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Introduction

The purpose of this paper is to study finitely generated infinite Coxeter groups

and their boundaries. A Cozxeter group is a group W having a presentation

(S| (st)™= =1 for s,t € §),

where S is a finite set and m : S x S — N U {oo} is a function satisfying the
following conditions:

(1) m(s,t) = mf(t, s) for all s,t € S,

(2) m(s,s) =1 for all s € S, and

(3) m(s,t) >2foralls#teS.
The pair (W, S) is called a Coxeter system. If m(s,t) =2 or oo forall s #t € S,
then (W,S) is said to be right-angled. Let (W, S) be a Coxeter system. For a
subset T' C S, Wy is defined as the subgroup of W generated by 7', and called
a parabolic subgroup. It is known that the pair (Wp, T') is also a Coxeter system
([Bo]). If T is the empty set, then Wy is the trivial group.

In recent years, M. Bestvina, M. W. Davis and A. N. Dranishnikov have ob-
tained some interesting results on the boundaries of Coxeter groups. They con-

structed and studied a certain simplicial complex L(W, S) and a certain CAT(0)

space X(W, S) from a Coxeter system (W, S) instead of a direct algebraic investi-




gation. Let S/(W,S) be the family of subsets T' of S such that Wy is finite. The
simplicial complex L(W,S) is defined by the following conditions:

(1) the vertex set of L(W,S) is S, and

(2) for each nonempty subset 1" of S, T' spans a simplex of L(W, S) if and only

if T € S/(W,S).

For each nonempty subset T" of S, L(Wp,T) is a subcomplex of L(W,S). For a
Coxeter system (W, S), there exists a natural CAT(0) space X(W,S) on which
W acts properly discontinuously and cocompactly as isometries. The definition
of ¥ (W, S) is given in Section 2.2. The CAT(0) space (W, .S) can be compact-
ified by adding its “ideal boundary” 90%(W,S) (cf. Section 1.4). The boundary
00X (W, S) is called a boundary of the Coxeter group W. A boundary of a Cox-
eter group is determined by a Coxeter system. It is still unknown whether the

following conjecture holds.

Rigidity Conjecture (Dranishnikov [Dr4]). Isomorphic Coxeter groups have

homeomorphic boundaries.

For each subset T' C S, (Wyp,T) is a subspace of X(W, S) and 0X(Wp,T) C
ox(W, S).
It is known that there exist the following isomorphisms:
H*(W;ZW) = H*(Z(W, S)) = H* 1 (0%(W, 9))
([D3]), where H} and H* denote the cohomology with compact supports and the

reduced Cech cohomology, respectively. Also the following theorem is known.

Theorem 1 (Bestvina and Mess [BM], [B2]). Let (W, S) be a Cozeter system

and R a commutative ring with identity. Then there exists the formula

c-dimp OX(W, S) = vedg W — 1,




where c-dimp OX(W, S) is the cohomological dimension of OX(W, S) over R and

vedp Wois the virtual cohomological dimension of W over R.

After some preliminaries in Chapters 1 and 2, we study the virtual coho-
mological dimension of Coxeter groups and the cohomological dimension of
their boundaries in Chapter 3. In [D1], M. W. Davis showed the inequality
vedz W < dim L(W, S), and M. Bestvina constructed a finite simplicial complex
Br with vedg W = dim Bg in [Bl]. Using these results, Dranishnikov gave a
formula for the virtual cohomological dimension of Coxeter groups in terms of
the cohomologies of subcomplexes of L(W,S), and proved the following theorem

as an application of the formula in [Dr3].

Theorem 2 (Dranishnikov [Dr3]). A Cozeter group W has the following prop-

erties:
(a) vedg W < vedp W < vedz W for each principal ideal domain R.
(b) vedz, W = vedg W for all but finite primes p.
(c) There exists a prime p such that vedz, W = vedz, W.
(d) vedz W x W = 2vedz W.

In Section 3.2, we extend this theorem as follows:

Theorem 3 ([HY]). Let W be a Cozeter group and R a principal ideal domain.
Then W' has the following properties:
(a) vedg W < vedr)y W < vedg W < vedz W for each prime ideal I in R.
(b) vedg/ W = vedg W for all but finite prime ideals I in R, if R is not a
field.
(¢c) There exists a non-trivial prime ideal I in R such that vedg/ W =

vedr W, if R us not a field.

(d) vedg W x W = 2vedg W.




Using the Dranishnikov formula for vedgz W, we also prove the following theo-

rem in Section 3.3.
Theorem 4 ([HY]). Let (W, S) be a right-angled Cozeter system with vedg W =

n, where R is a principal ideal domain. Then there exists a sequence Ty C Ty C

+++ CTh1 C S such that vedg Wr, =i for eachi=0,... ,n—1.
By Theorem 1, we obtain the following corollary.

Corollary 5 ([HY]). Let (W,S) be a right-angled Cozeter system and n =
c-dimpg OX(W, S), where R is a principal ideal domain. Then there exists a
sequence ON(Wr,,Ty) C 08(Wrp,T1) C -+ C 02 (Wr,_,, Tu_1) of the bound-
aries of parabolic subgroups of (W, S) such that c-dimg OX(Wr,, T;) = i for each
=1 SR [

In Chapter 4, we study the cohomology of Coxeter groups. By calculating
the cohomology H}(X(W,S)), M. W. Davis gave the following formula for the

cohomology of Coxeter groups in [D3].

Theorem 6 (Davis [D3]). For a Cozeter system (W, S), there exist the follow-

ing 1somorphisms:

H*(W;ZW) = H(S(W, S)) & H* (9% (W, S))

12

B W) e T (LWar,S\T))),

TeS!(W,S)
where H* denotes the reduced cohomology and Z(WT) is the free abelian group

on WT,

Here W7 is defined as follows: For each w € W, we first define a subset S(w)
of S as S(w) = {s € §|l(ws) < {(w)}, where {(w) is the minimum length of

word in S which represents w. For each subset 7" of S, we define the subset W7

of Was WI' = {we W|S(w) =T}




For a given Coxeter system (W,S) and each T' € S/ (W, S), it is difficult to
calculate the number of elements of W”. The purpose of Chapter 4 is to sim-
plify the Davis formula. We first give definitions: A Coxeter system (W, S) is
said to be wrreducible if, for any nonempty and proper subset 7" of S, W does
not decompose as the direct product of Wy and Wg . For a Coxeter system
(W, S), there exists a unique decomposition {Si,...,S,} of S such that W is
the direct product of the parabolic subgroups Ws,,... ,Ws and each Coxeter
system (Ws,,S;) is irreducible (cf. [Bo], [Hu, p.30]). We define a subset S of
Sas S = U{Si|S; ¢ S/(W,S)}. In Section 4.3, we show that for a member
T € S/(W,S), if L(Wg\7r, S\ T) is not acyclic and W7 is finite, then 7= S\ S
and W7 is a singleton. We also show that if S\ S ¢ T € S/(W, S), then

L(Wg\r, S\ T) is contractible. Using these results, we can reformulate Theo-

rem 6 as follows:

Theorem 7 ([H1]). For a Coxeter system (W, S), there exists the following iso-

morphism:

H*(W;ZW) = H* Y (L(Wg, S)) @ ( & @H*"I(L(U’S\T.S\T))).
Tesf(w,s) Z
S\ECT
#

Theorem 7 implies the following corollary.

Corollary 8 ([H1]). The following statements are equivalent:
(i) HY(W;ZW) is finitely generated;
(i) HY(W;ZW) is isomorphic to H"'(L(W3, S));
(iii) Hi"(L(W};, U)) = 0 for every proper subset U of S such that Wa\v 1s

finate.

In Chapter 5, we study geometrically finite groups acting on Busemann spaces.

Every CAT(0) space is a Busemann space. For a Coxeter system (W,S), the




Coxeter group W acting on ¥(W, S) is an example of “geometrically finite groups
acting on Busemann spaces”. In Section 5.2, we introduce a definition of geomet-
rically finite groups acting on hyperbolic spaces (in the sense of Gromov), and
we define geometrically finite groups acting on Busemann spaces by analogy in
Section 5.4. For a hyperbolic and Busemann space (X,d), a group G acting on

X is hyperbolic-geometrically finite if and only if G is Busemann-geometricaly

finite. Let (X, d) be a hyperbolic or Busemann space, let X be the hyperbolic
or Busemann boundary of X (cf. Sections 5.1 and 5.3), and let I' be a group
which acts properly discontinuously on X. The limit set of I' (with respect to
X) is defined as OI' = clxuax(l'zo) N 0X, where clx sx means the closure in
X UO0X, and zj is a point in X. The limit set OI" is independent of the choice of
the point zo € X. For a Coxeter system (W, S), every paraboloc subgroup Wy is
geometrically finite with respect to (W, S) and the equality OWp = 0X(Wp, T')
holds for each T" C S. In Section 5.4, we prove the following theorem which is
a Busemann space-analogue of results proved by A. Ranjbar-Motlagh in [R] for

geometrically finite groups acting on hyperbolic spaces.

Theorem 9 ([H2]). Let X be a proper Busemann space and I' a group which
acts properly discontinuously on X.
(i) Suppose that H C G are two subgroups of I' and H is geometrically finite.
Then, OG = 0H if and only if [G : H| < oo.
(ii) Let G be a subgroup of finite index in I'. Then I' is geometrically finite if
and only if G is geometrically finite.

(iii) Suppose that G is a subgroup of I' and v € T such that yGy~ ' C G. If

H := N2, v'Gy~t is geometrically finite and iof OH = N2, d(v'Gy™), then
v(0G) = 8G and G = vGy~ 1.
(iv) If Gy and Gy are two geometrically finite subgroups of I', then G1 N Gy is




also geometrically finite and O(G, N Gy) = G, N OGs.




CHAPTER 1

Preliminaries

In this chapter, we introduce some definitions and some basic results.

§1.1. GENERAL DEFINITIONS AND NOTATION

The standard sets and spaces are denoted as follows:
(1) N: the set of natural numbers,

2) Z: the set of integers,

—00,00): the real line with usual metric,

)
(2)
(3) Q: the set of rational numbers,
(4) R
)

R™: the n-dimensional Euclidean space with usual metric.

(5
Let S be a set. Then,
(6)

Let (X, d) be a metric space, A, B C X and € > 0. We use the following notation:

S|: the cardinality of S.

(7) clx A: the closure of A in X,

(8) intx A: the interior of A in X,




(9) diam A: the diameter of A,
(10) d(A, B) = inf{d(a,b) |a € A,b e B},
(11) B(A,e) = {2z € X |d(z,A) < €}: the open e-ball about A (we denote
B(A,€) = B(a,¢€) if A= {a}).
Let K and L be simplicial complexes, and let o and 7 be simplexes of K.
12) K * L: the simplicial join of K and L,
)

sd K: the barycentric subdivision of K,

(
(
(14) K™: the n-skeleton of K,
(
(

Let F' and G be groups and H a subgroup of G.

(17) F x G: the direct product of F and G,
(18) F % G: the free product of F' and G,
(19) [G : H]: the index of H in G.

Let X be a compact metric space and G a group.

(20) dim X: the covering dimension of X,

(21) c-dimg X: the cohomological dimension of X over G,
(22) H'(X;G): the i-th cohomology of X over G,

(23) H{(X;Q): the i-th reduced cohomology of X over G,
(24) H'(X;Q): the i-th reduced Cech cohomology of X over G.

Let X be a noncompact metric space and G a group.

(25) HY(X;Q): the i-th cohomology with compact supports of X over G.




arleD THE COHOMOLOGY AND THE COHOMOLOGICAL DIMENSION OF GROUPS

In this section, we give definitions of the cohomology and the (virtual) coho-
mological dimension of groups, and we introduce some basic properties. Details

are found in [Brl].

Definition 1.2.1 ([Brl, Chapter III §1]). Let I be a group, R a commutative

ring with identity, and
+— P — P —FB—>P,=R

a projective resolution of R over RI'-module. For an RI-module M, the coho-

mology of I' over M is defined as
H*(I'y M) = H*(Hompgr (P, M)).

Definition 1.2.2 ([Brl, Chapter VIII §2]). Let I' be a group and R a commu-
tative ring with identity. The cohomological dimension of I' over R is defined
as

cdp ' = sup{i| H'(I'; M) # 0 for some RI-module M}.

If R = Z then cdz ' is simply called the cohomological dimension of I', and

denoted ed .

Remark. 1t is obvious that cdgr I' < ed T for each commutative ring R with iden-

tity. It is known that cdI' = oo if I is not torsion-free ([Brl, Corollary VIII.2.5]).

Definition 1.2.3. Let I' be a torsion-free group. Then I' is said to be of type
FPif 7Z admits a finitely generated projective resolution of finite length over ZI'.

Also I is of type FL if Z admits a finitely generated free resolution of finite length

over ZI'.




Remark. It is known that I' is of type FL if there exists an acyclic CW complex
on which I' acts freely, cellularly and cocompactly (cf. [Brl]).

The following results are known.

Proposition 1.2.4 ([Brl, Proposition VIIL6.7]). If a group I is of type FP then

for a commutative ring R with identity,
cdp ' = max{:i | H'(I'; R") # 0}.

Proposition 1.2.5 ([Brl, Proposition VIIL7.5]). Let I be a group and X a con-

tractible, free I'-complex with compact quotient X/T. Then for a commutative ring

R with identity, there exists an isomorphism
HO (L' RG 2 H (X R),
where HX(X; R) 1s the cohomology with compact supports of X over R.
We obtain the following corollary from Proposition 1.2.4 and Proposition 1.2.5.

