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Introduction 

The purpose of this paper is to study五nitelygenerated infinite Coxeter groups 

and their boundaries. A Coxeter group is a group W having a presentation 

(S I (st)m(り)= 1 for s， t εS )， 

where S is a白nite set and m : S x S → NU{∞} is a function satisfying the 

following conditions: 

(1) m(s， t) = m(t， s) for all s， t εS 

(2) m(s， s) = 1 for all s εS、and

(3) m( s， t)三2for all sヂtεS 

The pair (W， S) is called a Coxeter system. If m(s， t) = 2 or∞for all sヂtεS， 

then (W， S) is said to be right-α句led.Let (W， S) be a Coxeter system. For a 

subset T c S，日'T is defined as the subgroup of W generated by T， and called 

apαrabolic subgro叩Itis known that the pair (lVT， T) is also a Coxeter system 

([Bo]). If T is the empty set， then WT is the trivial group 

In recent years、M.Bestvina， M. W. Davis and A. N. Dranishnikov have ob-

tained some interesting results on七heboundaries of Coxeter groups. They con-

structed and studied a certain simplicial complex L(W， S) and a certain CAT(O) 

pace 2::(W， S) from a Coxeter system (W， S) instead of a direct algebraic investi-
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gation. Let S1 (W， 5) be the family of subsets T of 5 such that Wr is finite. The 

simplicial complex L(W， 5) is defined by the following conditions: 

(1) the vertex set of L(W， 5) is 5， and 

(2) for cach nonempty subset T of 5， T spans a simplex of L(W， 5) if and only 

if TεS1(W，5) 

For each nonempty subset T of 5， L(WT， T) is a s山 complexof L(W， 5). For a 

Coxeter system (W， 5)， there exists a natural CAT(O) space ~(W， 5) on which 

W acts properly discontinuously and cocompactly as isometries. The definition 

of ~(W， 5) is given in Section 2.2. The CAT(O) space ~(W， 5) can be compact-

i白edby adding its "ideal boundary"泥 (W，5) (cf. Section 1.4). The boundary 

δ~(W， 5) is called a boundαry of the Coxeter group W. A boundary of a Cox-

eter group is determined by a Coxeter system. It is still unknown whether the 

following conjecture holds・

Rigidity Conjecture (Dranishnikov [Dr4]). Isomorphic Coxeter groups have 

homeomorphic boundaries・

For each su bset T c 5 、 ~(WT ，T) is a subspace of ~(W， 5) and θ~(WT ， T) c 

θ~(W， 5) 

It is known that there exist the following isomorphisms: 

H*(W;ZW) 竺 H;(~(W，5))竺 Jl*ー 1(θ~(W， 5)) 

([D3])， where H; and H* denote the cohomology with compact supports and the 

reduced Cech cohon101ogy， respectively. Also the following theorem is known. 

Theorem 1 (Bestvina and Mess [BM]， [B2]). Let (W， 5) be αCoxeter system 

αnd R αcommutαtive ring with identity. Then there exists the formulα 

c-dimRθ~(W， 5) = vcdR 'W -1 
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ωhere c-dimRθL: (W， S) is the cohωZωomoωlo勾gz化Cαaldim~enη凡ω‘S幻szo仰TηL 0ザfθε只(W，S幻)oveγR α仰7η1

vcdR W is the 1仇l九tγ付tuαalcωohωomηZωOωlo句gz叱CαaldimηwrηLszorηLojWmυJeγR. 

After some preliminaries in Chapters 1 and 2， we study the virtual coho-

mological dimension of Coxeter groups and the cohomological dimension of 

their boundaries in Chapter 3. In [Dl]， M. ¥lIv. Davis showed the inequality 

vcdz W 三dimL(W， S)， and M. Bestvina constructed a finite simplicial complex 

BR with vcdR W dim BR in [Bl]. Using these results， Dranishnikov gave a 

formula for the virtual cohomological dimension of Coxeter groups in terms of 

the cohomologies of subcomplexes of L(W， S)， and proved the following theorem 

as an application of the formula in [Dr3] 

Theorem 2 (Dranishnikov [D叫).A Coxeter gro叩 Whαsthe following prop-

erties: 

( a) vcdQ W ::; vcdR W ::; vcdz W for eαch p門nczpαlideal domαin R. 

(b) vcdzp W = vcciQ W for all butβηite primes p 

(c) Tl町 'eexistsαpn附 psuch thαt vcdzp W = vcdz W 

(d) vcdz W x W = 2vcdz W 

In Section 3.2， we extend this theorem as follows: 

Theorem 3 ([HY]). Let W beαCoxeter gro叩 andR αpnnczpαl ideal domα仇

Then W hαs the following properties: 

(a) vcdQ W ::; vcdR/ J W 三vcdRW三vcdzW for eαch prime ideal 1 in R 

(b) vcdR/1 W = vcdQ W forαII but 向iteprirne ideαls 1 in R，ザRis not α 

βeld. 

( c ) There existsαnon-trivial prime ideαl 1 in R such thαt vcdR/1 W 

vcdR W， if R is notαfield 

(d) vcdR W x W = 2vcdR W 
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Using the Dranishnikov formula for vcdR ~ヘ we also prove the following theo-

rem in Section 3.3 

Theorem 4 ([HYJ). Let (W， S) be αright-angled Coxeter system ωith vcdR W = 

n，ωhere R isαpnnczpαl ideal domαtη. Then there existsαsequence To C T1 C 

. . . C Tn-1 C S such thαt vcdR WTi = i for eαch 'i = 0，・・・ ，n -1 

By Theorem 1， we obtain the following corollary. 

Corollary 5 ([HYJ). Let (W， S) be αright-angled Coxeter system and n 

c-dimR θ~(W， S)，ωhere R isαprincipal此 αldomαin. Then tl町 eexistsα 

sequeηce δ~(W九九) Cδ~(WTll Td C ... Cθ~(WTnー 11Tn-1) of the bound-

αries of parabolic subgroups of (W， S) such thαt c-dimR θ~(WTi' Tt) = i for eαch 

i = 0、1‘.... n -1. 

In Chapter 4， we study the cohomology of Coxeter groups. By calculating 

the cohomology H;(~(W， S))， M. W. Davis gave the following formula for the 

ohomology of Coxeter groups in [D3] 

Theorem 6 (Davis [D3]). ForαCoxeter systern (W， S)， tlげ eexist the follow-

ing isomorphisms: 

H*(W; ZW) 竺 H;(~(W， S)) ~ iI*-l(θ~(W， S)) 

~ EB (Z(WT)⑧ 丘*ーl(L(Ws小川 T))) 
TεSf(W，S) 

ωhere H* deηotes the reduced cohomologyαnd ;a;(wT) is the freeαbeliαη gro叩

on WT 

Here WT is defined as follows: For each ωε W， we first define a su bset S (ω) 

of S as S(ω) = {sεS I e(ωs)く P(ω)}，where f(ω) is the minimum length of 

word in S which represents ω. For each subset T of S、wedefine the su bset WT 

of W as WT = {ωε WIS(ω) = T} 
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For a given Coxeter system (W， S) and each TεS1 (W， S)， it is difficult to 

calculate the nurnber of elements of WT. The purpose of Chapter 4 is to sim-

plify the Davis formula. We 白命rs剖tg♂lV刊ed白e五r凶 ions配 ACo似xe抗teぽrsystem (W， S) is 

said to be irreducible if， for any nonempty and proper subset T of S‘日rdoe弘

not dccompose as the direct product of W T and WS¥T. For a Coxeter system 

(W， S)， there exists a unique decomposition {S 1， • • • ，Sr} of S such that W is 

the direct product of the parabolic subgroups ~VSl' ・・・ ， W Sr and each Coxeter 

system (WSt， Si) is irreducible (cf. [Bo]， [Hu， p.30]). We de白nea subset S of 

S as S = U{ Si I Si rt. S1 (W， S)}. 1n Section 4.3、weshow that for a member 

Tε S1(W， S)， if L(Ws¥T，S ¥T) is not acyclic and W
T is finite， then T = S ¥s 

and WT is a singleton. We also show that if S ¥S ct TεS1(W， S)‘then 

L(Ws¥T，S ¥T) is contractible. Using these results， we can reformulate Theo-

rem 6 as follows: 

Theorem 7 ([Hl]). ForαCoxeter system (W， S)， there exists the followingω-

morphism: 

H*(W;ZW)竺 H*-l(L(Ws，S)) EB I E9 E9H←l(L(Ws¥T，S ¥T)) ) 
¥TεSf(W，S) Z / 
S¥SCT 

Theorem 7 implies the following corollary. 

Corollary 8 ([H 1]). The followi旬 stαtementsαγeequivalent 

(i) Hi(W; ZW) isβηitely gener，αted: 

(ii) Hi(W; ZW) is isomorphic to Hi-1(L(Ws， S)); 

(iii) Hi-1 (L(Wu， U)) = 0 for every proper subset U of S such thαt Ws¥U 'lS 

βηite 

1n Chapter 5， we study geometrically finite groups acting on Busemann spaces. 

Every CAT(O) space is a Busenlann space. For a Coxeter system (W， S)‘th 
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Coxcter group W acting on ~(W， S) is an example of“geometrically finite group 

acting on Busemann spaces". In Section 5.2， we introduce a definition of geomet-

rically finite groups acting on hyperbolic spaces (in the sense of Gromov)， and 

wc define geometrically finite groups acting on Busemann spaces by analogy in 

Section 5.4. For a hyperbolic and Busemann space (X， d)， a group G acting on 

X is hyperbolic-geometrically finite if and only if G is Busemann-geometricaly 

finite. Let (X， d) be a hyperbolic or Busemann space， let θX be the hyperboli 

or Busemann boundary of X (cf. Sections 5.1 and 5.3)， and let r be a group 

which acts properly disco凶 nuouslyon X. The limit set of r (ωith respect to 

X) is defined asθr = clxuδx(rxo) nθX， where clxuax means the closure in 

Xu  θX、andXo is a point in X. The limit set θr is independent of the choice of 

the point x。εX.For a Coxeter system (W， S)， every paraboloc subgroup WT is 
geometrically finite with respect to ~(W， S) and the equality θWT = θ~(WT ， T) 

holds for each T c S. In Section 5.4， we prove the following theorem which is 

a Busemann space-analogue of results proved by A. Ranjbar-Motlagh in [町 for

geometrically finite groups acting on hyperbolic spaces. 

Theorem 9 ([H2]). Let X be αproper Busemαnn spαceαηd rα gro叩 ωhich

αcts properly discontinuously on X. 

(i) Suppose thαtHc G αre tωo subgro叩 sofrαnd H is geometricαllyβnite 

Then)θG=θHザαndonly if [G : H]く 00.

(ii) Let G beαsubgro叩 ofβniteindex in r. Then r is geometricαllyβniteザ

αnd only if G is geometricαlly finite. 

(iii) Suppose thαt G is αsubgro叩 ofrαηdγεr such thαtγGγ-1 C G. If 

H :=パ三lγtGγ-tis geometrically fin巾 αndif θH=n~l θ(デGγ-t)) then 

γ(θG)=θGαndG=γGγ-1 

(iv) If G1αηd G2αre two geometricallyβnite subgroups of r) then G1 n G2 is 
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αlso geometricallyβniteαηdθ(G1nG2)==θG1nθG2・
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CHAPTER 1 

Preliminaries: 

In this chapter， we introduce some definitions and some basic results. 

31.1. G ENERAL DEFINITIONS AND NOTATION 

The standard sets and spaces are denoted as follows: 

(1) N: the set of natural numbers， 

(2) Z: the set of integers， 

(3) Q: the set of rational numbers 

(4)JR=(-∞?∞): the real line with usual metric， 

(5) JRn: the n-dimensional Euclidean space with usual metric 

Let 5 be a set. Then 

(6) 151: the cardinality of 5 

Let (X， d) be a metric space， A， B c X and ε> o. We use the following notation: 

(7) clx A: the closure of A in X， 

(8) intx A: the interior of A in X， 



(9) diam A: thc diameter of A， 

(10) d(A， B) = inf {d(α， b) Iαε A，b εB}， 

(11) B(A，ε) = {xεX  I d(x， A) <ε}: the openε-ball about A (we denote 

B(A， E) = B(α?ε) if A = {α}) 

Let K and L be simplicial complexes， and let σand T be simplexes of K. 

(12) K * L: the simplicial join of K and L， 

(13) sd K: the barycentric subdivision of K， 

(14) K(n): the n-skeleton of K 

(15)σ(η): the union of n-faces of σ3 

(16)σ ベァ meansthatσis a proper face of T 

Let F and G be groups and H a subgroup of G. 

(1 7) F x G: the direct prod uct of F and G 

(18) F * G: the free product of F and G 

(19) [G: H]: the index of H in G 

Let X be a compact metric space and G a group. 

(20) dim X: the covering dimension of X 

(21) c-dimc X: the cohomological dimension of X over G， 

(22) Hi(X; G): the i-th cohomology of X over IG， 

(23) Hi(X; G): the i-th reduced cohomology of X over G， 

(24) iIi(X; G): the i-th reduced Cech cohomology of X over G 

Let X be a noncom pact metric space and G a grou p. 

(25) H~(X; G): the i-th cohomology with comp.act supports of X over G 
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81.2. THE COHOMOLOGY AND THE COfIOMOLOGICAL DIMENSION OF GROUPS 

In this section， we give definitions of the cohomology and the (virtual) coho-

mological dimension of groups， and we introduce some basic properties. Details 

are found in [Br 1 ] 

Definition 1.2.1 ([Br1， Chapter III 81]). Let f be a group， R a commutative 

ring with identity， and 

-・・ー→九一→ P1一→九一→ P-1= R 

a projective resolution of R over Rf-module. For an Rf-module M， the coho-

mology of f over M is defined as 

H* (f; M) = H* (HomRr (1ミ，M)).

Definition 1.2.2 ([Brl， Chapter Vln 82]). Let r be a group and R a commu-

tative ring with identity. The cohomological dirnension of f over R is de五ned

as 

cdR f = s叩 {iI H2(f; M)ヂofor SOill.e Rf-module M} 

If R Z then cdz f is simply called the cohornological dimension of f‘and 

denoted cd f. 

Remark. It is obvious that cdR f ::; cd f for each commutative ring R with iden-

ti ty. 1 t is known that cd f =∞ if f is not torsion-:free ([Br1， Corollary VIII.2.5]) 

Definition 1.2.3. Let f be a torsion-free group. Then f is said to be o:f type 

FP i:f Z admits a finitely generated projective resolution of五nite length over Zf. 

Also f is o:f type FL if Z admits a finitely generated free resolution of finite length 

over Zf. 
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Remαrk. It is known that r is of type FL if there exists an acyclic CW  complex 

on which r acts freely， cellularly and cocompactly (cf. [Br 1]) 

The following results are known. 

