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Introduction

Throughout this paper all spaces are assumed to be Ti-spaces, and in Chapter
4 all spaces are assumed to be regular spaces. The letter v denotes an infinite
cardinal, and x and A denote cardinals. This paper consists of mainly three
subjects. The first one is to study an extension property called P(locally-
finite)-embedding. The second one is to study P(locally-finite)-embedding
from the viewpoint of products. The third one is to study collectionwise
normality of products from the approach by an extension property called
weak z,-embedding.

Among properties of extending continuous mappings on a subspace over
the whole space, the notions of C*-, C- and P7"-embeddings are most fun-
damental. A subspace A of a space X is said to be C*- (respectively, C-)
embedded in X if every bounded real-valued (respectively, real-valued) con-
tinuous function on A can be extended to a continuous one over X. A
subspace A is said to be P7-embedded in X if every y-separable continuous
pseudo-metric on A can be extended to a continuous one over X. The C*-
and C-embeddings evidently come from the well-known Tietze-Urysohn’s ex-
tension theorem ([61], [62]), and the notion of P7-embedding has its origin
from a theorem of F. Hausdorff [20] on homeomorphic extensions of metric
functions. These extension properties have played so far important roles in
general topology and have been utilized in various areas such as dimension
theory or shape theory, where normal open covers of spaces are basically
used. In fact, the theorem below shows that normal open covers describe
these extension properties. These covers are often easier to handle than con-
tinuous functions or pseudo-metrics.

Theorem 1 (Shapiro [57], Gantner [16]). Let X be a space and A a subspace of
X. Then, A is C*- (respectively, C- or P7-) embedded in X if and only if
for every normal open cover U of A with |U| < w (respectively, < w or < v),
there exists a normal open cover ¥V of X such that VAA(={VNA:V € V})
refines U.

Recently, in consideration of the interface between set-theoretic and al-




gebraic topology, Dydak [12] investigated an extension theory of continuous
functions which take their values in metric simplicial complexes or C'W-
complexes. He proved some theorems characterizing several notions defined
in terms of extensions of partitions of unity, and showed that these notions
are closely related to P7-embedding. As one of such notions, it is defined in
[12] that a subspace A of a space X is P7(locally-finite)-embedded in X if
for every locally finite partition {f, : @ € Q} of unity on A with |Q| < 7,
there exists a locally finite partition {g, : @ € Q} of unity on X such that
Ja|A = fo forevery a € €. A subspace A of a space X is said to be P(locally-
finite)-embedded in X if A is P7(locally-finite)-embedded in X for every 7.
The P?(locally-finite)-embedding is strictly stronger than P7-embedding.

We remind that the notion of P(locally-finite)-embedding originally re-
lates to Katétov [30] and Przymusinski-Wage [54]. The main purpose of
Chapter 2 is to give a characterization of P7(locally-finite)-embedding by
locally finite covers of cozero-sets as the following:

Theorem 2 (Theorem 2.1.6). Let X be a space and A a subspace of X. Then,
A is P (locally-finite)-embedded in X if and only if every locally finite cover,
with Card < 7, of cozero-sets of A can be extended to a locally finite cover of
cozero-sets of X.

Theorem 2 was proved by Przymusinski-Wage [54] assuming that X is normal
and A is closed in X; the assumption is essential in their proof. Theorem 2
shows that P(locally-finite)-embedding defined by Dydak in connection with
an algebraic viewpoint is precisely equal to the notion which was discussed
by Katétov [30] or Przymusinski-Wage [54] in a set-theoretic topology. With
the aid of Theorem 2, we can prove the following result related to products
with a compact factor.

Theorem 3 (Theorem 2.2.3 (3)). Let X be a space, A a subspace of X and
an infinite cardinal. If A is P7(locally-finite)-embedded in X, then A x C is
P7(locally-finite)-embedded in X x C' for every compact Hausdorff space C
with w(C) < vy, where w(C) denotes the weight of C.

When we put C = I in Theorem 3, it is an affirmative answer to a problem

posed by Dydak in [12].

In Chapter 3, the motivation of our results is from the following two
theorems.

Theorem 4 (Ald-Sennott [2], Morita-Hoshina [39], Przymusiniski [49]). Let X be
a space, A a subspace of X and vy an infinite cardinal. Then, the following
statements are equivalent:

(1) A is P-embedded in X;




(2) A xY s C*-embedded in X x Y for every compact Hausdorff space
Y with w(Y) < ;

(3) A x A(vy) is C*-embedded in X x A(v), where A(vy) denotes the one-
point compactification of the discrete space of cardinality .