Corollary 1.2.6 ([Brl, Proposition VIIL7.6]). Let I be a group of type FP and
X a contractible, free I'-complex with compact quotient X/I". Then for a commu-

tative ming R with identity,
cdp ' = max{i | H(X; R) # 0}.
We give a definition of the virtual cohomological dimension of groups.

Definition 1.2.7 ([Brl, Chapter VIII §11]). A group I is said to be wvirtually
torsion-free if I' has a torsion-free subgroup of finite index.

For a virtually torsion-free group I', the virtual cohomological dimension of T’
over a commutative ring R is defined as cdr IV, where I is a torsion-free subgroup
of I' of finite index, and denoted vedgy I'. If R = Z then vedz I' is simply called

the virtual cohomological dimension of I', and denoted ved .




The definition above is well-defined by Serre’s Theorem: if G is a torsion-
free group and G’ is a subgroup of finite index, then cdg G’ = cdr G (cf. Brl,
Theorem VIIL.3.1]).

Next we define duality groups and (virtual) Poincaré duality groups.

Definition 1.2.8 ([Brl], [F]). A torsion-free group I' of type FP is an n-
dimensional duality group, if H'(I';ZI') = 0 for each i # n. If, in addition,
H™(I';ZI') is infinite cyclic, then I' is called an n-dimensional Poincaré duality
group. We note that the trivial group is a 0-dimensional Poincaré duality group.

A group G is a wirtual Poincaré duality group if G contains a torsion-free

subgroup I' of finite index such that I' is a Poincaré duality group.
The following theorem was proved by F. T. Farrell.

Theorem 1.2.9 (Farrell [F, Theorem 3]). Suppose that I is a finitely presented
group of type FP, and let n be the smallest integer such that H™(I';ZI') # 0.
If HM(I';Z10) is a finitely generated abelian group, then I is an n-dimensional

Poincaré duality group.

§1.3. THE COHOMOLOGICAL DIMENSION OF COMPACT METRIC SPACES

In this section, we give a definition of the cohomological dimension of compact
metric spaces and introduce some basic properties. Details are found in [Drl]

and [K].

Definition 1.3.1. Let X be a compact metric space and G an abelian group.

The cohomological dimension of X over G is defined as

c-dimg X = sup{i | H' (X, A; G) # 0 for some closed set A C X},




where H'(X, A; G) is the Cech cohomology of (X, A) over G.
The following result is known.

Proposition 1.3.2 (cf. [K, Remark 3]). Let X be a compact metric space and

G an abelian group. Then c-dimg X < c-dimz X < dim X.
The following theorem is proved by P. S. Aleksandrov.

Theorem 1.3.3 (cf. [K, Remark 4]). Let X be a finite dimensional compact

metric space. Then the equality dim X = c-dimgz X holds.

§1.4. CAT(0) SPACES AND THEIR BOUNDARIES

In this section, we introduce definitions and some basic properties of CAT(0)
spaces and their boundaries. Details of CAT(0) spaces and their boundaries are
found in [GH], [BH] and [D2].

We first define geodesic spaces and proper spaces.

Definition 1.4.1. We say that a metric space (X,d) is a geodesic space if for
each z,y € X, there exists an isometry & : [0,d(z,y)] — X such that £(0) = z
and &(d(z,y)) = y (such £ is called a geodesic). Also a metric space (X, d) is said

to be proper if every closed metric ball is compact.

Definition 1.4.2. Let (X, d) be a geodesic space. Let T be a geodesic triangle
in X. A comparison triangle for T is a geodesic triangle 7" in the Euclidean plain
R? with same edge lengths as 7. Choose two points z and y in 7. Let 2’ and v/

denote the corresponding points in 7”. Then the inequality

d(z,y) < do(2',y")




is called the CAT(0)-inequality, where dy is the natural metric on R%. A geodesic
space (X,d) is called a CAT(0) space if the CAT(0)-inequality holds for all
geodesic triangles 7" and for all choices of two points z and y in 7.

Definition 1.4.3. Let (X,d) be a geodesic space. Two geodesic rays &, ¢ :

r

[0,00) — X are said to be asymptotic if there exists a constant N such that

d(&(t),¢(t)) < N for each t > 0.
The following proposition is known.

Proposition 1.4.4 (cf. [BH], [GH], [D2]). Let (X,d) be a proper CAT(0) space.
(1) For each two points x,y € X, there exists a unique geodesic segment be-
tween x and y i X.
(2) X 1is contractible.
(3) For each geodesic ray & in X and each point xo € X, there exists a unique

geodesic ray & isswing from xo such that & and & are asymptotic.

Let (X,d) be a proper CAT(0) space and xo € X. The boundary of X with
respect to xy, denoted by 0, X, is defined as the set of all geodesic rays issuing
from xy. Then X UJ,, X has a natural topology, in which X is an open subspace,

and a neighborhood basis for each point £ € 9,,X is given by the sets

U r,e)={z e XUIX |z & B(xo,r), d(&(r),&(r)) < €},

where r,¢ > 0 and &, : [0,d(zo,z)] — X is the geodesic from zg to z (& = z
it x € 0,,X). This is called the cone topology on X U 0,,X. It is known that
X U0y, X is a metrizable compactification of X ([BH], [GH]).

Let z¢p and z; be two points of a proper CAT(0) space X. By Proposi-
tion 1.4.4 (3), there exists a unique bijection ® : 0,,X — 9,,X such that &
and ®(&) are asymptotic for each £ € 0,,X. It is known that ® : 9, X — 0,, X

is a homeomorphism ([BH], [GH]).




Let X be a proper CAT(0) space. The asymptotic relation is an equivalence
relation in the set of all geodesic rays in X. The (ideal) boundary of X, denoted by
0X, is defined as the set of asymptotic equivalence classes of geodesic rays. The
equivalence class of a geodesic ray € is denoted by £(oo). By Proposition 1.4.4 (3),
for each 2o € X and each o € 90X, there exists a unique element £ € 9,,X with
£(o0) = . Thus we may identify X with d,,X for each zy € X.

Let (X,d) be a proper CAT(0) space and I' a group which acts on X by
isometries. For each element v € I" and each geodesic ray £ : [0,00) — X, a map
Y€ : [0,00) — X defined by (v€)(t) := v(£(t)) is also a geodesic ray. If geodesic
rays £ and £ are asymptotic, then v€ and €' are also asymptotic. Thus v induces

a homeomorphism of X and I acts on 0.X.




CHAPTER 2

Spaces associated with Coxeter systems

In this chapter, we introduce definitions and some properties of spaces associ-

ated with Coxeter systems.

§2.1. COXETER SYSTEMS

In this section, we introduce definitions and some properties of Coxeter groups,
N ~ 3 3 a) ~ 3 ~ S o
Coxeter systems and parabolic subgroups.

We first give definitions of Coxeter groups and Coxeter systems.
Definition 2.1.1. A Coxeter group is a group W having a presentation
(S (st)™st) =1 for s,t € S,

where S is a finite set and m : S x S — N U {oo} is a function satisfying the
following conditions:

(1) m(s,t) = m(t,s) for all s,t € S,

(2) m(s,s) =1 forall s € S, and




(3) m(s,t) >2forall s#teS.

The pair (W, S) is called a Cozeter system. If, in addition,
(4) m(s,t)=2orocoforalls#te S,

then (W,.9) is said to be right-angled.

By the condition (2), we see that s is an involution (i.e., s> = 1) for each s € S,

and s~! = s.

Next, we give a definition of parabolic subgroups of Coxeter groups.

Definition 2.1.2. Let (W, S) be a Coxeter system. For a subset 7' C S, Wy is
defined as the subgroup of W generated by T', and called a parabolic subgroup. It
is known that the pair (Wp,T) is also a Coxeter system ([B1]). If T is the empty

set, then Wy is the trivial group.

Example 2.1.3. Let (W}, S;) and (W, Sy) be Coxeter systems defined by func-
tions my : S; x S; — NU {oo} and my : Sy x Sy — NU {oo}, respectively. Then
the map m : (S; U S2) x (S1USy) = NU {oo} defined by

my(s,t) if s,t € 51,
m(s,t) = < mao(s,t) if s, € Sy,

2 otherwise,
induces the Coxeter system (W; x Wy, S; U Sy). Also the map m' : (S; U Ss) X
(S1US3) = NU{oo} defined by

my(s,t) if s,t € .51,
m'(s,t) = ¢ mo(s, t) it gite S,

00 otherwise,
induces the Coxeter system (W x W5, S; US,), where Wy x W5 is the free product

of W, and Ws.

We recall some properties of Coxeter groups needed later. We first define sets

S(w), Ap, Cp and W as follows:




Definition 2.1.4. Let (W, S) be a Coxeter system. For each w € W, we define

a subset S(w) of S as

S(w):={s€eS

l(ws) < l(w)},

where f(w) is the minimum length of word in S which represents w. For each

subset 7" of S, we define the following subsets of W:

Ap :={w e W |l(wt) > l(w), forallt e T} ={we W|T c S\ S(w)},

Cr :={w € W |{(wt) < l(w), forall t € T} = {w € W|T C S(w)}, and
‘1'] c— {u’ G [/1/' ’ 5'('“') — T} e C"]' N AS'\]

Definition 2.1.5. Let (W, S) be a Coxeter system and w € W. A representation

w=81---5 (s; € 5) is said to be reduced, if {(w) = 1.
The following lemma is known.

Lemma 2.1.6 ([Bo|, [D3]). Let (W, S) be a Cozeter system.

(i) S(w) is empty if and only if w =1, i.e., W = {1}.

(i) If a representation w = sy - - - 5; 1s not reduced, then w = sy --- §;--- ;- -+ 5
for some i < j.

(iii) For eachw € W and s € S, ¢(ws) equals either £(w) +1 or {(w) — 1, and
((sw) also equals either ¢(w) + 1 or £(w) — 1.

(iv) For each T C S and w € Wy, br(w) = {(w), where bp(w) is the length of
w wn Wr.

(v) Let T C S, we Wy and s € S\ T. Then ¢(ws) = {(sw) = {(w) + 1.

Lemma 2.1.7 ([Bo, p.37, Exercise 3], [D3, Lemma 1.3]). Let (W,S) be a Coz-
eter system, w € W and T C S. Then there exists a unique element of shortest

length in the coset wWrp. Moreover, the following statements are equivalent:

(i) w s the element of shortest length in the coset wWrp;




(ii) w € Ap;
(iii) A(wu) = (w) + (u) for each u € Wi.

Proof. Let x be an element of wWy such that z has shortest length in wWp. We
show that ¢(zu) = ¢(x) + ¢(u) for each u € Wp. Let u € Wy and let o = 51 -+ - s

and u = t;---#; be reduced representations. Suppose that ¢(zu) < ¢(z) + ¢(u).

By Lemma 2.1.6 (ii), there exist numbers 7 and j such that
Tu= (81 -8p)(t1 ) = (818 -sp)(t1+-- {J v o ty).
Let ' :==81---8;---spand v/ :==¢;--- fAJ -+-t;. Then ¢(2') < ¢(z) and
' = (zu)(v)™! = z(u(u) ) € aWp = wWr.

This contradicts the definition of z. Hence ¢(zu) = ¢(z) + ¢(u) for each u € Wy.
This means that x is a unique element of shortest length in Wy = wWy.

The above argument implies that (i) and (iii) are equivalent.

We show that (iii) implies (ii). Suppose that (iii) holds. Let ¢ € T. Since
t € Wy, l(wt) =l(w) + £(t) = {(w) + 1 > ¢(w) by (iii). Hence w € Ar.

We show that (ii) implies (i). Let x be the element of shortest length in wWp
and suppose that w # z. Since w € wWyp = Wy, w = zu for some u € Wr.
We note that u # 1. Then {(w) = ¢(zu) = ¢(x) + ¢(u), because (i) and (iii) are
equivalent. Let x = s1---sp and u =t ---#; (t; € T') be reduced representations.

Then w = zu = (81 -+ sk)(t1 -+ - ;) is reduced and £(wt;) < ¢(w), i.e., w &€ Ap. [

Lemma 2.1.8 (cf. [D3, Lemma 1.5]). Let (W, S) be a Coxeter system, w € W
and T C S(w). Then (wu) = €(w) — €(u) for each u € Wrp.

Proof. Let w = s;-+-8x and u = ty---t; (t; € T) be reduced representations.

Since t; € T C S(w), ¢(wt;) < £(w). By Lemma 2.1.6 (ii), there exists a number




1 such that
’“)t[ —— (""1"""'1\')"/ :,gl...IL;?,..SA..
T g : ‘ b o e e At s o ity 5
T'henw = (s;--- ;- s )t;is reduced. Suppose that w = (81 8p_p) (i ti—ns1)
is a reduced representation for some s,... . s)_, € S. Since t;_, € T C S(w),

((wt;—p) < ¢(w). By Lemma 2.1.6 (ii), there exists a number 7’ such that

y ) ./ e 1Y ¥ /
wtj—pn = ('51"""[( ,l)(f,["'f/],,,+l)f[,,,, == (51""5,'/"'5;“,,,,)“/'"tl~~r1+l)~
hea s d o 3 g Nl (T 7 7
because ;- -t} _pny1t;—, is reduced. Then w = (s} -8l -8} _,)) (1 ti_nsitin)
"

is reduced. By induction, there exist sf,...,: sy_; € S such that w =

(s7 -+ 8p_y)(ti---t1) is reduced. Then

Cwu) = L((s] - sh_)(tr--t1)(tr---t1))

=U(s{---si_ )=k —1=l(w)— l(u).
U

Lemma 2.1.9 ([Bo, p.43, Exercise 22], [D3, Lemma 1.4]). Let (W, S) be a Cox-
eter system and T € S'. Then there exists a unique element wy of longest length
m Wp. Moreover,
(i) wy is an involution, i.e., (wr)* = 1.
(ii) For each x € Wy, x = wr if and only iof S(z) =T.
(iii) For each x € Wy, {(wrx) = l(wr) — {(z).