Proposition 1.2.4 ([Br1， Proposition VIII.6.7]). Ifαgro叩 ris of type FP theη 

forαcommutαtive ring R with identity， 

cdR r = max{ i I Ht(r; Rr)ヂO}

Proposition 1.2.5 ([Br1， Proposition VIII.7.5]). Let r beαgroup and X αcon-

trαctible， free r -complex with cor叩 αctquotient X j r . Then forαcommutαtive ring 

R with identity， there existsαn isomorphism 

H*(r; Rr) ~ H;(X; R)， 

ωhere H;(X;R) is the cohomologyωth cor叩 αcts叩ports0 f X over R 

We obtain the following corollary from Proposition l.2.4 and Proposition l.2.5. 

Corollary 1.2.6 ([Br1， Proposition VIII.7.6]). Let r beαgroup of type FP and 

Xα contractible， free r -complex with compαct quotient Xjr. Then forαcommu-

tαtive ring R with identity， 

dR r = max{ i I H~(X; R)ヂO}

We give a de五nitionof the virtual cohomological dimension of groups. 

Defini tion 1.2.7 ([Br 1， Chapter VIII 311]). A grou p r is said to be virtually 

torsion-free if r has a torsion-free subgroup of finite index. 

For a virtually torsion-free group r， the virtual cohomological dimension of r 

overαcommutαtive ring R is defined as cdR rヘwherer' is a torsion-free subgroup 

of r of finite index， and denoted vcdR r. If R = .z then vcdz r is simply called 

the virtual cohomological dinlension of r， and denoted vcd r. 
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The definition above is well-defined by Serre's Theorem: if G is a torsion-

free group and G' is a subgroup of finite index， then cdR G' = cdR G (cf. [Brl， 

Theorem VIII.3.1]) 

xt we de 白白neduality groups and (virtual) Poincare duality groups 

Definition 1.2.8 ([Brl]， [F]). A torsion-free group r of type FP is an η-

dimensionαl dωlity g1'oup， if Ht(r; zr) 0 for each iヂn. If， in addition， 

Hη(r; zr) is i凶 nitecyclic， then r is called an n-dimensional Poincα1'e dωlity 

gγoup. We note that the trivial group is a O-dimensional Poincare duality group. 

A group G is a virlual Poincα1'e duαlity g1'oup if G contains a torsion-free 

ubgroup r of finite index such that r is a Poincare duality group. 

The following theorem was proved by F. T. FaJTell. 

Theorem 1.2.9 (Farrell [F， Theorem 3]). Suppose thαt r isαβnitely p1'esented 

g1'o叩 oftype FP)αnd let n be the smallest intege1' such thαt Hn(r; zr)ヂO

1f Hぺr;zr) isαβnitely gene1'αtedαbeliαη g1'o叩 )then r is αn n-dimeηs'lonαJ 
Poincα1'e duαlity g1'oup. 

31.3. THE COHOMOLOGICAL DIMENSION OF COMPACT METRIC SPACES 

In this section， we give a definition of the cohomological dimension of compact 

metric spaces and introduce some basic properties. Details are found in [Drl] 

and [K] 

Definition 1.3.1. Let X be a compact metric space and G an abelian group. 

The cohomological dimension of X ove1' G is de五nedas 

c-dimc X = sup{i I Ht (X， A; G)ヂofor sorne closed set A c X}， 
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where fIi(X， A; G) is the Cech cohomology of (X， A) over G 

The following rcsult is known. 

Proposition 1.3.2 (cf. [K， Remark 3]). Let X be αcor叩αctmetric spαceαηd 

G αηαbeliαη group. Then c-dimc X :::; c-dimz X :::; dim X. 

The following theorem is proved by P. S. Aleksandrov. 

Theorem 1.3.3 (cf. [K， Remark 4]). Let X be αβηite dimensionαl compαct 

metric spαce. Then the equαlity dim X = c-dimz./Y holds. 

31.4. CAT(O) SPACES AND THEIR BOUNDARIES 

In this section， we introduce definitions and so:me basic properties of CAT(O) 

spaces and their boundaries. Details of CAT(O) spaces and their boundaries are 

found in [GH]， [BH] and [D2] 

We first define geodesic spaces and proper spaces. 

Definition 1.4.1. We say that a metric space CX， d) is a geodesic spαce if for 

each x，y εX， there exists an isometry c : [0， d(2;， y)]→ X such that c(O) = x 

andと(d(x，y)) = y (suchとiscalled a geodesic). Also a metric space (X， d) is said 

to be proper if every closed metric ball is compact. 

Definition 1.4.2. Let (X， d) be a geodesic space" Let T be a geodesic triangle 

in X. A compαrison triαngle for T is a geodesic triangle T' in the Euclidean plain 

]R2 with same edge lengths as T. Choose two points x and y in T. Let x' and y' 

denote the corresponding points in T'. Then the inequality 

d(x，ν)三do(x'，y') 
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is callcd the CAT(O)-inequality， where do is the natural metric on ]R2. A geodesic 

pace (Xぅd)is called a CAT(O) spαce if the CAT(O)一inequalityholds for all 

geodesic triangles T and for all choices of two points x and y in T. 

Definition 1.4.3. Let (X， d) be a geodesic space. Two geodesic rays 乙〈

[0，∞)→ X are said to be αsymptotic if there exists a constant N such that 

d(と(t)，ぐ(t))三Nfor each t三O

The following proposition is known. 

Proposition 1.4.4 (cf. [BH]， [GH]， [D2]). Let (えd)beαproper CAT(O) spαce 

(1) For eαch tω points x， y εX) tl附 eexistsαunique geodesic segment be-

tween x αnd y in X. 

(2) X is contractible 

(3) For eαch geodesic ray E， in X αηdeαch poiη~t XoεX) tl昨 eexistsαun'lque 

geodesic ray C' issuing from Xo such thαtとαηdごfαreαsymptotic.

Let (X， d) be a proper CAT(O) space and XoεX. The boundαry of X ωith 

respect to xo， denoted byゐ。X，is defined as the set of all geodesic rays issuing 

from Xo・ThenXu  ゐ。Xhas a natural topology， in which X is an open subspace， 

and a neighborhood basis for each pointとε8xoX is given by the sets 

U(と;γ?ε)= {xεXu θXlx ~ B(xo，r)， d(と(r)，とx(γ))<ε}， 

where γパ>0 andふ:[O，d(xo，x)]→ X is the geodesic from Xo to x (ふ x

if x εゐ。X).This is called the cone topology on X U ゐ。X.It is known that 

Xu  ゐ。Xis a metrizable compactification of X ([BH]， [G H]) 

Let Xo and Xl be two points of a proper CAT(O) space X. By Proposi-

xists a unique bijection φ:ゐ。X →ゐ1X such that c 

and φ(ご)are asym ptotic for each cε ゐ。X.I t is known thatφ:ゐ。X→θIX1X

is a homeomorphism ([BH]， [G H]) 
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Let X be a proper CAT(O) space. The asymptotic relation is an equivalence 

relation in the set of all geodesic rays in X. The (ideal) boundαry 0 f X， denoted by 

θX， is defined as the set of asymptotic equivalence classes of geodesic rays. The 

equivalence class of a geodesic rayとisdenoted by c (∞). By Proposition l.4.4 (3)， 

for each XoεX  and each αεθX， there exists a unique elementとεゐ。Xwith 

ご(∞)=α Thuswe may identify θX with 8xoX for each Xoεx  

Let (X， d) be a proper CAT(O) space and r a group which acts on X by 

isometries. For each element γεr and each geodesic ray c : [0，∞)→ X， a map 

対:[0，∞)→ X defined by (，c)(t) :=γ(と(t))is also a geodesic ray. If geodesic 

rays c and C' are asymptotic， then γごandγc' are also asymptotic. Thus γinduces 

a homeomorphism ofθX and r acts on θX. 
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CHAPTER 2 

Spaces associated with Co:x=eter systems 

In this chapter， we introduce definitions and some properties of spaces associ-

ated with Coxeter systems. 

82.1. COXETER SYSTEMS 

In this section‘we introduce definitions and some properties of Coxeter groups， 

Coxeter systems and parabolic subgroups. 

We first give definitions of Coxeter groups and Coxeter systems. 

Definition 2.1.1. A Coxeter group is a group W having a presentation 

(S I (st)m(り)= 1 for s， t εS)， 

where S is a五凶eset and m， : S X S → NU{∞} is a function satisfying the 

following conditions: 

(1) m(s， t) = m(t， s) for all s， tεS， 

(2) m(s， s) = 1 for all s εS， and 

16 



(3) m(s，のど 2for all sヂtεS 

The pair (W， S) is called a Coxeter system. If， in addition， 

(4) m(s，t) = 2 or∞for all sヂtεS 

then (W， S) is said to be right-angled 

By the condition (2)， we see that s is an invo1ution (i.e.， S2 = 1) for each s εS， 

and S-l = S. 

extうwegive a definition of parabolic subgroups of Coxeter groups. 

Definition 2.1.2. Let (W， S) be a Coxeter systern. For a subset T c S， Wr is 

defined as the subgroup of W generated by T， and called a pαγαbolic subgroup. It 

is known that the pair (Wr， T) is a1so a Coxeter system ([Bl]). If T is the empty 

et‘then ~今、 is the trivia1 group. 

Example 2.1.3. Let (W1， Sl) and (W2， S2) be Coxeter systems defined by func-

tions m1 : Sl X Sl→ NU {∞} and m2 : S2 X S2→ NU{∞}， respectively. Then 

the map m : (Sl U S2) X (Sl U S2)→ NU {∞} defined by 

fm1(S，t) 

m(s， t) = ~ m2(s， t) 

if s， t εSl 
if s， t εS2， 

otherwise， 

induces the Coxeter system (W1 x WふSlU S2). A1so the map m' : (Sl U S2) x 

(Sl U S2)→ NU {∞} defined by 

f m1(s， t) 
m'(s， t) = ~ m2(s， t) 

100 

if s， t εSl， 
if s， t εS2， 

otherwise， 

induces the Coxeter system (W1 * W2， Sl U S2)， where W1 * W2 is the free product 

of W1 and W2. 

We recall some properties of Coxeter groups needed later. We五rstdefine sets 

S ('W)， Ar， Cr and Wr as follows: 
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Definition 2.1.4. Lct (W， S) be a Coxeter systern. For each ωε W，w附edωe白fin

a subsct S(ω) of S as 

S(ω) := {sεS I f(ωs) < I!(ω)} 

where f(ω) is the minimum length of word in S which represents ωFor each 

subset T of S， we define the fo11owing subsets of VV: 

AT:= {ωε Wlf(ωt) > f(ω)， for a11 tεT} = {ωε WITCS ¥S(ω)}， 

CT:= {ωε Wlf(ωt)く f(ω)，for a11 tεT} = {ωε WITζ S(ω)}、and

W
T
:= {ωε WIS(ω) = T} = CT n As¥T 

Definition 2.1.5. Let (W， S) be a Coxeter system and ωε W. A representation 

ω= Sl・ Sl(Si ξ S) is said to be reduced， if f(ω)= l 

The fo11owing lemma is known. 

Lemma 2.1.6 ([Bo]， [D3]). Let (W， S) beαCoxe伽 system.

(i) S(ω) is emptyザandonly ifω=  1， i.e.， W日={1} 

(ii) lfαrepreseηtαtionω= Sl . . . Sl is not reduced， then ω=  81・ ・4・・ Sj . . .8l 

for some iく j

(iii) For eαchωε W and S εS， f(ωS) equals eilther f (ω) + 1 or f(ω) -1，αηd 

f(sω)αlso eqωls eitfぽ f(ω)+ 1 or f(ω) -1 

(iv) For each T c S andωε WT， fT(ω) = f(ω)， ωf町 efT ( w) is the le旬thof 

ωin WT. 

(v) Let T c S，ωε WT and s εS ¥T. Then f(ωs) = f( sω) = f(ω) + 1 

Lemma 2.1.7 ([Bo， p.37， Exercise 3]， [D3， Lemma 1.3]). Let (W， S) beαCox-

eter system，ωε 協/αndT c S. Then therモexistsαuniqueelement of Sh01内test

length in the coset ωWT. Moreover， the following stαtementsαre eqωωlent: 

(i)ω is the element of s1附 testlength in the coset 叫VT
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(ii)ωε Ar; 

(iii) f(山)= f(ω) + f(u) for eαch u εWr 

Proof. Let x be an element ofωWr such that x has shortest length inωWr. We 

show that f(xu) = f(x) + f(u) for each u εWr. Let u εWr and let x =δ1 ・δk

and u = t1・・ tz be reduced representations. Suppose that f(xu) く f(x)+ f(u) 

By Lemma 2.l.6 (ii)， there exist numbers i and j such that 

xu = (51 ・ 5k)(t1・ ・tl)= (51 . . . Si . . .5k)(t1 ・・4・ ・tZ)

Let x' := 51・ Si. . .5k and u' := t1 ち.• • tl. Then f(x')く f(x)and 

ピ=(xu)(U')-l = x(U(U')-l) E xWr =叫 1fr

This contradicts the definition of x. Hence f(xu) == f(x) + P(u) for each u εWr 

This means that x is a unique element of shortest length in x昨年 =ωWr.

The above argument implies that (i) and (iii) are equivalent 

We show that (iii) implies (ii). Suppose that (iii) holds. Let t εT. Since 

日 Wr，P(ωt) = f(ω) + f(t) = f(ω) + 1 > f(ω) by (iii). Hence ωε Ar 

We show that (ii) implies (i). Let x be the element of shortest length inωWr 

and su ppose that ωヂx.Since ωεωWr = xHペT，ω xufor some u εWr. 

We note that uヂl.Then f(ω) = P(xu) = f(x) + f(u)， because (i) and (iii) are 

equivalent. Let x = 51 . . . 5k and u = t1・・ tl(tiεT) be reduced representations 

Then ω= xu = (51 . . . 5 k ) ( t 1・・・ tl)is reduced and P(ωtz) < f(ω)， i.e.，ω5i Ar 口

Lemma 2.1.8 (cf. [D3， Lemma l.5]). Let (W， S) be αCoxeter system，ωεW  

αnd T c S(ω). Then P(W1 

Proof. Let ω 51 . . . 5 k and u t 1・・・ tl(ti ε T) be reduced representations. 

