we investigate the change of the one-particle-excitation 
spect凶 function:(1) the car 
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in the strongly correlated systems (the Mott trans叫;

focus on the problem why NiO is a non一conductor a1though i比tiおsexpected tω O 
be me引tallici凶nthe band theory. We also review the theoretical studies of the 

Mott transition. There is one of the successful example of the DMFT in the 

study of the Mott transition. We briefly review the derivation of the DMFT 

in Chapter 2. One can reduce the lattice problenl to an effective impurity 
problem by the DMFT. In the chapter， we also review the methods to solve the 
effective impurity problem. In Chapter 3， we discuss the classification of the 
two types of the transition-metal compounds according to Zaanen， Sawatzky， 
and Allen. in Chapter 3. We introduce the two-band Hubbard model and 

show the formulation of the present study in the chapter. The numerical 

resu1ts for the charge-transfer-type system in Chapter 4， and those for the 
Mott-Hubbard-type system are shown in Chapter S， respectively. Chapter 6 
contains the concluding remarks. 

1.2 お10tttransition 

In the transition-metal compounds， it is well accepted that the strong Coulomb 
interaction between 3d electrons is important. The insulating phase in some 
transition-metal compounds cannot be explained by the conventional band 

theory， and it is caused by the strong correlation between electrons. The 
insulating materials caused by the strong correlation are called Mott insulators 

and the transition from a metallic state to an insulating state induced by the 

strong correlation is called the Mott transition. 

We briefly review the historical development in the studies of the Mott 

transition in this section. First we show the important suggestion for the non-

conducting property of NiO by Mott [4， 5， 6] in Section 1.2.1. In the section， we 
also introduce examples of the perovskite-type transition-metal oxides which 

attract considerable interest recently. In Section 1.2.2， we review the main 
theoretical studies of the Mott transition and show a successful example of the 

application of the DMFT to the strongly correlated systems. 

1.2.1 Mott insulator 

The electronic states of the transition-metal compounds have been contro-

versial problems. One of the puzzling PI叶)lelnSwas that NiO is an insulating 

compound although it was predicted to be metallic from the conventional band 

theory [3， 4]. Mott discussed the problem in detail and pointed out that the 
strong Coulomb interaction between 3d electrons drives the system into an 
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insulator [5]. This is why the Mott insulator is so named 
1n the transition-metal oxide NiO (Ni2+ :3d8， 0ト 2p6)，the 3d orbitals split 
by a c山iccrystal field into sub-orbitals， dγ(doubly degenerate) and dε(t均ly
degenerate). The energy bands consisting of dγor bi tals are partially五lledin 

accord with the Hund rule. According to the conventional band theory， then， 
NiO is expected to be metallic. 1n reality， NiO is an insulator. 
Mott suggested a qualitative explanation of the insulating behavior of NiO 

[4， 5]. According to his explanation， the ins叫atingproperty of NiO is caused 
by the excitation energy required to remove an electron from a certain Ni2+ 
ion (leaving Ni3+) and to put it on another Ni2+ ion (forming Ni+). When the 
increase of the Coulomb energy is larger than the transfer energy of electrons， 
the excitation energy is positive and the system becomes an insulator. 

The mother materials of the high-Tc superconducting cuprates are also the 

Mott insulators. 1n La2Cu04 (Cu凡 3d9)，for example， the 3d orbitals split 
into dγand dE， and the band consisting of dγorbitals (which further split by 
a square crystal field) is partially filled. Namely， according to the simple band 
theory， La2Cu04 should be metallic. 1n spite of the prediction of the band 
theory， the material shows the insulati時 behaviorof the resistivity [7]. One 
can dope carriers (holes) into the system by the substitution of 8r2+ for La3+ 

The s山 stit山 onpartially changes the valence of (CU04)6-to (CU04)4ー， and 
carriers are doped into the CU02 planes. 8ince the superconducting phase 

appears only in the low-density-dopi時 region(e.g. 0.06 忘 Z 忘 0.26for 

La2-x8九CU04[8， 7， 9])， it is recognized that it is im.portant to investigate the 
electronic states near the Mott transition. 

1.2.2 Theories of民1:otttransition 

The essence of the Mott transition is the competition between the local electron-

lectron interaction energy and the kinetic energy of the itinerant electrons. 

The simplest model that describes the competition is the Hubbard model; 

むub二 -t乞(cLC3σ+H.c.)十U乞clct↑clctい (1.1) 
<'L，J> 

where we aSSUlne only the nearest-neighbor hopping. 1n eq. (1.1)， t is the hop-
ping energy， and U is the on-site Coulomb interaction energy. The theoretical 
studies of the Mott transition using the Hubbard model have been carried out 

for a long time. 
Here we五rstreview two approaches from the opposite directions， i.e.， from 
the atomic lunit and from the metallic limit. We then introduce a study by 

the DMFT， which interpolates the two approaches. 
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Approaches from the atomic limit and from the metallic limit 

In a series of papers， Hubbard investigated the change in the density of states 
caused by the interaction. He calculated the one-particle Green's function 

using deco叩 li時 techniquesand a CPA( coherent potential approxi江川ion)-

like approximation [10， 11]. He showed that the density of states splits into 
two s山 bandswhen the ratio U /t becomes greater than a critical value， and 
consequently the system is turned into an insulator. (Therefore， we refer to 
the s山 bandsas the upper and lower Hubbard bands.) 

As the theory is guided by the principle that it should be correct in the 

atomic linlit t → 0， it is a good approximation in the insulating region. It was 
pointed out [12]， however， that it fails in the metallic region; for example， no 
well-de五nedFermi surface exists even in the metallic phase. 

Another approach is taken by Brinkman and Rice [13] on the basis of 
the Gu凶 zwiller v刊varむ訂na

surface exists in the distribution of occupied states when the system is metallic. 

Brinkman and Rice showed that both the number of the doubly occupied sites 

and the discontinuity at the Fermi surface become zero at a critical value of 

U， Uc. 
However) Yokoyama and Shiba showed that the transition does not occur 

in the correct treatment of the Gutzwiller wave function; the appearance of 

the transition is an artifact due to the Gutzwiller approximation [15]. This 

shows that the Gutzwiller wave function is not good enough to describe the 

Mott transition in finite dimensions. 

Mott transition described by DMFT 

A result which connects the two approaches from the atomic limit and from 

the metallic limit was obtained by a method within the DMFT framework 

[17， 18， 16]. The method is called the ite凶 ;edperturbation theory (IPT) [19] 
(see also Chapter 2). In the method， the self-energy calculated by the second-
order perturbation with respect to U is shown to become exact in both the 

weak-coupling limit and the strong-coupling limit. Thus it is expected that 

the method provides an interpolation scheme between the both limits [16] 

In the study， it was shown that the one-particle-excitation spectrum has 
three remarkable structures; the lower and upper Hubbard bands， and the 
sharp peak at the Fermi level. In the Mott transition， both the width of the 
sharp peak in the spectrum and the discontinuity at the Fermi surface in the 

distribution of occupied states become zero at a critical value U = Uc [18] 
The study is one of the successful examples of the application of the DMFT 

to the strongly correlated systems. We can expect that the DMFT is a useful 

5 



method to study the electronic states near the Mott transition. We derive the 

DMFT in the next chapter. 
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Chapter 2 

Dynall1ical ll1ean field theory 

(DMFT) 

The idea of the DMFT originated from the analysis of the system in infinite 

dimensions， where the self-energy of the Green's function becomes local. In the 
DMFT， the spatial fiuctuations are neglected， but the local quantum fiuctua-
tions can be fully considered. Namely， while the spatial correlation is treated 
only as a mean field， the on-site quantum dynamics can be exact1y treated. 
One can reduce a problem of a lattice system to an ilnpurity problem embed-

ded in an effective medium (the dynamical mean field). In Section 2.1， we 
briefiy mention the relation between the local approximation of the self-energy 

and the DMFT， and derive the DMFT. We review various methods to solve 
the effective impurity problem within the DMFT fraluework in Section 2.2. 

2.1 DMFT and local approximation of the 

self-energy 

2.1.1 Infinite-dimensional model and local self-energy 

In spite of its simple form， the Hubbard model is exactly solved only in one 
dimen幻on[20]. In two or three dimensions， there are only approximate calcu-
lations and numerical simulations for五nite-sizesystelffis. 

Recently， howeverう animportant advance has been made in the in五nite-
dimensional limit. The infinite-dimensional Hubbard lllodel was first intro-

duced by Metzner and Vollhardt [21]. In order to define a non-trivial nlodel 

in which the kinetic term and the potential term are of the same order， the 
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intersite hopping energy t should be scaled as t → {α1/、/三 wherez is the 
number of nearest-neighbor sites， namely， the coordination number [21] 
One of the remarkable properties of the in五nite-dimensionalsystem they 

found was that the self-energy of the Green's function becomes site-diagonal 

[21， 22]. The property is shown by simple power counting as follows. One 
of the standard methods to calculate the Green's function of the system is a 

perturbation theory with respect to the on-site Coulomb interaction energy 

U. 1n general， the Green 's function Gij (i凶)connecting a site i to a site j is 
expanded by the self-energy ~ij(iωn); 

Gij (i凶)= G~j(i州)+乞 GL(i片山l(i凶 )Gfj(iωπ)+...， (2.1) 

where G?j(iwη) is the free (U = 0) G問山 function.(1n the above expression， 
ωηis the Mats山 arafrequency de五nedby ωη= (2九十 1)πT，where T is the 
temperature and ηis an integer.) For example， we consider the second order 
self叩句y，~~J) ， which includes three G?j 's. Since t is scaled by 1/ yZ， G?j 
involves a factor 1/、(Zeven for the nearest sites く ~ ， J >. Hence， the second 
order self-energy， ~~J) ， between the nearest sites < ~， J > involves a factor 
(1/ y'z)3. On the other hand， the summation of the nearest neighbor sites j 
brings in a factor of order z. Thus， we 0 btain at least an overall factor of 
1/ YZ for山 non-localsecond order self-energy， ~~J). One can apply a similar 
argument to the higher-order terms， and finds that only the local contribution 
(i j) survives in the infinite-coordination number limit (i.e.， the infinite-
dimensional limit) 

As a simple consequence of the locality of the self-energy， M uller-Hartmann 
showed that， in the single-band Hubbard model， the density of states at the 
Fermi level is invariant for any strength of U as long as the system is the Fermi 

liquid state [23] (see Appendix E) 
Using the site-diagonal self-energy， the local Green's function can be ex-
pressed using the energy integral as 

1 
G(i凶=:r L 一一

N k (Gk(叫))-1 -2~(iωJ 

Jdε 内(ε)
iωη+μ-ε -~(iωη) ， 

where ρ。(ε)is the density of states defined by 

内(ε)ニ Lε作一 ε(k)) 
~. k 
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In the expression，ε(k) is the Fourier transformation of the hopping energy in 
(1.1 ) 

2.1.2 Effective impurity problem 

Making full use of the locality of the self-energy， one can construct an exact 
“mean-field-type" theory of the lattice problem [16]. Let us explain one of 
the procedures to obtain the "mean field" description [24， 25]. Since the self-
energy is local in eq. (2.1)， the local G問山 functionGii(iwn) for a certain 
site i can be rearranged to contain explicitly only the i-site "bare" Green's 

function 9ii(iwn)， in which effects of the interaction at all the sites except the 
site i are included. Namely， Gii(iLι)n) is expressed as; 

Gii(iωπ) G“(iωπ) + 9μ(iωπ)~(iωη)9ii(iωπ) 
+ 9“ (iωη)~(iωπ)9ii(iωη)~(iωη)9μ(iωη)+ ・・・ (2.4) 

The forn1al Dyson equation of 9ii is 

ら(iωη)=G2(iωη)+ 乞 GL(i凶)~(iωη)9バi凶)
jヲI=i

G3(i凶)+乞 GL(iωη)~(i凶)9ji(iωη) -G?i~(iωπ)9ii(iωn X-2 . 5 ) 

By the Fourier transformation for the both sides of eq.(2.5)， one obtains the 
expression in the wave-number space， 

9k(iωπ) = Gk(iωπ) + Gk(iω九 )~(iωη)(9k(iωη) -G?i(iωη)). (2.6) 

By solving eq.(2.6) for 9k and summing the both sides on k， 9ii is expressed 
by 

9ii(iωn) = (1 -~(iωη)9“ (iωη))Gíi(iωη) )， (2.7) 

where we have used the k-summation expression of the local Green's function 

(2.2). From eq.(2.7)， one can obtain the final expression of the local G附 n
function G(のlLω4υJ九n)using 9 as 

G-1(iωη) = 9-1(iωπ) -~(iωπ) ， (2.8) 

where we omit the site index by assuming the translational invariance. 