Proof. Let wy be an element of longest length in Wp. Then ¢(wrt) < ¢(wr)
for each t € T, i.e., T C S(wr). By Lemma 2.1.8, {(wru) = ¢(wr) — €(u) for
each u € Wy. This implies (iii). For each element x of longest length in Wy,
l(wpx) = l(wr) —€(x) = 0, i.e., wp = x. Hence wy is a unique element of longest

length in Wiy.

(i) Since ¢(wrwr) = l(wr) — €(wr) = 0, (u,"r)z =1l




(ii) Lemma 2.1.8 implies that if S(z) = T then £ = wy. We show that S(wy) =
T. By the above argument, T' C S(wy). For each s € S\ T, by Lemma 2.1.6 (v),
l(wrs) = l(wr) + 1, ie., s € S\ S(wr). Hence S\ T C S\ S(wr), that is,
Swr) CT. O

Lemma 2.1.10 ([D3, Lemma 1.6]). Let (W, S) be a Cozeter system, T € S’ and
w € W. Then there exists a unique element of longest length in wWr. Moreover,
the following statements are equivalent:
(i) w 1is the element of longest length in wWr;
(ii) w = wwy for some u € Ar, where wr is the element of longest length in
Wr;
(iii) T' C S(w).

§2.2. SPACES ASSOCIATED WITH COXETER SYSTEMS

In this section, we define a certain simplicial complex L(W,S) and a certain
CAT(0) cell complex ¥(W,S) induced by a Coxeter system (W, S).

We first define L(W, S) as follows:
Definition 2.2.1. Let (W, S) be a Coxeter system and let S/ (W, S) be the family
of subsets T of S such that Wy is finite. We note that the empty set is a member
of S/(W, S). We define a simplicial complex L(W, S) by the following conditions:

(1) the vertex set of L(W,S) is S, and

(2) for each nonempty subset 7" of S, T" spans a simplex of L(W,S) if and only

if T e ST(W,8S).

For each nonempty subset 7" of S, L(Wp,T) is a subcomplex of L(W,S). In

this paper, S/(W,S), L(W,S) and L(Wy,T) are abbreviated to S/, L and L,




respectively.

Example 2.2.2. Let (W,,S;) and (W5, S;) be Coxeter systems. Then (W; x
Wy, S1US3) and (W, * Wy, S1US,) are also Coxeter systems (cf. Example 2.1.3),

and
LWy x Wy, 81 USy) = L(Wy, S1) x L(W,, Sy)  (simplicial join) and
L(Wy * W5, 51 US,) = L(W;,S1) U L(W,,S5) (disjoint union).
Next we define (W, S) as follows:

Definition 2.2.3 ([D2, §8, §9]). Let (W,S) be a Coxeter system such that W
is finite. The canonical representation shows that W can be represented as an
orthogonal linear reflection group on R", where n = |S|. The hyperplanes of the
reflections divide R™ into chambers, each of which is a simplicial cone (see [Bo,
p.85]). Let z be a point in the interior of some chamber such that z is of distance
1/2 from each supporting hyperplane. Define ¥(W,S) to be the convex hull of
Wz (the orbit of z). ¥(W,S) is called the Cozeter cell of type (W, S). Then the
1-skeleton of (W, S) is the Cayley graph of W with respect to S with unit edges.

Let (W, S) be a Coxeter system such that W is infinite. A cell complex (W, S)
is defined as follows. The vertex set of X(W, S) is W. Take the Coxeter cell of type
(Wp, T) for each coset wWrp, with w € W and T' € S/. Identify the vertexes of
this Coxeter cell with the element of wW7p. Identify two faces of two Coxeter cells
if they have the same set of vertexes. This completes the definition of (W, .5)
as a cell complex. The set of cells in X(W, S) is {wS(Wp, T)|w € W, T € 8§/},
where w¥(Wy, D) = w. The 1-skeleton of (W, S) is the Cayley graph of W with
respect to S with unit edges. The piecewise Euclidean cell complex ¥(W, S) has

a natural metric.

In [M], G. Moussong proved the following theorem.




Theorem 2.2.4 (Moussong [M], cf. [D2, Theorem 7.8]). The piccewise FEu-
clidean cell complex (W, S) is a CAT(0) space for every Coxeter system (W, S).

The geometric realization of a partially ordered set is defined as follows:

Definition 2.2.5 ([D3]). Let P be a partially ordered set. A simplicial complex

geom(P) which is called the geometric realization of P is defined as follows:

(1) The vertex set of geom(P) is P.
(2) For each nonempty subset 7' of P, T spans a simplex of geom(P) if and

only if T'is a finite chain, i.e., T'= {t;,... ,t,} for some t; < to < -+ < t,,.

Let (W, S) be a Coxeter system and let WS/ be the set of all cosets of the form
wWyp, with w € W and T € §7. The sets S/ and W&/ are partially ordered by
inclusion. Contractible simplicial complexes K (W, S) and A(W, S) are defined as
the geometric realizations of the partially ordered sets S/ and W&/, respectively
([D3, §3], [D1]). Here K(W,S) is the cone on the barycentric subdivision of
L(W,S). The natural embedding S/ — W&/ defined by T' +— Wy induces an
embedding K(W,S) — A(W,S). It is known that the barycentric subdivision
of X(W,S) is just equal to A(W,S) ([D2, §9]). Hence there exists the natural
embedding K (W, S) — (W, S) which we regard as an inclusion.

For each subset 7' C S, ¥(Wp, T) is a subcomplex of ¥(W, S). In this paper,
(W, S) and E(Wyp,T) are abbreviated to ¥ and X7, respectively.

We note that ¥ = WK(W,S) and ¥/W = K(W,S) ([D1], [D3]). For each
we W, wK(W,S)is called a chamberof 3. If W is infinite, then ¥ is noncompact.
Hence, if W is infinite, ¥ can be compactified by adding its ideal boundary 9% (cf.
Section 1.4). We note that the natural action of W on X is properly discontinuous

and cocompact ([D1], [D2]).

Example 2.2.6 (cf. [D3], [BH]). Let (W}, S;) and (W5, S3) be Coxeter systems.




Then

S(Wy x Wa, S1 U S,) = B(W4, 8)) x £(Wa, S,) and

ON(Wy x Wy, S1 U S,y) = OS(Wh, Sy) * 05 (Wa, So)  (join).

Every Coxeter group has a torsion-free subgroup of finite index (cf. [D1, Corol-
lary 5.2]). The following is known (cf. Proposition 1.2.5 and [Brl, p.209 Exer-
cise 4]).

Proposition 2.2.7 ([D3]). Let (W, S) be a Coxeter system and I' a torsion-free

subgroup of finite index in W. Then there exist the following isomorphisms:

H*(W; RW) = H*(T; RT) & H*(X; R) = H*"(0%; R).




CHAPTER 3

The virtual cohomological dimension

of Coxeter groups

In this chapter, we study the virtual cohomological dimension of Coxeter
groups. In Section 3.1, we introduce some results of Bestvina, Mess and Dran-
ishnikov about the virtual cohomological dimension of Coxeter groups. In Sec-
tion 3.2, using a result of Dranishnikov, we give some properties about the virtual
cohomological dimension of Coxeter groups over principal ideal domains. In Sec-
tion 3.3, for a right-angled Coxeter system (W, .S) with vedg W = n, we construct

a sequence Wy, C Wp, C --- C Wy, _, of parabolic subgroups with vedg Wr, = i.

83.1. RESULTS OF BESTVINA, MESS AND DRANISHNIKOV

We introduce some results of Bestvina, Mess and Dranishnikov. We first intro-
duce definitions of the local cohomological dimension and the global cohomolog-

ical dimension of simplicial complexes.

Definition 3.1.1 ([Dr3]). For a finite simplicial complex K and an abelian group




G, the local cohomological dimension of K over GG is defined as
ledg K = maxqex{i| H'(St(o, K), Lk(0, K); G) # 0},
and the global cohomological dimension of K over G is
cdg K = max{i | H'(K;G) # 0}.
When ij([&';(:') = 0 for each ¢, then we consider cdg K = —1. We note that
Hi(St(o, K), Lk(0, K); G) is isomorphic to H(Lk(o, K); G). Hence,
ledg K = max,ex{cdg Lk(o, K) + 1}.
In [Dr3], Dranishnikov showed the following relation of led; K and cdq K.

Theorem 3.1.2 (Dranishnikov [Dr3]). For every abelian group G and every

finate simplicial complex K, the inequality ledg K > cdg K holds.

In [Dr3], Dranishnikov gave the following formula for the virtual cohomological

dimension of Coxeter groups.

Theorem 3.1.3 (Dranishnikov [Dr3]). Let (W, S) be a Cozxeter system and R

a principal ideal domain. Then there exists the formula
vedg W =ledg CL = max{ledg L, cdg L + 1},

where L = L(W,S) and CL 1is the simplicial cone of L.

Dranishnikov also proved the following theorem as an application of Theo-
rem 3.1.3.
Theorem 3.1.4 (Dranishnikov [Dr3]). A Cozeter group W has the following
properties:

(a) vedg W < vedg W for each principal ideal domain R.

(b) vedg, W = vedo W for all but finite primes p.

(c) There exists a prime p such that vedz, W = ved W.




(d) vedW x W =2ved W.

In Section 3.2, we extend this theorem to one over principal ideal domain

coefficients.
In [BM], M. Bestvina and G. Mess proved the following theorem for hyperbolic

groups and therir boundaries.

Theorem 3.1.5 (Bestvina and Mess [BM]). Let I' be a hyperbolic group and

R a commutative ring with identity. Then there exists the formula
c-dimp 0" = vedp ' — 1,
where OI" is the boundary of I.

Definitions of hyperbolic groups and their boundaries are found in [G], [GH] and
[CP]. An analogous theorem for Coxeter groups is proved by the same argument

(cf. [Dr2).

Theorem 3.1.6 (Bestvina and Mess [BM], [B2]). Let (W,S) be a Cozeter

system and R a commutative ring with identity. Then there exists the formula

c-dimg OZ(W, S) = vedg W — 1.

83.2. THE VIRTUAL COHOMOLOGICAL DIMENSION OF COXETER

GROUPS OVER PRINCIPAL IDEAL DOMAINS

In this section, we extend Theorem 3.1.4 to an analogous theorem over principal
ideal domain coefficients by using an argument similar to one in [Dr3]. We first

prove the following lemma needed later.

Lemma 3.2.1. Let R be a principal ideal domain. Lett > 2 be an integer. Then




(1) «f the tensor product Z, @ R is trivial, then the tensor product Z, & R/I
and the torsion product Tor(Z,, R/I) are trivial for each ideal I in R, and
(ii) if R is not a field and the tensor product Z, @ R/I is trivial for every non-
triwial prime ideal 1 in R, then the tensor product Z, ® R and the torsion

product Tor(Zy, R) are trivial.

Proof. Let r, € R be the t sum 1z + -+ + 1 of 1z. Define the homomorphism

¢: R— R by p(r) = rr. Then there exists the following exact sequence:
0 — Tor(Z;,R) —w R-*“>R—Z,QR — 0.

Hence the kernel of ¢ is isomorphic to Tor(Z;, R) and the cokernel of ¢ is isomor-
phic to Z; ® R.

(i) Suppose that Z; ® R is trivial. It follows from 0 = Z, ® R = R/r;R and the
non-triviality of ¢ that r; is a non-zero unit element of R. Since R is a principal
ideal domain, ¢ is a monomorphism. This means that Tor(Z;, R) = 0.

Let I be a non-trivial ideal in R. Consider the following exact sequence:
Tor(Z¢, R) — Tor(Zy,R/1) - Z: ®1 - Z; @ R — Z; ® R/I — 0,

which is induced by the natural short exact sequence I — R — R/I. Then it is
clear that Z; ® R/I = 0. We also see that Tor(Z;, R/I) = Z; ® I = 0, since r; is
a unit element of R.

(ii) We note that there exists a non-trivial prime ideal I in R, because R is not
a field.

Suppose that Z; ® R/I is trivial for every non-trivial prime ideal [ in R.

First, we show that r, # 0 in R. If r, = 0 in R, then for a non-trivial prime
ideal I the homomorphism R/I — R/I defined by r + I + 7 + I is trivial.

Hence Z; ® R/I is isomorphic to R/I # 0. This contradicts the assumption

Zy ® R/I = 0. Therefore r, # 0.




Then ¢ is a monomorphism, because R is an integral domain. Hence Tor(Z,, R)
is trivial.

Next, we show that r; is a unit. Suppose that r; is not a unit. Since R is
a principal ideal domain, r; is presented as r;, = p;---pp by some prime ele-
ments py,...,pr of R. Then I = p;R is a non-trivial prime ideal in R. The
homomorphism R/I — R/I defined by r + I + ry + I is trivial, because
rer +1 = pi(pa---per) + 1 = I. Hence Z; ® R/I is isomorphic to R/I # 0.
This contradicts the assumption: Z; ® R/I = 0. Therefore r, is a unit.

Then ¢ is an epimorphism. This means that Z; ® R is trivial. [

Theorem 3.2.2. Let W be a Cozeter group and R a principal ideal domain.
Then W has the following properties:
(a) vedg W < vedg) W < vedg W < ved W for each prime ideal I in R.
(b) vedg/ W = vedg W for all but finite prime ideals I in R, if R is not a
field.
(c) There exists a non-trivial prime ideal I in R such that vedg, W =
vedp W, of R is not a field.

(d) vedg W x W = 2vedg W.

Proof. Let (W, S) be a Coxeter system, R a principal ideal domain, and L =
L(W,S). We note that R/I is a field for every non-trivial prime ideal I in R, and
R has the only trivial prime ideal if R is a field.