Theorem 5 (Przymusinski [52]). Let k be a cardinal, X a normal space and A
a closed subspace of X. Then, the following statements are equivalent:

(1) Every countable locally finite cover of open Fy-sets of A can be ex-
tended to a locally finite open cover of X ;

(2) A x J(k) is C*-embedded in X x J(K);

(3) A x Jy(k) is C*-embedded in X x Jo(k),
where J(k) denotes the hedgehog with k spines and Jy(k) denotes the zero-
dimenstonal hedgehog with k spines.

By introducing a new space .J,(x) and a new class of spaces of type t(v, k, A),
we characterize P7(locally-finite)-embedding as follows:

Theorem 6 (Theorem 3.3.1). Let X be a space, A a subspace of X and v an
infinite cardinal. Then, the following statements are equivalent:
(1) A is P7(locally-finite)-embedded in X;
(2) A XY is C*-embedded in X XY for every space Y of type t(v,w,);
(3) A x Jy(w) is C*-embedded in X x Jy(w).

A product space X x Y of spaces X and Y is called rectangularly normal if
A x B is C-embedded in X x Y for any closed subspace A and B of X and
Y, respectively [52]. A natural and interesting question is that when X x Y
is rectangularly normal. Only a few results which give rectangular normality
have been known. Przymusinski proved in [52] that a space X is a countably
functionally Katétov space (respectively, a countably Katétov space) if and
only if X x J(w) (respectively, X x J(k) for every k) is rectangularly normal.
Extending his result, we characterize (7, x)-Katétov spaces by rectangular
normality of products with J, (k) and spaces of type t(v, , ) as follows.

Theorem 7 (Theorem 3.4.2). Let X be a space, A a subspace of X and v, k
infinite cardinals. Then, the following statements are equivalent:
(1) X is (v, k)-Katétoy;
(2) X x Y is rectangularly normal for every space Y of type t(v, k,7);
(3) X x Jy(k) is rectangularly normal.

In Chapter 4, we apply weak z,-embedding, which is defined in Chapter
2 as one of extension properties, to consider the classical problem that:

Under what conditions, is the product X xY collectionwise normal if X xY
is normal?




Concerning this problem, in [40] Nagami showed the following:

Theorem 8 (Nagami [40]). The following statements hold.

(1) For a paracompact o-space X and a paracompact P-space Y, the prod-
uct X XY 1is paracompact.

(2) For a paracompact o-space X and a collectionwise normal P-space Y,
the product X XY is normal if and only if X x Y is collectionwise normal.

In (1) of Theorem 8, the case replacing “o-space” by “M-space” was proved
by Morita [34]. In another paper [41], extending o-spaces as well as M-spaces,
Nagami defined new spaces called X-spaces, and improved (1) of Theorem 8
as well as the Morita’s result as the following:

Theorem 9 (Nagami [41]). For a paracompact 3-space X and a paracompact
P-space Y, the product X x Y is paracompact.

This theorem is one of well-known results asserting that the product of two
paracompact spaces is paracompact. After his paper [41], taking products
of P-spaces and Y-spaces, some analogous results were obtained. In view of
Theorems 8 and 9, it is natural to ask whether “o-space” in (2) of Theorem
8 can be generalized to “X-space”. Indeed, Yang asked it in [73] as follows:

Let X be a paracompact X-space and Y a collectionwise normal P-space.
Suppose that X x Y is normal. Then, is X x Y collectionwise normal?

The case (1) of the following theorem is an affirmative answer to the above
problem, that is, an improvement of (2) of Theorem 8. Moreover, the cases
(3) and (4) are improvements of the K. Chiba’s results in [10].

Theorem 10 (Theorem 4.2.1). Suppose that X andY satisfy one of the follow-
ing conditions. Then, X XY s normal if and only if X XY 1is collectionwise
normal.

(1) X us a paracompact X-space and Y is a collectionwise normal P-space;

(2) X s a collectionwise normal X-space and Y is a collectionwise normal
first countable P-space;

(3) X s the closed continuous image of a paracompact M -space and Y is
a collectionwise normal P-space;

(4) X 1is the closed continuous image of a normal M-space and Y is a
collectionwise normal first countable P-space.

Let us note that the cases (2) and (4) seem first positive ones with no as-
suming the paracompactness of either X or Y.

The results in this paper are mainly quoted from [67], [68], [70] and [71].
The detailed citation will be denoted on the last part of each chapter.