Sincc tlεT c S(w)， f(ωt，) < f(ω). By Lemma 2.1.6 (ii)、thereexists a number 
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i such that 

ωtl = (S1 ・九)tl= S1 . . . Si . . . Sk 

Then ω= (S1・・.5i. . . Sk )tl is reduced. Suppose that ω=(s;-sL-η)(tl...tl-n+d 

is a reduced represcntation for some s~ ， • • • ， s~_ηε S. Since tl-n εT c S(ω)ぅ

f(ωtlーη)< f(ω). By Lemma 2.l.6 (ii)、thereexists a number i' such that 

wtl-n = (S~ . . . S~_n)( tl . . . tl-η+1)tl-η= (S~ ・ sL--4-η)(tl . . . tl-η+d 

because tl . . . tl-η+1tlーηisreduced. Then ω= (s~ ・ s;，・・・ S~-n)(tl . . . tlーη+ltlーη)

is reduced By induction?there exist s???s;-lε S such that ω=  

(sj--sし)(tl . . . t1) is reduced. Then 

f(ωu) = f((s~ . . . S%_l)(tl . . . t1)(t1・tI))

= f(s~ ... Sし)= k -l = .e(ω) -f(u) 

口

Lemma 2.1.9 ([Bo， p.43， Exercise 22]， [D3， Lemrna l.4]). Let (W， S) be αCox-

eter systemαndTεS f. Then there existsαunique element WT of longest length 

in WT. A1oreover 

(i)ωT 'tsαn 'tnωlutioκi. e.， (ωT)2 = 1 

(ii) For eαch x εWT， x=ωTザandonly if 8(1;) = T 

(iii) For each x εWT， f(ωTX) = f(ωT)-f(x) 

Proof. Let ωT be an element of longest length in WT. Then f(ωTt) < f(ωT) 

for each t εT， i.e.， T c S(ωT)' By Lemma 2.l.8， f(ωTU) = f(ωT) -f(u) for 

each u εWT. This implies (iii). For each element x of longest length in WT， 

f(ωTX) = e(ωT) -f(x) = 0， i.e.，ωT = x. Hence ωT is a unique element of longest 

length in W T. 

(i) Since f(ωTωT) = f(ωT) -f(ωT) = 0， (ωT)2 = 1 
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(ii) Lemma 2.1.8 implies that if S(x) = T then x = Wr. We show that S(ωr) = 

T. By the above argument， Tζ S(町、).For each 8εS¥T， by Lemma 2.1.6 (v)， 

R(ωrs) = R(ωr) + 1， i.e.， s εS  ¥S(Wr). Hence S ¥TcS  ¥S(附)，that i円

S(WT) C T 口

Lemma 2.1.10 ([D3， Lemma 1.6]). Let (W， S) be αCoωxeteγsy‘批叫 Tε Slα仰Tηl

ωε 叫r Then there existsαunique element of longest length inω昨年.Aイoreover，

the following stαtementsαre equ'lVαlent: 

(i)ω is the element of longest length inωVT 
(ii)ω =uωT for some u ξ AT，ωhereωT is the element of longest length in 

WT; 

(iii) T c S(ω) 

92.2. SPACES ASSOCIATED WITH COXETER SYSTEMS 

In this section， we define a certain simplicial complex L(W， S) and a certain 

CAT(O) cell complex L:(W， S) induced by a Coxeter system (W， S). 

We五rstde五neL(W， S) as follows: 

Definition 2.2.1. Let (W， S) be a Coxeter system and let SI (W， S) be the family 

of subsets T of S such that WT is finite. We note that the empty set is a member 

of SI (W， S). We define a simplicial complex L(W， 8) by the following conditions: 

(1) the vertex set of L(W， S) is S， and 

(2) for each nonempty subset T of S， T spans a simplex of L(W， S) if a凶 only

if TεSI(W， S) 

For each nonempty subset T of S， L(WT， T) is a subcomplex of L(W， S). In 

this paper， SI (W， S)， L(W， S) and L(WT， T) are abbreviated to SI， L and LT， 
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respectively. 

Example 2.2.2. Let (W1，5d and (Wわら)be Coxeter systems. Then (W1 x 

W2，51 U 52) and (W1 * W2， 51 U 52) are also Coxeter systems (cf. Example 2.1.3) 

and 

L(W1 X W2， 51 U 52) = L(W1， 51) * L(W2， 52) (simplicial join) and 

L(W1 * W2， 51 U 52) = L(Wl， 5d U L(W2， 52) (disjoint union) 

ext we define 2:(W， 5) as follows: 

Definition 2.2.3 ([D2， 38， 39]). Let (W，5) be a Coxeter system such that W 

1S五nite.The canonical representation shows that W can be represented as an 

orthogonal linear reflection group on IR.T¥where n := 151. The hyperplanes of the 

reflections divide IR.n into chαmbers， each of which is a simplicial cone (see [Bo 

p.85]). Let x be a point in the interior of some charnber such that x is of distance 

1/2 from each supporting hyperplane. Define 2:(VV，5) to be the convex hull of 

Wx (the orbit of x). 2:(W， 5) is called the Coxeter cell of type (W， 5). Then the 

l-skeleton of 2:(W， 5) is the Cayley graph of W with respect to 5 with unit edges 

Let (W， 5) be a Coxeter system such that W is inJfinite. A cell complex 2:(W， 5) 

defined as follows. The vertex則 of2:(W， 5) is W. Take the Coxeter cell of typ 

(WιT) for each coset 叫 1fT，with ωε W and TεS 1. Identify the vertexes of 

this Coxeter cell with the element ofωWT. Identify two faces of two Coxeter cell 

if they have the sa1ne set of vertexes. This completes the de白山ionof 2:(W， 5) 

as a cell complex. The set of cells in 2:(W， 5) is {w2:(WT， T) 1ωε W， TεSI}， 

where ω2:(Wo， O) =ωThe l-skeleton of 2:(W， 5) is the Cayley graph of W with 

respect to 5 with unit edges. The piecewise Euclidean cell complex 2:(W， 5) ha 

a natural metric. 

In [M]， G. Mousso時 provedthe following theoreJm 
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Theorem 2.2.4 (Moussong [M]， cf. [D2， Theorem 7.8]). The pie附Cαe白印t匂仇i

cliωdεα7η1， cell cωomη印lpμleαx~只(W， S)μzs α CAT(O) spαce for every Coxeter sy山 m(W， S) 

The geometric rcalization of a partially ordered set is defined as follows: 

Definition 2.2.5 ([D3]). Let P be a partially ordered set. A simplicial complex 

geom( P) which is callcd the geometricγeαlizαtion of P is defined as follows: 

(1) The vertex set of geom(P) is P 

(2) For each nonempty subset T of P， T spans a simplex of geom(P) if and 

only if T is a自nitechain， i.e.， T = {t1， • • • ，tn} for some れくらく ・くら.

Let (W， S) be a Coxeter system and let W SI be the set of all cosets of the form 

wWT， with ωε 日!and TεSI. The sets SI and W SI are partially ordered by 

inclusion. Contractible simplicial complexes K(W， S) and A(W， S) are defined as 

the geometric realizations of the partially ordered sets SI and W SI， respectively 

([D3， 33]， [D1]). Here K(W， S) is the cone on the barycentric subdivision of 

L(W， S). The natural embedding SI → W SI defined by T t----t WT induces an 

embedding K (W， S)→ A(W， S). It is known that the barycentric subdivision 

of ~(W， S) is just equal to A(W， S) ([D2， 39]). Hence there exists the natural 

embedding K (W， S) → ~(W， S) which we regard as an inclusion. 

For each subset T c S， ~(WTl T) is a s山 complexof ~(W， S). In this paper 

~(W， S) and ~(VVι T) are abbreviated to ~ and ~T ， respectively 

We note that ~ニ WK(W， S) and ~/W ~ K(W， S) ([D1]， [D3]). For each 

ωε W，ωK (W， S) is called a chαrr仇rof~. If W is infinite， then ~ is noncompact 

Hence， if W is infinite， ~ can be compactified by adding its ideal boundary θ~ (cf 

Section 1.4). We note that the natural action of W on ~ is properly discontinuous 

and Cocolupact ([D1]， [D2]) 

Example 2.2.6 (cf. [D3]， [BH]). Let (W1， Sl) and (W2) 52) be Coxeter systems 
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Then 

~(W1 X W2， 51 U 52) = ~(W1 ， 51) X ~(W2 ， 52) and 

θ~(W1 X W2， 51 U 52) =θ~(W1 ， 51) *θ~(W2 ， 52) (join) 

Every Coxeter group has a torsion-free subgroup of finite index (cf. [Dl， Corol-

lary 5.2]). The following is known (cf. Proposition l.2.5 and [Brl， p.209 Exer-

cise 4]) 

Proposition 2.2.7 ([D3]). Let (W，5) be αCoxeter system and rα torsion-free 

subgroup ofβnite index in W. Then there exist the folloωing isomorphisms: 

H*(W;RW)竺 H*(r;Rr) ~ H;(~; R) ~ fI* - l(θ~;R) 
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CHAPTER 3 

The virtual cohomological dimension 

of Coxeter groups 

In this chapter， we study the virtual cohomological dimension of Coxeter 

groups. In Section 3.1， we introduce some results of Bestvina， Mess and Dran-

ishnikov about the virtual cohomological dimension of Coxeter groups. In Sec-

tion 3.2， using a result of Dranishnikov， we give som.e properties about the virtual 

cohomological dimension of Coxeter groups over principal ideal domains. In Sec-

tion 3.3， for a right-angled Coxeter system (W， S) wi th vcdR W =凡 weconstruct 

a sequence WTo C WT1 C . . .ζ 日1Tn_1of parabolic subgroups with vcdR 11-匂 =2.

33.1. RESULTS OF BESTVINA， MESS AND DRANISHNIKOV 

We introduce some results of Bestvina， Mess and Dranishnikov. We first intro-

duce definitions of the local cohomological dimension and the global cohomolog-

ical dimension of simplicial complexes. 

Definition 3.1.1 ([Dr3]). For a五nitesimplicial conrrplex K and an abelian group 
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G， the locαl cohomological dimension of K over G is defined as 

lcdcK = maxσεK{iIHi(St(σ，K)， Lk(σ，K);G)ヂO}，

and the global cohomological dimension of K over G is 

cdc K = max{i I Ht(K; G)ヂO}

When Ht(K; G) = 0 for each i， then we consider cdc K 二一l. We note that 

Ht(St(σ，K)， Lk(σ，K);G) is isomorphic to Hi-1(Lk(σぅK);G). Hence， 

lcdc K = maxσεK{ cdc Lk(σ，K) + 1} 

In [Dr3]， Dranishnikov showed the following relation of lcdc K and cdc K 

Theorem 3.1.2 (Dranishnikov [Dr3]). For everyαbeliαη gro叩 G αnd every 

finite simplicial complex K， the inequαlity lcdc K三cdcK holds. 

In [Dr3司]， Drar 

dimension 0ぱfCoxeter grou ps山 . 

Theorem 3.1.3 (Dranishnikov [Dr3]). Let (W， 8) beαCoxeter system αnd R 

αpnηcipal ideal domαin. Then there exists the fo門ηulα

vcdR W = lcdRCL = max{lcdRL'1 cdRL + 1}， 

ωhere L = L(W， S)αηd C L is the simplicial cone 0 f L. 

Dranishnikov also proved the following theorem as an application of Theo-

rem 3.l.3. 

Theorem 3.1.4 (Dranishnikov [Dr3]). A Coxeter gro叩 Whαsthe folloω'lng 

properties: 

(a) vcdQ W 三vcdRW f01' each p門ηcipalideal domαin R 

(b) vcdzp W = vcdQ W forαII but βnite primes p. 

(c) Tl附 'eexistsαprime p such thαt vcdzp W = vcd W. 
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( d) vcd W x W = 2 vcd W 

In Section 3.2， wc extend this theorem to one over principal ideal domain 

oe伍cicntfi.

In [BM]， M. Bestvina and G. Mess proved the following theorem for hyperbolic 

groups and therir boundaries. 

Theorem 3.1.5 (Bestvina and Mess [BM]). Let r beαhyperbolic gro叩 and

R αcommutαtive ringωith identity. Then there exists the forマnulα
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ωhereθr is the boundαry ofr. 

Definitions of hyperbolic groups and their boundaries are found in [G]， [GH] and 

[CP]. An analogous theorem for Coxeter groups is proved by the same argument 

(cf. [Dr2]) 

Theorem 3.1.6 (Bestvina and Mess [BM]， [B2]). Let (W， S) beαCoxeter 

ystemαnd R αcommutαtive ring ωith identity. Then there exists the formulα 

c-dimRθL:(W， S) = vcdR W. -1 

33.2. THE VIRTUAL COHOMOLOGICAL DIMENSION OF COXETER 

GROUPS OVER PRINCIPAL IDEAL DOMAINS 

In this section‘we extend Theorem 3.1.4 to an analogous theorem over principal 

ideal domain coefficients by using an argument similar to one in [D刈 We日rst

prove the following lemma needed later. 

Lemma 3.2.1. Let R be αpnnc'tpαl ideal domαin. Let tど2be αn integer. Then 
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(i)ザ thetensor product Zt⑧ R is trivial， theη the tensor product Zt⑧ R/I 

αnd the torsion product Tor(Zt， R/I)αre trivial for eαch ideal 1 in R，αηd 

(ii)ザRis notαβeldαnd the tensor product Zt⑧R/ 1 is trivial for everyηon-

triviαl prime ideal 1 in R， then the tensor product Zt Q9 R αnd the torsion 

product Tor(Zt， R)αre trivω 

Proof. Let rtεR be the t sum 1 R十・・・ +lR of lR. Define the homomorphism 

rp:R → R by rp(γ)=γtr. Then there exists the following exact sequence: 

o ----+ Tor(Zt， R) ----+ Rム R→ Zt⑧R→ O

Hence the kernel ofψis isomorphic to Tor(Zt， R) and the cokernel of rp is isomor-

phic to Zt③ R. 

(i) Suppose that Zt⑧R is trivial. It follows企om0 = Zt⑧R竺 R/rtRand the 

non-triviality of rp that rt is a non-zero unit element of R. Since R is a principal 

ideal domain， rp is a monomorphism. This means that Tor(Zt， R) = 0 

Let 1 be a non-trivial ideal in R. Consider the following exact sequence: 

Tor(Zt， R)→ Tor(Zt， R/I)→ Zt⑧ I→ Zt③ R → Zt⑧ R/I→ O 

which is induced by the natural short exact sequence 1 <-→ R → R/I. Then it is 

clear that Zt⑧ R/I = O. We also see that Tor(Zt， Fl/I)竺 Zt⑧1= 0， since rt is 

a unit element of R. 

(ii) We note that there exists a non-trivial prime ideal 1 in R， because R is not 

a五eld.

Suppose that Zt⑧ R/I is trivial for every non-trivial prime ideal 1 in R 

First‘we show that r tヂoin R. If rt = 0 in R， then for a non-trivial prime 

ideal 1 the homomorphism R/ 1→ R/I defined by r + 1 f---t rtr + 1 is trivial 

Hence Zt⑧ R/ 1 is isomorphic to R/ 1ヂO. This contradicts the assumption 

Zt⑧ R/ 1 = O. Therefore r tヂO
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Then ψis a monomorphis瓜 becauseR is an integral domain. Hence Tor(Zt， R) 

is trivial. 

Next、weshow that rt is a unit. Suppose that rt is not a unit. Since R is 

a principal ideal domain， rt is presented as rt Pl . . . Pk by some prime ele-

mcnts Pl，・・・ ，Pk of R. Then 1 = PIR is a non-trivial prime ideal in R. The 

homomorphism R/ 1→ R/ 1 defined by r十 1 t-~ rtr + 1 is trivial， because 

r t r + 1 = Pl (P2 ・・Pkr)+ 1 = 1. Hence Zt② R/ 1 is isomorphic to R/ 1 ヂO 

This contradicts the assumption: Zt Q9 R/I = O. Therefore γt is a unit 

Then 4っisan epimorphism. This means that Zt③ R is tri vial.口

Theorem 3.2.2. Let W beαCoxeter groupαnd R αprincipal ideal domαzn. 