(a) For any prime ideal I in R, vedg W < vedg/; W by Theorem 3.1.4 (a), and
vedgp W < ved W. We show the inequality vedg/r W < vedg W.

If I is trivial, then it is obvious. We suppose that [ is a non-trivial prime ideal

in R. Let vedg/;; W = n. Then ledg/ CL = n by Theorem 3.1.3. Hence there

exists a simplex o of C'L such that H" '(Lk(o, CL); R/I) # 0. By the universal
coefficient formula, either H"!(Lk(o, CL)) ® R/I or Tor(H"(Lk(c,CL)), R/I)




is non-trivial. Since f[”"l(Lk(U, CL)) and H”(Lk(a. CL)) are finitely gener-
ated abelian groups, H" '(Lk(o, CL))® R # 0 or H"(Lk(6,CL))® R # 0 by
Lemma 3.2.1 (i). By the universal coefficient formula, H" ! (Lk(o, CL);R) #0or

H"(Lk(o,CL); R) # 0. In both cases, vedg W = ledg CL > n by Theorem 3.1.3.

(b) Let vedg W = n. We define A as the set of non-trivial prime ideals I in R
such that H*(Lk(o, CL))® R/I # 0 for some simplex o of C'L and integer i > n.

We show that A contains every non-trivial prime ideal I in R with vedg/; W # n.

Suppose that I is a non-trivial prime ideal in R with vedg;; W # n. Then
ledg/s CL = vedg/r W > n by Theorem 3.1.3 and Theorem 3.1.4 (a). Hence there
exist a simplex ¢ of CL and an integer s > n such that H'(Lk(o, CL); R/I) #
0. By the universal coefficient formula, either H'(Lk(o,CL)) ® R/I or
Tor(H"*'(Lk(o,CL)), R/I) is non-trivial. Here we note that for a field F and
an integer t > 2, the tensor product Z; ® F is trivial if and only if the tor-
sion product Tor(Z, F') is trivial. Therefore H'(Lk(o,CL)) ® R/I # 0 or
H"*(Lk(s,CL)) ® R/I # 0 because R/I is a field. In both cases, I is an el-
ement of A. Therefore to prove our desired property, it is sufficient to show that
A is finite.

Let T be the set of all torsion coefficients of H(Lk(o, C'L)) for each simplex o of
C'L and integer ¢ > n. Since C'L is a finite simplicial complex and f{”’(Lk(U. CL))
is a finitely generated torsion group for each simplex o of C'L and ¢ > n, which
is by ledg CL = vedg W = n, we have that 7' is finite. For each ¢t € T', we define
B, as the set of non-trivial prime ideals I such that Z; ® R/I # 0. Then we note
that A = Uer Be.

We show that B; is finite for each t € T'. Let r, € R be the t sum 1g+---+ 1g

of 1. Since R is a principal ideal domain, R is a unique factorization domain.

Hence r; is presented as ry = p; -+ pr by some prime elements p;,... ,pr. Let




I be a non-trivial prime ideal in R such that Z, ® R/I is non-trivial. For the
homomorphism ¢ : R/I — R/I defined by r + I + r;r + I, the cokernel of @ is
isomorphic to Z, @ R/I. Since R/I is a field, ¢ is trivial. Hence I is a member of
{mR,... prR}, because py,- -+, py are prime elements. Therefore the cardinality

of B; is at most k. Hence A is finite, because T is finite.

(c) Let vedgW = n. Then there exists a simplex o of C'L such that
fl”’l(Lk(U, CL); R) # 0 by Theorem 3.1.3. By the universal coefficient formula,
either H"!(Lk(o,CL)) ® R or Tor(H"(Lk(o, CL)), R) is non-trivial.

First, we show that H"! (Lk(o,CL)) ® R is non-trivial. To show the fact, we
suppose that Tor(H"(Lk(c,CL)), R) is non-trivial. Let the numbers s, ... .. S;
be the torsion coefficients of H"(Lk((r. CL)). Then there exists a number s;
such that Tor(Zs;, R) # 0. By Lemma 3.2.1 (ii), there exists a non-trivial prime
ideal I in R such that Zs;, ® R/I # 0. Then H"(Lk(o,CL)) ® R/I is non-
trivial. By the universal coefficient formula, H"(Lk(o, CL); R/I) is non-trivial.
Hence vedr/r W = ledg/y CL > n+ 1 by Theorem 3.1.3. On the other hand,
vedg/;r W < vedg W = n by Theorem 3.2.2 (a). This is a contradiction. Thus
Tor(H"(Lk(o, CL)), R) is trivial. Therefore H" (Lk(c, CL)) ® R must be non-
trivial.

Next, we show that H""I(Lk((r, CL))® R/I is non-trivial for some non-trivial
prime ideal I in R. Let  be the Betti number and the numbers t;,... ,#; the
torsion coefficients of H”'l(Lk(a, CL)). If B is non-zero, then it is clear that
H"’*I(Lk(n, C'L))® R/I is non-trivial for each non-trivial prime ideals I in R. If
is zero, then there exists a number ¢; such that Z;, ® R # 0. By Lemma 3.2.1 (ii),
there exists a non-trivial prime ideal I in R such that Z; ® R/I # 0. Then

H" '(Lk(o,CL)) ® R/I is non-trivial.

By the universal coefficient formula and Theorem 3.1.3, we have that




vedr/r W > n. Hence, vedg/; W = n by Theorem 3.2.2 (a).

(d) In general, for groups Wi, Wy the inequality vedg W, x We < vedr Wy +
vedg Wy holds, where the equality holds, if R is a field ([Bi, Theorem 4 c)]).
Hence, in our case, the equality vedg W x W = 2vedr W holds, if R is a field.
We suppose that R is not a field. Then the inequality vedp W x W < 2vediz W
holds. We show that vedg W x W > 2vedr W. By Theorem 3.2.2 (¢), there
exists a non-trivial prime ideal I in R such that vedgr/r W = vedgp W. We note
that R/ is a field. Then 2vedg W = 2 vedgr/r W = vedg/ W x W. Since W x W
is also a Coxeter group, vedg/;; W x W < vedg W x W by Theorem 3.2.2 (a).

Therefore we have that vedg W x W = 2vedg W. [

§3.3. A SEQUENCE OF PARABOLIC SUBGROUPS OF

A RIGHT-ANGLED COXETER SYSTEM

In this section, we prove the following theorem.

Theorem 3.3.1. Let (W, S) be a right-angled Coxeter system with vedg W = n,
where R is a principal ideal domain. Then there exists a sequence Ty C T, C
<o+ C Ty—1 C S such that vedg Wy, =i for each i = 0,... ,n — 1. In particular,
we can obtain a sequence of simplexes o > T > -+ > Tp_1 such that T; is the

vertex set of Lk(7;, L(W,S)) and L(Wr,, T;) = Lk(r;, L(W, S)).

We note that Theorem 3.3.1 is not always true for general Coxeter groups.

Indeed, there exists the following counter-example.

Example 3.3.2. We consider the Coxeter system (W,S) defined by S =




{vy,v9,v3} and

S R
Then W is not right-angled, and L(W, S) is not a flag complex. Indeed, Wivi v}

e =i
m(v;, vj) = {‘1 1=y

is finite for each 4,7 € {1,2,3}, but W is infinite (cf. [Bo, p.98, Proposition 8]).
Since c¢d L(W,S) = 1 and led L(W, S) = 1, we have that ved W = 2 by Theorem
3.1.3. For each proper subset 7" C S, ved Wy = 0, because Wy is a finite group.

Hence there does not exist a subset 7' C S such that ved Wy = 1.
We first show some lemmas.

Lemma 3.3.3. Let L be a simplicial complex. If 7 is a simplex of L and 7'
is a simplex in the link Lk(7,L), then the join 7 x 7’ is a simplex of L and

Lk(7’,Lk(r, L)) = Lk(7 * 7', L).

Proof. Let T be a simplex of L and 7’ in Lk(7, L). Since 7’ is in Lk(7, L), the join
77’ is a simplex of L and 7N7’' = (. For a simplex o of L, o is in Lk(7’, Lk(7, L))
if and only if o7’ is in Lk(7, L) and o N7’ = 0, i.e., o *7'* 7 is a simplex of L and
oN (7 x7") = 0. Hence o is in Lk(7’, Lk(7, L)) if and only if ¢ is in Lk(7 * 7/, L).
Thus we have that Lk(7',Lk(7, L)) = Lk(7x 7', L). O

Lemma 3.3.4. Let L be a simplicial complex and G an abelian group. For each

simplex T of L, the inequality ledg Lk(1, L) < ledg L holds.

Proof. Let ledg Lk(7, L) = n. Then there exists a simplex 7" in Lk(7, L) such that
H"Y(Lk(7',Lk(r, L)); G) # 0. By Lemma 3.3.3, Lk(7’, Lk(7, L)) = Lk(r * 7', L).

Hence ledg L > n. O

Using Theorem 3.1.2 and the lemmas above, we show the following key lemma.

Lemma 3.3.5. Let (W, S) be a right-angled Cozeter system with vedg W = n,

where S is nonempty and R is a principal ideal domain. Then there exists a




proper subset T of S such that vedg Wy = n or n — 1. In particular, we can
obtain a simplex o of L(W, S) such that T is the vertex set of Lk(o, L(W, S)) and
L(Wyp,T) = Lk(o, L(W, S)).

Proof. Since vedg W = n, we have that ledg L(W, S) = n or cdg L(W, S) = n — 1
by Theorem 3.1.3. If ledg L(W,S) < n — 1, then cdg L(W,S) = n — 1, and
ledg L(W,S) =n — 1 by Theorem 3.4. Hence ledg L(W,S) =n or n — 1.

We set m :=ledg L(W, S). Then there exists a simplex o of L(W, S) such that
H™ Y (Lk(o, L(W, S)); R) # 0 and H'(Lk(c, L(W, S)); R) = 0 for each i > m.
Hence cdgr Lk(o, L(W,S)) = m — 1. Let T be the vertex set of Lk(o, L(W,S)).
We note that T is a proper subset of S.

Then we show that
(%) L(Wr,T) = Lk(o, L(W, S)).

It is clear that the vertex set of L(Wp,T') is the vertex set of Lk(o, L(W,S)).

Let {vo,...,vx} be a subset of T" which spans a simplex of L(Wp,T). Since
{vo, ..., v} generates a finite subgroup of Wy ¢ W, {wy, ..., Uk} spans a simplex

of L(W,S). It follows from v; € T = Lk(o, L(W, S))© that the join v; * o forms
a simplex of L(W,S) and v; € o for each i = 0,... ,k. We note that L(W,S)
is a flag complex, since W is right-angled. Hence the join |vy,... ,vi| * o forms

a simplex of L(W,S) and |vg,...,v| No = 0, ie., |vy,...,v| is a simplex in

Lk(o, L(W,S)). Conversely, let {vo,...,ux} be a subset of T" which spans a
simplex in Lk(o, L(W,S)). Then {v,... , v} generates a finite subgroup of W.
Since {vo,... v} C T, {vo,...,vx} generates a finite subgroup of Wy. Hence

{vo,...,vx} spans a simplex of L(Wp,T'). Thus L(Wp,T') = Lk(o, L(W, S)).

We note that cdg L(Wp,T) = m — 1, and ledg L(Wp,T) < m by (%) and

Lemma 3.3.4. Hence vedg Wy = m by Theorem 3.1.3. Thus we have that




vedgWr=norn—1. [
Using this lemma, we prove Theorem 3.3.1.

Proof of Theorem 3.3.1. Let (W,S) be a right-angled Coxeter system with
vedr W = n, where R is a principal ideal domain.

By Lemma 3.3.5, we can obtain subsets {S;}; of S and simplexes {o:}i of
L(W, S) satisfying the following conditions:

(1) S = S,

(2) Siy1 is a proper subset of .S;,

(3) L(Ws,,,, Si+1) = Lk(0i41, L(Ws,, S;)), and

(4) vedg Ws,,, = vedg W, or vedg W, — 1.

Then we note, by the conditions (1), (3) and Lemma 3.3.3, that

L(Ws,, S;) = Lk(04, L(Ws,_,, Si-1))

= Lk(UﬁLk(G’l_l,L(M/’S S; 2)))

1—2) =

= Lk(0i—1 *x 0;, L(Wg,_,, Si—2))

= Lk(oy * - -+ % 04, L(Wgs,, So))

= Lk(ay * - -+ 03, L(W, S)).

Since S is finite, there exists a number m such that S,, is the empty set by

the condition (2). Then vedg Ws,, = 0, because Wy, is the trivial group. Hence
we can have a subsequence {S; }; of {S;}; such that vedg W'Slj = n — 7 for each
j=1,...,n by the condition (4).

We set T := S;,_; and 7j := 01 % --- % 0y,_, for each j = 0,... ,n — 1. Then

7} (= 71] +1, Ty = Tj+1, V('d}{ I’V’]'j = j and L(MVIT,)’TJ') = Lk(T]‘, L(Ml, S)) for each }

by our construction. []




By Theorem 3.1.6, we obtain the following corollary.

Corollary 3.3.6. For a right-angled Coxeter system (W, S) with c-dimpg 0% = n,
where R s a principal ideal domain, there exists a sequence 0%y, C 0%y, C -+ C
0%, , of the boundaries of parabolic subgroups of (W, S) such that c-dimp 0%, =

i foreachi=0,1,... ,n—1.

In general, for a finite dimensional compact metric spaces X, the equality
c-dimz X = dim X holds (Theorem 1.3.3). Since the boundaries of Coxeter groups

are always finite dimensional, we obtain the following corollary.