On the other hand， one can regard the expression (2.8) as the Dyson equa-
tion of the impurity model in which the bare Green 's function is given by 9. In 

fact， one can obtain the effective action of an impurity problem embedded in 
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an effective medium which is described using 9. The effective action is derived 
in the infinite-dimensionallimit (see Appendix A): 

fβ fβ ー'一一 喝 rsβ 一

Seff = 一んんd巾 r子ψ仇九似oa刈σバ(付7寸)9-1引→寸1(什ト7←一イη桝fワ')1f;沖ψ仇九oa山σ
(2.9) 

whereψ。σ(妙。σ)is the Grassmann variable correspondi時 tothe fermion cre-
ation (annihilation) operator at a certain site o. There is on-site Coulomb 

interaction U between the fermions at the site o. The effective action can be 

interpreted as an action of a system in which 9 is a bαre impurity Green's 

function and the on-site repulsion exists only at the o-site. Since 9 includes 
the information of the other sites， it plays the role of a “mean五eld"
The similar simplicity also occurs in the classical spin system. In the classi-

cal spin system， it is known that the description using the usuallnean五eld，in 
which all fiuctuations are neglected， becomes exact in the in五nite-dimensional 
(infinite-range-coupling) limit. In the present “mean field" theory， however， 
one takes full account of local quantum fiuctuations. Therefore the approach 

is called the dynamical meaηfield theory (DMFT) [16] 

In t.he DMFT framework， there are three relations (eq.(2.2)， (2.8)， and 
(2.9))， and three unknown quantities (G(iwn)， 9(iωπ)， and ~(iwn))' Therefore， 
if one can solve the effective impurity problem (2.9)， the solution of the lattice 
problem can be obtained exactly by solving the self-consistent equations. 

Before proceeding we give a remark. The DMFT can be derived without 

taking the in五nite-dimensionallimit，if only one aSSUlnes the self-energy to be 
local. Thus， one can regard the DMFT as an approximate method in finite 
dimensions. In the thesis， we apply the DMFT to the present study regarding 
it as the approximate method in which one neglects the k-dependence of the 

self-energy. The approxIlnation was shown to be excellent in three dimensions; 

the resu1t of the second-order correlation energy with respect to U for the 
H u b bard model on the cu bic lattice is well approximated by that of the infinite-

dimensional model [21] 

2.2 Methods to solve the effective impurity 

problem 

The on-site quantum problem (the effective impurity problem) in the DMFT 

framework still relnains a many-body problem， and one has to solve the prob-
lem by an appropriate method. Several methods to solve the impurity problem 

were developed in the studies of a magnetic impurity in a metal: the numer-
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quantum Monte Carlo method [28]， and so on. These various methods are also 
successfully applied to the effective impurity problem in the DMFT [16]. Let 
us briefly review these applications. Here， we mention those examples focusing 
on the applications to the single-band Hubbard model. 

Iterated perturbation theory 

The method in which the self-energy is calculated frorn c by the second-order 
perturbation theory was applied by Georges et al. [1?] and Zha時 etal. [18]. 

(It is the iterated perturbation theory (1PT) mentioned in Section 1.2.2.) This 
corresponds to the method used by Yosida and Yamada for the impurity An-

derson model [27]. It is shown that the (second-order) self-energy obtained 
by this method becomes exact in both the weak-col叩li時 limit(U /t→ 0) 
and the strong-coupling limit (U /t→∞) in the partide-hole symmetric case. 
Thus， the 1PT approximation is expected to provide a correct result even in 
the strong-coupling regime in the special case [18]. 1n the caseぅthe1PT ap-

proximation for the self-energy automatically satis五回 theconservation law 

of the number of particles. However， one cannot determine the self-energy by 
which the conservation law is satis五edin the particle-hole asymmetric case any 

more. (Recently， the modi五ed1PT， which one can apply to the particle-hole 
asymmetric case， was developed by Kaj1.凶eret al. [29].) 

N umerical renormalization group method 

The numerical renormalization group method was applied to solve the effective 

impurity problem by Sakai and Kuramoto [30]. This is a powerful method 

to study the low-temperature or low-energy limit case. One can obtain the 

wave functions and the dynamical response functions by the method. Sakai 
and Kuramoto applied the method to the half-五lledcase and calculated the 

density of states of the system. However， it is difficult to extend the method 
to finite temperatures. 

Exact diagonalization method 

Caffarel and Krauth presented a method using the exact diagonalization of an 

impurity Anderson model with a五凶enumber of sites [31]. 1n the method， one 
approxIlnates c (iωπ) in the DMFT with the bare impurity Green's function of 
a五nite-sizecluster of an impurity Anderson model; c is五ttedusing the五nite
parameters of the impurity Anderson model. After五ttilng，one diagonalizes the 
cluster of the impurity Anderson model， and calculates the impurity Green's 
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function using the wave functions of the cluster. The local Green 's function 

G(iωη) of the original lattice corresponds to the impurity Gree山 functionin 

the DMFT. Thus， one can determine the五nalG(iωπ) self-consistently by above 
procedure together with eqs. (2.2) and (2.8). One can obtain the information 

about the wave functions of the original lattice problem using this method. 
Howeverぅatfinite temperatures， one can calculate the Green's function only 
for a small cluster. (For a very large cluster， one can not calculate it even at 
absolute zero.) 

Quantum Monte Carlo method 

The Hi附 h-Fyealgorithm of the quantum Monte Carlo method [28] was used 

to calculate various physical properties of the single-band Hubbard model 

[24， 25， 32， 33， 34， 35]. Though the method is not suitable to study the 
properties at low temperatures， it is powerful to investigate the system at五nite
temperatures. By using the method， the Mott transition was discussed at half-
filling [24， 25， 32， 33]. Besides， Jarrell et al. discussed the antiferromagnetic 
instability near the Mott transition and obtained the spectral functions of the 

one-particle excitation and the spin excitation by this method together with 

the maximum entropy method [24， 25]. Saso and his collabo凶 orscalculated 
the magnetization curve [34]， and obtained the one-particle-excitation spec-
tral functions under a五nitemagnetic field by the maximum entropy method 

[35] 

We study one-particle-excitation spectral functions in the wide region from 

the low energy to the high energy. In the thesis， we use the Hirsch-Fye al-
gorithm of the quantum Monte Carlo method together with the maximum 

entropy method. 
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Chapter 3 

Model and Formulation 

In this chapter， we introduce the model which we use in the thesis， and show 
the formulation of the calculation in the present study" 

We五rstbriefly review the Zaanen-Sawatzky-Allen's diagram [2]， a qual-
itative classification for the transition-metal compounds， in Section 3.1. We 
introduce the two-band Hubbard model in Section 3.2. In Section 3.3， we show 
the procedure to calculate the one-particle-excitation spectral functions. 

3.1 Transition-metal compoundls and Zaanen-

Sawatzky-Allen diagram 

After the studies by Mott [4， 5， 6] and Hubbard [11]， it had been vaguely 
believed that the insulating phase of transition-metal compounds was caused 

by the Coulomb interaction energy U of 3d electrons and the magnitude of the 
gap 1S rOl 

1ns叫ators.) 

However， for NiO， Fujimori et al. carried out the local-cluster (NiO~O- ) 
calculation， and pointed out that in order to interpret the photoemission 
(electron-removal) spectrum of NiO it is needed to take account of not only 

the 3d band but also the ligand band [36]. In the photoemission and inverse-

photoemission spectroscopic experiments， Sawatzky et al. observed the exci-
tation gap， and concluded that the gap is not solely determined by the Ni 3d 
Coulomb interaction (or the gap was not proportional to the Coulomb inter-

acti山on仏 namelyNiO was not a Mott-H山bardinsulator in the narrow sense 
[37] 
Following these studies， Zaanen， Sawatzky and Allen (ZSA) presented a 
phase diagram in which the transition-metal compounds were qualitatively 
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classified [2]. They calculated the energy gap Egap using the impurity Anderson 

model in which the transition-metal ion is treated as an impurity. 

In the Mott-Hubbard theory it is assumed that the lowest charge excitation 

is caused by the type didj→ di-1dj+l， where i and j label sites of the 
transition-metal ions and n labels the d-orbital occupation. On the other hand， 
in Ref. [2]， ZSA pointed out that there is another type of the charge excitation 
It is the charge-transfer-type excitation， di→ df+1ムwhereL denotes a hole 
in the anion valence band. The charge-fluctuation energy associated with this 

process is denoted byム(Fig.3.1) [2] 

wl 十 )-------CC-�ct;+1 

wl ↑〉474J+lL
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Figure 3.1: Total-energy-level diagram corresponding to an ionic ground state 

and excitations [2] 

In ZSA's calculation， there are four parameters; the charge-transfer energy 
ム，the Coulomb interaction between 3d-electrons U， the anion valence band 
width W， and the hybridization between a 3d-electron and anion valence band 
t. All parameters are scaled by t. 1 For a fixed W， free parameters areムand
U. The Mott-Hubbard insulators are in the regionム > U and the charge-
transfer insl山torsare in U >ム[2](Fig. 3.2). They are distinguished by the 
lowest-charge-excitation energy corresponding to Egap. 

Since the electronegativity of the transition metals tends to increase as the 

atomic number increases，ムisexpected to be small in Co， Ni， and Cu. Thus 
it is expected that the in叫 ati時 compoundsof the light transition metals (Ti 

and V) are the Mott-H山 bardinsulators and those of the heavy transition 

metals (Co， Ni， and Cu) are the charge-transfer insulators. In fact， it was 

lIn Fig. 3.1， w denotes the d-band width， which is neglected in the impurity Anderson 
model. 

14 



pointed out that mother materials of the high-Tc cuprates are charge-transfer 
insulators (see Section 4.1) [42， 43， 44， 45] 

U 
charge-transfer-type 
insulator 

p-type : D ~ A 
metal .L.; gap --斗

e
 
p
 
vd 
φ
E
K
 
d
 

r
E
 a
 

'
0
 
・huu
r
 

I

o

 

r
L
E
K

会

'
L

J

J

a

 

6
EE
-
-
-
-
-
E
A
 

日

u

M

m

 Egapoc U 

W~ --- シ/-ーーーー:

d-type metal 

W/2 
ー~

~ 

Figure 3.2: Simple phase diagram showing the various types of insulating 

and metallic states in transition-r 

diagram [ロ問2判]. ) 

In the thesis， we study both the charge-transfer-type system and the Mott-
Hubbard-type system. We investigate the carrier concentration dependence of 

the one-particle-excitation spectral function in the former， and the effect of 
p orbitals in the latter. Thus， we need to consider the degree of freedom of 
p orbitals， and should use a multi-band model which includes p orbitals. Let 
us introduce a simple multi-band model， the two-band Hubbard model in the 
next section. 

3.2 Two-band Hubbard model 

One of the standard models to study the strongly correlated systems is the 

Hubbard model. In the model， the anion p orbital is neglected simply. Here-
after we refer to the model as the single-band Hubbard model. Since we 
investigate the effect of the p orbital， the single-band Hubbard model is not 
su伍cient.

In the thesis， we consider the two-band Hubbard rnodel. The model has 
two atoms (sites) per unit cell， i.e う thelattice structure is different from the 



perovskite-type structure. However， we believe that the two-band Hubbard 
model is su伍cientto study the effect of the anion orbital as long as we do not 
treat t he effects of the band structure or the symmetry of the wave functions. 

The two-band Hubbard model is defined on a bipartite lattice which con-

sists of two sublattices. We denote the sublattices as M and L. The sublattices 
M and L correspond to the transition-metal ion sites and the ligand anion (0) 
sites， respectively. The Hamiltonian of the model is de五nedas follows; 

冗二 t2二(dLPlσ+H.c.) +εd乞 dtdia+εp乞 pLPlσ
<九l>，σ 4εM，σ lεL，σ 

+ Ud乞dldt↑dldt↓? (3.1) 
任 M

↑ ↑  where the operators dia (di'a) and PIσ(Plσ) annihilate (create) flおerr宜ml
spln σon sites i(εM) and l(εL)， respectively. Throughout the thesis， we 
refer to the fermions in the above expression as 'holes'， because the hole rep-
resentation is useful for the description of the high-Tc cuprates. 

εP 

εd 

Figure 3.3: Schematic representation of the two-band Hubbard model. 

The transfer energy is expressed by t which is defined between the nearest 

two sites on the M sublattice and the L sublattice. The on-site Coulomb 

interaction energy on the M site is expressed by Ud. The charge-transfer energy 
ムisdefined byム三 εp εdwhere εd(p) is the d(p )-orbital energy. We set the 
d-orbital energy to be lower than the p-orbital energy， i.e.)ム>O. Schematic 
representation of the two-band Hubbard n10del is shown in Fig. 3.3. 