Then W hαs the following properties: 

(a) vcdQ W 三vcdR/1W 三vcdRW三vcdW for eαch prime ideal 1 in R. 

(b) vcdR/1 W = vcdQ W forαII but βnite prime ideαls 1 in R，ザRis notα 

βeld 

(c) Tl附 eαぱ Sαηon-trivialprime ideal 1 in R such thαt vcdR/1 W 

vcdR W， if R is notαβeld. 

(d) vcdR W x W = 2vcdR W 

Proof. Let (W， S) be a Coxeter system， R a princ:ipal ideal domain， and L = 

L(W， S). We note that R/I is a五eldfor every non-trivial prime ideal 1 in R‘and 

R has the only trivial prime ideal if R is a field. 

( a) For any prime ideal 1 in R， vcdQ W 三vcdR/11#by Theorem 3.1.4 (a)， and 

vcdR W :::; vcd W. We show the inequality vcdR/1 VV三vcdRW. 

If 1 is trivial‘then it is obvious. We suppose that 1 is a non-trivial prime ideal 

in R. Let vcdR/ J W = n. Then lcdR/1 C L = n by Theorem 3.1.3. Hence ther 

xists a simplex σofCL such that Hn-l(Lk(σ，CL); R/I)ヂO.By the universal 

coe伍cientformula， either Hn-l (Lk(σ，CL))⑧ R/I or Tor(Hn(Lk(σ，CL))， R/I) 
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is non-trivial. Since Hnー1(Lk(σ，CL)) and iIペLk(σ，CL))are五nitelygener-
ated abclian groups， Hnー1(Lk(σ， CL))③ Rヂoor iIn(Lk(σ， CL))⑧ Rヂoby 

Lemma 3.2.1 (i). By the universal coe伍cientformula， iIn-l (Lk(σ，CL); R)ヂoor 

Hn(Lk(σ，CL); R)ヂO.In both cases， vcdR W = lcdR C L三ηbyTheorem 3.1.3 

(b) Let vcdQ W = n. We define A as the set of non-trivial prime ideals 1 in R 

such that Ht (Lk(σ，CL)) 0 R/Iヂofor some simplex σof C L and integer i三n

We show that A contains every non-trivial prime ideal 1 in R with vcdR/ I W ヂη.

Suppose that 1 is a non-trivial prime ideal in Fl with vcdR/1 W ヂη. Then 

lcdR/1 CL = vcdR/1 W > n by Theorem 3.1.3 and Theorem 3.1.4 (a). Hence there 

xist a simplex σof C L and an integer i三nsuch that Ht (Lk(σ， CL); R/I)ヂ

O. By the universal coe伍cientformula， eit出hE悶E

To町r(H川 (Lk(σ久，CL)リ)，R/Iη) is non-trivial. Here we note that for a field F and 

an integer t 三2，the tensor product Zt⑧ F is trivial if and only if the tor-

sion product Tor(Zt， F) is trivial. Therefore Hi'(Lk(σ， CL))⑧ R/Iヂoor 

Hi+1(Lk(σ， CL))⑧ R/Iヂobecause R/I is a field. In both cases， 1 is an el-

ement of A. Therefore to prove our desired property， it is sufficient to show that 

A is finite. 

Let T be the set of all torsion coe伍cientsof Ht(Lk(σ， C L )) for each sim plex σof 

C L and integer iどn.Since CL is a五nitesimplicial complex and Hi (Lk(σ， CL)) 

is a finitely generated torsion group for each simplexσof CL and i 三凡 which

is by lcdQ CL = vcdQ W =凡 wehave that T is finite. For each t εT、wedefine 

Bt asもheset of non-trivial prime ideals 1 such that Zt⑧R/IヂO.Then we note 

that A = UtεTBt. 

We show that Bt is五nitefor each t εT. Let rtεR be the t sum 1 R十・・・+lR 

of 1R. Since R is a principal ideal domain， R is a unique factorization domain. 

Hencc rt is presented as rt = Pl ... Pk by some pri:me elements Pl，'" ，Pk. Let 
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1 be a non-tri vial prime ideal in R such that Zt③ R/I is non-trivial. For the 

homomorphism φ: R/I→ R/I de五nedby r + 1←-t rtr + 1， the cokernel ofφ1S 

isomorphic to Zt⑧R/I. Since R/I is a field，φis trivial. Hence 1 is a member of 

{PIR， ぅPkR}，because P1γ.. ，Pk are prime elements. Therefore the cardinality 

of Bt is at most k. Hence A is白nite， beca use T is fini te. 

(c) Let vcdR W n. Then there exists a simplexσof C L such that 

Hη-1 (Lk(σ，CL); R)ヂoby Theorem 3.l.3. By the universal coefficient formula， 

either Hnー1(Lk(σ， C L)) @ R or Tor(Hn(Lk(σ，CL))， R) is non-trivial 

First， we show that Hnー 1(Lk(σ， CL))⑧ R is non-trivial. To show the fact‘we 

uppose that Tor(Hn(Lk(σ，CL))， R) is non-trivial. Let the numbers Sl，... ，Sl 

be the torsion coe伍cientsof Hη(Lk(σ，CL)). Then there exists a number Sj 

uch that Tor (ZSJ ' R)ヂO.By Lemma 3.2.1 (ii)， there exists a non-trivial prime 

ideal 1 in R such that ZSj⑧ R/Iヂ O. Then HrぺLk(σ，CL))⑧ R/I is non-
trivial. By the universal coefficient formula， HペLk(σ，C L); R/I) is non-trivial 
Hence vcdRIJ W = lcdR1J CL三n+ 1 by Theorem 3.l.3. On the other hand 

vcdR1J W 三vcdRW =ηby Theorem 3.2.2 (a). This is a contradiction. Thus 

Tor(Hn(Lk(σ，CL))， R) is trivial. Therefore Hn-1(Lk(σ， CL))⑧ R must be non-

trivial. 

ext‘we show that Hn-1(Lk(σ， C L)) @ R/I is non-trivial for some non-trivial 

prime ideal 1 in R. Letβbe the Betti number and the numbers t1， . .. ，tk the 

torsion coefficients of Hn-1 (Lk(σ， C L)). If s is non-zero， then it is clear that 

Hη-1 (Lk(σ， CL))⑧R/I is non-trivial for each non-trivial prime ideals 1 in R. If s 

1S zero‘then there exists a number ti such that Zti③RヂO.By Lemma 3.2.1 (ii)， 

there cxists a non-trivial prime ideal 1 in R such that Zt
1 
@ R/IヂO. Then 

Hn-l(Lk(σ， C L)) @ R/I is non-trivial 

By the universal coefficient formula and Theorem 3.1.3， we have that 
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vcdR/J W どn.Hence， vcdR/J W = n by Theorem ~L2.2 (a) 

(d) In general， for groups W1， W2 the inequality vcdR W1 X W2三vcdRW1十

vcdR W2 holds， where the equality holds， if R is a field ([Bi， Theorem 4 c)]) 

Hence， in our case， the equality vcdR W x W = 2 vcdR W holds、ifR is a五eld.

Wc suppose that R is not a field. Then the inequality vcdR W x W :::; 2 vcdR W 

holds. We show that vcdR W x W 三2vcdRW. By Theorem 3.2.2 (c)， there 

exists a non-trivial prime ideal 1 in R such that vcdR/1 W = vcdR W. We note 

that R/I is a日eld.Then 2vcdR W = 2vcdR/J W = vcdR11 W X W. Since W x W 

is also a Coxeter group， vcdR/J W x W 三vcdRW X W by Theorem 3.2.2 (a) 

Therefore we have that vcdR W x W = 2vcdR W. 口

33.3. A SEQUENCE OF PARABOLIC SUBGROUPS OF 

A RIGHT-ANGLED COXETER SYSTEM 

In this section， we prove the following theorem. 

Theorem 3.3.1. Let (W， S) be αright-angled Coxeter system with vcdR W =ηy 

where R isα principal ideal domαin. Then there existsαsequence To C T1 C 

. . C Tn-1 c S such that vcdR WTi = i for eαch i = 0，・ ・・，n -1. Iηpαrticulαr， 

ωe cαη obtαzn αsequence of simplexes TO )>-η 〉 ・・ ・)>-Tη-1 such thαt Ti is the 

vertex set of Lk( Ti， L(W， S))αηd L(WTi， Ti) = Lk(九 L(W，S)) 

We note that Theorem 3.3.1 is not always true for general Coxeter groups・

Indeed， there exists the following counter-example. 

Example 3.3.2. We consider the Coxeter systern (W， S) defined by S 
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{Vl， V2， V3} and 

J 1 if i = :i， 
(υi，町)= { 

J / I 3 if iヂ:j.

Thcn W is not right-angled， and L(W， 5) is not a fiag complex. lndeed， W{vt，V
J
} 

is finitc for each i， jε{l， 2， 3}， but W is infinite (cf. [Bo， p.98， Proposition 8]) 

Since cd L(W， 5) = 1 and lcd L(W:ぅ5)= 1， we have that vcd W = 2 by Theorem 

3.1.3. For each proper subset T c 5， vcd WT = 0， because WT is a finite group. 

Hence there does not exist a subset T c 5 such that vcd昨今=1.

We first show some lemmas. 

Lemma 3.3.3. Let L be αsimplicial complex. If T isαsimplex 01 L and T' 

'lS αsimplex in the link Lk( T， L)， then the join T * T' isαsimplex 01 L αn 

Lk(ァペLk(T，L)) = Lk(T * T'， L) 

Proo f. Let T be a sim plex of L and T' in Lk ( T， L). Since ザ isin Lk( T， L)， the join 

T * T' is a simplex of L and γ門戸=o. For a simplex σof L，σis in Lk ( T'， Lk ( T， L)) 

if and only ifσ*T' is in Lk(T， L) and σ内7f=03ie Fσ* T' * T is a simplex of L and 

σ内(ア *T') = o. Hence σis in Lk(TヘLk(ア，L)) if and only ifσis in Lk( T * TヘL)

Thus we have that Lk( T'， Lk( T， L)) = Lk(ア*T'， L) 口

Lemma 3.3.4. Let L beαsimplicial complexαηd C;αηαbelian group. For each 

simplex T 01 L， the ineqωlity lcdc Lk( T， L)三lcdcL holds 

Proof. Let lcdc Lk (ηL) = n. Then there exists a sinlplex T' in Lk(ηL) such that 

Hn-l(Lk(T'， Lk(T， L)); G)ヂO.By Lemma 3.3.3， Lk(T'， Lk(T， L)) = Lk(T * T'， L) 

Hence lcdc L 三n.口

Using Theorem 3.1.2 and the lemmas above， we show the following key lemma. 

Lemma 3.3.5. Let (W，5) be αright-angled Coxeter system with vcdR W = n， 

where 5 is nonemptyαnd R isαp門ncipalideαl domαin. Theηthere existsα 
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proper subset T 01 S such thαt vcdR WT n orη-1. 1ηpαrticulαr，ωe cαη 

obtαznαsimplασ 01 L(W， S) such thαt T is the 聞 rtexset 01 Lk(σ，L(W， S))αηd 

L(WT， T) = Lk(σ，L(W， S)) 

Proof. Since vcdR W =凡 wehave that lcdR L(W， S) = n or cdR L(W， S) = n -1 

by Theorem 3.1.3. If lcdR L(W， S)三n-1， then cdR L(W， S) n -1， and 

lcdR L(W， S) = n -1 by Theorem 3.4. Hence lcdR L(W， S) = n or n -1 

We set m， := lcdR L(W， S). Then there exists a si:mplex σof L(W， S) such that 

iIm-l(Lk(σ，L(W， S)); R)ヂoand iIi (Lk(σ，L(W， S)); R) = 0 for each i三m

Hence cdR Lk(σ， L(W， S)) = m -1. Let T be the vertex set of Lk(σ，L(W， S)). 

We note that T is a proper subset of S. 

Then we show that 

(*) L(WT， T) = Lk(σ，L(W， S)) 

It is clear that the vertex set of L(WT， T) is the vertex set of Lk(σ，L(W， S)) 

Let {υ0， • . • ，Vk} be a subset of T which spans a simplex of L(W:ιT). Since 

{υ0， • . • ，Vk} generates a fi白fin凶1

OぱfL引(W，Sめ).It follows from ViεT = Lk(σ， L(W， S)) (0) that the join Vi *σforms 

a simplex of L(W， S) and Vi tf-σfor each i = 0，. • • ，k. We note that L(W， S) 

is a fiag complex， since W is right-angled. Hence the join Ivo，. • • ，vkl *σforms 

a simplex of L(W， S) and Ivo，... ，Vk I nσ0， i.e.， Ivo， パ)kI is a simplex in 

Lk(σ，L(W， S)). Conversely， let {vo，... ，Vk} be a subset of T which spans a 

simplex in Lk(σ，L(W， S)). Then {vo， • • • ，Vk} generates a finite subgroup of W 

Since {υ0， • • • ，Vk} c T， {voヲ 下旬}generates a finite subgroup of WT. Hence 

{Vo，. • • ，りた}spans a simplex of L(WT， T). Thus L(~VT ， T) = Lk(σ，L(W， S)) 

We note that cdR L(WT， T) = m -1， and lcdR L(WT， T)三m by (*) and 

Lemma 3.3.4. Hence vcdR WT m by Theorem 3.1.3. Thus we have that 
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vcdn 切ら =η orn -1. 口

Using this lemma， we prove Thcorem 3.3.1. 

Proof of Theorem 3.3.1. Let (W， S) be a right-angled Coxeter system with 

vcdR W =凡 whereR is a principal ideal domain. 

By Lemma 3.3.5， we can obtain subsets {Sih of S and simplexes {σ小 of

L(W， S) satisfying the following conditions: 

(1) So = S， 

(2) Si+l is a proper subset of Si， 

(3) L(WSt+l' Si+d = Lk(σi+l， L(Wsいふ))， and 

(4) vcdR WSt+l=  vcdR WSi or vcdR WSt -1 

Then we note， by the conditions (1)， (3) and Lernma 3.3.3‘that 

L(Wst， Sd = Lk(σゎL(WSi_1， Si-1)) 

= Lk(何，Lk(σi-1， L(WSi_2， Si-2))) 

= Lk(CJi-1 *σi， L(WSi_2， Si-2)) 

= Lk(σ1 *・・ *σi，L(W，so' So)) 

= Lk(σ1 *・ *σi，L(W、S))

Sincc S is fini te‘there exists a number 7n such that Sm is the empty set by 

the condition (2). Then vcdR WSm = 0， because WSm is the trivial group. Hence 

we can have a subsequence {S43}j Of{Sth such that，vcdR Wszj=η -j for each 

j = 1，... ，ηby the condi tion (4). 