Corollary 3.3.7. For a right-angled Cozeter system (W, S) with dim 0¥ = n,

there exists a sequence 0L, C 0¥, C -+ C OXr, _, of the boundaries of parabolic

n—1

subgroups of (W, S) such that dim 0¥7, =i for each i =0,1,... ,n— 1.




CHAPTER 4

The cohomology of Coxeter groups

In this chapter, we study the cohomology of Coxeter groups. In Section 4.1, we
introduce a formula of the cohomology of Coxeter groups given by M. W. Davis.
After some preliminaries in Section 4.2, we reformulate the Davis formula, and we
study the problem as to when the i-th cohomology of a Coxeter group is finitely

generated in Section 4.3,

84.1. THE DAVIS FORMULA FOR THE COHOMOLOGY OF COXETER GROUPS

Let (W, S) be a Coxeter system. Let K be the simplicial cone over the barycen-
tric subdivision sd L of L = L(W,S). For each s € S, the closed star of s in sd L
is denoted by K. The closed star K is a subcomplex of K. For each nonempty

subset 7" of S, we set

=4
~
I
2
>
z

el

seT

We note that K7 has the same homotopy type as Ly = L(Wp, T).




For each w € W, the set S(w) is defined in Section 2.1 as follows:
S(w) :={s € S|l(ws) < {(w)},

where ¢(w) is the minimum length of word in S which represents w. For each

subset T" of S, we recall the following subsets of W:

Ap ={weW

l(wt) > l(w), forallte T} ={weW|T C S\ Sw)},

Cr:={w e W|l(wt) < {(w), forallt e T} ={w e W|T c S(w)}, and

Wl ={weWw

AS'(II') = T} —_ ("]‘ N Ag\[
In [D3], M. W. Davis gave the following formula.

Theorem 4.1.1 (Davis [D3]). Let (W, S) be a Coxeter system. For a torsion-

free subgroup I' of finite index in W, there exists the following isomorphism:

H*(0;Z0) = @ (2(W™) @ H* (K, K5\T)),
Tes!
where Z(WT) is the free abelian group on WT.
Since K is contractible and K\T has the same homotopy type as Lg\r, the
formula above is rewritten as
H*(T;2) = @ (Z(W") @ H ' (La\r)),
TeS!

where H* denotes the reduced cohomology.

84.2. LEMMAS ON COXETER GROUPS

In this section, we prove some lemmas for Coxeter groups which are used later.

Let (W, S) be a Coxeter system and 87, S(w), Ap, Cp and WT denote the sets

defined in Section 2.1.




Lemma 4.2.1 (cf. [D3, Lemma 1.10]). Suppose that T € Sf. Then WT is a

singleton if and only if W decomposes as the direct product: W = War x Wrp.

Proof. The “only if” part was proved by Davis ([D3, Lemma 1.10]). We prove
the “if” part.

Suppose that W decomposes as the direct product: W = War x Wrp. Let wy
be the element of longest length in Wy. By Lemma 2.1.9 (ii), S(wy) = T, i.e.,
wr € WT. We show that WT = {wr}.

Let w € WT. Then S(w) = T by definition. Applying Lemma 2.1.10, we
see that w = wwy for some u € Ap. Suppose that u # 1. Then there exists
s € S(u) by Lemma 2.1.6 (i). Since u € Ap, ¢(ut) > £(u) for each t € T. On
the other hand, ¢(us) < ¢(u), since s € S(u). Thus s € S\ T C Wasr. Since

W = Wgar x Wy, wrs = swp. Hence,
l(ws) = L(uwrs) = L(uswr) < l(us) + l(wr) < l(u) + l(wr) = L(uwr) = {(w),

where the equality ¢(u) + ¢(wr) = ¢(uwr) follows from Lemma 2.1.7 (iii). Thus
we have that s € S(w). Hence s € S(w) = T, since w € WT. This contradicts
the fact s € S\ 7. Thus u = 1 and w = wy. Therefore WT = {wr}, i.e., W7 is
a singleton. [
Lemma 4.2.2. Suppose that T € S/. Then,

(i) Cr = Apwr.

(ii) WT = Cr N Ag\r.

(iii) If W s infinite, then Cp is infinite.

)

(iv) (We)T € WT for each subset S" of S containing T

Proof. (i) By the definition of Cr and Lemma 2.1.10, we have

Cr={weW|T C S(w)} = Arwry.




(ii) By the definition of Ag\r,

Assr ={w e W|S\T c S\ S(w)}

={weW|S(w) CT}.
Hence,

W' ={weW|Sw)=T}

e

TcCSw)}n{weW|S(w)cCT}

— (/"[' N Ag\]

(iii) We note that Cp is not empty because wr € Cp. Suppose that W is
infinite. Then for each w € Cp there exists s € S such that ¢(sw) = ¢(w) + 1.
Since w € Cp, {(swt) < 1+ l(wt) < 1+ ¢(w) = ¢(sw) for each t € T. Hence
sw € Cp. Thus there is no element of longest length in Cp. Hence Cp is infinite.

(iv) Let w € (Wg)T. Then T' = S'(w) = {s € §" | bs:(ws) < fs/(w)}, where the

length ¢g (w) of w in Wg is equal to ¢(w) by Lemma 2.1.6 (iii). Hence,
T=5w)={seS|l(ws) <l(w)}=Sw)NnS.

Thus we have that T' C S(w). To prove the reverse inclusion S(w) C T', we show
that S\ T C S\ S(w). Let s € S\T. If s € S, then ¢(ws) > ¢(w) because
s¢g T = S'w). If s g S, then ¢(ws) > ¢(w) by Lemma 2.1.6 (iv) because
w € We and s € S\ S’ In either case, {(ws) > {(w), i.e., s € S\ S(w). Hence
S\T c S\ S(w), that is, S(w) C T. Thus we have that S(w) =T and w € WT.
Therefore (Wgs)T c WT. O

Lemma 4.2.3. Letto € S. If Wit} and Wa\(to) are finite, then W s finite.




Proof. By Lemma 2.1.6 (i), we have

W {te} — {weW|Sw) = {ty}}
={weW|S(w) C {to}} \{w e W|S(w) = 0}

= AS\{/U} \ {1}

Since Wit} is finite, As\(to} 1s finite. Hence Cs\{t,) is finite because Cs\{to} =
As\{to)Ws\{to} DY S\ {to} € &' and Lemma 4.2.2 (i). Thus W is finite by

Lemma 4.2.2 (iii). [

Lemma 4.2.4. Let T € S, to € T and Sy = (S\T) U {to}. Then

(‘1'15‘“){“]}1‘()11"]‘ i I‘v[

Proof. 1t is sufficient to show that S(wtows) = T for each w € (Irl"c;o){f(’} by the
definition of W7T. Let w € (Wg, )it}

First we show that 7" C S(wtowr). We note that T' C S(wtowy) if and only if
wty € Ar (i.e., £((wtg)t) > l(wty) for all t € T') by Lemma 2.1.10. Let t € T'. If
t # to, then ¢((wty)t) = ¢(wty) + 1 by Lemma 2.1.6 (iv) because wty € Ws, and
t & So. If t = tg, then £((wtp)t) = (w) = (b(w) — 1) + 1 = ¢(wty) + 1 because
w € (Wg,)to}. Hence ¢((wto)t) > l(wty) for all t € T, i.e., wty € Ap. Thus we
have T' C S(wtowr) by Lemma 2.1.10.

Next we show that S(wtowr) = T. Suppose that there exists s € S(wtowr)\ 7.

Then T'U {s} C S(wtowy). There exists u € Apy(sy such that wigwr = vwrygs

by Lemma 2.1.10. Since ty and wr are involutions, w = wwpyisywrte. Here we




note that u € Apyy,y and wrugsywrto € Wyyggey. Then,

i) = {(u(wpygsywrto))

= l(u) + {(wrusywrto) by Lemma 2.1.7
= l(u) + L(wrugsy) — wrto) by Lemma 2.1.9 (iii)
= l(u) + l(wrygsy) — L(wr) + 1 by Lemma 2.1.9 (iii),

because wypty € Wirugsy. By the same argument, we have

U(ws) = L(u(wrugsywrtos))

= L(u) + (wrugsywrtos) by Lemma 2.1.7

= €(u) + £(wrygsy) — €(wrtos) by Lemma 2.1.9 (iii)
= l(u) + l(wrugsy) — (U(wrto) + 1) by Lemma 2.1.6 (iv)
= l(u) + l(wrugsy) — (U(wr) — 14 1) by Lemma 2.1.9 (iii)

= €(u) + (wry(sy) — L(wr),

because u € Apy(s), wrugsywrtos € B Tu{sy and wrtos € Wry(sy. Hence ¢(ws) <
l(w), i.e., s € S(w). Since s € S\ T C Sy and w € Wg,, we have that s € Sy(w).
On the other hand, So(w) = {to}, since w € (W"so){‘“}. This is a contradiction,
because s # to by the definition of s. Hence S(wtowy) = T, that is, wtowr € W7,

Therefore we have that (I/Vg(,){“’}tng cWT. O

It is known that a Coxeter group W always has a torsion-free subgroup I' of
finite index ([D1, Corollary 5.2]). Such a torsion-free subgroup I is of type FL.
Indeed, I' acts freely, simplicially and cocompactly on the contractible simplicial

complex ¥ ([D1]). Since H*(W;ZW) = H*(I;ZT') = H*'(9%), Theorem 1.2.9

implies the following:




(i) H'(W;ZW) is finitely generated for each i if and only if W is a virtual
Poincaré duality group.
(ii) H'(0) is finitely generated for each i if and only if the Cech cohomology

of 9% is isomorphic to the cohomology of an n-sphere for some n.

64.3. THE NUMBER OF ELEMENTS OF W7

We use the notation in Sections 2.1, 2.2 and 4.1, and (W, S) denotes a Coxeter
system. In this section, we determine 7' € S/ such that W7 is finite and Lo\t is

not acyclic. The following lemma plays a key role in the later argument.

Lemma 4.3.1. Suppose that T € 8. If WT is finite and not a singleton, then
/! ; :

Lg\1 1s contractible.

Proof. Suppose that W7 is finite and not a singleton. Then W does not decom-
pose as the direct product of Wg\r and Wr by Lemma 4.2.1. Hence there exist
s0 € S\ T and to € T such that m(sg, ty) # 2.

Let So:= (S\T)U{to}. Since WT is finite, (Ws, )%} is finite by Lemma 4.2.4.
Since m(so,t0) # 2, we have that W, # Wg\ (1) X Wyyey. Hence (W, )t} is
not a singleton by Lemma 4.2.1. Suppose that this lemma has been proved when
T is a singleton. Since (Wg,)!"} is finite and not a singleton, Lg,\(z,} = Ls\z is
contractible. Thus the general case follows. Hence it suffices to show the lemma
in the case T = {to}. We note that m(so,to) # 2.

First we show the following:
(*) = f() * LS\{tU}-

Let o be a simplex of Lg\4,) and let U be the vertex set of . Then Wy, is finite.

Since Wito} ig finite, (I,d,.'{,u{t“}){fo} c Wit} is finite by Lemma 4.2.2 (iv). Hence
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Wuugtey is finite by Lemma 4.2.3. Thus the join to * o is in L. This proves ().

Next we show the following:

(*x) L.S‘\{r,,} == L.S'\{s(,.',(,}~

Let s be a vertex of Lg\(s.40} (i€, s € S\ {s0,t0}). Suppose that {s0, s}
does not span a 1-simplex in Ls\{t5}- Then Ly o 53 = to * {s0,s} by (x) (see
Figure 1). We note that Lyssy 1s a O-sphere, and Ly is contractible for each

to

S0 S

FIGURE 1. Ly s0.5)

subset V' C {to, so, s} which is not equal to {s, s}. By Theorem 4.1.1, we have

Z(Wito,s0,8)) 1) @ HO(Lise,3), 1 =1,
0, i£1,

where 'y, .5 is a torsion-free subgroup of finite index in Wy, s s and

H'(F{[().S()..Q};ZF{{(].S(LS}) g {

H(Lys.5y) = Z. Since Wt} is finite, (Wi, 4.5} is finite by Lemma 4.2.2 (iv).
Hence HI(F{,U,SU‘S}:ZI‘{,O.SO.S}) is a free abelian group of finite rank. By
Theorem 1.2.9, I'( .5} is a Il-dimensional Poincaré duality group, i.e.,
Hl(F{{(,_s”,S}; 21 ¢45.55.01) = 4. Hende (I/i/"{,().s‘)‘s}){“)} is a singleton and Wy 5 s} =

Wity X Wis.sy by Lemma 4.2.1. On the other hand, m(so, o) # 2 by the defi-

to
nitions of sy and to. This contradiction implies that {sg, s} spans a 1-simplex in
Lg\(t,) for every vertex s of Lg\ (st}

Suppose for each (n — 1)-simplex o’ of Lg\ (s}, the join so * 0" is in Lg(¢,}-

Let o be an n-simplex of Lg\(s,.4) and let U be the vertex set of 0. We show

that so * o is in Lg\ ()




Suppose that sy * o is not in Ls\{to}- By the inductive hypothesis, sq * ¢’ is in
L\t for every (n — 1)-face o’ of 0. Hence Lirugsey 1s the boundary d(sg * o) of
the (n+1)-simplex sg* o, and Lyugte,soy = to*9d(so* ) by (x). Here we note that
Lirugsey is an n-sphere and Ly is contractible for each subset V c U U {to, so}
which is not equal to U U {sp}. By Theorem 4.1.1, we have

Z((M/”U{fn-so}){t()}) ® H’”(L”U{-"O})' t=n+l,

HY{(T JU{to,S0 VAN oso}) =
(Fvugto.s0) UU{to,s0}) 0. i #Fn+1,

where I'yugg,s) 1S a torsion-free subgroup of finite index in Wuuite,sey and
]NI”(L(,U{,'”}) ~ Z. Since Wt} is finite, (1[4",,»U{,0_m}){'“} is finite by
Lemma 4.2.2 (iv). Hence H™ ™ (Cuugtgsot; Zluu{te.50)) 18 @ free abelian group of
finite rank. By Theorem 1.2.9, I'yy(ey,50) is an (n + 1)-dimensional Poincaré du-
ality group. Thus (Wyuqs.s0)) 1 is a singleton and Wuuite,se} = Wite} X Wuugse)
by Lemma 4.2.1. On the other hand, m(sg,ts) # 2. This contradiction implies

that the (n + 1)-simplex so * 0 is in Lg\ {40}

By induction, we have the conclusion (*x). Therefore L\ (0} 1s contractible. []

Definition 4.3.2. A Coxeter system (W, S) is said to be wrreducible if, for any
nonempty and proper subset 7' of S, W does not decompose into the direct

product of Wz and Wg\ p.