3.3 Formulation 

We show a set of equations of the Green's functions in the self-consistent pro-

cedure of the two-band Hubbard model in Sec. 3.3.1. In the procedure， we 
calculate the unaginary-time local Green's function by the Hirsch-Fye algo-

出hmof the quantum Monte Carlo method (Appendix B.1)， and obtain the 
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spectrum from the imaginary-time local Green's function by the maximum 
entropy method (Appendix B.2) 

In Section 3.3.2， a method of the calculation of the one-particle-excitation 
spectral function by the single cluster of the two-band H ubbard model is shown. 

We will compare the one-particle司excitationspectral functions obtained by the 

quantum Monte Carlo method and the maximum entropy method with those 

by the single-cluster calculation in Section 4.2 and 5.2. 

3.3.1 Self-consistent equations in DJ¥1FT 

We mainly calculate the d (p)-component of the spectral function pd(p)(ω) ， 

け)(ω)二-j川町
where Gd(p) (ω+  id) is the d(p )-component of the retarded Gree山 function

The d(p)-component of the local Mats山 araGree山 functionis defined as the 

Fourier transformation of the imaginary-time local Gree山 functionGd(p) ( 7) ; 

Gd(iωπ) 

GP(iωη) 

イβω ぺ7)eiωnT， Gd(γ) 三一 (7~[ di<T ( 7 )礼(0)])，

fωp( 7 )eiベ G附)三一 (7~[PIσ(7)斗 (0)]) ，

(3.3) 

(3.4) 

where TT is the imaginary-time ordering operator，ωη= (2η+ 1)π/ s is the 
Mats山 arafrequency and s l/T is the reciprocal temperature (here we 
set the Boltzmann constant kB 二 1).Since we aSSUffi.e a paramagnetic phase 
of the system， the spin indices of the Green 's functions are omitted. In the 
above expression， the expectation values are calculated by the grand canonical 
partition function ::::三 Tre-s(7ゼ-JLN)where μis the chemical potential and 1令

is a number operator of the d-and p-holes; N 三 ZJLdJZMPLPlσ
By using the self-energy ~(iwn) of the d-hole， the local Mats山 araG附ぜs
functions are expressed as follows; 

GP(iωη) 

j lUμ -εp 
dvpo(ν) 
(iωπ+μ 一εd- ~(iωη)) (iω九 +μ -εp)_ v2' f 叫 μ-εd-恥 η)

dvρ。(ν)
iωη+μ -εd - ~(iωπ) ) (iω九 +μーら)-ν 

(3.5) 

Gd(iωπ) 

In eq.(3.5)， po(ν) is the density of states in the case of Ud = 0 andム=0， 

昨 )=11εd(ν-ε(k))， 
1"L k 
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where ε(k) is the Fourier transformation ofthe hopping energy in (3.1)， and NL 
is the number of sites. Only ρo(ν) has the info口nationof the lattice structure 
in the DMFT. In the present study， we assume a semi-circular density of state; 

(3.7) 
(for Iν|三2t)
( otl悶 wise)

{ (附ρ。(ν)

The merits of using the semi-circular density of states are that (1) we can 

precisely define a gap in the spectral functions and (2) we can calculate the 
integral for v in eq.(3.5) analytically 

The d-component (ρg(ω)) and the p-component (Pu(ω)) of the densi ty of 
states for Ud = 0 are expressed as follows [38]; 

(for 0三(ω ーら)(ω-εd)三4t2)，

( otherwise ) 

(3.8) 
We show the structures of them in Fig. 3.4. In Fig.3.4， r is given by (、/ム2+ 16t2ー
ム)/2 frolu eq. (3.8) 
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Chapter 2). We can express the d-component of the local Green's function by 
using c; 

Gd(iω九)-1= C(iωπ)-1 _ ~(iωπ) (3.9) 

After carrying out the integral in (3.5) analytically， we have a set of the equa-
tions by eliminating ~(iωn) from (3.5) and (3.9) as follows; [38] 

C(iωη)-1ωπ+μ-εd -t2GP(iωη) ， 
GP(iωπ)-1 二 iωη+μ-εP-t2Gd(iωπ) 

(3.10) 

If we calculate Gd from c， we can complete the self-consistent procedure 
in the DMFT. We use the Hirsch-Fye algorithm of the quantum Monte Carlo 
method (see Appendix B.1) to calculate Gd from c 
We explain the procedure of the Hirsch-Fye algorithm within the DMFT 
as follows. For an appropriate initial Gd(iωn)， 

l. C(iωπ) is obtained from Gd(iωη) (through GP(iωη)) using eqs.(3.10); 

2. C(η)， the inverse Fourier transformation of C(iωn)， is calculated; 

3. the new G附ぜsfunction G~ew (η) is 0 btained by the Hi以 h-Fyealgo-
rithm from C(Tt); 

4Gfew(iωη)， the Fourier transformation of G~ew (η)， is calculated; and 

5Gfew(iωη) is used as new input of the procedure 1 

The self-consistent procedure is iterated until G~ew (iωn) coincides with Gd(iωη) 
After the convergence， we obtain the one-particle-excitation spectral function 
pd(ω) from Gd( T[) by the maximum entropy method. The formulation and the 
reliability of the maximum entropy method are discussed in detail in Appendix 

B.2. 

3.3.2 Single-cluster calculation 

The Green's function in the spectral representation cannot be obtained by the 
quantum Monte Carlo method and the maximum entropy method. Nalnely， 
we cannot directly obtain the initial and五nalelectronic states of the one-

particle excitations from the spectral functions calculated by the lnethods. In 

order to analyze the spectral functions obtained by the quantum Monte Carlo 

method and the maximum entropy method， we also carry out another type 
of the calculation by which we can obtain the initial and final states of the 

one-particle excitations. 
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We calculate the d-component of the spectral function using a cluster con-

sisting of one “transition metal" site and z “0" sites. Since electrons are 
localized in the insulating states， the translational invariance， which is ne-
glected in this single-cluster calculations， is not so essentially important as in 
metallic states. Thus it is expected that the single-cluster calculations give 

reliable results for insulating states. The calculation by using a single cluster 

have been successfully applied to the analysis of the photoemission spectra 

of the insulating transition-metal compounds [36] and of the undoped high-Tc 
C叩凶es[39， 40] 
The Hamiltonian of the single cluster is de五nedby 

行C 二一去土写(d!PIσ+H.c.) +εdpjdσ 

+ εp土LPtpIσ+Ud!吋 、、‘，，
J

1E--

唱
。
ム

今
、

υ

〆

''E
‘、

We solve the Scl凶 dingerequation for the cluster Hamiltonian (3.11)， 

行cl守口))= E;:)lw民))， (3.12) 

where 1雪印))is the 7η7吋此山i
respo吋 i時 eigenvalueof the cluster. The d-hole spectral function pd(ω) at 

T = 0 can be calculated by 

ぱ(ω=江15|(宣伝)1州
+ I(宙ゆ)Idσ|叫~f)128(ω -E61))]， (3.13) 

where 1並(0))is the vacuum state. (The one-particle ground states 叫~f (σ ↑ 
?↓) are doubly degenerate.) The first term in the square brackets represents 

the hole-addition (or photoemission) spectrum and the second term the hole-

removal (or inverse photoemission) spectrum 
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Chapter 4 

Charge-transfer圃types.ystems 

In this chapter， we study the charge-transfer-type systems， in which the 3d 
Coulomb interaction energy Ud is larger than the charge-transfer energyム.
The high-Tc superconducting cuprate is a typical charge-transfer-type system. 

One of the important problems is how the itinerant states are formed when the 

carriers are introduced into the insulating mother material. In order to solve 

the problem， we study the doping dependence of the one-particle-excitation 
spect1'al functions in the two-band Hubbard model. 

In Section 4.1， we briefly review the resu1ts of the high-ene1'gy spectroscopic 
experiInents， and othe1' theoretical studies which treated the spectral functions. 
Then we show the purposes of the present study. The nume1'ical resu1ts are 
shown in Section 4.2; we show the one-particle-excitation spectral functions 

in the insulating phase and the carrier number dependence of them in the 

metallic phase. Finally， we give a summary and discussion in Section 4.3. 

4.1 Introduction 

In the high-Tc cup1'ates， a lot of experimental studies have been carried out 
to clarify the character of the itinerant electronic states. The high-energy 

spectroscopy is one of the iInportant methods to investigate the electronic 
states， because one can directly obtain the occupied 01' unoccupied electronic 
states from the t1'ansition probability of the one-particle excitation. It has 
indeed revealed [41] that (1) the doped carrie1's enter 0 p-orbitals 1'ather than 

Cu d-orbitals [42， 43， 44， 45]; and that (2) the d-p hybridization between the 
o p-and Cu d-orbitals is strong [40] 
Howeve1' a comprehensive understanding of the formation of the itinerant 

electronic states on carrie1' doping is still lacking. For the doped system the 
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various models were suggested [46]: for example， (i) the doped charge-transfer-
type insulator model where the chemical potential sirnply shifts as in a rigid-

band picture， (ii) the impurity-band model where a narrow impurity band iおS 
formed wi訂thin

charge 一tra叩nsf，お'ergap is simply 五臼lledup. 

In the high-energy spectroscopic experiments it was shown that when the 

carriers are doped into the system the spectral weight transfers from the high-

energy region to the low-energy region [47， 48]， and the cha時 eof the spectral 
functions is different from a simple rigid-band picture (i); in the rigid-band 

picture the spectral weight does not transfer. 

However， it is still unclear whether the narrow peak appears or not on car-
rier doping; Romberg et a1. concluded that no narrow impurity states were ob-
served in their electron energy-loss spectroscopic experiments on La2-aSraCU04 

(LSCO) [49]. On the contrary， in valence-band photoemission spectroscopic 
experiments on LSCO， Fujimori suggested the formation of the localized states 
and the narrow im puri ty band wi thin the cha訂rge-t一寸ぺtrar

On the other hand， many theoretical studies have been also carried out to 
investigate the change of the electronic states on carrier doping. In the several 

studies using the d -p model， which is one of the models which describes the 
CU02 plane [50， 51判]， the itinerar 
doping was investigated. 

The studies by using infinite-Ud models showed that the new electronic state 

is formed in the charge-transfer gap [52， 53， 54]， and tl凶 ;the quasiparticle-
like excitation peak appears and the charge-transfer gap is五lledup [55] as the 

carrier concentration increases. 

By the exact diagonalization of the two-dimensional cluster of 2 x 2 unit-cell 

systelll [56] and the one-dimensional cluster of CU4013 [57]， it was concluded 
that there is the peak structure corresponding to the singlet state caused by 

the d -p hybridization in the insulating phase， and the Fermi level shifts into 
the peak and the system becomes metallic. 

In the above theoretical studies， it was shown that in the metallic phase 
the peak structure exists near the Fermi level. However， there are differences 
between these results for the changes of the spectral function near the Mott 

transition; in the studies using the in五nite-Udmodel the peak structure near 

the Fermi level is absent in the insulating phase and grows with doping， and 
in the studies using the五I

22 



In the present study， we would like to answer the above questions and to 
clarify the character of the itinerant electronic state in the metallic phase. 

4.2 N umerical results 

In the present section， we mainly show the numerical results of the one-particle-
excitation spectral functions obtained by the quantUlffi Monte Carlo (QMC) 

and the maximum entropy (ME) methods 1 

We first survey the overall structure of the electronic states by plotting the 

number density of the electrons against the chemical potential， in Section 4.2.1. 
In Section 4.2.2， we show the spectrum at ntot = 1， where it is expected that 
the system is in the charge-transfer-type insulating phase. The spectra in the 

hole-doped and electron-doped cases are shown in 4.2.~~ and 4.2.4， respectively. 

The results of doping dependence of mass enhancement are shown in 4.2.5. 

Throughout the present section， we mainly treat the case with Ud 二 5and 
ム=3. (The energy is scaled by t.) 

4.2.1μ-n plots 
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Figure 4.1: Plot of the total hole number density ntot (solid circles)， the d-
hole number density 山 (opencircles)， and the p-l叫 enumber density np (solid 
squares) against the chemical potential. (jl is defined in the text.) 

We show the number densityηof holes as a function of the chemical potential 

μ[38]. Hereafter， weぱ'erto such a plot as a μ-ηplot. We mainly show 

1 We refer to the spectral function obtained by the QMC and ME methods as the QMC-

ME spectral function. 
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μ-ηplots at s = 8 and L = 32. 
In Fig. 4.1， we show a typical μ-ηplot. (The statistical error of the 
μ-ηplot is discussed in A ppendix B .1.) N ote that the chemical potential is 

measured from d-level εd in the五gure;we de五nefL三 μ-εd.