We set T〉:=Sin-jand ησ1十・1σin-Jfor each j = 0，・・.，n -1. Then 

Tj C Tj+1，乃〉勺+1，vcdR W円 =j and L(WTjヲTj)== Lk(乃，L(W， S)) for each j 

by our construction. 口
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By Theorem 3.1.6， wc obtain the following corollary. 

Corollary 3.3.6. Forαright-αngled Coxeter syste~n (W， S)ωith c-dimRδE=n， 

where R isαprincipal ideal domαin， there existsαsequenceθETO CθET1 C ... C 

δET~_ l of the boundαries of parabolic subgroups of (vv.ぅS)such thαt c-dimRθ2九=
i for each i = 0，1，・.，n -1. 

In general， for a五nitedimensional compact metric spaces X， the equality 

c-dimz X = dim X holds (Theorem 1.3.3). Since the boundaries of Coxeter group 

are always finite dimensional， we obtain the following corollary. 

Corollary 3.3.7. Forαright-angled Coxeter system (W， S)ωith dimδE=ηy 

there existsαsequenceδETO CθET1 C ... CθETn_1 of the boundαries of pαγαbolic 

ωgroups of (W， S) such thαt dimθET• = i for eαch i = 0，し・ ，n-1. 
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CHAPTER 4 

The cohomology of Coxeter groups 

In this chapter， we study the cohomology of Coxeter groups. In Section 4.1， we 

introduce a formula of the cohomology of Coxeter groups given by M. W. Davis. 

After some preliminaries in Section 4.2， we reformulaしtethe Davis formula， and we 

study the problem as to when the i-th cohomology of a Coxeter group is五nitely

generated in Section 4.3 

94.1. THE DAVIS FORMULA FOR THE COHOMOLOGY OF COXETER GROUPS 

Let (W， S) be a Coxeter system. Let K be the simplicial cone over the barycen-

tric subdivision sd L of L = L(W， S). For each s εS， the closed star of s in sd L 

is denoted by Ks. The closed star Ks is a subcomplex of K. For each nonempty 

subset T of S. we set 

K
T
:= U Ks 
εT 

We note that KT has the same homotopy type as LT = L(WT， T) 
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For each ωε W， the set S(ω) is defined in Section 2.1 as follows: 

S(ω) := {sεS I R(ωs)く R(ω)}，

wherc R(ω) is the minimum length of word in S which represents ωFor each 

subset T of S， we recall the following subsets of W: 

AT:= {ωε WIR(ωt) > R(ω)， for all tεT} = (ωε WITCS ¥S(ω)} 

CT:= {ωε WIR(ωt) < R(ω)， for all t εT} = (ωε W IT C S(ω)}， and 

WT:= {ωε WIS(ω) = T} = CT n As¥T 

In [D3]， M. W. Davis gave the following formula 

Theorem 4.1.1 (Davis [D3]). Let (W， S) beαCoxeter system. Forαtorsion-

free subgroup r of finite index in U，ヘ thereexists the folloωing isomorphism: 

H本(f;Zf)竺 EB(Z(WT)② H*(I(ι吋))， 
TESf 

ωhere Z(WT) is the freeαbeliαn group on WT 

Since K is contractible and KS¥T has the same homotopy type as Ls¥T‘th 

formula above is rewritten as 

H本(f;zr)三 EB(Z(WT)⑧止-l(L町))， 
TεSf 

where H* denotes the reduced cohomology. 

84.2. LEMMAS ON COXETER GROUPS 

In this section、weprove some lemmas for Coxeter groups which are used later. 

Let (W， S) be a Coxeter system and 5f， S(ω)， AT， CT and WT denote the sets 

defined in Section 2.1. 
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Lemma 4.2.1 (cf. [D3， Lemma 1.10]). Suppose thαt TεsJ. Then WT isα 

singleton ifαηd only if W decomposesαs the direct product:日!= Ws¥T X Wr. 

Proof. The “only if" part was proved by Davis ([D3， Lemma 1.10]). We prove 

the “if" part. 

Suppose that W decomposes as the direct product: W =日IS¥TX WT. Let ωT 

be the element of longest length in WT. By Lemma 2.1.9 (ii)， S(WT) = T， i.e 

ωTξ WT. We show that WT = {ωT} 

Let ω ε WT. Th悶e∞I且1S町(ω刈)=Tb句ydωefi白白fin凶1

see that ω U7.ω1JT for some u εAT. Suppose that uヂ1. Then there exists 

S εS(u) by Lemma 2.1.6 (i). Since u εAT， R(ut) > R(u) for each t εT.On 

the other hand、R(ω)く R(u)， since s ξ S(u). Thus s εS ¥T C WS¥T. Since 

W=日!S¥TX日IT，WTS = SWT. Hence， 

R(ωS) = f(ω TS) = f(usωT)三f(ω)+ R(ωT)く f(u)+ f(ωT) = f(ω T) = f(ω) 

where the equality R( u) + R(ωT) = R(uωT) follows from Lemma 2.1.7 (iii). Thus 

we have that S εS(ω). Hence S εS(ω) = T、slnceωε WT. This contradicts 

the fact s εS ¥T. Thus u = 1 and ω=ωT. Therefore WT = {ωT}， i.eぅWTis 

a singleton. 口

Lemma 4.2.2. Suppose thαtTεSf. Then 

(i) CT = ATωT 

(ii) WT = CT n As¥T 

(iii) 1f W is infinite) then CT is in.βnite 

(iv) (WSI)T C WT for eαch subset S' of S contα'tn't旬 T

Proof. (i) By the defi凶 ionof CT and Lemma 2.1.10， we have 

CT = {ωε WIT c S(ω)} = ATωT. 
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(ii) By the de白山ionof As¥T， 

Henc円

As¥T={ωε Wl5¥Tc5 ¥5(ω)} 

={ωε W15(ω) c T} 

W
T={ωε W15(ω) = T} 

={ωε WIT c 5(ω)} n {ωε liV I 5(ω) C T} 

= CT nAs¥T. 

(iii) We note that CT is not empty because ωTε CT. Suppose that W i 

i凶nite.Then for each ωε CT there exis七ss ε5 such that f( s叫 =f(ω) + 1 

Since ωε CT， f(sωt)三1+ f(ωt) < 1 + f(ω) = f ( sw) for each t εT. Hence 

sωε CT. Thus there is no element of longest length in CT. Hence CT is infinite. 

(iv) Let ωε (Ws' )T. Then T = 5'(ω) = {sε5' IPs'(ωs)く fs'(ω)}‘wherethe 

length fs' (ω) ofωin Ws' is equal to f(ω) by Lemma 2.1.6 (iii). Hence， 

T = 5'(ω) = {sε5' I f(ωs)く f(ω)}= 5(ω) n 5' 

Thus we have that T c 5(ω). To prove the reverse inclusion 5 (ω) c T‘weshow 

that 5 ¥Tc5  ¥5(ω). Let s εS  ¥T. If s ε5'， then f(ωs) > f(ω) because 

s tf-T = 5'(ω). If s tf-5'， then f(ωs) > R(ω) by Lemma 2.1.6 (iv) because 

ωε Ws' and s εS ¥5'. In either case， f(ωs) > f(ω)， i.e.， s εS ¥5(ω). Hence 

S¥Tc5¥5(ω)， that is， 5(ω)ζ T. Thus we have that 5(ω) = T and ωε WT 

Therefore (WS，)T c WT 口

Lemma 4.2.3. Let t。ε5.IjW{to}αηdWs¥{to}αre finite， then W isβnite 
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Proof. By Lemma 2.l.6 (i)， we have 

w{to} = {ωε W18(ω) = {to}} 

={ωε W18(ω) c {to}}¥{ωε W18(ω)=日}

= As¥{句}¥{1}

Since W{to} is finiteぅAs¥{to}is finite. Hence Cs¥{to} is finite because Cs¥{to} = 

As¥{to}ωs¥れo}by 8 ¥{to}εSf and Lemma 4.2.2 (i). Thus W is finite by 

Lemma 4.2.2 (iii) 口

Lemma 4.2.4. Let T εSf， toεT and 80 :- (8¥T) U {to}. Then 

(WSo){to}toωTC WT 

Proof. It is su伍cientto show that 8 (ω。ωT)= T for each ωε (WSo){to} by the 
definition of WT. Let ωε (WSo) {to} 

First we show that T C 8 (ω。ωT)'We note that T C 8(ωtoωT) if and only if 
ωt。εAT(i.e.， f( (ωto)t) > f(ωto) for all t εT) by Lemma 2.l.10. Let t εT. If 
tヂto，then f( (ωto)t) = f(ωto)十 1by Lemma 2.1.6 (iv) because ωtoεWSo and 

t rt 80， If t = to， then f ( (ωto)t) = f(ω) = (f(ω) -1) + 1 = f(ωto) + 1 because 
ωε (WSo) {to}. Hence f( (ωto)t) > f(ωto) for all t εT， i.e.，ω。εAT.Thus we 
have T C 8(WtOWT) by Lemma 2.l.10 

N ext we show that 8 (ωto叶)= T. Suppose that there exists s ε8(ωtoωT)¥T 

Then T U {s} c 8 (ωtoωT ). There exists u εATゆ}such that ωtoωT=UωTU{s} 

by Lemma 2.l.10. Since to and WT are involutions，ω UωTU{s}WTtO・ Herewe 
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note that u εAru{s} and wru{s}WrtoεWru{s}・Then，

f(ω) = f( u(ωru{s}ωrto)) 

=f(u)+f(ωTU{s}ωrto) 

ニ f(u)+f(ωru{s}) -f(ωrto) 

=f(u)+f(ωru{s}) -f(ωT) + 1 
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because wrtoε叫ノru{s}・Bythe same argument、wehave 

f(ωs) = f(u(ωTU{s}ωrtos) ) 

=f(u)+f(ωru{s}ωTt州

=f(u)+f(ωTU{心-f(ωrtos) 

=f(u)+f(ωru{s}) -(f(ωTtO) + 1) 

=f(u)+f(ωTU{s}) -(f(ωT)-l+l) 

=f(u)+f(ωru{s}) -f(ωr) 

by Lemma 2.1.7 

by Lemma 2.1.9 (iii) 

by Lemma 2.1.6 (iv) 

by Lemma 2.1.9 (iii) 

because u εAru{s}，ωTU{s}ωrtosεWTしJ{s}and ωrtosεWru{s}. Hence f(ω)く

f(ω)， i.e.， s ξ5(ω). Since s εS ¥T C 50 and ωε 日1So'we have that s ε50(ω) 

On the other hand‘50(ω) = {to}， since ωε (WSo){句 Thisis a contradiction， 

because sヂtoby the de白nitionof s. Hence 5(ωtoωT) = T， that is，ω。ωTε Wr
Therefore we have that (Wso){to}toωrC WT 口

It is known that a Coxeter group W always has a torsion-free subgroup r of 

五niteindex ([D1， Corollary 5.2]). Such a torsion-free subgroup r is of type FL 

lndeed， r acts freely， simplicially and cocompactly on the contractible simplicial 

complex ~ ([D1]). Since H市V;ZW)三 H*(r;zr) 竺 H*ー l(θ~) ， Theorem 1.2.9 

implics the following: 
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(i) Ht(W; ZW) is日nitelygenerated for each i if and only if W is a virtual 

Poincare duality group. 

(ii) Ht (θ~) is finitely generated for each i if and only if the Cech cohomology 

ofθ~ is isomorphic to the cohomology of an n-sphere for some n. 

84.3. THE NUMBER OF ELEMENTS OF WT 

We use the notation in Sections 2.1， 2.2 and 4.1， and (W， S) denotes a Coxeter 

system. In this section， we determine TεS1 such that WT is finite and LS¥T is 

not acyclic. The following lemma plays a key role in the later argument. 

Lemma 4.3.1. Suppose thαtTεS1. 11 WT isβniteαnd notαsingleton， then 

Ls¥T is contrαctible. 

Proof. Suppose that WT is finite and not a singleton. Then W does not decom-

pose as the direct prod uct of W s¥T and WT by Lemma 4.2.1. Hence there exist 

O εS ¥T and toεT such that m(so， to)ヂ2

Let So := (S¥T) U {to}. Since WT is finite， (Wso){to} is自niteby Lemma 4.2.4. 

Since m( so， to)ヂ2，we have that WS1。ヂ Ws刈to})< W{句}. Hence (Wso){to} is 

not a singleton by Lemma 4.2.1. Suppose that this lemma has been proved when 

T is a singleton. Since (Wso) {to} is日niteand not a singleton， Lso¥{to} = Ls¥T lS 

contractible. Thus the general case follows. Hence it suffices to show the lemma 

in the case T = {to}. We note that m(so， to)ヂ2.

First we show the following: 

(*) L = to * Ls¥{to}・

Let σbe a simplex of Ls¥{to} and let U be the vertex set of σ. Then Wu is finite. 

Since W{句}is finite， (WUU{to})れo}C Wいo}is五niteby Lemma 4.2.2 (iv). Henc 
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WUU{to} is finite by Lemma 4.2.3. Thus the join to *σis in L. This proves (*) 

N ext we show the following: 

(** ) Ls¥{to} = 80 * Ls¥{so，to}・

Let 8 be a vertex of L s¥{so，to} (i.e.， 8 εS ¥{80， to}). Suppose that {80， 8} 

does not span a 1-simplex in LS¥{to}' Then L{to，so，s} = to * {80，8} by (*) (see 

Figure 1). We note that L{so，s} is a O-sphere， and Lv is contractible for each 

80 8 

FIGURE 1. L{to，so，s} 

subset V c {to，80，8} which is not equal to {80，8}. By Theorem 4.1.1， we have 

H町1可川川(σ町川凡F町九f{toれ仇t句wい…川Oωω川S勾w川Oω川S寸};Zf叫F町町{れto句W川ωs斗心}け)竺 ~ ~(( 町叫凡t句O句吋so，s}){寸ωs}){け川)戸{川t句ωO吋内}り)③刊ρilo町川(
10， iヂ?

where f{to，so，s} is a torsion-free subgroup of五niteindex in W{to，so，s} and 

亘0(L{so，s})2zSince W{to}is hite?(W{to，so，s}){to}is五niteby Lemma 4.2.2 (iv) 

Hence H1(f{to，so，s}; Zf{山 o，s}) is a free abelian gro叩 offinite rank. By 

Theorem 1.2.9、 f{to，so，s}is a 1-dimensional Poincare duality group， i.e.， 

H
1 
(f {to，so，s}; Zf {to，so，s}) 竺 Z. Hence (W{to，so，s}){to} is a singleton and W{仇t句九O仏，s品s句O川'

W{れ仇t句o}X W{何S句0，グ，s}寸}b匂yLemma 4.2.1. On the other handl， m( 80， to) ヂ2 by the defi-

nitions of 80 and to. This contradiction implies that {80， 8} spans a 1-simplex in 

Ls¥{to} for every vertex 8 of Ls¥{so，to}・

Suppose for each (n -1 )-simplexσI of Ls¥{so，tル thejoin 80 *σI is in Ls¥{川・

Let σbe an n-simplex of Ls¥{so，to} and let U be the vertex set ofσ. We show 

that 80 *σ is in Ls¥{ to}・
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Supposc that So *σis not in Ls¥{ to}・Bythe inductive hypothesis， So *σIS ln 

LS¥{to} for every (n-l)-faceσ， of σHence Lω{so} is the boundary θ(so *σ) of 

the (η+ 1 )-simplex So *σ?and LULJ{t山}= to *θ( So * (5) by (*). Here we note that 

Lω{so} is an n-sphere and Lv is contractible for each subset V c U u {to， so} 

which is not equal to U U {so}. By Theorem 4.l.1， we have 
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where rUU{to，so} is a torsion-free subgroup of白niteindex in WUU{to¥so} and 

Hn(Luu{so}) 竺 Z. Since Wいo} is finite， (1Wuu{t山}){to} is finite by 

Lemma 4.2.2 (iv). Hence Hn十l(rUU{to¥so};zrUU{t山})is a free abelian group of 

finite rank. By Theorem l.2.9， rUU{t山}is an (η+ 1 )-dimensional Poincare du-

ality group. Thus (WUU{t山}){to} is a singleton and ~VUU{tω} = W{to} X WUU{so} 

by Lemma 4.2.l. On the other hand， r外50，to)ヂ2.This co凶~adiction implies 

that the (η+ 1 )-simplex So *σis in Ls¥れo}

By induction， we have the conclusion (**). Therefore Ls¥{to} is contractible 口

Definition 4.3.2. A Coxeter system (W， S) is said to be irアeducibleif， for any 

nonempty and proper subset T of S， W does not decompose into the direct 

product of WT and Ws¥T. 