Definition 4.3.3. Let (W, S) be a Coxeter system. Then there exists a unique
decomposition {S,...,S,} of S such that W is the direct product of the
parabolic subgroups Ws,,... ,Ws, and each Coxeter system (Wg,,S;) is irre-
ducible (cf. [Bo], [Hu, p.30]). Here we enumerate {S;} so that S,...,S, € S/
and Syi1s.. ., 00 € ST Let T := UL, S; and S:=9 ). T. We say that Wj is the

essential parabolic subgroup in W. We note that W is finite and W is the direct

product of Wg and Wj.




Remark. The essential parabolic subgroup Wy has a finite index in W. Hence a
torsion-free subgroup I' of finite index in W3 has a finite index in W as well, and
H*(W;ZW ) = H*(I'; ZT') = H*(Wg; ZW5).

It W is finite, then 7" = S and S is empty, hence the essential parabolic

subgroup is the trivial subgroup.

Lemma 4.3.4. Let T be a subset of S. If T \ T is nonempty, then Lg\r is

contractible.
Proof. Suppose that T \ T is nonempty. By definition, W is the direct product
of Wg and Wj;.. Hence
War = Wap X ”"v'i‘\'r and
LS\YW — LS\] * LVI‘V\I
Since Wy is finite, Wi\ o is finite, i.e., Ly, is a simplex. Thus Lgp is con-
tractible. [J
We obtain the following lemma by Lemma 4.3.1 and Lemma 4.3.4.

Lemma 4.3.5. Suppose that T € ST and Lg\r is not contractible. Then W7 is

finite if and only if T =T

Proof. Since W is the direct product of Ws\ 7 and Wi, WT is a singleton by
Lemma 4.2.1. Thus W7 is finite if T = T.

Suppose that W7 is finite and Lg\r is not contractible. Since Lg\p is not
contractible, T \ 7" is empty by Lemma 4.3.4. Hence T c T. Since W7 is finite

and Lg\r is not contractible, WT is a singleton by Lemma 4.3.1. Hence W is the

direct product of Wg\y and Wy by Lemma 4.2.1. Then

W = I""’S\’I‘ X Wp = M"/VS\?" X WT.

Since Wy is finite and 7' C T, we have T = T by the definition of 7. [




64.4. THE COHOMOLOGY OF COXETER GROUPS

By Lemma 4.3.5, we can reformulate Theorem 4.1.1 as follows:

Theorem 4.4.1. Let (W, S) be a Cozeter system and I' a torsion-free subgroup

of finite index in W. Then

H*(T;ZT) = H*'(Lg) 4 (@ P a " (Lsr) )

Test Z
,I'.Q,]‘
o2
~ H* -1 L ( @ @H* 1 g\] )
TeS\{p} Z

where S is the subset of S such that Wy is the essential parabolic subgroup in W,

L (W3, S) and 8 = 8/ (W5, 8)=8'n&.

Proof. We note that WT is a singleton by Lemma 4.2.1. By Theorem 4.1.1 and
Lemma 4.3.5, we have that
H D;ZD) 2 H Y (Lggp)® | D P H '(Lswr)
TeSN\{T} Z
TP (i.e., g \ T" is nonempty), then Lg\s is contractible by Lemma 4.3.4.

Hence,

H*(T;ZT) = H* ' (Lg\z) © (EB D H Lsm)

Tes! Z
TCT
s

The parabolic subgroup Wg has a finite index in W, and Wj is the essential
parabolic subgroup in the Coxeter system (W, S). Therefore,

HY(I;2r)y = (0 ( D Pa s\:>

TeS\{0} %

by Theorem 4.1.1 and Lemma 4.3.5. [J

By Theorem 4.4.1, we have the following corollary.
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Corollary 4.4.2. Let (W, S) be a Cozeter system, I a torsion-free subgroup of

finite index in W, S the subset of S such that Wz s the essential parabolic

subgroup in W, and T'= S\ S. Then the following statements are equivalent:

(i) H(I';ZI') s finitely generated;
(i) HY(I';ZI') 1s isomorphic to H“‘(Lg);
(iii) H""'(Lg\',v) =0 for each T € 8! such that T C T.
7

Example 4.4.3. It is known that, for every finite simplicial complex M, there
exists a right-angled Coxeter system (W, S) such that L(W,S) is equal to the
barycentric subdivision of M ([D1, Lemma 11.3]).

Let (W, S) be a Coxeter system such that L = L(W, S) is the barycentric sub-
division of a triangulation of the projective plane. In [Dr3], A. N. Dranishnikov
showed that vedz W = 3 and vedg W = 2, where vedg W is the virtual coho-
mological dimension of W over R. Now, using Theorem 4.4.1, we calculate the

cohomology of a torsion-free subgroup I' of finite index in W.

Since L is the projective plane,

Since L = Lg\g is not contractible and WP is a singleton, T is the empty set
(i.e., W = Wy is the essential parabolic subgroup) by Lemma 4.3.5. For each
T € 8\ {0}, Lg\r has the same homotopy type as a circle. Hence,
B i e=N1
H'(Ls\7) &
(Lsvr) {0, i # 1.

Therefore, by Theorem 4.4.1, we have

ZQ, 7: 3,
HTzZD) 2 H Y (Lo @ PH '(Lsr)|={Zo0Zo -, i=2
TeS\{0} Z 0, otherwise.




By the example above, we see that there exists a Coxeter group W such that
H'(I'; ZI') is finitely generated and H’(I';ZI) is infinitely generated for some
i # 5.
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CHAPTER 5

Geometrically finite groups

In this chapter, we investigate limit sets of geometrically finite groups acting
on Busemann spaces. Coxeter groups and parabolic subgroups are examples of
geometrically finite groups acting on Busemann spaces. In Section 5.1, we recall
definitions and basic properties of hyperbolic spaces and their boundaries in the
sense of Gromov. In Section 5.2, we give an equivalent condition for a group
acting on a hyperbolic space to be geometrically finite. In Section 5.3, we recall
definitions and basic properties of Busemann spaces and their boundaries. In
Section 5.4, we show a Busemann space-analogue of several results proved by

A. Ranjbar-Motlagh for geometrically finite groups acting on hyperbolic spaces.

§5.1. HYPERBOLIC SPACES AND THEIR BOUNDARIES

We introduce definitions of hyperbolic spaces and their boundaries in the sense

of Gromov ([Gr], [GH], [CP]).

Definition 5.1.1. Let (X, d) be a metric space and z,y,w € X. The Gromov




product of x and y with respect to w is defined as
1
CEl ) = 5({1(.’1:, w) +d(y,w) — d(z,y)).

For some 0 > 0, we say that a geodesic space (X, d) is d-hyperbolic, if for each
T, Y,z,w e X
(Z|y)w > min{(z|2)w, (y|2)w} — 9.

Also we say that X is hyperbolic, if X is 6-hyperbolic for some & > 0.

Definition 5.1.2. Let (X, d) be a hyperbolic space. A sequence {z;} of points

of X is said to converge to infinity, if for some (arbitrary) basepoint w € X

lim (z;|z;)y = oo.
1,j—00

Let So(X) denote the set of all sequences convergent to infinity, and define the

equivalence relation

{.’I'I'}R{yi} ==l <~1‘i}yi>u! = OQ.

jmre0
The boundary of X is defined as 0X := S(X)/R. We say that {z;} € Soo(X)
converges to z € 0X, if the equivalent class of {z;} with respect to R is z, and we
write z; — . Now we extend the Gromov product to the boundary as follows:

For each z,y € X U0X, we define
(@|Y) := inf{ im (z;|yi)w },
i—00

where the infimum is taken over all pairs of sequences z; — x and y; — v.
Then X U 0X has a natural topology, in which X is an open subspace, and a

neighborhood basis for each point € 90X is given by the sets
N(z;€) :=={y € X UOX|(z|y)w > €},

where € > 0. It is known that this topology is not dependent on the basepoint

w € X. For a geodesic ray € : [0,00) — X, there exists a unique point z € 0X




such that {{(t;)} — « for each sequence {t;} of non-negative real numbers such

that {t;} — oo. Then we write z = £(00).

Definition 5.1.3. Let X be a geodesic space. Let z,y,2 € X and A := Axyz
a geodesic triangle in X. Then there exist unique non-negative numbers a, b, ¢
such that
d(z,y) =a+b, d(y,2) =b+c, d(z,z) =c+a.
Indeed a = (y|2),, b = (z|z), and ¢ = (z|y),. Then we can consider the metric
tree T')A that has three vertexes of valence one, one vertex of valence three, and
edges of length a, b and c¢. Let o be the vertex of valence three in T and let
Uz, Uy, U, be the vertexes of T such that d(o,v,) = a, d(o,v,) = band d(o,v,) = c.
Then the map {z,y,2} — {vs,v,,v.} extends uniquely to a map f : A — Tx
whose restriction to each side of A is an isometry. For some § > 0, the geodesic
triangle A is said to be d-thin, if d(p,q) < ¢ for each points p,q € /A with
f(p) = f(a).
The following lemma is well-known.
Lemma 5.1.4 ([GH], [CP, p.8-10]). Let (X,d) be a proper d-hyperbolic space.
(i) Every geodesic triangle in X is 46-thin.
(ii) Let £,¢ : [0,00) — X be geodesic rays with £(co) = ((00). Then
d(&(t), Im ¢) < d(£(0),¢(0)) + 83 for each t > 0. Furthermore, there exists
T > 0 such that d(&(t), Im () < 86 for each t > T.

(iii) For each pair of distinct points o, 3 € 0X, there exists a geodesic line in

X with endpoints a and [3.
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§5.2. GEOMETRICALLY FINITE GROUPS ACTING ON HYPERBOLIC SPACES

In this section, we give an equivalent condition for a group acting on a hyper-

bolic space to be geometrically finite. We first give a definition of limit sets.

Definition 5.2.1. Let (X,d) be a hyperbolic space and I' a group which acts
properly discontinuously on X. The limit set of I' (with respect to X) is defined
as

i = ('llx'u(')l\'(ril'()) NoX,

where clyx sx means the closure in X U 0X, and z( is a point in X. The limit

set JI' is independent of the choice of the point zo € X.
A geometrically finite group acting on a hyperbolic space is defined as follows:

Definition 5.2.2 ([R]). Let (X, d) be a proper hyperbolic space and I' a group
which acts properly discontinuously on X. We say that (the action of) I is
geometrically finite (with respect to X ), if there exists a compact subset K of X
such that £(0I') € 'K, where L£(JI') is the union of the images of all geodesic

lines in X with the endpoints in 0.

Lemma 5.2.3. Let (X,d) be a proper d-hyperbolic space, & : R — X a geodesic
linein X, and &, & : [0,00) — X geodesic rays in X such that £ (0) = &(0) = o,
£o(00) = £1(00) and &(—o0) = &(00). Then, for eachi € {0,1,2} and each point

x € Im&;, the inequality d(x,Y;) < 120 holds, where Y = Ujef0,1,2)\(iy Im&;-

Proof. Let 7 € {0,1,2} and x € Im¢;.

=

By Lemma 5.1.4 (ii), there exists 7" > 0 such that

d(&(t),Im&) < 86 for each ¢ > T and j = 1,2, and

d(&o(s),Im& UImé&,) < 89 for each |s| > T




It is clear that if z € & ((—o00, =TU[T, 00))UU;=; 2 &; ([T, 00)), then d(z,Y;) < 8.

Let S > T be a large number. Then geodesic triangles Az&(S5)&(S),
ANE(S)E1(S)E(S) and A&y(S)E(—S)E(S) are 46-thin by Lemma 5.1.4 (i). Hence
if z € &((=T,T))UUj=126([0,T)), then d(z,Y;) < 128. O

Using Lemma 5.2.3, we show the following proposition. Here we note that

there is no obvious inclusion between £(0I') and £} (0I') in general.

Proposition 5.2.4. Let (X,d) be a proper hyperbolic space and I a group which
acts properly discontinuously on X. Suppose that the cardinality of OT' is greater

than one. Then the following statements are equivalent:

(1) The action of I' 1s geometrically finite.
(2) There exists a compact subset K of X such that L} (OT') C T'K for some

xo € X, where L (OT) is the union of the images of all geodesic rays &

issuing from xo with £(oco) € O,

Proof. Let X be d-hyperbolic.

(1)=(2): Let 0 : R — X be a geodesic line with o(—00), 0(00) € II" and let
xo := 0(0). Suppose that (1) holds. Then L£(0I') C I'B(xo, N) for some N > 0,
where B(zg, N) is the metric ball of radius N about zy. Let £ be a geodesic ray
issuing from xo with £(o0o) € OI'. There exists a geodesic line 7 : R — X such
that 7(00) = o(o0) and 7(—o0) = £(o00) by Lemma 5.1.4 (iii). For each ¢ > 0,
d(&(t),0([0,00)) UIm7) < 126 by Lemma 5.2.3. Since Imo UIm7 C L(dT') C
I'B(zo, N), Im§ C I'B(xo, N + 126). Thus L] (0I') C I'B(zo, N + 126).