A remarkable fact is that a plateau develops at ntot二 1for 0.5ヱSA忘1.5.
This implies that there is a gap and the system is an insulator at ntot二 1.The 

gap Egap is estimated as Egap ~ 1. As is expected， it is a charge-transfer-type 
insulator at ntot二 1，because (1) when the total number density increases from 
ntot = 1 (長之 2)，the d-hole number density remains aJmost constant 川~ 1 
before the p band is filled， and (2) the gap Egap increases as a charge-transfer 
energyムincreases(Fig. 4.2) 
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Figure 4.2: Plots of ntot against μfor variousム;ム=2 (open circles)， 3 (open 
squares)， 4 (open tria時 les)

4.2.2 Spectral functions insulating phase 

We五rstshow the spectral functions for insulating phase. Hereafter， we put 
εp二 O.We mainly show the data at s = 8 and L = 64. 
In Fig. 4.3， we show the spectral functions for ntot二1.00.We五ndthat 
two large peaks develop around ω~εd and around ω~εd + Ud inρd(ω); they 
should correspond to the lower Hubbard band (LHB) and the upper Hubbard 

band (UHB)， respectively. On the other hand， the p--hole spectral weight is 
almost concentrated around ω こら(ニ 0). 2 Both d-and p-hole spectral 

functions have a gap; it is the charge-transfer (CT) gap. The CT gap develops 

2In the calculation of the p-component of spectral functionρJl(ω) by the ME method， we 
should use the statistical errors for CJl(TI) themselves. However， we use the statistical errors 
for Cd(TZ) for those for CP(TZ) for simplicity 
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between the LHB and the p-band. The chemical potential is in the CT gap， 
and the system is in the insulating phase. 3 

0.8 

8' 0.6 
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。)

Figure 4.3: Spectral functions for the d-component (solid circles) and the p-
component (open circles) in the insulati時 phasentot =: 1.00 atμ= -2.0. The 

vertical thin line show the position of the chemical potential. 

It is expected that the distance between the LHB and UHB increases as 
Ud increases and the CT gap develops asムincreases.The QMC-ME spectral 
f臼u叩1江nct

羽W匂efind that the results are indeed cωonsls計t♂訂e白n凶l此twith the above expectations. 

In Fig. 4.4， we also compare the spectral functions with those obtained by 
the single-cluster calculation. In each case， we can find that the positions of 
the spectrallines agree with the positions of the main peaks in the QMC-ME 

spectra. It suggests that the single-cluster calculation is valid in the insulating 
case. 

The most remarkable fact in Fig. 4.4 is that the d-hole spectrum pd(ω) has 
a peak just below ω=εp. We investigate the hole-addition state corresponding 

to the peak by the single-cluster calculation. We analyze the case with U = 5 

andム二 3in detail (Fig. 4.4(a)) (see Appendix D). The ground state叫?
at ntot 二 1is dominantly a Id1) state (ladl2 = 0.92). The line corresponding 
to the peak (ω -0.8) we are interested in is caused by the transition to a 

singlet state叫，2)dominated by a Idγ) state (1αdPl2二 0.76).The spectralline 
appωs below ω 二 εp，because 叫，2)reduces its energy eigenvalue by the d-p 

3Strictly speaking， there is a finite intensity at the chemical potential. However， we refer 
to the present case ntot 1 as an insulating phase， because the intensity at the chemical 
potential is smaller than 10-5. 
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hybridization. This can be understood from the perturbation theory in the 

d -p hybridization energy t applied to the single cluster. For Ud >>ム>>t， 
the energy of 叫~ shifts from εd to εd - t2/ムandthat of叫，2)shifts from 
εp+εd toεp+εd - 2t2/(1/(Udーム)+ 1/ム).Thus， the spectrum line appears 
ω=εp -2t2(1/(Udーム)+1/(2ム))くら Theabsolute value of the energy gain 
of叫，2)corresponds to the energy difference between the (d1pl) triplet state 

(2) 
and \Þ~"')， and it tends to be the exchange energy 2JK 二 :2t2(1/(Udーム)+ 1/ム)
between a localized d-spin and a p-hole. 

(a) 
U=5， d=3 U=6， d=4 0.8 0.8 
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Figure 4.4: Comparison of QMC-ME spectral functions (solid line) with those 

obtained by the single-cluster calculation (hatched bars) for various sets of 

parameters， Ud andム;(a) (Ud，ム)= (5，3)， (b) (6，3)ベc)(6，4)， and (d) (7，4) 

We can thus conclude that the central peak of 〆(ω)in the QMC-ME 
spectrum is dominantly caused by the hole-addition excitation from a d1 state 
to a local d1pl singlet state. Hereafter， we refer to the peak as the local d -p 
singlet peak. 

In Fig. 4.4， the LHB and UHB are observed at the positions slightly lower 

than εd and higher thanεd + Udぅ respectively. (The lower Hubbard level 

and the u pper H u b bard level become εd and εd + Ud in the atomic limit.) 
For Ud >>ム >>t， the energy of the state which is dominar川YId2) shifts 
from 2εd + Ud to 2εd + Ud + 2t2 /(Udーム).Thus， the hole-removal excitation 
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energy corresponding to the LHB (d1→ dO) becomes εd - t2/ム<εdand the 
hole-addition excitation energy corresponding to the UHB (d1→ d2) becomes 
εd+Ud+2t2/(Udーム)+ t2/ム>εd+ Ud 

4.2.3 Hole-doped case 

In Figs. 4.5 we show the d-hole spectral functions pd(ω) and the p-hole spectral 
functions〆(ω)for different values of ntot: from ntot二1.00to 1.28 
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Figure 4.5: Carrier number dependence of the d-(叫 idcircles) and the p-(open 

circles) components of the spectral functions: (a) ntot二1.00(μ 二一2.0)，(b) 
1. 03 (-1. 4 )， (c) 1.16 (-1. 0 )， an d (d) 1. 28 (-0 . 8 ) 

It is remarkable that when the system is doped with holes， a new peak de-
velops below the local d -p singlet peak， and the chemical potential shifts into 
the new peak. As the hole number increases， the new peak is sharply evolved， 
while the intensity of the LHB is decreasing (Figs. 4.S(b) and (c)). It shows 
that the spectral weight for the higher-energy-scale excitation transfers to the 

region near the chemical potential， and forms the sharp peak corresponding to 
itinerant states. In the metallic state， the p-hole spectral weight at the chem-
ical potential is nearly the same as the d-hole spectre乱1weight (Fig. 4.5(d)) 
This implies that p-holes and d-holes are strongly hybridized to form itinerant 

states. 
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In Fig. 4.6， we show the evolution of the new peaLk in the total spectral 
function Ptot (ω) =〆(ω)+〆(ω).This shows that the new peak grows rapidly 
and the CT gap is五lledup as the number density of holes increases. 

We have found that upon doping a peak emerges near the local d -p 

singlet peak and the corresponding electronic state becomes itinerant， and the 
itinerant state is formed by the strong hybridization between p-holes and d-
holes. These suggest that the itinerant state in the metallic phase originates 

from a d -p singlet state. 
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Figure 4.6: Carrier number dependence of the total spectral function Ptot (ω) : 

(a) ntot二1.00(μ= -2.0)， (b) 1. 03 (-1. 4 )， (c) 1.16 (-1. 0 )， an d (d) 1. 28 
( -0.8) 

The suggestion is also supported by the exact diagonalization (ED) method 

within the DMFT framework (see Appendix C) [58]. In the method， we can 
o btain the information of the electronic state in the present model by inves-

tigating the corresponding electronic state in the impurity Anderson model 

which approximate the effective impurity problem in the DMFT. Figures 4.7 

show the spectral functions obtained using the ED method (the ED spectra) 

[58]. We show the ED spectra at the same chemical potentials as those used 

in the calculation of the QMC-ME spectra (see Fig. 4.5). Though the spectral 

function can be calculated at any temperature for Ns = 5， 4 only the results 

4Since one has to use the Lanczos method for the large-size cluster， the calculation for 
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at β8  are shown here. We have found few changes of the spectrum even 

at lower temperatures [58]. In the五gures，b-function peaks are replaced by 
Lorentzian peaks with the width = 0.1. 
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Figure 4.7: The ED spectra at various chemical potentials: (a)μ= -2.0， (b) 
-1.4， (c) -l.0. Solid and broken lines indicate the d-and p-component of the 
spectrum， respectively. 

We五ndthat the all main peaks in the QMC-ME spectrum， such as the 
UHB， the LHB， the local d -p singlet peak， and the large peak around ωご
ら(=0) in〆， also appear in the ED spectrum. 5 ln the insulati時 phase
Ns larger than 5 can be carried out at only absolute zero. 
5Though one cannot distinguish the metallic phase and the insulating phase by only the 
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(Fig. 4.7(a))， there is a peak caused by the transition from a d1 state to a d1pl 
singlet state just above the gap. (The peak corresponds to the local d -p 
singlet peak in the QM C-ME spectrum.) 

When the carriers are introd uced into the system， the chemical potential 
shifts simply into the peak (Fig. 4.7(b)， 4.7(c)). In the case of Fig. 4.7(c)， in 
the impurity Anderson model， the initial state of the one-particle excitation is 
dominantly the singlet state between the 'impurity orbital' and the 'conduction 

electron' (see Appendix C). Since the 'impurity orbital' corresponds to the d 

hole in the original model， it has been shown the initial state is a d -p singlet 
state [58]. It implies that the itinerant state in the metallic phase has the d -p 
singlet character. 

4.2.4 Electron-doped case 

We have also studied the electron doped case，ηtot < 1. The QMC-ME spectral 
functions are shown in Fig. 4.8. We cannot五ndany remar kable changes in the 

p-component on electron doping. According to the μ-ηplot of the system 

(see Section 4.2.1)， in the case of ntot く 1，the p-hole number density np is 
almost zero. Thus， it is expected that the electron doping does not affect the 
p-band. 

As electrons are introduced， the structures of the hole-addition spectrum 
(ω>μ)， s 
structure. On electron doping， the CT gap is also五lledin and the chemical 
potential shifts into the LHB peak. Then， the system becomes metallic (the 
spectrum has a五niteintensity on the chemical potential). In this case， how-
ever， a prominent peak is not 0 bserved at the chemical potential; the chemical 
potential simply shifts into the LHB peak. The change in the chemical po-

tential is thus asymmetric with respect to hole and electron doping in the 

charge-transfer-type insulators. 
One of the possible reasons why the peak structure is not observed in 

the electron-doped case is the peculiar band structure of the present model 

(Section 3.3.1). In the free (Ud 0) case， no peak structure forms at the 
chemical potential. Even in the interacting case， since the d-hole correlation 
effect decreases for the electron-doped case in the present model， it is possible 
that the peak structure does not appear in the electron-doped case. Another 

possibility is that the temperature in the present results is so high that th 

peak cannot be observed. A further study is needed to investigate these points 

in detail (see also Section 5.2.2) 

spectral functions， we refer to the case atμ= 2.0 as the insulating phase， for convenience. 
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Mass enhancement factor 

Finally， we estimate the mass enhancement from the irnaginary part Im~(iωπ) 
of the self-energy. We define the mass enhancement factor (or inverse of the 
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Im~(iπ/β ) -Im~( -in / s) 

2π/s 

which is a measure of the dynamical mass enhancement. 
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Figure 4.9: Carrier number dependence of Z-l at different temperatures: s = 
4 (L = 32) (solid circles)， s = 8 (L = 64) (solid tria時 les)and s = 16 
(L = 64) (solid squares). The inset shows doping dependence of the imaginary 
part Im~(iωn ) of the self-energy at s = 8 (L = 64) :ηtot二 1.00(open circles)， 
1.01 (solid circles)， 1.03 (solid squares)， 1.08 (solid diamonds) and 1.16 (solid 
triangles) 

In Fig. 4.9， we show the mass enhancement factor against ntot(> 1) at diι 
ferent temperatures. We五ndthat as the system approaches to an insulating 

phase， the effective mass of a d-hole is strongly enhanced. Besides， at lower 
temperature， Z-l is rapidly enhanced. This implies that the heavy quasipar-
ticles are formed near the insulating phase at lower ternperatures. 

We also compare the mass enhancement factor in the hole-doped case with 

that in the electron-doped case in Fig. 4.10. The mass enhancement factor is 

increasing as ntot tends to 1 in both cases. While the enhancement factor is 

suppressed rapidly as the electrons are doped (ηtot < 1)， however， i t is still 
large away from ntot二 1in the hole-doped case (ntot > 1). The correlation 
in the hole-doped case is thus more effective than that in the electron-doped 

case. 
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Figure 4.10: Carrier number dependence of Z-l in the hole-doped case (rη川1to凶t>
1り)and the electron吋 opedcase (ntot < 1) at s 8 (L 64). The inset 
shows the unaginary parts Im~(iωn) of the self-energy in the hole-doped case 

(ηtot = 1.01 : open circle) and the electron吋 opedcase (0.99 : solid circle) 

4.3 Summary and discussion 

Summary 

To summarize， we have calculated the spectral functions of the two-band 
charge-transfer-type system， and have obtained the continuous carrier number 
dependence of the spectral functions from the insulating phase to the metallic 

phase. We have studied the changes of the spectrum for the low-doping region 

which cannot be realized by the五nite-sizecluster. 