Definition 4.3.3. Let (W， S) be a Coxeter system. Then there exists a unique 

decomposition {SI，... ， Sr} of S such that W is the direct product of the 

parabolic subgroups WS1，... ，Ws，. and each Coxeter system (Wsいふ isirre-

ducible (cf. [Bo]， [Hu， p.30]). Here we enumerate {S¥} so that SI，... ，SqεS1 

and Sq+l，・，Sr f/-S1. Let T := U{=1 Si and S := S ¥T. We say that Ws is the 

essential pαγαbolic subgroup in W. We note that Wf is finite and W is the direct 

product of Ws and Wf. 
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Remark. The essential parabolic subgroup Ws has a finite index in W. Hcnce a 

torsion-free subgroup r of白niteindex in Ws has a五niteindex in W as well， and 

H*(W;沼ZW)竺 H~功ぺ'

If W is五nitωe，then T S and S is empty， hence the essential parabolic 

ubgroup is the trivial subgroup. 

Lemma 4.3.4. Let T beαsubset of S. 1f T¥T is nonempty， then Ls¥T 'lS 

contr，αctiblい

Proof. Suppose that T¥T is no凹 mpty.By definition， W is the direct product 

of Ws and Wi" Hence 

日's¥T=日/S¥T×Lf/T¥Tand 

Lc:¥'T' = L;; 本Lri-S¥T -.us¥T -r .LJT¥T' 

Since Wi' is五nite，Wi'¥T is finite， i.e・3LT¥Tis a simplex. Thus Ls¥T lS con-

tractible. 口

We obtain the following lemma by Lemma 4.3.1 and Lemma 4.3.4. 

Lemma 4.3.5. Suppose thαtTεSl and Ls¥T is not contractible. Then WT is 

βnite ifαηd only if T = T. 

Proof. Since W is the direct product of WS¥y and Wy， WT is a singleton by 

Lemma 4.2.1. Thus WT is finite if T = T. 

Suppose that WT is finite and Ls¥T is not contractible. Since LS¥T is not 

contractible， t¥T is empty by Lemma 4.3.4. Hence t c T. Since WT is finite 
and LS¥T is not contractible，日，Tis a singleton by Le1nma 4.3.1. Hence W is th 
direct product of WS¥T and WT by Lemma 4.2.1. Then 

日1=日'S¥TX防'T= Ws¥yX日/T-

Since WT is finite and T c T， we have T = T by the definition of T. 口
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34.4. THE COHOMOLOGY OF COXETER GROUPS 

By Lcmma 4.3.5， we can reformulate Theorem 4.1.1 as follows: 

Theorem 4.4.1. Let (W， S) be αCoxeter system αnd rα torsion-free subgroup 

ofβnite index in W. Then 
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rv H*ーl(乙)EB( EB EB.FI*-l(ら¥T))， 
¥Tι5f¥{日}z / 

where S is the subset of S such thαt Ws is the essent:ial pαγαbolic subgroup in W， 

T=S ¥5，ι= L(Ws，5)αηd 51 = 51 (Ws， 5) = 51 n 5 

Proof. We note that WT is a singleton by Lemma 4.2.1. By Theorem 4.1.1 and 

Lemma 4.3.5， we have that 

H* (r; zr) ~ i!*-l (Ls¥'I') EB I EB EB i!*-l (Ls¥T) I 
¥Tε5f¥{'I'} z } 

If T ct T (i.e.， T¥T is no田 mpty)， then Ls¥T is contractible by Lemma 4.3.4. 
Henc 

H*(r; zr)竺 i!*-l(Ls¥f)EB ( EB EB1I*-1(Ls¥T) ) 
¥TεSf Z J 
TCT 

The parabolic subgroup Ws has a finite index in ~ヘ and Ws is the essential 

parabolic subgroup in the Coxeter system (WS1 S). Therefore， 

H*(r; zr)主企*ー1(乙)EB( EB EBβ*ー1(ら¥T)) 
¥Tε5f¥{日}Z / 

by Theorem 4.1.1 and Lemma 4.3.5. 口

By Theorem 4.4.1， we have the following corollary. 
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Corollary 4.4.2. Let (W， S) beαCoxeter system， fα torsion-free sゆgro叩 of

finite index in W， S the subset of S such that ltVs-is the essential parabolic 

ubgro叩 inW， and T = S ¥S. Then the followiηg stαtementsαre eqωυαlent: 

(i) Hi(f; Zf) isβηitely generαted; 

(ii) Hi(f; Zf) is isomorphic to 1主i-l(Ls);

。ii)か-l(LS¥T)= 0 forωLTε51 suchめαtTET
Example 4.4.3. It is known that， for every finite simplicial complex M， there 

xists a right-angled Coxeter system (W， S) such that L(W， S) is equal to the 

barycentric subdivision of M ([D1， Lemma 11.3]) 

Let (W， S) be a Coxeter system such that L = L(W， S) is the barycentric sub-

division of a triangulation of the projective plane. In [Dr3]， A. N. Dranishnikov 

howed that vcdz W = 3 and vc~ W = 2， where vcdR W is the vi山 alcoho-

mological dimension of W over R. Now， using Theorem 4.4.1， we calculate th 

cohomology of a torsion-free subgroup f of finite index in W. 

Since L is the projective plane 

q
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Z

n叫
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、11
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~H 

i=2 

tヂ2

Since L = Ls¥日isnot contractible and W0 is a singleton， t is the empty set 

(i.e.， W = Ws is the essential parabolic subgroup) by Lemma 4.3.5. For each 

Tε 51 ¥{日}， Ls¥T has the same homotopy type as a circle. Hence 

I Z， i = 1， 
H2 (Ls\T) 竺 ~ ~， 

\~ / 10， i手1.

Therefore‘by Theorem 4.4.1， we have 

i=3 

i = 2， 
otherwise. 
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By the example above， we see that there exists a Coxeter group W such that 

Ht (r; zr) is finitely generated and Hj (r; zr) is i凶 nitely generated for some 

tヂJ.
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CHAPTER 5 

Geometrically finite groups 

In this chapter， we investigate limi t sets of geometrically五nitegroups acting 

on Busemann spaces. Coxeter groups and parabolic subgroups are examples of 

geometrically finite groups acting on Busemann spaces. In Section 5.1， we recall 

definitions and basic properties of hyperbolic spaces and their boundaries in the 

nse of Gromov. In Section 5.2‘we give an equivalent condition for a group 

acting on a hyperbolic space to be geometrically finite. In Section 5.3， we recall 

definitions and basic properties of Busemann spaces and their boundaries. In 

Section 5.4， we show a Buselnann space-analogue of several results proved by 

A. Ranjbar-Motlagh for geometrically finite groups acting on hyperbolic spaces. 

35.1. HYPERBOLIC SPACES AND THEIR BOUNDARIES 

We introd uce de五nitionsof hyperbolic spaces and their boundaries in the sense 

of Gromov ([Gr]， [GH]， [CP]) 

Definition 5.1.1. Let (X， d) be a metric space and x，払ωε X.The Gromov 
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prod uct of X and Y wi th rcspect to ωis defined as 

州 ω:=j(川)+ d(y， w) -d(x， y)) 

For somc 8三0，we say that a geodesic space (X， d) is 8-hyperbolic、iffor each 

x，y，ムωεX

(Xly)ω三min{(xlz)伽 (νIz)ω}-8

Also we say that X is hyperbolic， if X is 8-hyperbolic for some 8 ~三 O.

Definition 5.1.2. Let (Xぅd)be a hyperbolic space. A sequence {刈 ofpoint 

of X is said to cor附 rgeto in，βnity， if for some (arbitrary) basepointωεx 

15J12。(Z1|Z3)ω=∞

Let Soo(X) denote the set of all sequences convergent to infinity， and define the 

equivalence relation 

{xi}7之{YU宇中 lim(xiIYi)ω=∞ 

The boundαry 0 f X is defined asθX:= 8∞(X)j7之 Wesay that {Xi}εS∞(X) 

onverges to X εδX， if the equivalent class of {xU with respect to 7之isx， and we 

writc Xi→ x. Now we extend the Gromov product to the boundary as follows: 

For each 丸νε XUθX， we define 

(xlν)ω:= inf {.lim (Xi IYi)ω} 

where the infimum is taken over all pairs of sequences Xi→ X and Yi→ y 

Then X U θX has a natural topology， in which X is an open subspace， and a 

neighborhood basis for each point X εθX is given by the sets 

N(x;ε) := {yεXU  θX I (xlν)ω>ε} 

where ε> O. It is known that this topology is not dependent on the basepoint 

ωε X. For a geodesic rayご:[0，∞)→ X， there exists a unique point X εθX 
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h that {ご(ti)}→ x for each sequence {む}of non-negative real numbers such 

that {ti}→∞ Then we wri te x =ご(∞)

Definition 5.1.3. Let X be a geodesic space. Let x， y， z εX andムムxyz

a geodesic trianglc in X. Then there exist unique non-negative numbers αJ、C

such that 

d(ιν)=α+ b， d(払z)= b+ムd(z，x)=c+α

1ndeed α= (ylz)x， b = (zlx)y and c = (xly)z. Then we can consider the metric 

tree T /::， that has three vertexes of valence one， one vertex of valence three， and 

edges of length 仏 band c. Let 0 be the vertex of valence three in T /::， and let 

Uわ りやりzbe the vertexes of T /::， such that d( 0，九)=仏 d(o，vy) = b and d(o， vz) = c. 

Then the map {x， y， z}→ {Vx， vy， vz} extends uniquely to a map f :ム→ Tム

whose rcstriction to each side ofムisan isometry. For some 6 ~三 0 ， the geodesic 

triangleムissaid to be 6-thin， if d(p，q)三6for each points p， qεムwith

f(p) = f(q) 

The following lemma is well-known. 

Lemma 5.1.4 ([GH]ヲ [CP，p.8-10]). Let (X， d) beαproper 6 -hyperbolic spαce 

(i) Every geodesic triα句 lein X is 46-thin 

(ii) Let乙(: [0，∞)→ X be geodesic rays withと(∞)= ((∞). Then 

d(ご(t)，1m () ::; d(と(0)，((0)) + 86 for eαch t 2:: O. Furthermore， there exists 

T三osuch thαt d(ご(t)，1m ()三 86for eαch t三T.

(iii) For eαch pair of distinct points α，s εθX， there existsαgeodesic line in 

X with endpointsααnd s. 
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35.2. GEOMETRICALLY FINITE GROUPS ACTING ON HYPERBOLIC SPACES 

1n this section， we give an equivalent condition for a group acting on a hyper-

bolic space to be geometrica11y finite. We first give a definition of limit sets. 

Definition 5.2.1. Let (X， d) be a hyperbolic space and r a group which act 

properly discontinuously on X. The limit set of r (with respect to X) is defined 

as 

θr = clxuθx(rxo) nθX， 

where clxuax means the closure in X U θX， and Xo is a point in X. The limit 

et θr is independent of the choice of the point x。εX.

A geometrica11y finite group acting on a hyperbolic space is defined as fo11ows: 

Definition 5.2.2 ([R]). Let (X， d) be a proper hyperbolic space and r a group 

which acts properly discontinuously on X. We say that (the action of) r is 

geometricallyβnite (ωth respect to X)， if there exists a compact subset K 0ぱfX

h that乙(δr)ζ rK，where乙(θr)is the union of the images of a11 geodesic 

lines in X with the endpoints inθF 

Lemma 5.2.3. Let (X， d) beαproper 5 -hyperbolic spαce， co : 1R → Xα geodesic 

line iηX， and Cl，と2: [0，∞)→ X geodesic rays in X such thαt 6 (0) = C2(0) = Xo， 

cO(∞) = 6(∞)αnd co(一∞)= C2(∞). Then， for eαch i ε{0，1，2}αnd eαch point 

Z ε1m Ci， the inequαlity d(x， Yi)三125holds， where -Yi = Ujε{O，l，2}¥{i} 1m cj・

Proof. Let i ε{O， 1， 2} and T ε1mふ

By Lemnla 5.1.4 (ii)ヲthereexists T > 0 such that 

d( cj (t)， 1m co)三85for each tさTand j = 1， 2， and 

d(ごo( s )， 1nl c 1 U 1m c 2 )三 85for each IslさT
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It is clear that if xεご0((-∞，-T]U[T，∞)) UUj=1，2 cj ([T，∞))， then d(x， Yi)三88

Lct S > T be a large number. Then geodesic trianglesムxoc1 (S)f，2 (S) 

ムごo(S)ご1(S)C2(S) andムとo(S)co(-S)C2(S) are 48-thin by Lemma 5.1.4 (i). Hen 

ifx εと0((-T， T)) U Uj=1，2 cj([O， T))， then d(丸町三 128 口

Using Lemma 5.2.3， we show the following proposition. Here we note that 

there is no obvious inclusion between乙(θr)and乙丸(θr)in general 

Proposition 5.2.4. Let (X， d) beαproper hyperbolic spαceαηdrαgroupωhich 

αcts properly discontinuously on X. Suppose that the cαrdinality ofθr is greαter 

thαn one. Then the following stαtementsαre equ'lvαlent: 

(1) The αction of r is geometricallyβnite 

(2) Tf町 eexistsαcompαct subset K of X such thαt乙to(θr) c rK for some 
O εX，ωhere乙丸(θr)is the union of the問 αgesofαII geodesic rays c 

issuing from Xo withと(∞)εθF

Proo f. Let X be ふhyperbolic.