Chapter 1.

Preliminaries

Throughout this paper, all spaces are assumed to be Tj-spaces, the letter
denotes an infinite cardinal, and x and A denote cardinals. The letter I stands
for the closed unit interval [0, 1]. In this chapter, we review definitions of some
extension properties and their fundamental facts. As for basic references, see
Alo-Shapiro [3], Engelking [13], Gillman-Jerison [18] and Hoshina [24].

1. Definitions of basic extension properties

First, we state the most basic notion in our research.

Definition 1.1.1 (cf. [18]). A subspace A of a space X is said to be C*-
embedded (respectively, C-embedded) in X if every bounded real-valued (re-
spectively, real-valued) continuous function on A can be continuously ex-
tended over X.

A subspace A of a space X is said to be a zero-set of X if A= f~1({0}) for
some continuous function f : X — I. The complement of a zero-set is called
a cozero-set.

Definition 1.1.2 (cf. [3]). A subspace A of a space X is said to be z-embedded
in X if every zero-set in A is the intersection of A with a zero-set of X.

Let A;- and Aj-embeddings be extension properties. We mean by “A;-
embedding implies A;-embedding” that every A;-embedded subspace of any
space X is As-embedded in X and write “A; — A,”. Likewise, when A;-
embedding is equivalent to As-embedding, we write “A; = Ay”. We denote
by “A; + Ay” Aj;-embedding and As-embedding. By Definitions 1.1.1 and
1.1.2, it is clear that C-embedding implies C*-embedding, and the latter
implies z-embedding.




For a cover U of a space X, put U* = {St(U,U) : U € U}. A sequence
{Uy : n € N} of open covers of a space X is said to be normal if U}, , < (=
refines) U,, for each n € N. An open cover U of X is said to be normal if
there exists a normal sequence {U,, : n € N} of X such that U; < U.

We adopt the definition of P7-embedding as follows instead of the original
one which was stated in the introduction (cf. Thorem 1.2.5).

Definition 1.1.3 (cf. [3]). A subspace A of a space X is said to be P7-embedded
in X if for every normal open cover U of A with |U| < +, there exists a normal
open cover V of X such that VA A(={VNA:V €V}) <U. A subspace
A of a space X is said to be P-embedded in X if A is P7-embedded in X for
every .

Definition 1.1.4 (Blair [6]). A subspace A of a space X is said to be z,-
embedded in X if every normal open cover U of A with |U| < ~, there exists
a cozero-set G of X containing A and a normal open cover V of G such that
VANA<U. A subspace A of a space X is said to be z,.-embedded in X if A
is z,-embedded in X for every 7.

Note that z,-embedding was defined as a cardinal generalization of z-embedding,
o, = g holds.

Let X be a space and A = {A, : @ € Q} a collection of subsets of
X. Then, A is said to be uniformly locally finite (respectively, uniformly
discrete) in X if there exist a locally finite (respectively, discrete) collection
{Gq : a € Q} of cozero-sets of X and a collection {Z, : a € Q} of zero-sets
of X such that A, C Z, C G, for every o € Q (Morita [37], Ohta [43] and
Blair [6]).

Definition 1.1.5 (Hoshina [21]). A subspace A of a space X is said to be U7-
embedded in X if every uniformly locally finite collection U of subsets of A
with || < v is uniformly locally finite in X. A subspace A of a space X is
said to be U-embedded in X if A is U7-embedded in X for every .

Note that P7-embedding implies U7-embedding ([21]).

Some of the properties like the above are often called “embedding”,
“weak-embedding” or “weak extension properties”. In this paper, we call
properties defined like the above simply “extension properties”.

ie.,

2. Review of characterizations of basic extension proper-
ties

A collection {f, : @ € Q} of continuous functions from a space X into I is
said to be a partition of unity on X if ) fo(z) = 1 for every z € X,
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where ) fo(2) means the least upper bound of all sums of finitely many
fa(z) s. A partition {f, : @ € 2} of unity on X is said to be subordinated
to a cover {U, : a € Q} of X if f7'((0,1]) C U, for every a € Q. Disjoint
subsets A; and A, of a space X are said to be completely separated in X
if there exists a continuous function f : X — I such that f(A4;) = 0 and
f(Ay) = 1. Clearly, A; and A, are completely separated in X if and only if
there exist disjoint zero-sets Z; and Z, of X such that A; C Z; («+ = 1,2).
Normal open covers can be represented by various forms as the following:

Theorem 1.2.1 ([3], [33], [34]). For an open cover U of a space X, the fol-
lowing statements are equivalent:

(1) U is normal;

(2) U is refined by a locally finite cover of cozero-sets of X;

(3) U 1is refined by a o-locally finite (or o-discrete) cover of cozero-sets of
X;

(4) U has a partition of unity subordinated to 1t;

(5) U is refined by a locally finite cover {Vy : U € U} of cozero-sets of X
such that Vi and X — U are completely separated in X for each U € U.