What we have found are: 

(1) When the total number density ntot二 1，a gap develops and the chem-
ical potential is in it， and the system becomes a charge-transfer-type insulator 
for Ud >>ム>>t. 
(2) In the ins叫ati時 phase，there already exists the local d -p singlet peak 
in the charge-transfer gap. In the total spectral funct:ion Ptot (ω)， the peak is 
not so prominent. 
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(3) As holes are doped， another new peak develops just below the local d -p 
singlet peak， while the spectral weight in the high-energy region transfers to 
the low-energy region. The chemical potential shifts into the new peak and 
the system becomes metallic. 

(4) The itinerant state continuously evolves from the d -p singlet state 

(5) In the electron-doped case， a peak structure at the chemical potential 
is not observed. Moreover the change of the spectrurn is different from the 

hole-doped case; while the UHB peak structure broadens， the LHB peak still 
remains and the chemical potential simply shifts into the LHB. 

(6) The behavior of the mass enhancement factor Z-l is also asymmetric 

with the hole-and electron-doped case. The values of Z-l in the hole-doped 

case are more strongly enhanced than those in the electron-doped case. 

Discussion 

The mass enhancement factor should be compared with the coe伍cientγof

the temperature-linear term in the electronic specific heat. The experimental 

results of the high-Tc cuprates show the asymmetry of the values of γ;γ 

of the electror吋 opedcup凶 es[59， 60] is smaller than that of the hole-doped 
cuprates. [61] It is qualitatively consistent with our resu1ts. In the experiments， 
however，γis not increasing when the system approaches to the Mott transition 
[59，60，61] in contradiction to the present res山 s.This may suggest the effect 
of the momentum dependence of the self-energy becomes more important near 

the Mott transition. 

The d1pl singlet state in the present results corresponds to the d9 L singlet 
states in the electron representation. The existence of the d9 L local singlet 

states in the high-Tc cuprates was inferred from a photoemission experiment. [62] 

The authors emphasized that the singlet states preexist in the insulating phase. 

N umerical calculations for the c叩 rates[39， 40， 56， 57] also showed the for-
mation of the local-singlet states in the insulating phase. Our calculations are 

consistent with those results. 

Some other theoretical studies by using the d -p model with the limit Ud→ 

∞show that there is no structure in the charge-transfer gap (i.e.， between the 
LHB and the p-band) in the insl 

the Fermi level inside the cha紅rg伊e白t仕ransf，お'ergap only when the carriers are doped 

i山ntωothe system [52， 53]. The behavior that the peak structure emerges near 
the Fermi level is consistent with our results. 

We conclude that our result suggests a picture which connects the existence 

of the local d -p singlet peak in the insulating phase and the emergence of the 

new peak structure corresponding to the itinerant state in the metallic phase. 
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Zha時 andRice [63] claimed that the electronic states ofthe high-Tc cuprates 

could be described in terms of the local-singlet states rnoving around the sys-

tem. We have found the local d -p singlet peak appearing below ωこら.It

is caused by the energy gain of the strong hybridization between a d-hole and 

a p-hole. We have also clearly shown that the itinerant states in the metal-

lic state originate from the local d -p singlet states in the insulating phase. 

These results imply that the itinerant states locally have the character of the 

singlet states， and suggests the following scenario of the formation of the itin-
erant state; once holes are introduced， the local singlet states overlap with 
one another and form itinerant states， and the system turned into a metallic 
phase. The results supports the description of the metallic phase in terms of 

the local-singlet states for the low energy behavior. 
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Chapter 5 

Mott-Hubbard-type systellls 

In the Mott-Hubbard-type systems， the energy level of the 2p orbital in the 
ligand anion lies away from the Fermi level and the charge-transfer energyム
is larger than the Coulomb energy Ud between 3d electrons. The compounds 

of light transition-metal， Ti， V， and Cr belong to this type of materials. 
In this chapter， we study the behavior of spectral functions and clarify 
how the spectral weight changes near the Mott transition when the ratio of 

the Coulomb energy to the 3d band width changes in the Mott-Hubbard-type 

system. 

We briefly review some experimental results and theoretical analyses of 
the Mott-Hubbard-type transition-metal oxides， and show the purpose of the 
present study in Section 5.1. The numerical results of the Coulomb-energy 

dependence of the spectral functions are shown in Section 5.2. In the section， 
we also show the results of the mass-enhancement factors. In Section 5.3， we 
summarize and discuss the present results. 

5.1 Introduction 

Fujimori et aJ. studied the evolution ofthe spectral function in SrV03， LaTi03， 
and YTi03 by the photoemiおssωnspectrosc∞opic experinlent [伊64引].The strength 
of the effective electron correlation (the ratio of the Coulomb interaction energy 

to the 3d band width) increases in the order SrV03→ LaTi03→ YTi03. It 
was reported that the spectral weight is transferred from the region near the 

Fermi level to the high-energy region with increasing the effective electron 

correlation. 
Inoue et al. then carried out a systematic study of Cal-aSra V03 [65]. Both 

Ca V03 and SrV03 are metallic. The correlation effect in Ca V03 [66， 67] is 
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larger than that in Sr V03 [68]. In Cal-aSra ¥ゆ3，one can control the ratio of 
the Coulomb interaction energy to the 3d band width by substitution of Ca 

by Sr [65]. (The ratio of the Coulomb interaction energy to the band width 

increases when x decreases.) Inoue et al. reported that as the interaction 

becomes strong， (1) the weight is gradually transferred to the high energy 
region， and (2) the spect叫 intensitynear the Fermi level simply decreases. The 
latter fact is in partial contradiction to the theoretical result for the single-band 

Hubbard model; in the model while the integrated intensity near the Fermi 

level decreases， the value of the spectral intensity at the Fermi level should be 
invariant. The authors ascribed the discrepancy to the k-dependence of the 
self-energy， which is neglected in the in五nite-dimensionalmodel. 

In the present study， we study the effect of the p orbital in the change of the 
spectral intensity at the Fermi level by using the two--band Hubbard model. 

In the two-band Hubbard model， even if the self-energy is k-independent， the 
inte凶 ityat the Fenni level is not always invariant (see Appendix E). We also 

investigate how the spectral function changes in the p:resent two-band model 

when the carriers are doped into the Mott-Hubbard-type system. In the study 

of the single-band Hubbard model by the DMFT [25]， it was reported that a 
narrow resonance peak appears near the Fermi level when the filling decreases. 

We compare the results of the present study with those obtained using the 

single-band model， and discuss the consistency and the difference between the 
single-band and two-band model. 

5.2 Numerical results 

We五凶 show，in Section 5.2.1， the μ-ηplots (see also Sec. 4.2.1) for var-
ious parameters to survey the overall structure the electronic states of the 

present systeln. After showing a typical spectrum of the Mott-Hubbard-type 

insulator， we show the evolution of the spectral functions when the Coulomb 
interaction energy Ud becomes strong in Section 5.2.2.. We also compare the 

spectra with those obtained using the single-cluster calculation. Finally， the 
doping dependence of the spectral functions are shown in 5.2.3. 1 

Throughout the present section， we fix the charge-transfer energy asム=4. 

1 In the present section， we refer to the fermions which we consider as “holes" to avoid 
the confusion， although in the real Mott-Hubbard-type perovskite transition-metal oxides 
the stable electron configuration of the trar 
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5.2.1μ -n plots 

In Fig. 5.1， we show a typical μ-n plot of the Mott-Hubbard-type system at 
s = 8 and L = 32. In the plot， a plateau is observed at ntot = 1 in addition to 
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Figure 5.1: Plot of the total hole number density ntot (刈 idcircles)， d-hole 
number density川 (opencircles)， and p-hole number density np (solid squares) 
against the chemical potential for Ud = 2.5. 
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Figure 5.2: Plot of the total hole number density ntot against the chemical 

potential for various Ud; Ud二 1.0(open circles)， 1.5 (s:olid circles)， 2.0 (open 
squares)， and 2.5 (solid squares) 

a plateau at ntot = 2， which corresponds to a conventional band gap. We五nd
that nd is increasing faster than np in the region ntot三1.Thus， the plateau 
means that the Mott-Hubbard gap develops at ntot二 1.We also find that as 

the strength of Ud increases， the Mott-H山 bardgap increases (Fig. 5.2) 
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5.2.2 Spectral functions Ud dependen.ce 

We fi1'st show a typical spect1'um in the Mott-Hubba1'd.-type insulating phase. 

Figure 5.3 p1'ovides the spectral functions of d-and p-components for Ud = 2 
(hereafter we show the data for L = 64). We五ndthat there are large peaks 
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Figure 5.3: Spectral function of d-(solid circles) and p-components (open 

circles) fo1' Ud = 2 at μ=  -3.5 and s = 8. The vertical thin lines show the 
position of the chemical potential. 

around εd( = -4)，εd + Ud( = -2) in the d-component， and εp( = 0) in the 
p-component. These peaks should correspond to the lower Hubbard band 

(LHB)， the upper Hubbard band (UHB)， and the p band， respectively. The 
Mott-Hubbard gap develops between the LHB and the UHB， and the chemical 
potential sits in the gap; the intensity at the chemical potential is smaller than 
10-5 

The Ud dependence of the spectral functions is shown in Fig. 5.4( a) and (b) 
It is clearly shown that the Mott-Hubbard gap develops as Ud increases. The 
intensity of the UHB of the d-component decreases and the spectral weight 

transfers to higher-frequency region. It is also observed that the intensity 
of the p-band decreases and the spectral weight transfers into the band gap 
between the UHB and the p-band in the p-component spectrum. The behavior 

is unde1'stood qualitatively as follows. In the present case ofム=4， as the 
strength of Ud is increasing and is close toム，the difference of energy of the 
hole addition excitation to the UHB and to the p-band is decreasing. Thus， the 
intensity of the UHB is suppressed as Ud increases， whille that of the p-band is 
enhanced. The band gap between the UHB and the p-band is filled up. 
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We cannot五nda sharp peak structure at the chernical potential for any 

value of Ud. This is a marked difference from the resu1ts obtained for the 
single-band Hubbard model by Jarrell et al. [25]. This point will be discussed 
in Section 5.3. 
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Figure 5.4: (a) d-components and (b) p-components of spectral functions (solid 
lines) for the various Ud; Ud二 1.0，1.5，2.0，and 2.5 (from top to bottom). For 
comparison， we also show the spectra for Ud = 0 obtained analytically (broken 
thin lines). N ote that we set the origin of frequency to the chemical potential 

Figure 5.5 provides the comparison of the d-component of the spectral 
functions obtained using the QMC and ME method with those obtained using 

the single-cluster calculation. For each value of U，め bothof the two peaks 
(referred to as the LHB and UHB so仏r)in the spectrum obtained by the 
QMC and ME methods are consistent with the two large peaks obtained by 

the single-cluster calculation. The lower peak corresponds to the hole-removal 
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excitation dominated by d1→ dO and the u pper one corresponds to the hole-

addition excitation dominated by d1→ d2. (For example， ladl2二 94.7%in the 
one-particle ground state and 1α12 = 84.3% in the two-particle ground state 
for Ud二 1.0.The meaning of the coe伍cientsad and αdd is shown in A ppendix 

D.) Therefore it is reasonable to call the two large peaks the lower and u pper 
Hubbard band， respectively. 
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Figure 5.5: Comparison of the d-component of spectral functions obtained 

using the QMC and ME methods (solid line) with those obtained using the 

single-cluster calculation (hatched bars) for the various Ud; (a) Ud 二 1.0，(b) 
1.5， (c) 2.0， and (d) 2.5. The vertical thin lines show the position of the 
chemical potential. 

We also find that the percentage of the Id2) state in the五nalstate of the 

UHB decreases as Ud increases. For Ud二 1.0，the percentage of the Id
2
) state 

is 84.3% and that of the Id1pl) singlet state is 15.2%. On the other hand， for 
Ud 二 2.5，the former is 68.4% and the latter is 30.2%. This resu1t supports 
the qualitative explanation for the decrease of the intensity of the UHB in the 

QMC-ME spectrum for large Ud. 
Since the single-cluster calculation is valid only in the insulating phase， as 
mentioned in Section 4.2.2， it is not suitable to investigate the itinerant state 
near the chemical potential in the metallic phase for Ud忘 1.5. Namely， we 
cannot answer the question whether a sharp peak stru.cture is formed at the 
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chemical potential or not by using only the single-cluster calculation. 
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Figure 5.6: Spectral functions of d-hole forムニ 4and various Ud at β=  16 
(L = 64); Ud二 1.0，1.5， and 2.0 (from top to bottom). Note that we set the 
origin to the chemical potential. 
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Figure 5.7: Plot of the mass enhancement factor Z-l against Ud at β=  8 (solid 

circles) and sニ 16(solid squares). The inset shows the imaginary parts of 
the self-energy at s = 8 for the various Ud; Ud二 0.5(solid circles)， 1.0 (open 
circles)， 1.5 (solid squares)， 2.0 (open squares)， and 2.5 (solid tria時 les)

A peak structure can be observed if the temperature is further decreasing. 