(2)=(1): Suppose that (2) holds. Then £} (0I') C I'B(xo, N) for some N > 0.
Let 0 : R — X be a geodesic line with o(00),0(—o00) € OI'. Let £ and ( be

geodesic rays issuing from x( such that o(o0) = &(o0) and o(—o00) = ((00). By

Lemma 5.2.3, d(o(t),Im¢é UIm () < 124 for each t € R. Since In§ UIm({ C




L} (0r') Cc I'B(xo, N), Imo C I'B(xo, N +126). Thus L(0I') C I'B(z0, N +120),
i.e., I is geometrically finite. [J

Remark. By Lemma 5.1.4 (ii), the statement (2) is equivalent to the following

statement:
(3) For each point zy € X, there exists a compact subset K of X such that
oy C TR
The following results were given by A. Ranjbar-Motlagh in [R]. The aim in

this chapter is to show a Busemann space analogue of these results.

Theorem 5.2.5 ([G, Theorem 3], [SS, Theorem 3.1], [R, Lemma 3.1]). Let (X,d)
be a proper hyperbolic space and I a group which acts properly discontinuously on
X. If H C G are two subgroups of I', and if H is a geometrically finite subgroup
with |OH| > 2, then the following conditions are equivalent:

(1) 0G = 0H.

(2) g(0H) = OH for each g € G.

(3) [G: H] < .

Proposition 5.2.6 (cf. [R, Lemma 4.2]). Let (X,d) be a proper hyperbolic
space, I' a group which acts properly discontinuously on X, and G a subgroup
of finite index in I'. Then T' is geometrically finite if and only if G is geometri-

cally finite.

Proposition 5.2.7 ([R, Lemma 3.5]). Let (X,d) be a proper hyperbolic space, I’
a group which acts properly discontinuously on X, and G a geometrically finite
subgroup of ' with |0G| > 2. For some element y € T, suppose that yGy~' C G,

then

(1) v(0G) C oG,
(2) ¥" € G for some n € Z \ {0},




(3) v(8G) = v (8G) = 4G,
(4) Gy =G,
(5) [{(G,%) : G] < oo.

Theorem 5.2.8 (|G, Theorem 2], [SS, Theorems 4.3, 4.4], [R, Theorems 4.4, 4.5]).

Let (X, d) be a proper hyperbolic space and I a group which acts properly discon-
tinuously on X. Suppose that G, and Gy are two geometrically finite subgroups

of I'. Then
(1) Gy N Gy is also geometrically finite.
(2) If |0(G1 NGs)| > 2, then (G, N Ga) = dG1 N OGs.

§5.3. BUSEMANN SPACES AND THEIR BOUNDARIES

In this section, we recall the definitions and some basic properties of Busemann

spaces and their boundaries.
Definition 5.3.1. Let (X, d) be a geodesic space. A geodesic space X is a Buse-
mann space if for each three points zg, r1, x2 of X and each ¢ € [0, 1],
({(E] (f([l)\ Eg(f(lg)) S f(l(.l'l y .1'2).

where d; = d(xo,z;) and & : [0,d;] — X is a geodesic segment from z( to x; for
eachi=1,2.

The following proposition is known (cf. [Ho]).
Proposition 5.3.2. Let (X,d) be a proper Busemann space.

(1) Bvery CAT(0) space is a Busemann space.
(2) For each two points x,y € X, there ewists an unique geodesic segment

between x and y in X.




(3) X s contractible.
(4) For each geodesic ray € in X and each point xo € X, there exists a unique

geodesic ray & issuing from xo such that & and & are asymptotic.

Definition 5.3.3. Let (X,d) be a proper Busemann space and zo € X. The
boundary of X with respect to xp, denoted by d,,X, is defined as the set of all
geodesic rays issuing from zy,. Then X Ud,, X has a natural topology, in which X
is an open subspace, and a neighborhood basis for each point £ € d,,X is given

by the sets
U r,e)={r € XUOIX |z & B(xo,r), d(&(r),&(r)) < €},

where ¢ > 0 and &, : [0,d(zo,z)] — X is the geodesic from zo to = (§;, = =
if # € 0,,X). This is called the cone topology on X U 0,,X. It is known that
X U 0, X is a metrizable compactification of X (cf. [GH], [Ho]).

Let o and z; be two points of a proper Busemann space X. By Proposi-
tion 5.3.2 (4), there exists a unique bijection ® : 9,, X — 0,, X such that £ and

®(£) are asymptotic for each £ € 9,,X. The following theorem was proved by

P. K. Hotchkiss.

Theorem 5.3.4 ([Ho)).
(1) The above map ® : 0y, X — 0y, X is a homeomorphism.
(2) If X is a hyperbolic (resp. CAT(0)) space, then 0., X 1is homeomorphic to
the hyperbolic (resp. CAT(0)) boundary.

Definition 5.3.5. Let X be a proper Busemann space. The asymptotic relation
is an equivalence relation in the set of all geodesic rays in X. The boundary
of X, denoted by 0X, is defined as the set of asymptotic equivalence classes of

geodesic rays. The equivalence class of a geodesic ray ¢ is denoted by £(oc0). By

Proposition 5.3.2 (4), for each zo € X and each o € JX, there exists a unique




element £ € 0,,X with £(c0) = a. Thus we may identify 0X with 0,,X for each
Ty & )(.
Let (X,d) be a Busemann space and I" a group which acts properly discontin-

uously on X. The limit set of I (with respect to X) is defined as
e (‘lXUg)/\'(F.’I‘()) N é)X.

where x4 is a point in X. The limit set OI' is independent of the choice of the
point zg € X.

Let (X,d) be a proper Busemann space and I' a group which acts properly
discontinuously on X. For each element v € I' and each geodesic ray ¢ : [0, 00) —
X, amap ¥ : [0,00) — X defined by (v€)(t) := v(£(t)) is also a geodesic ray. If
geodesic rays £ and ¢’ are asymptotic, then 7§ and v€ are also asymptotic. Thus
7v induces a homeomorphism of X and I' acts on dX. We note that ['(0') = oI

by definition. Hence I' also acts on OI'.

§5.4. GEOMETRICALLY FINITE GROUPS ACTING ON BUSEMANN SPACES

By Proposition 5.2.4, the following definition is natural.

Definition 5.4.1. Let (X, d) be a proper Busemann space and I' a group which
acts properly discontinuously on X. We say that (the action of) I' is geometrically
finite (with respect to X), if for some (arbitrary) point zo € X there exists a
compact subset K of X such that £ (0T') C 'K, where £ (JT') is the union of

the images of all geodesic rays £ issuing from x, such that &(oo) € 9T,

Example 5.4.2. Let (X, d) be a proper CAT(0) space. Let I' be a group which

acts properly discontinuously and cocompactly on X (such I' is called a CAT(0)
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group). Then L} (OI') C X = I'K for some compact subset K of X by the

cocompactness. Hence the action of I' is geometrically finite.

Definition 5.4.3. A subset M of a geodesic space X is said to be quasi-convex
if there exists N > 0 such that the metric N-neighborhood of M contains all
geodesic segments between each two points of M. Also a subset M of a metric
space X is said to be quasi-dense if M is N-dense for some N > 0, i.e., if each

point of X is N-close to some point of M.
The following proposition generalizes the above observation.

Proposition 5.4.4. Let (X,d) be a proper Busemann space and I' a group which
acts properly discontinuously on X. If I'zg is quasi-convex in X, then I' 1s geo-

metrically finite.

Proof. Since I'zq is quasi-convex in X, there exists N > 0 such that the metric
N-neighborhood of I'zy contains the geodesic from a to b for each a, b € I'zy. Let
€ :[0,00) — X be a geodesic ray with £(0) = zop and £(oc0) € OI'. Then there
exists a sequence {v;x0} C I'zy converging to {(oco) in X U0X. For each t > 0,
there exists a number ¢ such that d(§(t),&,2,(t)) < 1, where &, is geodesic
from xo to y;xo. Hence &(t) € I'B(zo, N +1) because Im &,,,, C I'B(zo, N). Thus
Im& C I'B(xo, N + 1), and I' is geometrically finite. [

We prove a Busemann space-analogue of Theorem 5.2.5.

Theorem 5.4.5. Let (X,d) be a proper Busemann space and I' a group which
acts properly discontinuously on X. If H C G are two subgroups of I', and if H
is geometrically finite, then the following conditions are equivalent:

(1) 0G = 0H.

(2) Hxo is a quasi-dense subset of Gxy.

(3) [G: H] < oo.




Proof. (3) = (2): Suppose that m = [G : H|] < oo. Then {Hg|g € G} =
{Hg\,... ,Hgn} for some g,...,9m € G. Let N := max{d(zo,gixo)|i =
l,...,m}. For each ¢ € G, g = hg; for some h € H and i. Then
d(hxzo, gro) = d(hzo, hgizo) = d(zo,gixe) < N. Hence Gxg C HB(zo, N), i.e.,

Hzxg is quasi-dense in Gxy.

(2) = (1): Suppose that Hz, is quasi-dense in Gzg. Then Gxo C HB(zg, N)
for some N > 0. For each a € 0G, there exists a sequence {g;zo} C Gxy which
converges to o in X U 0X. Since Gxog C HB(xo, N), we can obtain a sequence
{hizo} C Hzo such that d(h;xg, gizg) < N for each i. Then {h;xo} converges to

a, i.e., « € 0H. Hence 0G = 0H.

(1) = (3): Suppose that [G : H] = co. Let {Ha|a € G} = {Hax| )\ € A}
(Hay # Hay if A # X'). Since H C I acts properly discontinuously on X, for
each A € A, we may choose a, in such a way that d(xo, axxo) = d(xo, Haxxg).
Since X U 0X is compact, there exists a sequence {g;zo} C {arzo|A € A} which
converges to a point £(oco) € dG, where £ is a geodesic ray issuing from xy. Now

we show that £(o0) & OH.

Suppose that £(oco) € OH. Since H is geometrically finite, Im§ C H B(xo, N)
for some N > 0. Let R > N + 1. Since {g;zo} converges to £{(oc0), for large
enough %, d(xo, gixzo) > R and d(&(R), &ga(R)) < 1, where &4, is the geodesic

segment from zg to g;zo. Since Im& C H B(xzg, N), there exists h € H such that
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d(hxo,E(R)) < N. Then,

d(xg, h l.(/,.r”) = d(hxo, giTo)

VAN

d(hwo, §(R)) + d(E(R), E{/;-U;(‘R)) o (](fﬁlz«'f()(R)‘ giTo)
] x’V g 1 1 (d(.’l'().f],.’l‘()) = []))
= (](JIT(). (],‘.’I'()) — (R — N — 1)

= (l(.’l'(). _(],.'I'()).

This contradicts the assumption d(zq, gizg) = d(xo, Hgizo). Therefore £(o0) ¢

OH and 0G # 0H. O

Remark. The implications (3) = (2) = (1) hold without the assumption of the

geometrically finiteness of H.

In the case X is hyperbolic, Theorem 5.2.5 states that H is a subgroup of finite
index in G if and only if g(0H) = 0H for each g € G. On the other hand, this
is not always the case if X is a Busemann space. Indeed there exists an easy

counter-example.

Example 5.4.6. Let G :=Z xZ, X := R xR and G act on X by (a,b)-(z,y) =
(z +a,y +b) for each (a,b) € G and (x,y) € X. Then X is a Busemann space
and the subgroup H = Z x 0 of G is geometrically finite. The limit set 0H is
the two-points set, and let denote 0H = {a™,a™ }, where at = lim; (¢, 0) and

a” = lim;_,.(—1,0). For each (a,b) € G,

(a,b) -t = lim(a,b) - (¢,0) = im (¢ + a,b) = ™.

1—00 1—00

By the same argument, (a,b)-a~ = o~ . Hence g(0H) = 0H for each g € G. On
the other hand, it is clear that [G : H] = oo and 0G # 0H.




Corollary 5.4.7. Let (X,d) be a proper Busemann space, I' a group which acts
properly discontinuously on X, and G a subgroup of finite index in I'. Then I s

geometrically finite iof and only if G is geometrically finite.

Proof. We note that 0I' = 0G by Theorem 5.4.5 and the remark.
Suppose that G is geometrically finite. Then L] (0G) C GB(xo, N) for some
N > 0. Since 0I' = 0G,

L} (AT) = L} (8G) € GB(x0, N) C TB(zo, N).

o
Hence I' is also geometrically finite.
Suppose that I' is geometrically finite. Then L] (OI') C I'B(xo, N) for some
N > 0. Since G is a subgroup of finite index in I', Gz is a quasi-dense subset of

['zy by Theorem 5.4.5. Hence 'ty C GB(xzg, R) for some R > 0. Then

L} (8G) = L} (1) C TB(zo, N) C GB(zo, N + R).

zg

Thus G is also geometrically finite. [
In Corollary 5.4.7, we can not omit the hypothesis [[' : G] < co. Indeed there

exists a counter-example.
Example 5.4.8. Let G = (a,b) be the rank two free group with basis {a, b},
[''=G xZ and X :=T x R, where T is the Cayley graph of G with respect to
{a,b}. We note that {(a,0), (b,0), (1, 1)} is a generating set of I'. An action of
[' on X is defined as follows:

(a,0) * (t,r) = (a-t,r),

(6,0) x (t,r) = (b- t,r+ 2),

(1(,', 1) * (f, I') = (f, ey i 1)

where a -t and b -t describe the natural action of G on its Cayley graph 7. Then

' acts properly discontinuously and cocompactly as isometries on the proper




CAT(0) space X. This example was given by P. L. Bowers and K. Ruane in
(BR].