(1)キ(2):Let σ:IR → X be a geodesic line wi thσ(-∞) ，σ(∞)εθr and let 

Xo :=σ(0). Suppose that (1) holds. Then乙(θr)c r B(xo， N) for some N > 0， 

where B(xo， N) is the metric ball of radiu about xo. Let c be a geodesic ray 

issuing from Xo withご(∞)εθr.There exists a geodesic line ァ:IR→ X such 

thatァ(∞)=σ(∞)andT(-∞) =ご(∞)by Lemma 5.1.4 (iii). For each t三0，

d(と(t)，σ([0，∞))U 1m T) ~ 128 by Lemma 5.2.3. Since 1mσU ImT c乙(θr)c 

rB(xo， N)， 1mc c rB(xo， N + 128). Thus乙to(θr) (二 rB(xo，N + 128) 
(2)キ (1):Supposetl川 (2)holds. Then乙to(θr) c r B(xo， N) for some N > 0 
Let σ:IR → X be a geodesic line wi thσ(∞)ス(-∞)εθr. Let c and ( be 

geodesic rays issuing from Xo such thatσ(∞)=と(∞)andσ(-∞) = ((∞). By 

Lemma 5.2.3， d(σ(t)， 1rn c U 1m () ~ 128 for each t εIR. Since 1m c U 1rn ( ζ 
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乙丸(θr)c r B(xo， N)， 1mσc r B(xo， N + 125). Thus乙(θr)c r B(xo， N + 125)， 

i.e.， r is gcometrically finite. 口

Remαrk. By Lemma 5.1.4 (ii)， the statement (2) is equivalent to the following 

tatement: 

(3) For each point x。εX，there exists a compact subset K of X such that 
乙:0(θr) c rK 

The following results were given by A. Ranjbar-.Motlagh in [R]. The aim in 

this chapter is to show a Busemann space analogue of these results. 

Theorem 5.2.5 ([G， Theorem 3]， [88， Theorem 3.1]， [R， Lemma 3.1]). Let (X， d) 

be αproper hyperbolic spαceαηdrαgroup whichαcts properly discontinuously 0η 

X. lf H c G αre two subgroups of r，αηd if H isαgeometricαlly finite subgroup 

ωith IθHI三2，then the following conditions αre equ2vαlent: 

(1)θG=θH 

(2) g(θH)=δH for eαch gεG  

(3) [G: H]く∞

Proposition 5.2.6 (cf. [R， Lemma4.2]). Let (X，d) be αproper hyperbolic 

spαce， rα group whichαcts properly discontinuously on X，αnd G αsubgroup 

ofβnite index in r. Then r is geometricallyβnite ifαηd only if G is geometri-

cαllyβηite. 

Proposition 5.2.7 ([R， Lemma 3.5]). Let (X， d) beαproper hyperbolic spαce， r 

αgroup whichαcts properly discontinuously on X， and G αgeometricallyβnite 

subgroup of r with IθGI三2.For some elementγε ['， suppose thαtγGγ-1 C G， 

theη 

(1)γ(θG)cθG 

(2)γ"εG for some n εZ ¥{O}， 
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(3)γ(θG)=γ-1 (θG)=θG， 

(4)γGγ-1 = G， 

(5) [(G，γ) : G]く∞

Theorem 5.2.8 ([G， Theorem 2]， [88， Theorems 4.3，4.4]， [RうTheorems4.4， 4.5]). 

Let (X， d) beαproper hyperbolic spαceαηdrαgroupωhichαcts properly d附 on-

tinuously on X. Suppose thαt G1 αnd G2αre tωo geometricallyβnite subgroups 

ofr. Theη 

(1) G1 n G2 isαlso geometricallyβnite 

(2) lf Iθ(G1 n G2)1三2，thenθ(G1nG2)=θG1nδG2 

35.3. BUSEMANN SPACES AND THEIR BOUNDARIES 

1n this section、werecall the definitions and some basic properties of Busemann 

paces and their boundaries. 

Definition 5.3.1. Let (X， d) be a geodesic space. A geodesic space X is a Buse-

mαnn spαce if for each three points Xo， Xl， X2 of X and each t ε[0，1]， 

d(O(tdd，と2(td2))~ td(Xl， X2)， 

where di = d(xo， xd and ふ:[0， di] -→X is a geodesic segment from Xo to Xi for 

ach i = 1，2. 

The following proposition is known (cf. [Ho]) 

Proposition 5.3.2. Let (X， d) be αproper Busemαnn spαce 

(1) Every CAT(O) spαce 'tSαBusemαnn spαce 

(2) For eαch two points x， y εX， tl町 eexistsαn un句uegeodesic segment 

between x αnd y in X 
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(3) X is contractible 

(4) For eαch geodesic ray c in X αηd eαch point XoεX) tfぽ eexistsαun'lque 

geodesic ray C' issuing from Xo such thαtcαηdC'αreαsymptotic. 

Definition 5.3.3. Let (X， d) be a proper Busemann space and x。εX. Th 
bouηdαry of X ωith respect to xo， denoted by ゐ。X、isdefined as the set of all 

geodesic rays issuing from xo. Then X U ゐ。Xhas a natural topology， in which X 

is an open subspace， and a neighborhood basis for each point cε ゐ。X is given 

by the scts 

U(ご;r，ε) = {xεXu θX I x tf-s(xo， r)， d(と(r)，とX(γ))く ε}， 

where r.ε> 0 and Cx : [0， d(xo， x)]→ X is the geodesic from Xo to x (ふ x

if x εゐ。X).This is called the cone topology on X U ゐ。X. 1 t is known that 

X u 8xoX is a metrizable compacti五cationof X (cf. [GH]， [Ho]) 

Let Xo and Xl be two points of a proper Busernann space X. By Proposi-

tion 5.3.2 (4)， there exists a unique bijection φ:ゐ。X → θIX1X such that c and 

争(と)are asymptotic for each cε ゐ。X.The following theorem was proved by 

P. K. Hotchkiss. 

Theorem 5.3.4 ([Ho]). 

(1) The αbove mαpφ:ゐ。X→ θIX1Xisαhomeo'morphism 

(2) 1f X isαhyperbolic (resp. CAT(O)) spαce， thenゐ。Xis homeomorphic to 

the hyperbolic (resp. CAT(O)) boundαry 

Definition 5.3.5. Let X be a proper Busemann space. The asymptotic relation 

is an equivalence relation in the set of all geodesic rays in X. The boundαry 

o f X， denoted by θX， is defined as the set of asymptotic equivalence classes of 

geodesic rays. The equivalence class of a geodesic ray c is denoted by c(∞). By 

Proposition 5.3.2 (4)， for each XoεX and each αεθX， there exists a uniqu 
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elcment ~ε ゐ。X withご(∞)=α.Thus we may identify θX with axoX for each 

z。εX.
Let (X， d) be a Busemann space and r a group which acts properly discontin-

uously on X. The limit set of r (ωith respect to X) is defined as 

θr = clxuax (rxo) nθX， 

where Xo is a point in X. The limit set θr is independent of七hechoice of the 

point x。εX.
Let (X， d) be a proper Bu悶 nannspace and r a group which acts properly 

discontinuously on X. For each element γεr and each geodesic ray c : [0，∞)→ 

X， a mapγと:[0，∞)→ X defined by (，~)(t) :=γ(と(t))is also a geodesic ray. If 

geodesic rays c and ごareasymptotic， then γc and γごIare also asymptotic. Thus 

γinduces a homeomorphism ofθX and r acts on θ)(. We note that r(θr)=θF 

by definition. Hence r also acts on θr. 

35.4. GEOMETRICALLY FINITE GROUPS ACTING ON BUSEMANN SPACES 

By Proposition 5.2.4， the following definition is natural. 

Definition 5.4.1. Let (X， d) be a proper Busemann space and r a group which 

acts properly discontinuo凶 yon X. We say that (the action of) r is geometricαlly 

βnite (ωth respect to X)， if for some (arbitrary) point x。εX there exists a 
compact subset K of X such that乙to(δr)c rK， where乙to(θr)is the union of 

the images of all geodesic rays c issuing from Xo such that c(∞)εθF 

Example 5.4.2. Let (X， d) be a proper CAT(O) space. Let r be a group which 

acts properly discontinuously and cocompactly on X (such r is called a CAT(O) 
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group) . Then 乙~o(θf) c X r K for some compact subset K of X by the 

ocompactness. Hcnce the action of f is geometrically finite. 

Definition 5.4.3. A subset M of a geodesic space X is said to be quαs'i-convex 

if there exists N > 0 such that the metric N-neighborhood of M contains all 

geodesic scgments bctween each two points of M. Also a subset M of a metric 

pace X is said to be quαsi-dense if M is N-dense for some N > 0， i.e.， if each 

point of X is N -close to some point of M. 

The following proposition generalizes the above observation. 

Proposition 5.4.4. Let (X， d) beαproper Busemαηη spαceαηdfαgγoupωhich 

αcts properly discontinuously on X. 1f rxo is quαsi-convex in X， then r is geo-

metrically finite 

Proof. Since fxo is quasi-convex in X、thereexists N > 0 such that the metric 

N-neighborhood of fxo contains the geodesic from αto b for each 仏bεfxo・Let

E， : [0，∞)→ X be a geodesic ray with E，(O) = Xo and E，(∞)εθf. Then there 

exists a sequence {γ'iXO}ζ fxo converging to E，(∞) in X U θX. For each t三O

there exists a number i such that d(と(t)，とγ.xo(t))三1ヲ whereE，γ.xo is geodesic 

from Xo to riXO. Henceご(t)εfB(xo， N + 1) because 1m E"γiXO C f B(xo， N). Thus 

1m E， c f B (xo， N + 1)， and f is geometrically finite 口

We prove a Busemann space-analogue of Theorern 5.2.5. 

Theorem 5.4.5. Let (X， d) be αproper Busemαηn spαceαηdrαgroupωhich 

αcts proper匂discontinuouslyon X. 1f H c G αre tωo subgroups 0 f f，αηd if H 

is geometricallyβnite， then the folloωing conditionsαre equ'ivαlent: 

(1)δG=θH 

(2) H Xo isαqωsi-dense subset of Gxo 

(3) [G: H]く∞
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Proof. (3) ~ (2): Suppose that m = [G : H] < ∞ Then {Hg I 9εG} 

{ H 9 1 ， • • • ，H gm} for sorne gl，'" ，gmε G. Let N :-max{ d(xo， giXO) I i 

1， • • • ，m}. For each 9 ε G， 9 hgi for so:me h ε H and i. Then 

d(hxo， gxo) = d(hxo， hgixo) = d(xo， 9山0)三N. Hence Gxo c H B(xo， N)， i.e 

H Xo is quasi-dense in Gxo・

(2)キ (1):Suppose that Hxo is quasi-dense in Gxo. Then Gxo c H B(xo， N) 

for some N > O. For each αεδG， there exists a sequence {giXO} c Gxo which 

converges toαin X U θX. Since Gxo c H B(xo， N')， we can obtain a sequence 

{hiXO} C Hxo such that d(hiXo， giXO)三Nfor each i. Then {hiXO} converges to 

仏1.e.‘αεθH.Hence δG=θH. 

(1)キ (3):Suppose that [G : H] =∞ Let {Hα|αεG} = {Hα入|入 εA}

(Hα入ヂ Hα入Iif入ヂ入').Since H C r acts properly discontinuously on X‘for 

ach入εA，we may choose α入insuch a way that d(xo，α入xo)= d(xo， Hα入xo)

Since X U θX is compact， there exists a sequence {g伊o}C {α入xol入εA}which 

converges to a point c(∞)εθG， whereとisa geodesic ray issuing from Xo・Now

we show that c (∞) 5t θH 

Suppose thatと(∞)εθH.Since H is geometrically finite， 1m c c H B(xo， N) 

for sonle N > O. Let R > N + l. Since {giXO} converges to c( 00)， for large 

enough i， d(xo，9iXO) > R and d(と(R)，と9iXO(R)) < 1、where C9iXO is the geodesic 

segment from Xo to 9iXO. Since 1m c c H B(xo， N)， there exists h εH such that 
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d(hxo，と(R))三N.Then， 

d(xo，九一1仇xo)= d(hxo， giXO) 

三d(hxo，と(R))+d(ご(R)，と9tXo(1?)) + d( f，g山o(R)，giXO) 

く N+ 1 + (d(xo， giXO) -R) 

= d(xo， giXO) -(R -N -1) 

く d(xo，giXO) 

This contradicts the assumption d(xo， giXO) d(xo， H giXO). Thereforeと(∞)ダ

θH and δGヂθH. 口

Remαrk. The implications (3) =今 (2)キ (1)hold without the assumption of the 

geometrically finiteness of H. 

In the case X is hyperbolic， Theorem 5.2.5 states that H is a subgroup of finite 

index in G if and only if 9 (θH)=θH for each 9 εG. On the other hand‘this 

is not always the case if X is a Busemann space. lndeed there exists an easy 

counter-example. 

Example 5.4.6. Let G := Z x Z， X := 1R x 1R and Gi act on X by (α，b).(x，y)= 

(x +仏 ν+b) for each (α， b)εG  and (x， y)εX. Then X is a Busemann space 

and the subgroup H = Z x 0 of G is geometrically finite. The limit set θH is 

the two-points set， and let denote θH= {α+α-}， where α+ = limi→∞(i，O) and 

α-= 1imi→∞( -i， 0). For each (α， b)εG， 

(α， b)・α+-主主(α，b)・(t?O)=jp(t+α，b)= α+ 

By the same argunler凡 (α，b)α一 =α-.Hence g(θH)=θH for each 9 εG. On 

the other hand， it is clear that [G : H] =∞and θGヂθH
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Corollary 5.4.7. Let (X， d) beαproper Busemann spαce， fα groupωhzchαcts 

propeγly discontinuously 0η X，αndG αsubgroup ofβnite index in f. Then f is 

geometrically finite ifαηd only if G isμometricallyβnite. 

Proof. We note that θf=θG by Theorem 5.4.5 and the remark. 

Suppose that G is geometrically finite. Then 乙~o(δG) C GB(xo1 N) for some 

N > O. Since θf=θG， 

乙ネ(θf)= 乙~o(θG) c GB(xo，N) c: fB(xo，N) 

Hence f is also geometrically finite. 

Suppose that f is geometrically finite. Thenι~o (θf)ζf B(xo， N) for some 

N > O. Since G is a subgroup of finite index in f， Gxo is a quasi-dense subset of 

fxo by Theorem 5.4.5. Hence fxo c GB(xo， R) for some R > O. Then 

乙~o(θG)=乙ネ(θf)C fB(xo， N) c GB(xo， N + R) 

Thus G is also geometrically finite.口

In Corollary 5.4.7， we can not omit the hypothesis [f : G]く∞ Indeedthere 

exists a counter-example. 