In Fig. 5.6， we show the spectral functions for various Ud at s 16. Even 
at the lower temperatures， however， a sharp peak structure at the chemical 
potential is not observed. This point is later discussed in detail. 
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Mass enhancement factor 

We investigate the correlation effect on the mass enhancement factor z-l， 
which has been already defined by eq.( 4.2) in 4.2.5. We show the Ud-dependence 

of the mass enhancement factor in Fig. 5.7. We find that the mass enhance-

ment factor increases as Ud increases. At the lower temperatures， the effective 
mass is strongly enhanced. 

doping dependence 

It is also expected that the similar metal-insulator transition occurs and the 
itinerant electronic states are formed when carriers are introduced into the 

system. We study the evolution of the d-component of the spectral function 

on carrier doping as we did for the charge-transfer-type system. 

Spectral functions 5.2.3 
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Figure 5.8: Spectral functions of d-hole for various total hole density ntot at 

β=  16; (a) ntot = 1.00， (b) 1.01， (c) 1.02， and (d) 1.04. The vertical thin lines 
show the position of the chemical potential. 

Figures 5.8 provide the d-components of the spectral functions for various 

values of the total hole densityηtot. We五ndthat a peak structure is formed 

and growing at the position just below the UHB when the total hole density 

ntot increases. The chemical potential shifts into the growing peak. This 
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implies that the change of the spectrum is not rigid-band-like and the peak 

structure which corresponds to the itinerant electronic state emerges when the 
carrier concentration increases. 

5.3 Surnrnary and discussion 

Summary 

To summarize， we have studied the spectral functions and the mass enhance-
ment factor near the Mott transition in the two-band Mott-Hubbard system. 

What we have found are the following. 

(1) As Ud increases the Mott-H山 bardgap develops at the chemical poten-

tial in the spectral function. 

(2) For any value of Ud， a sharp peak structure has not been observed at the 
chemical potential. The intensity at the chemical potential simply decreases， 
and the spectrum has a dip around the chemical potential as Ud increases. 

(3) The mass enhancement factor increases as Ud increases 

(4) A narrow peak structure is formed at the chemical potential when the 

carrier concentration increases in the two-band Mott-Hubbard system. 

Discussion 

There are some possible explanations why a sharp peak is not observed when 

Ud increases. One of them is that the band structure of the model is peculiar. 

1n the present model， when Ud 二 0，the chemical potential does not sit in 
the maximum of the free band at ntot 二 1(see Fig. 3.4 in Section 3.3.1) 

The whole band width is only narrowed by the renor:malization effect for a 

small Ud. 1n the present case， for a small Ud， even if the whole band width 
is narrowed by the renormalization effect， the structure near the chemical 
potential is almost invariant， i.e.， it does not form a peak structure. (On 
the contrary， for the single-band Hubbard model in the half-五lledcase， the 
spectrUlTI at the chemical potential becomes a sharp peak which corresponds 

to the narrowed whole band， because the chen1ical potential always sits in the 
maximum of the band.) 

On the other hand， for a large Ud， the peak structure cannot be observed 
when the temperature is so high. Jarrell reported that the peak structure at 

the chemical potential is very sensitive to the tempe削 ;ure[25]. In the study 

of the two-band Hubbard model using the modi五ed1PT (see Section 2.2) [69]， 
it was also pointed out that the peak structure near the chemical potential 
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rapidly diminishes， and no trace of the peak is found when the temperature is 
comparable to the width of it. 

We estimate the width of a possible peak at lower temperatures at the 

chemical potential. The quasiparticle band width rホ isrenormalized by the 
electron correlation as r* = zr， where r is the band width in the free system. 
If we take the d-band width of the free two-band model as r (see Fig. 3.4)， r 
is estimated as r ~ 0.83 forム=4. Note that we take t = 1 as the energy 
unit (see Section 3.3.1). Thus， the quasiparticle band width r* is estimated as 
r* = zr rv 0.15 (for Ud二 2.5)at T = 0.125 (s二 8).Namely， the temperature 
T = 0.125 is comparable to a possible band width of the quasiparticle. At the 
lower temperature T = 0.0625， the effective mass is strongly enhanced. For 
Ud 二 2.0，a possible band width is estimated as r* rv 0.08. It shows that 
even at the lower temperatures (T = 0.0625) the possible band width is also 
comparable to the temperature. Thus， for a large Ud， the peak structure can 
be suppressed by the temperature in the present results. 

It is a future pro blem to study the effect of band structure in detail. In order 
to obtain a definite conclusion about the formation of the peak structure in the 

spectral function， it is also needed to study the system at lower temperature. 
We have found that the mass enhancement factor increases as Ud increases 

in the present results. In the experimental result， however， it was reported 
that the mass enhancement factors estimated from the specific heat coe伍-

cient， the Pauli-paramagnetic susceptibility [70]， and the photoemission spec-
trum [65， 71] are ωt so enhanced when the correlations become strong in 
Cal-xSrx V03・Inthe experimental study by the photoemission spectroscopy 

(PES)， the mass enhancement factor is estimated by fitti時 PESdata with 
the spectrum in which one assumes the phenomenological self-energy. In the 

result， when the local self-energy is assumed， the effective mass is strongly 
enhanced. Thus， it was pointed out that it is difficult to explain the effective 
mass in the real system without considering the k-dependence of the self-

energy [65]. Besides， in Ref. [71]， Inoue et a1. suggested that it is important 
to consider the long-range interaction in order to explain the absence of the 

large mass enhancement. It is still an open problem whether the effective mass 
near the Mott transition is enhanced or not in the presence of the long-range 

interaction. 

On the other hand， in connection with tl 
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Ilnportant to analyze the spectrum obtained by the high-energy spectroscopic 

experiments quantitatively， although the effect of the long-range interaction 
may also be important. 

In the carrier concentration dependence of the spectrum， the formation of 
the narrow peak at the chemical potential implies that the renormalized band 

of quasiparticle characterized by a certain energy scale (which corresponds to 

the width of the peak) is formed when the carrier cor附 ntrationincreases 

The similar behavior was also observed in the spectral function obtained by 

the DMFT in the single-band Hubbard model [25]. This suggests that the 

description of the system in terms of the single-band model is valid as long as 

we consider the low-energy region. 
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Chapter 6 

Concluding remarks 

Throughout the thesis， we calculate the one-particle-excitation spectral func-
tion， and study the electronic states near the Mott transition in the two-band 
Hubbard model by the DMFT framework. 

We have shown that the change of the spectral function on carrier doping is 

not rigid-band like one， and the peak structure corresponding to the itinerant 
electronic states emerges near the chemical potential in the metallic side of 

the Mott transition. These results suggest that the itinerant electronic state 

is characterized by the energy scale corresponding to the width of the sharp 
peak at the chemical potential. 

It is also shown from the results that the quanturn Monte Carlo method 
and the maximum entropy rnethod within the DMFT framework are useful to 

describe the behavior of the spectral function near the Mott transition. 

When we discuss the physics in the low-energy scale such as the dispersion 

of the quasiparticle near the chemical potential， or the physics in the case 
that the antiferromagnetic fluctuation becomes strong， the momentum depen-
dence of the self-energy becomes important， and an irnproved approximation 
rs necessary. 

However， we can conclude that the description of the strongly correlated 
system using the D MFT is valid as long as we do not treat the properties in 
the low-energy region. We would like to emphasize that the DMFT is one of 

the useful methods to treat the correlation effects. 

Future problems 

There are some fu ture pro blems. 

-羽Teneed to consider a more realistic model， in which we treat the degen-
eracy of the d orbitals or the realistic band structure， in order to study 
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the Mott transition or other phenomena in the reall transition-metal com-
pounds. 

• In order to discuss the property at lower temperatures， the quantum 
Monte Carlo method is not suitable. We are also interested in the method 

by which we can investigate the property of the system at low temper-

ature including absolute zero within the DMFT framework (e.g. the 
modified IPT method [29]) 
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Appendix A 

Derivation of the effective 

action 

In this appendix， we show the derivation of the e百ectiveaction in the infinite-
dimensionallimit [16]. We consider the single-band Hubbard model for sim-
plicity. 

The Hamiltonian of the single-band Hubbard model is defined as follows; 

冗二一乞むj(cjJcjσ+H.c.) + U乞clct↑clct↓一 μ乞cLctσ (A.1) 
<t，J'>，σ zσ 

The partition function Z of the system is expressed by 

Z Tre-β?ぜ

J11Tr(e-m/N)N=lim Tr(1-d)N 
N→∞ 

(A.2) 

lim TrZl¥T. 
N→∞..  ， 

where ε三 s/ N. In the path-integral formulation， the partition function Z N is 
expressed by the Grassmann variables {仇ゆ }as follows; 

ZN 二 j暗崎川s立削帥~{作(何PFFWW仰叫叫叫山山d￠必ぽ山j2r山山川川;fμ川川)勺切叫叫dω叫叫ゆωdj2;一ε宅引5訂(，t;;+1ドd¢必町rrj2r「「ペ;f「アペ+札叫11り::7);「εJ一
(A.3幻) 

where J(( { ?þ~;+ l)} ， {叫;)})is the "Hamiltonian" expressed by the Grassmann 
variables， and ?t;;) and ψ~;) in J( are arranged in the normal order. We obtain 
the path-integral expression of Z as follows; 
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(A.4) 
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where S is the action de五nedas; 

(A.5) 

仇σ(T)(ま-μ)仇σ(T)-むj7/JiO' (けψjσ(T)+ U L?Ti↑川 T)7/Ji↓川 T)} 

Let us consider the effective action Seff de五nedby 

Jefβ-Se匂刈Seff州仔引んl
ζρJeffζんI J σ 

(A.6) 

First， we divide S into three parts; 

S S(O) + So +ムS， (A.7) 

So 三 fd7{Foσ(T)(三一山(巾 U'lto↑(巾o↑(ア)?To↓(榊o↓(ア)}，

ムS 三 -ldT{L山バ帆
-l dT{乞{九(T)ηzσ(T)+私σ(T)仇σ(T)} 

where S(O) denotes the action excluded a certain site 0， and TJiσ三 tio7/Joσand 
命σ三 tz。ψ。σ・Wecalculate the effective action as follows; 
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where < ・・・ > is defined by 

~Jrr川刈σ e-S( O ) (A.I0) 

Carrying out the cumulant expansion， 

< e-fJ.S >(0)二 exp(乞<ムS2π>iO))? (A.ll) 
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we can obtain the effective action as follows; 

Seff 呂主JI1{i}{j} 
J1・・・3π

GT)h(711??74π;勺1， • • • ，勺π)+ So， (A.12) 

where 

GTLπ(乃1'...，丸;勺1'...，ちπ)三く九(冗1) ・・九(乃π)ψh(乃1) ・ψjn(ちπ)>iO)

(A.13) 
Let us estimate each term in n-summation of (A.12) by simple power counting 

Note that 'r/i f"'V 1/、(ibecause of the scaling of tij f"'V (1八/三)Ii-jl
1. (1): 11二 1(G~J)) 
Since i =/: j and i， j =/: 0， the distance between i and j is I i -j I = 2 at least. 
The summations give a factor of order z; ~i f"'V Z and ~ ? f"'V Z 一 1f"'V z. 