We show that G is not geometrically finite. Let g; := (a'b",0) € G for 1 =
1,2,... and 9 := (1¢,0) € T x R. Then g¢; * xy = (a'd*,2¢), and (a*, i) is
the midpoint of the geodesic segment from zy to g; * xo. Let £ : [0,00) — X
be the geodesic ray with £(i/v/2) = (a',i) for each i. Then £(c0) € OG, since
the sequence {g; * zo}; converges to (o). In [BR, p.186 (i)], it is shown that
d((a,1), G * zg) > i/3 for each i. Hence Im€& ¢ G * B(xg, N) for each N > 0.
Thus G is not geometrically finite.

On the other hand, it is clear that I' and H := (a) are geometrically finite and

o Gre v

By the example above, we see that a subgroup of a CAT(0) group is not always
geometrically finite in general. A Coxeter group is an important example of a
CAT(0) group. We show that each parabolic subgroup of every Coxeter group

W is geometrically finite with respect to X.

Example 5.4.9. Let (W, S) be a Coxeter system and 7" C S. There exists a
natural isometric embedding ¥ — ¥, and the Wyp-action on X is the restriction
of the W-action on ¥. Since Wy acts cocompactly on ¥, we see that each

parabolic subgroup Wy is geometrically finite with respect to X.

The following proposition was given by A. Ranjbar-Motlagh.

Proposition 5.4.10 ([R, Proposition 4.3]). Let (X,d) be a proper hyperbolic
space, I' a group which acts properly discontinuously on X, and G and Gy two
subgroups of I'. Suppose that Gy is geometrically finite and |0(G, N G2)| > 2. If

[Gi: Gy NGy < 0o for eachi = 1,2, then [G1VGy: Gi NGy < 0.




This proposition is not always true in general for Busemann spaces. We give a

counter-example.

Example 5.4.11. Let S := {51, 2,583,584} and let m : S x S — NU {oo} be the
function defined by
5=,
midy8) =32 HlE-gl=103,

oo if |i—j| =2

We define the Coxeter group W = (S |(st)™®) = 1for s,t € S) and X :=
L(W,S). Let Gy := Wy, 5,5, and Go := Wyg 4. 5,3. Then W acts properly
discontinuously on the proper CAT(0) space X, and G; and G5 are geometrically
finite. We note that

W = (Z_) * Zg) X (Zg * Z_g)

G; = (Zg * Zs) X Zg for each ¢ = 1,2 and

Gl N G‘2 = 1'1/'{51.53} = ZQ * Zz.
Thus [G; : G1NGy] = 2 for each i = 1,2. On the other hand, [G1 VG, : GiNG3] =
oo since G; V Go = W. We also have that 9(G; V G3) # 9(G; N Gs). In fact,
I(G1V G) = OW is a circle and 9(G1 N Ga) = OW{, ;) is a two-points set.

We prove the following result which corresponds to a part of Proposition 5.2.7.
Theorem 5.4.12. Let (X, d) be a proper Busemann space and I' a group which
acts properly discontinuously on X. Suppose that G is a subgroup of I' and v € T’
such that yGy~' C G. Let denote F = Uiz YGyt and H = ez vV'GY .
Then

(1) v(0G) C 0G.

Moreover, if either

(a) G is geometrically finite and OF = U,z 0(Y'GY "), or




(b) H s geometrically finite and OH = ;5 O(7'Gy7Y),

then

(2) 7(8G) = v~1(8G) = 4G,
(3) vGy 1 =G.

We first show the following proposition.

Proposition 5.4.13. Let (X,d) be a proper Busemann space, I" a group which

acts properly discontinuously on X.

(i) Let {G;|i=1,2,---} be a sequence of subgroups of I' such that G; C G4

for each i > 1, and F := U2, G;. If each G; is geometrically finite, then
the following statements are equivalent:
(1) OF = U2, 0G;.
(2) OF = 0G,, for some n.
(3) F =G, for some n.
(ii) Let {G;

§ =

1,2,---} be a sequence of subgroups of I' such that G, C G;
for each i > 1. If H := N2, G; is geometrically finite, then the following
statements are equivalent:

(1) 0H = N2, 0G;.

(2) OH = 0G,, for some n.

(3) H = G, for some n.
Proof. 1t is clear that (3) implies (2) and (2) implies (1) in each case (i) and (ii).
We show that (1) implies (3) in each case.

(i) (1) = (3): Suppose that (1) holds and F' # G for each i. Then there exists

a subsequence {Gj,} C {G;} such that Gj; is a proper subgroup of G;,,, for each

J. Let G’ := Gj;. Since I' acts properly discontinuously on X, for each j, there

exists an element g; € G’ \ G’_; such that d(zo, gjzo) = d(xo, (G} \ G’_1)Z0).




Here g; # gi for j # k because (G5\G5_1) N (G \ G),_;) = 0. Hence there exists
a subsequence {g;, o} C {g;xzo} which converges to a point £(co) € X, where £
is a geodesic ray issuing from z. Since {g;,zo} C Fxzq, £(00) € OF = U2, 0G;
by (1). Hence £(o0) € OG, for some m. Since G, is geometrically finite, Im £ C
G, B(xo, N) for some N > 0. Let R > N + 1. Since {g;, 7o} converges to £(o0),
for large enough k > m, d(xzo, g, xo) > R and (1(5(]1’:).5,,]A_,,,;‘)(R)) < 1, where €g;, zo
is the geodesic segment from z, to g;, zo. Since Im¢ C G!, B(xy, N), there exists
g € G, such that d(gzo,£(R)) < N. Then,

1

d(zo, 9~ ' gj, z0) = d(g0, gj,T0)
< d(gz0,&(R)) + d(E(R), &g, 20(R)) + d(&;, 20(R), gji 7o)
< N + 1+ (d(zo, gj,z0) — R)
= d(Zo, 9j,%0) — (R— N — 1)

=8 d(.’I'(), g)A—‘T())'

We note that g~'g;, € G’ \ Gj,_, because ¢! € G, C Gj.—1 C Gj, . This
contradicts the assumption d(zo, gj,z0) = d(zo, (Gj, \ G, _;)x0). Therefore (1)
implies (3).

(ii) (1) = (3): Suppose that (1) holds and H # G; for each i. Then there exists
a subsequence {G;;} C {G;} such that Gj,,, is a proper subgroup of G;,. Let
;.,/ := Gj,. Since I acts properly discontinuously on X, for each j, there exists an
element g; € G} \ G}, such that d(zo, g;z0) = d(zo, (G \ Gj;,)z0). Then there
exists a subsequence {g;, 0} C {g;x0} which converges to a point &(o0) € 90X,
where £ is a geodesic ray issuing from . For each i > 1, {g;z0}i>r C Gizo
for some large number k. Hence £(c0) € N2,0G; = O0H by (1). Since H
is geometrically finite, Iné¢ C HB(xzo, N) for some N > 0. Let R > N +

1. Since {gj,xo} converges to £(o0), for large enough &, d(xzo, g;,z0) > R and
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(1(&(11’),5‘{,“_,,.0(1?)) < 1, where 5_{,“_,.“ is the geodesic segment from z, to g;, .
Since Im& € HB(xo, N), d(hzo,E(R)) < N for some h € H. Then, by the same

argument as the one in (i),
d(zq, h lg_“ zo) = d(hzo, g;,%0) < d(z0, gj,T0) — (R — N — 1) < d(zo, gj,x0).

" S . 1 Y Y e s 1 o Y Y v
We note that h~'g;, € G} \ G ,, because h™' € H C G ,, C Gj . This
contradicts the assumption d(xo, g;,z0) = d(zo, (G}, \ G, 1)wo). Therefore (1)

implies (3). O
Using this proposition, we prove Theorem 5.4.12.
Proof of Theorem 5.4.12. (1): By the definition of limit sets,
Y(0G) = y(Gxo N OX) = yGxo N OX
= (vGy ) (y20) NOX = (vGy 7).

Since yGy~! C G, we have v(0G) = d(yGy~}) C G.

(2) and (3): First, we show that if G is geometrically finite, then v'G~~* is also
geometrically finite for each 7 € Z. Since G is geometrically finite, £ (0G) C GK
for some compact set K. We note that v(0G) = 9(y'Gvy~") by the proof of (1).

For each 7 € Z,

L4, 00 Gy ™) = L, (4(9G)) = 1'(£4,(9G))

CHGK) = (#Gy ' K),

Since 7' K is compact, /Gy~ " is geometrically finite.

Now we have a sequence
o O Ay GG O T AT e e

Applying Proposition 5.4.13 to the sequence above, if either (a) or (b) holds, then

Gy~ = F or H for some n € Z. In either case, we have that vGy! = G.




Then v(0G) = 0G = v~ 1(dG) by (1).
L]

Proposition 5.2.7 (2) and (5) are not always the case for Busemann spaces in

general.

Example 5.4.14. We consider the same situation of Example 5.4.6. Let G :=
Z x Z act on X := R xR by (a,b) - (z,y) = (z +a,y+b) for each (a,b) € G and
(r,y)€ X,let H:=7Z x0and g := (0,1) € G. Then G and H are geometrically
finite, and gHg ' = H. On the other hand, ¢" = (0,n) &€ H for each n € Z\ {0}
and [(H,g): Hl = [Z X Z : Z x 0] = oc.

We show a Busemann space-analogue of Theorem 5.2.8 by a similar proof to

the one in [G] and [R].

Theorem 5.4.15. Let (X,d) be a proper Busemann space and I" a group which
acts properly discontinuously on X. Suppose that Gy and G5 are two geometrically
finite subgroups of I'. Then

(1) Gy NGy is also geometrically finite,

(2) 0(G1 NGy) = 0G; N OGs.

Proof. Since GG; and G, are geometrically finite, there exists a compact subset K
of X such that £} (0G;) C G;K for each i = 1, 2.
(1) Let H := G; N G5y. Choose coset representatives {a} and {b,} so that
G = U Hay and G5 = U Hb,.
AEA neM
Then,
c;wGchJ(:H(LyMK)mm
AEA

L} (0Gy) C GoK = H Umx)

o
HEM
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Hence we have that

L (OH) C L1 (8G) N LT (0Gy)

= H< U (1,\]\"> N H< U b,,K)

AEA pneM

— H( U U U (ayK N hb“[{)),

heH AeA peM

We show that K := Unerr Urea Upem (@K N hb, K) is compact.

Since I' acts properly discontinuously on X, the set
{ay'hb,|h€ H, A€ A, pe M, KN (ay'hb,)K # 0}

is finite. Suppose that ugllhlhm = (1;_)1/131),,_, for some h; € H, \; € A and pu; € M
> ¢ 1t 1 — — -
(i = 1,2). Since ay,ay, hi = haby,b,! € H, we have that (I/\Z(l/\ll.]),,zbml € H.

Hence A\; = Ao, 1 = po and hy; = hs. Thus the set
{(h,\,p) € H x A x M | K N (a)'hb,)K # 0}

is finite, hence K is compact.

(2) It is clear that 0(Gy N G2) C G N 0G2. We prove that G, N 0Gy C
J(G1NGy). Let € be a geodesic ray issuing from xy with £(c0) € 0G1NOG,. Since
L (0G;) C G;K (j =1,2), for each i = 1,2,. .., there exist a; € G; and b; € G
such that £(i) € a; K Nb; K. Then both the sequences {a;z¢} and {b;zo} converge
to £(o0). Since I' acts properly discontinuously on X, the set {a; 'b; | KNa; 'b;K #
@} is finite. Hence there exist subsequences {a;,zo}, and {b;,zo}, such that

; e GiNGs. Let ng be a

~1 -1 il Ant y .
a; b, = a; 0b;, for each n,m. Then a;,a; = b;,b;

“im ~“'m

fixed number and ¢; := u,]ai’,] for each 5 = 1,2,... Then the sequence {c;zo}
no

i =1 o

converges to £(oo) because d(a;,xo,cjz0) = d(ai; o, (I,ijfz,iﬂ():l'(]) = (1(;1,'0,(17»"0.1'0) is

constant. Since {¢;} C G N Ga, &(0c0) € (G N G2). Hence we have that

8GN OG, = 0(G1NG,). O
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Corollary 5.4.16. Let (X,d) be a proper Busemann space and 1" a group which
acts properly discontinuously on X. If G and Gy are two geometrically finite
subgroups of I' and 0G| C 0G,, then there exists a geometrically finite subgroup

G C Gy such that 0G| = 0G).

Proof. Let G| := G1NG,. Then G is geometrically finite by Theorem 5.4.15 (1),

and 0G| = 0G| N 0G4 = 0G, by Theorem 5.4.15 (2). O

In view of Corollary 5.4.16, it is natural to ask whether the following statement
always holds: if G} and G, are geometrically finite subgroups of I' and 0G| C 0G>5,
then there exists a geometrically finite subgroup G, of I" such that G; C G and
0Gy = 0G,,. However this is not always the case. We give an easy counter-

example below.

Example 5.4.17. Let I' = (a, b) be the rank two free group with basis {a, b}, X
the Cayley graph of I with respect to {a, b}. Then I' naturally acts on its Cayley
graph X. Let Gy := (a) and Gy := (a®,b). Then G; and G, are geometrically
finite and 0G; C 0G2. We show that there does not exist a subgroup G, of I' such
that G; C GY, and 0Gy = 0G),. Let G, be a subgroup of I' such that G; C G|

and 0Gy C 0GY. Then a € G; C G, and b> € 0G, C 0G,. Hence ab™ € 9GS,

On the other hand, it is clear that ab> ¢ 0G,. Thus 0G, # 0G,.
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