Example 5.4.8. Let G = (α，b) be the rank two free group with basis {α， b}， 

f := G x Z and X := T x IR， where T is the Cayley graph of G with respect to 

{α，b}. We note that {(α，0)， (b， 0)， (1c， 1)} is a generating則 off. An action of 

f on X is defined as follows: 

(α，O)*(t，r)=(α. t，γ) ， 

(b，O) * (t，r) = (b.t，r+2)， 

(1ι1) * (t，γ) = (tぅr+ 1) 

where α. t and b. t describe the natural action of G on its Cayley graph T. Then 

f acts properly discontinuously and cocompactly as isometries on the proper 
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CAT(O) space X. This example was given by P. L. Bowers and K. Rua凹 in

[BR] 

Wc show that G is not geometrically finite. Let 9i :-αtb¥0)εG for i = 

1，2， • •• and Xo := (lc，O)εT x IR. Then 9i * Xo αtb¥2i)， and (α のi

the midpoint of the geodesic segment from Xo to 9i * xo. Let と:[0，∞)→ X 

be the geodesic ray with c( i/ V2) = (ゲ，i)for each i. Thenと(∞)εθG，since 

the sequence {9i * xoh converges to c(∞). 1n [BR， p.186 (i)]， it is shown that 

d( (α¥i)， G * xo) > i/3 for each i. Hence 1mとctG * B(xo， N) for each N > 0 
Thus G is not geometrically finite. 

On the other hand‘it is clear that r and H := (α;) are geometrically五niteand 

H c G c r. 

By the example above， we see that a subgroup of a CAT(O) group is not always 

geometrically五nitein general. A Coxeter group is an important example of a 

CAT(O) group. We show that each parabolic s山 gro叩 ofevery Coxeter grou p 

W is geometrically finite with respect to ~. 

Example 5.4.9. Let (W， S) be a Coxeter system and T c S. There exists a 

natural isometric embedding ~T →~， and the WT-action on ~T is the restriction 

of the W-action on~. Since WT acts cocompactly on ~T ， we see that each 

parabolic subgroup WT is geometrically finite with respect to ~. 

The following proposition was given by A. Ranjbar-Motlagh. 

Proposition 5.4.10 ([R， Proposition 4.3]). Let (X， d) be αproper hyperbolic 

pαce， rα group whichαcts proper匂discontinuouslyon X，αnd G1αηd G2 two 

subgroups of r. Suppose thαt G 1 is geometricallyβniteαnd !θ(G1nG2)!三2.1f 

[Gi : G1 n G2] <∞for eαchi = 1，2， then [G1 vG2: G1 nG2]く∞
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This proposition is not always true in general for Busemann spaces. We give a 

counter-example. 

Example 5.4.11. Let S := {Sl' S2， S3ぅS4}and let rn， : S x S →Nu {∞} be the 

function de白nedby 

い ifi = j， 
m(SiぅSj)= ~ 2 if li -j 1 = 1 or 3， 

l∞ if li -jl = 2 

We define the Coxeter group W (S 1 (st)m(s，t) 1 for ムtεS) and X := 

E(W， S). Let G1 :- W{Sl，S2，S3} and G2 :- W{Sl，S3，S4}. Then W acts properly 

discontinuously on the proper CAT(O) space X， and G1 and G2 are geometrically 

finite. We note that 

W ~ (Z2 * Z2) x (Z2 * Z2) 

Gi竺 (Z2* Z2) X Z2 for each i = 1，2 and 

G1 n G2 = W{Sl，S3} ~ Z2 * Z2・

Thus [Gi : G1 nG2] = 2 for each i = 1，2. On the other hand， [G1 vG2 : G1 nG2] = 

∞since G1 V G2 = W. We also have thatθ(G1 v G2)ヂδ(G1n G2). In fact， 

θ(G1 VG2) =θW is a circle and θ(G1nG2)=θW{九 S3}is a two-points set. 

We prove the following result which corresponds to a part of Proposition 5.2.7. 

Theorem 5.4.12. Let (X， d) beαproper Bωemann spαceαnd rα gro叩 which

αcts properly discontinuously on X. Suppose thαt G is αsubgroup of rαηdγεr 

such thαtγGγ-1 C G. Let denote F := Uiεzγ'/，Gγ-'/， αnd H:=ハ任zγ'/，Gγ-'/，

Then 

(1)γ(θG)cθG 

M oreover， if either 

(α) G is geometricallyβniteαndθF = Uiεzθ(γ'/，Gγ-t)， or 
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(b) H is geometricallyβniteαηdθH = niεzθ(γZGγ-i) ， 

theη 

(2)γ(θG)=γ-1 (θG)=θG， 

(3)γGγ-1 = G 

We first show the following proposition. 

Proposition 5.4.13. Let (X， d) beαproper Busernαnn spαce) rα gro叩 t山 ch

αcts properly discontinuously on X. 

(i) Let {Gi I i = 1，2， . . . } be αsequence of subgro叩 sof r such that Gi C Gi+1 

for eαch i三1，αndF:= U~lGi. Ifeαch Gi is geometricαllyβnite， then 

the following stαtementsαre equ'lVαlent: 

(1)δF=  U~lδGi 

(2)θF=δGn for some n 

(3) F = Gη for some n 

(ii) Let {Gi I i = 1，2γ・・}be αsequence of subgro叩 sofr such thαt Gi+1 C Gi 

for eαch i三1.If H := n三1Gi is geometricallyβnite， then the following 

stαtementsαre equivalent: 

(1)θH=n~l θGi 

(2)θH=θGη for some η 

(3) H = Gη for some η 

Proof. It is clear that (3) implies (2) and (2) implies (1) in each case (i) and (ii). 

We show that (1) implies (3) in each case 

(i) (1) => (3): Suppose that (1) holds and FヂGifor each i. Then there exists 

a subsequence {Gij} C {Gd such that Gij is a proper subgroup of Gij+1 for each 

j. Let Gj := Gij" Since r acts properly discontinuously on X， for each j， there 

exists an elementのεq¥Gj-l such that d(xo， gjXo) = d(xo， (句¥Gj_l)XO)
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Hereのヂ gkfor jヂkbecause (Gj¥Gj_1) n (G~ \ C;~_ l )二日 Hencethere exists 

a subsequence {のkXO}C {gjXo} which converges to a pointと(∞)εθX，where c 

is a geodesic ray issuing from XO. Since {gjkXO} cFxo，と(∞)εθF=Uご1θGi

by (1). Henceご(∞)εθGらforsome m. Since G'm is geometrically finite， Im c c 

G'mB(xo， N) for some N > O. Let R > N + 1. Since {gjkXO} converges to c(∞) 1 

for large enough k > m， d(xo， gjkXO) > R and d(と(R)，と'gjkxo(R))く 1，where CgjkXO 

is the geodesic segment from Xo to gjk XO. Since 1mとcGらB(xo， N)， there exists 

g εG'm such that d(gxo，と(R))三N.Then 

d(xo， g-lgjkXO) = d(gxo，のkXO)

三d(gxo，と(R))+d(と(R)，とgjkxo(Ii))+ d(CgjkxO(R)，のkXO)

く N+1+(d(xo，のkXO)-R) 

= d(xo1 gjkXO) -(R -N -1) 

く d(xo，gjkXO). 

We note that g-lgjkεqk¥Gjk-1 because g-lεG'm C Gjk-1 c Gjk' This 

contradicts the assumption d(xo1 gjkXO) = d(xo1 (Gjk¥Gjk-1)XO). Therefore (1) 

implies (3) 

(ii) (1)キ (3):Suppose that (1) holds and HヂGifor each i. Then there exists 

a subsequence {Gij} C {Gi} such that GiH1 is a proper subgroup of GiJ. Let 

Gj : = Gij. Since r acts proper ly disco凶 nuou均 on丸 foreach j， there exists an 

lementのεG;¥Gj+1such that d(xo， gj・xo)= d(xo， (Gj¥Gj+l)XO)' Then there 

xists a subsequence {gjkXO} c {gjXo} which converges to a pointと(∞)εθX，

whereとisa geodesic ray issuing from XO. For each i三1，{gjIXO}lさkC GiXo 

for some large number k. Hence ç(∞)εn~lδGi θH by (1). Since H 

is geometrically finite， 1m c c H B(xo， N) for some N > O. Let R > N + 

1. Since {gjkXO} converges to c(∞)， for large enough k， d(xo， gjkXO) > R and 
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d(と(R)，とghxo(R))< 1， where CgjkXO is the geodesic segment from Xo to gJkXO 

Since 1mc c HB(xo， N)， d(hxo，と(R))三Nfor some hεH. Then， by the same 

argument as the one in (i)， 

d(xo， h-1gj・kXO)= d(hxo， gjkXO) < d(xo，のkxo)-(R-N-1)く d(xo，gjkXO) 

We note that h-1gj・Kε Gjk¥Gjk+1because h-
1 εH C Gjk+1 C Gjk' This 

contradicts the assumption d(xo， gjkXO) = d(xo， (Gjk¥G;け 1)xo). Therefore (1) 

implies (3) 口

Using this proposition， we prove Theorem 5.4.12. 

Proof of Theorem 5.4.12. (1): By the definition of limit sets 

γ(θG)=γ(Gxo nθX)=γGxo nθX 

=(γGγ-1) (γxo)内θx=θ(γGγ-1) 

Since γGγ-1 C G， we have γ(θG)=θ(γGγ-1) CθG 

(2) and (3): First， we show that if G is geometrically finite， then γtGγ-t is also 

geometrically finite for each i εZ. Since G is geometrically finite，乙~o(θG) c GK 

for some compact set K. We note thatγt(θG)=θ(γtGγ-i) by the proof of (1) 

For each iεZ 

乙ら。(θ(ゲGγ-i))=乙ら。(ゲ(θG))=ゲ(乙ネ(θG))

cゲ(GK)= (γtGγ-t) (γtK) 

Since ゲKis compact，γtGγ-t is geometrically finite. 

Now we have a sequence 

... cγ2Gγ-2 C γGγ-1 C G cγ-lGγζγ-2Gγ2 c... . 

Applying Proposition 5.4.13 to the sequence above， if either (a) or (b) holds， then 

γηGγ-n F or H for some n εZ. 1n either case， we have that γGγ-1 = G. 
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Then γ(θG)=θG=γ-1 (θG) by (1) 

口

Proposition 5.2.7 (2) and (5) are not always the case for Busemann spaces in 

general. 

Example 5.4.14. We consider the same situation of Example 5.4.6. Let G := 

Z x Z act on X : = 1R x 1R by (α，b) . (x，ν) = (x +仏y+ b) for each (α， b)εG and 

(x，y)εX， let H := Z x 0 and 9 := (0， 1)ε G. Then G and H are geometrically 

白ute，and gH g-l = H. On the other hand，♂= (0， n) tf H for each n εZ ¥{O} 

and [( H， g) : H] = [Z x Z : Z X 0] =∞ 

We show a Busemann space-analogue of TheorerIl 5.2.8 by a similar proof to 

the one in [G] and [R] 

Theorem 5.4.15. Let (X， d) be αproper B包semαηnspαceαnd rα group which 

αcts proper匂discontinuously0ηX. Suppose thαt G1αndG2αre two geometrically 

βηite subgroups of r. Then 

(1) G1 n G2 isαlso geometricallyβnite， 

(2)θ(G1 n G2) =θG1nδG2 

Pr、oof.Since G1 and G2 are geometrically finite， there exists a compact subset K 

of X such that乙to(θGi) c GiK for each i = 1，2 
(1) Let H := G1 n G2. Choose coset representatives {α入}and {bμ} so that 

Then， 

G1 = U Hα入andG2 = U .Hbμ 
入ε AμεM

ベ(θG1)ζ G1K= H(払α入K)and 

乙~o(δG2) c G2K = H( U bμR: ) 
、μελイ 〆
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Hence we have that 

乙~o(θH) cι~o (θG 1 ) ハ乙~o(θG2) 

= H(払川 nH(ぷbμ
=H(品以μUM川 μKl)

We show that K := UhεHU入εAUμεM(α入KnhbμK)is compact. 

Since r acts properly discontinuously on X、theset 

{α-;lhbμIh εH，入εA，με M，Kn(α-;lhbμ)Kヂ日}

is finite. Suppose t山ha叫tαぱベ叫>'1ず川1

(れi 1，2幻).Since α入2叫ん =h2bμ2bJJε H， we have that α入2U1l，bμ2bJεH

Hence入入2，μμ2and h1 = h2・Thusthe set 

{(hぅ入?μ)ε HxAxMIKn(α工1hbμ)Kヂ日}

五nite，hence K is compact. 

(2) It is clear that θ(G1 n G2)ζθG1nθG2. vVe prove that θG1nθG2 C 

θ( G 1 n G2). Let E， be a geodesic ray issuing from Xo wi thと(∞)εθG1パθG2.Since 

乙to(δGj) C GjK (j = 1，2)， for each i = 1，2，. . . ， there exist α1εG1 and biεG2 
such thatごい)εαiKn biK. Then both the sequences {αiXO} and {biXo} converge 

to c(∞). Since r acts properly discontinuously on X， the set {α;lbi I Kna;lbiKヂ

。}is finite. Hence there exist s山 sequences{αinXO}ηand {binXo}n such that 

αごbin α~:bim for each n， m. Then αir打ma

五xednumber and Cj :-αりα弓foreach j = 1ヲ2，• •• Then the sequence {CjXo} 

converges to c(∞) because d(αρ0， CjXo) = d(αρ0，α刊誌XO)= d(xo，αj;;zo)i 

constant. Since {Cj} C G1 n G2，と(∞)εθ(G1n G2). Hence we have that 

θG1nθG2=θ(G1 nG2) 口
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Corollary 5.4.16. Let (X， d) beαproper Busemαnn spαceαηdrαgro叩 ωhich

αcts propcrly diδ・continuouslyon X. 11 c 1αηd C2αre two geometrically finite 

subgroups 01 rαηdθc1Cθc2J then there existsαgeometricαllyβnite subgroup 
c~ C C2 such thαtθc1 = θc~ 

Proof. Let c~ := C1 nC2. Then c~ is geometrically finite by Theorem 5.4.15 (1)， 

and θc~= θC1nθC2 = θC1 by Theorem 5.4.15 (2) 口

In view of Corollary 5.4.16， it is natural to ask whether the following statement 

always holds: if C1 and C2 are geometrically finite subgroups of r and θC1CθC2， 

then there exists a geometrically五nitesubgroup C; of r such that C1 C C; and 

θC2θC;. However this is not always the case. We give an easy counter-

xample below. 

Example 5.4.17. Let r = (α，b) be the rank two free group with basis {α，b}， X 

the Cayley graph of r with respect to {仏b}.Then r naturally acts on its Cayley 

graph X. Let C1 := (α) and C2 := (α2， b). Then C;l and C2 are geometrically 

命liteand θC1CθC2. We show that there does not exist a subgroup C; of r such 

that C1 C C; and θC2 =θC;. Let C; be a subgroup of r such that C1 C C; 

and θC2 CθC;. Then αεC1 C C; and b∞ εδC2仁 θC;.Hence αb∞ εθC; 

On the other hand. it is clear that αb∞d θC2. Thus θC2ヂθC;
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