S仙ln附1

tJ 
ー
一d

l
一
d

l

2

0

 

(A.14) 芝市η3Gjj)

2. (2):η二 2(Gml)

(a) (2-1): the case in which i，j，k，l are all different 

Since G~nl f"'V (1/ y'z)li-jl(l/ y'z)liーんI(1/ y'z) li-ll f"'V z-3 and a factor 
zq is given by four summations; Li f"'Vム ~j f"'V Z - 1， Lk f"'V Z - 2， 
and 乞 1f"'V Z - 4， we obtain the overall factor as 

ε--G(0)~ -1 ηtηjηたηILTijんl (A.15) 

(b) (2-2): the case in which i = j and i ヂk，l 
Since G~~L f"'V (1/ y'z) Iは I(1/ y'z) li-ll f"'V z-2 and a factor z3 is given 
by three summations;乞ム乞んf"'VZ - 1， an d 2:ご1f"'V Z - 2， we 
obtain the overall factor as 

L一戸(0) -1 ηtηi'r/kηlLiiiたl (A.16) 
ikl 
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It is shown similarly that the overall factor of each term is at least of 
the order of (l/Z)n-l. Thus， only η1  term， i.e.， the term of the two-
point cumulant survives in the limit Z → ∞. Hence， we can obtain the五nal
expression of the effective action in the in五nite-dimensionallimit; 

Seff 二乞tt仙f耐)ηjσ (T')G~J~(T， T') 

+ t dT{苧oσ(T)(三一山(巾U?/Jo↑(T)ゆoT(T ){;o↓(寸ψo↓(T)}，(川7)
一ffwpw(7)G-1(7一戸川oσ(T)+U{;o↑(T)ψo↑(切o↓(T)ψo↓(T)， 

where c is de五nedby 

θ -
c-l( T -T')三 8(T -T')(μ-万戸)-乞たotjoG~~~(T， T') (A.18) 
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Appendix B 

The Hirsch-Fye algorit;hrn and 

the maximum entropy method 

In Section B.l， we show the Hirsch-Fye algorithm [28] of the quantum Monte 
Carlo method to solve the effective impurity problem in the DMFT as men-

tioned in Section 2.2. We can obtain the imaginary-time local Green's function 

of the system by the algorithm. In order to obtain the one-particle-excitation 

spectral functions from the imaginary-time local Green's function， we use the 
maximum entropy method [74， 75， 76]. The detailed e:x:planation of the maxi-
mum entropy method is given in Section B.2. 

B.l Hirsch-Fye algorithm ofthe quantum Monte 

Carlo method 

B.l.l Hirsch-Fye algorithm 

In the Hirsch-Fye algorithm [28]， we start from a Hami.ltonian which describe 
a system of an impurity interacting with conduction electrons. 

H 

H1 
Ho + Hl， 
U (1れf- 立ση~)

、、ES
，J
1
EムB
 

〆
'S
『，、
、

In the DMFT， the impurity site， of which occupation number is described by 
η~ ， corresponds to a certain site 0 on the original sublattice M of the two-band 
Hubbard model， and the degree of freedom described by Ho correspond to the 
effective medium (the dynamical mean field) excluding the site 0 
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By using the Suzuki-Trotter breakup， the partition function of the system 
is approximated for large L >> 1 (L is the Trotter number) as follows; 

L 

Z 三 Tre-βH二 Trrr e-D.TH (B.2) 

L 

'r rr e-D.THoe-D.TH1， 

(B.3) 

whereムT β/L. We decouple Hl by the discrete Hubbard-Stratonovich 
transformation with Ising variable s as， 

e-D.TH1 二 叫 {-叶バイ_n1; nf) } 
jus(イ+イ

where入isdefined as cosh入三e企TU/2

(B.4) 

(B.5) 

The local Green's function Cd( T[) of the d-hole at the discrete time η 二
(l -1)ムT(l = 1，. • • ，L) is obtained as the Monte Carlo expectation value of 
the element g(l， l') of the Green's function matrix for a certain configuration 
of {s [ }. According to Hi以 hand Fye， there is a relation between the G附 n
function lnatrix elements for any two Isi時 variableco凶 gurations，{sz} and 
{sa; 

g' ( l， l') = 9 (l， l') +玄(g(l，l") -bl[，，)(e川

where 9 and g' are the matrix elements for two Ising variable configurations {s[} 
and {s~ }， respectively. One of the most remarkable featllres of the algorithm is 
that the Monte Carlo samples g(l， l') are prodllced by only the eqllation (B.6) 
of g(l， l') themselves 
The Ising variable con五gurationsare generated with a renewal probabil-

ity R(Sl→ sD. The renewal probability is also detern1ined only by g(l， l') 
themselves; 

R(s[ → s~) = 1 + (1 -g(l， l))(e入(S;-Sz)- 1) (B.7) 

Thus， we need not consider degree of freedom of the conduction electrons 
explicitly. Namely， if one only gives the expression of the bare Green's fllnction 
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as an input of the procedure， one can calculate the full Green's function by 
the algorithm. The remarkable feature enables us to use the algorithm within 

the DMFT framework， because we have to calculate the local Green's function 
Cd( T) only from Q( T) in the DMFT 

Carlo Monte quantum of the n
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B.l.2 

In the results of the thesis， we show one-particle-excitation spectral functions 
only for the五xedvalue of L. This is because we have not found the distinctive 

differences in the spectral functions obtained by the maximum entropy method 

for the different values of L (see Fig. B.1. The parameters are as follows; 

Ud 二 5，ム 3，μ-1.0and s = 8). In the practical calculations we set 
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32 (solid Figure B.1: L-dependence of the d-component spectrum for L 

circles) and L = 64 (open circles) 

L = 64 mainly. 
In the Monte Carlo sampling procedure， we divide the samples into Nbin 
groups (bins)， each of which has M samples， and lneasure the standard devi-
ation among the Nbin bins. The measurement is usually carried out at every 

other Monte Carlo step in order to reduce the correlation between the sam-

ples. When the system is close to an insulating phase， the acceptance rate is 
small (忘 0.35).In such a case we make the measurenlents at every 4 steps 
Repeating the measurements， we collect M = 4000 rv  5000 samples in a bin 
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and take Nbin = 200 bins. That is， we take 8 x 105 r'-.J 1 X 106 Monte Carlo 
samples. 
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Figure B.2: Imaginary-time Green's function -Cd(Tl) with the statistical error 

σ1 for ntot = 1.16 (open squares) and 1.00 (open circles) at s = 8 (L = 64). 
The parameters are Ud二 5andム=3. 

We calculate the expectation values Cd( Tl) as follows. Fi凶 ，we define the 
Monte Carlo sample g(i) (l) at i-th Monte Carlo step with a random integer lR 
(1三lR三L)，

g(i)(l) 三~ ~(:(~_l~ ~ ~ l~~ 1 1_ ¥ (~~~r /R三L-l+1)(B8)l -g(lR -L + l -1， lR) (for lR > L-l + 1)， 

where g(l， l') is the G問山 functionmatrix element for a certain co凶 guration
of the Ising variables (see Section B .1.1). The random integer lR is prod uced 
for any g(i) (l) at every Monte Carlo step. Second， we calculate Cd( Tl) as the 
arithmetical mean values of g(i)(l)， 

Nbin M 

Cd(η)ご王子-L二Lg((k-1)M +i) (l) 
Nbin ~ M~ 

(B.9) 

The statistical error σl for Cd( Tl) is expressed as 

1 Nbin 

乞(ク(叩)-Cd(η))2， 
l -= N凶 (Nbin- 1)た=1

(B.10) 
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where g(た)(l) is de五nedas 
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In the present study， the absolute errors are in the range from 10-4 to 10-3 

and the relative errors are in the range from 10-3 to 10-1 (Fig. B.2) 
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Figure B.3: Plots of the d-hole number density nd with statistical errors for 

(Ud，ム)= (a) (5， 3) an d (b) (2.5， 4) a t s = 8 (L = 32) 

The statistical errors in the μ-n plot are shown in Figs. B.3. It is shown 
that the error becomes larger near the insulating phase. 
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B.2 Maximum entropy method 

B.2.1 Fundamental formulation 

In order to obtain the one-particle-excitation spectral function ρ(ω) from G(η) ， 
we have to carry out the analytic c∞O 凶 nu凶a抗山tiぬon.(Th 削
omit the s叩 ersc均td on p or G.) The analytic c∞tinuation problem is 
equivalent to the inversion of the transformation from ρ(ω) to G(T); 

め)=に州 (B.12) 

One calculates G( T) by the quantum Monte Carlo :simulation and obtains 
the data {G(TZ)}. Thus， they are subject to statistical errors. In eq.(B.12)， 
the behavior of the kernel in the integral for large IωI 1肌 omesas follows; 

e-TW e(s-巾 re-Tω (ω →∞) 
{(B13)  

l+eβω eβω十i--1 e-(β-T)!ω! (ω -→-∞) 
Namely， the value of the kernel becomes expone凶 allysmall for large Iω| 
Thus， in the integral， the information about p(ω) (the structure of the spec-
trum) for large IωI is 'screened' by the kernel. These facts suggest that there 
exist innumerable ρ(ω) that 'reproduce' G(ァ)(or fit the data). Therefore it is 
di伍cultto infer the correct p(ω) from data obtained by the quantum Monte 
Carlo simulation. For example， in the least-squares rnethod， we obtain the 
optimal ρ(的)at discrete points ω(i l，...，Nω) by minimizing χ2 defined 
by 

(G(η)-Z1 f n一九 ρ(ωi)ムωi) 
h 午ムJ;| (B.14) 

where，σl is the statistical error of G(η) andムωiis the appropriate integration 
weight associated with a discrete frequency ωi. In the method， however， the 
information about the positivity (ρ(ωi)三0)and the sum rule (l:i p(ωi)ム均二
1) is not considered. Th民 thereis a risk to obtain a non-physical p(ωi) 
N amely， to minimize χ2 is not always the best way to infer p(同)
In the maximum entropy method [74， 75， 76]， the information-theory en-
tropy S is introduced to consider the positivity and the sum rule of ρ(川 The
entropy is defined as 

ベト(ωi)-m(wd-p(叫 )ln出)似 (B.15) 
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where m( Wi) is a default model. One gives a default model， which satis五esthe 
positivity and the sum rule， as an input. The entropy is de五nedrelative to 
the default model m(ωd for P(Wi)' If we are completely ignorant about ρ(川
except for the positivity and sum rule before obtaining the Monte Carlo data， 
we take 叫μ)i)to be fiat in the frequency range of interest [76]. Since S take 
its maximum value， S 二 0，at the case of ρ(いな)= r川崎)，we determine the 
optimalρ(的)by minimizing :F defined by 

F三三ーバ 一、‘，，，
J
e

ハ
hu--ムB
 

〆
'
1
2

、、

where χ2 is defined by eq.(B.14) and αis a Lagrange multiplier determined 

from classic maximum entropy criterion [75， 76， 77] (see Section B.2.3). We 
can obtain the optimal p(川 fromthe simultaneous equations， 

θF 
一一一二o(for all i) 
θp(川

(B.17) 

B.2.2 Implementation ofthe maximun1. entropy method 

We calculate the spectral function in the frequency region of interest;ωmin < 
ω 三ωmax'We discretizeω into的 (i = 1， ・・ ， ~ω) ， whereωωmin，ωNω = 
Wmax. To describe well the spectral function in the frequency region near the 

chemical potential μ， we use the discretization de五nedas follows; 

ωN_+l 三 μ?

い勺V_-j+l -一
1

1

一1

一
一
一
一

一一

〆一

γ

が一

γ

一

+

c

c

 

一

+

μ

μ

 

(for 1三j三N_)，

ωN_+j+l (for 1三j三N+)，

w here N + and N _ are determined from N +十N一 二 Nω-1， I(ωmaxμ)/(μ-
ωm凶)I = N + / N -' The coefficient C + and C _ are determined from ω1二 ωmin，
ωNω=ωmax' We choose r = 1.1. As for theωmax，ωmin and N山 wechoose the 
value of them case by case. (For example， we take N"，) 二 61for the L = 64 
Monte Carlo data.) 

In the practical procedure， we use the fiat model as the default model， i.e. 
m(ω) = 1/(ωmaxωmin) = const.， because in the proced ure of searching the 
solution we do not have any prior knowledges except for the positivity and the 

normalization of the spectral functions (see Section B.2.1). We have confirmed 

that there is few differences between the spectra obtalmed by using different 

63 



default models; the fiat model which has no information and a “three peak" 
model which has a certain information such as the positions of the peaks (Fig 
B.4). (In the "three peak" modelぅweassume that the spectrum is the (nor-

malized) sUlnmation of three Gaussian spectra such as e-(ωー ω・)2/(2σ2)/V2石E
with (ωぺσ)= (-3.5，1.0)， (-0.5，0.5)， and(2.5， 1.0)， respectively.) 
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Figure B.4: Comparison of d-component spectra at s :二 8(Lニ 64)0 btained 
from different default models; the fiat model (solid circles) and the "three 

peak" model (open circles) which is shown in inset (see text). The parameters 

are Ud = 5 andム=3. 
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It is shown that (1) one can obtain the feature of the spectrum without 
any prior information except for the positivity and the sum rule， and (2) the 
formation of structures is not due to the prior information such as the position 

of the peak. 

We use the classic maximum entropy c出 erion[74， 75， 76， 77] to determine 
the Lagrange multiplier α(see Section B.2.3). We have also con五rmedthat 

the spectrum is not so sensitive for the exact value of α(Fig. B.5) 
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Figure B.5: Comparison of d-component spectra determined from differentα: 

α=  6.8 (solid circles)， 5 (open squares)， and 20 (open circles) 

Classic maximum entropy criterion 

From a Bayesian statistical point of view， the maximum entropy procedure is 
an inference process in which one searches for ρ(ωi) that maximizes the condi-

tional probability distribution function (PDF) P[ρ/G， m]. The PDF P[ρ/G，m] 
shows how pro bable a certain form of p(川 iswhen Monte Car10 data G( T[) 
and the defau1t model m(ωd are given. Using Bayes's theorem， P[ρ/G，m] can 
be written as 

B.2.3 

P[p/G，m] αP[G/ρ，7叫P[p/m]. (B.18) 

The五rstterm on the rhs is the likelihood function P[G/p， m] αe-x2/2. Ac-
cording to the information theory， it is known that P[p/m] has the form， 

[p/m，α]=三三
Zs(α) ， 

、、t』，J
Q
d
 

1
1ムB
 

，，，E
E

、、

where Zs(α) is the normalization constant and Zs(α) = (2π/α)N，ω/2 (~ωis the 
number of the discrete points of 的)
To get the posterior PDF P[p/G， 7n] we have to integrate out the parameter 

(B.20) P[ρ|川]= J川悦ω ]P[α|い]
α? 
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The PDF P[αIG， m] represents how probable that the parameter αtakes a 
certain value when the data G( TZ) and the default model 叫凶)are given. If 
P[αIG， m] is sharply peaked at a certain value αo ofα， we have 

P[ρIG，m] ~ P [ρ I G ， m ， αo]P [αoIG ， m] αP[ρIG，m，α0] (B.21) 

It is therefore reasonable to determine the value of αto be α0・Tocalculate 
P[αIG， m] we again use Bayes's theorem; it can be expressed by the multiple 
integral of ρ(ωi) ， 

P[α|山 lα JDρP[GIρ]P[ρ|凧 α]， (B.22) 

where Dp stands for the measure of the integral. Estimating the functional 
integral by the Gaussian approximation around the optimal ρ(的)which we 
denote by t(ωi)， we have 

川 αIG，m]αlnJ Dpeαs-χ2/2-1nZs(α) + const 
可 Nω ん

αα51ρ=けさlndx;+co凶
where入ηarethe eigenvalues of the Hessian matrix 

両;hjzzj)日=
Thus， the optimal value αo of αis determined by 

θlnP[αIG，m] I _ 0 ， 1ふん
=αoS +一、、一一一一=O. 

alnα |一。 2乞 α0+入η

This is the classical maximum entropy criterion. 
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Appendix C 

Exact diagonalization method 

within the DMFT fra1mework 

We show the procedure to solve the effective impurity problem in the DMFT 

framework using the exact diagonalization method [31] in this appendix 

As pointed out in Section 2.1.2， one can regard C(iwn) in the DMFT as 
a 如何 impurityGreen's function of an impurity model. In the procedure， 
one approximates Q(iwn) with a bαre impurity G問山 functionG1nd (iωn) of a 
五nite-sizecluster of an impurity Anderson model which is de五nedas follows; 
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The model consists of the 'impurity' level εo and the levels ε1 (l = 1，2，...， Ns) 
of the 'conduction electrons' hybridized with the im.purity by Vz. The 'im-
purity' in eq.(C.1) corresponds to the local degree of freedom in the DMFT， 
respectively. The free Green's function of the d-electron is de五nedby 

GL(iωn) = 
1 

ム 11，2
1ωη 一ε。-)，ア一一一一一

三i1ωη 一 εl

(C.2) 

We determine 2Ns + 1 parameters {ε0，ε1，巧(l二 1，2，・・.，Ns)1ε1 く ε2< ・・・< 
εN
s
} by五tti時 Q(iωη)with G1nd (iwn)， namely， by minimizi時 χ2with respect 
to the parameters. We defineχ2 as follows; 

χ2二乞1(G1nd (iωη))-1 _ (Q(i川 )-112 (C.3) 
lWn 
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After五tting，we diagonalize the五nitecluster of the impurity Anderson 
lllodel (C.l) with determined parameters， and calculate the N -particle eigen-

vectors I ø~Z)) and ωresponding eigenvalues Ki(:)三 Ejf)-μNofえAnd-μ斤
in the (N，札s+ 1り)-s引i
number operator of the五ctitiousparticles in the cluster of the impurity An-

derson model， and it should not be confused with that of holes in the original 
lattice of the two-band Hubbard model. (Hereafter we refer to the cluster of 

the impurity Anderson model as the impurity Anderson cluster.) 

By usin~ the full set of states I ø~Z)) ， we can calculate the local Gree山
function Cd， 

ゲ(iωη)二;ε 玄 I(ぽ)Id! IØ;~)) 12( e一対)+e《)) f:1 
"-J N iNJN ωπ 

(C.4) 
where三三 Tre-sK.The Green's function is used to determine a new c iter-
atively. The iteration is continued until convergence is attained. Finally， we 
can obtain the Green's function in the spectral representation by the analytic 
continuations of Cd(iwn) and CP(iωη) 
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Appendix D 

Perturbative solution in 

single-cluster calculation 

We summarize the property of the solutions for the single cluster of the two-

band Hubbard model (3.11). For the Sch凶di時 erequation (3.12)， the one-
particle ground state 1 叫~) and the corresponding energy Ea1) are expressed 
as follows; 

! 叫~ )
Ejl) 

αdld1)十aPlp1)， 

j(εP + ed一ゾム2+ 4t2)三 εd+6jl)?

(D.1) 

(D.2) 

where we define the energy gain 1861) 1 (861)く 0)of 1 叫~) due to the hyb耐 lza-
tion with the p-level. The singlet states at ntot = 2 are expressed by 

|古伝))=αだId2)+α合Idγ)+α常Ip2). (D.3) 

The corresponding eigenvalues E~) are determined by an eigenvalue equation， 

(E~) - 2εp)(ES) ー ( 2εd+U))(E~)-(εp+εd))-2t2(E~)-(2εd+U)+E~)-2ら) = 0 
(D.4) 

For U = 5 andム=3， the val ues of coe伍cientsof the one-particle ground state 
wave function are ladl2二 0.92and 1αPI2 = 0.08. We also show the coe伍cients
of the singlet wave functions corresponding to the peaks of the result (Fig 

4.4( a)) by the QM  C and ME methods in the table 

μJ 

-0.8 

2.7 

4.1 

0.72 

0.12 
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The peak at ω= -0.8 in Fig. 4.4( a) is caused by the transition to the d1p1 
singlet state. We define the energy gain 1862) 1 (862) < 0) of the d1p1 state; 

Ea2) =εp+εd+6i2) 、、B
，，
〆

F
h
u
 
D
 

Because this gain 1862) 1 is larger than 1861) 1， the spectrum line appears below 
ω=εp， l.e.， at ω二 ερ+862) -861) (くら).(In the pres:ent result for U = 5 and 
ム=3， Ed1) = -3.3 and Ed2) = -4.1.) 
In the case with U >>ム>>t， 
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ムう (D.7) 

and then 

862) -861) = -2t2( TT  1 十土)
'Uーム 2ム/ 。。D

 
The difference EI2) -Ed2) -862) of the energy between the triplet state 
(E;2) = Ep + Ed) E~ 二 εp+ εd) and the singlet state tends to be 2JK， the exchange energy 
between a (localized) d-spin and a p-hole 
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Appendix E 

Spectral intensity at the Fermi 
level 

We show that the spectral intensity at the Fermi level in the single-band Hub-

bard nlodel is invariant as long as the system is the Fermi liquid state provided 
the self-energy is local [23]， while that of the two-band Hubbard model de-
creases even though the self-energy is local. We follow Luttinger [78] to derive 
the above conclusions. 

First， we consider the single-band Hubbard model. According the Lut-
tingeピstheorem， as long as the system satis五esthe Fermi liquid condition 
( 1m~(ω) vanishes more rapidly than ω)， the expression of the total number 
of particles Ntot using the Green's function can be rearranged in the absolute 
zero limit as follows; 

Ntot 乞T乞Gk(iωη)e叫 51μ0+
kσiωπ 

噌
B
ムE
 

5二T乞(iωη+μ-εk-~(iωπ)) -1 eiWn515→0+ 
kσiωπ 

→ 1ε1ml川 -εF+ Re~(O) -i8)15→0+ (as T→ 0) 
" kσ 

一 ~Lar仇 -εF + Re~(O) -凶)15---+0+ 
" kσ 

乞8(εF一切 -Re~(O)) 
kσ 

(E.2) 

(E.3) 
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The last expression implies that the Fermi surface determined by 

εk=εF -Re~(O) ， (E.4) 

and it does not change from that in the free (U = 0) case. (The Fermi surface 
in the free case is determined by εた二 ε~ . ) On the other hand， using the 
one-particle spectral function ρ(ω)， Ntot is expressed by 

Ntot 二 NL~l∞州 (E.5) 

where NL is the number of sites. One can rearrange the expression (E.3) using 

the density of states D(ε) = L-k8(ε-εk)/NL as 

Ntot=NLZにω(ε)B(εF一 ε-Re ~ ( 0 ) ) (E. 6 ) 

NL写f∞叫ε+εF-ReI~(O)) 
(E.7) 

One can 0 btain the value of the spectral intensity p( 0) at the Fermi surface by 
comparison ofeq.(E.7) with eq.(E.5) as 

p(O) = D(εF -Re~(O)) (E.8) 

On the other hand， the value of the spectral intensity Po(O) at the Fermi surface 
in the free case is expressed asρ0(0) = D(ε~) Thus， it has been proved that 
the spectral intensity at the Fermi surface is invariant as long as the system 

is the Fermi liquid in the single-band Hubbard 1nodel with the k-independent 
self-energy [23] 

Let us carry ou t the sIlnilar proced ure to trea t the two-band H u b bard 

model. In the two-band Hubbard model， we should consider the matrix rep-
resentation of the Green's function as 

Gk(iωη) = (叫 +μ-εd-恥 η;" ~-~~ r J-¥(E.9) 
¥ -Vk ωη+μ-εp ) 

where lノkis the Fourier transformation of the d -p hybridization term of 

eq. (3.1) in 3.2. The rearrangement of the expression of the total number Ntot 
can be carried out in the similar way to the single-band case， and one obtains 
the expression corresponds to (E.2) at the absolute zero as follows; 

N
tot
二 1γIr山lnい-εF+R叫 0)-i8 Vk.

r 
¥1 

1T' "-.--νL. εn一εv- 10 11 k σ¥ IC ~. p ~ r ~~ / 15→0+ 

(E.10) 
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The expression corresponding to (E.3) can be obtained by diagonalizing the 

matrix in the naturallogarithm in (E.I0) as 

Ntot二乞 B(εF-Ek)， 
kσ，γ=土

(E.ll ) 

where Ek is the eigenvalue of the matrix in (E.I0) and de五nedas 

EL寸(εp+ Ed +γゾム2+414; (E.12) 

In the above expression， Ed andムarede五nedas Ed =εd + Re~(O) andム=
ム-Re~(O) ， respectively 
One can obtain the similar expression to eq. (E.7) of the spectral intensity 
at the Fermi surface in the two-band Hubbard model as follows; 

σ三乙ω(ν)b(εF一 E-r(ν))， 、、BE
，r
つd
1
2ム
phu 

J
'
f
l

‘、、

where we defined Eγ(νk)三 EIc'Hereafter， we assume that the Fermi level 
is in the lower band (γ-) and consider the spectral intensity per spin 
Thus， we take only γ= -in the γ-summation and omit the spin summation 
in (E.13). By rearranging the b-function in (E.13)， the last expression of the 
spectral intensity at the Fermi surface can be obtained as follows; 

f: dvD(v)O(cF-E- 仏 2+ 4(εFーら)(εF一ゐ)1> f / dvD(ν)b(εF-E-(ν))二 V
/ 

-D(ゾ(εFーら)(εFーら))
ゾ(εFーら)(εFーら

(E.14) 
On the other hand， according to the expression (E..ll)， the Fermi surfaces 
in the free case and the interacting case are determined by εF -E-(ν) = 0 
and ε~ -Eu(ν) = 0， respectively. (EJ(ν) is the dispersion in the free case.) 
Namely， the relation which is satisfied by εF and ReI;(O) is expressed by 

(εFーら)(εFーら)= (ε;ーら)(ε2-εd) (E.15 ) 

Using the relation， we can五nallyestimate the spectr.al intensity at the Fermi 
surface for small Re~(O) in the interacting case as follows; 

にω(ν)b(εF一 E一(ν)) (E.16) 

Jム2+ 4(ε2ーら)(ε2-ω) / 一 R恥e叫仙
2 

ゾ
D(ゾ(いε3一らω)

(いε3一 εらωpρ)(ヤε3一 εωωdρ¥
V ム+4(εFーら)(ε;-εd)
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w here we assumeム >>Re~(O). It implies that the spectral intensity at the 
Fermi surface of the two-band Hubbard model with the k-independent self-

energy in the interacting case is smaller than that in the free case as long as 

Re~(O) > 0 ， because the term (ε2ーら)(ε3-εd)is always positive 
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