Here, we review characterizations of C*-, C- and z-embedding as the
following. In the next theroem, (1) < (2) is due to Gillman-Jerison [18],
(1) & (3) is due to Morita-Hoshina [38], and (1) < (4) is due to Morita
[35]. The abbreviated word AR means the absolute retract for the class of
metrizable spaces.

Theorem 1.2.2 ([18], [35], [38]). Let X be a space and A a subspace of X.
Then, the following statements are equivalent:

(1) A s C*-embedded in X,

(2) Every disjoint zero-sets Zy and Zy in A are completely separated in
X;

(3) For every finite normal open cover U of A, there exists a normal open
cover V of X such that V AN A < U;

(4) Every continuous map f : A — Y into a compact AR is continuously
extended over X.

A subspace A of a space X is called well-embedded in X if every zero-set
disjoint from A and A are completely separated in X.

In the following theorem, (1) < (2) is due to Gillman-Jerison [18] and
Blair-Hager (7], (1) < (3) is due to Gantner [16], and (1) < (4) is due to
Morita [35].

Theorem 1.2.3 ([7], [16], [18], [35]). Let X be a space and A a subspace of X .

Then, the following statements are equivalent:
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1) A is C-embedded in X;
2) A is z- (or C*-) embedded and well-embedded in X;
(3) For every countable normal open cover U of A, there exists a normal
open cover V of X such that VAN A < U,

(4) Every continuous map f : A — Y into a Cech-complete separable AR
18 continuously extended over X.

(
(

Especially, we have the following:
Corollary 1.2.4 (Gantner [16]). The P“-embedding equals C-embedding.

Let k be a cardinal. Let Iz = I x {8} for every # < k. Define the
equivalence relation E on 4., I as (, 81)E(y, 32) whenever z =y = 0 or
(x =y and [, = f»). Denote by J(k) the set of all equivalence classes with
respect to F and define a metric on J(k) as follows:

o((@, Bu), (v, o)) = { . gi ;Z?

Gl
for every (z,01), (y,32) € J(k). The set J(k) with this metric is called
the hedgehog with k spines. The p stands for the class of J(k) consisting of
(0,), 8 < k. The letter (z, ) denotes the equivalence class of (z, j3).

The letter Jy(k) denotes the zero-dimensional hedgehog with x spines,
i.e., the subspace {p} U {(1/n,3) : n € N, < K} of J(k). The hedgehog
is usually defined for infinite cardinals (cf. [13]). Notice that our definition
admits the case that  is finite.

For a space Y, w(Y') denotes the weight of Y. In the following theorem,
(1) & (2) is due to Hoshina [21] or Morita-Hoshina [39], (1) < (3) is due to
Blair [6], (4) is the original definition of P7-embedding by Shapiro [57] (see
[3]), and (1) < (5) < (6) are due to Morita [35] or Przymusinski [49].

Theorem 1.2.5 ([6], [21], [35], [49], [57]). Let X be a space and A a subspace
of X. Then, the following statements are equivalent:

(1) A is PY-embedded in X;

(2) A is U"-embedded and z- (or C*-, C-) embedded in X;

(3) A is z,-embedded and well- (or C-) embedded in X;

(4) Every y-separable continuous pseudo-metric on A can be extended to
a continuous pseudo-metric on X;

(5) Every continuous map f : A — J(vy) is continuously extended over
X4

(6) Every continuous map f : A — Y into a Cech-complete AR space
with w(Y') < 7 is continuously extended over X.




Theorem 1.2.6 (Hoshina [23]). Let X be a space and A a subspace of X. Then
the following statements are equivalent:

(1) A is z,-embedded in X

(2) For every locally finite cover U of cozero-sets of A with [U| < v, there
exists a o-locally finite collection V of cozero-sets of X such thatV covers A

and VAN A <U.

3. Review of basic facts

In this section, we mention useful facts for our later discussion. First we
state the most basic result in our research. The implications (1) = (2) and
(1) = (3) are well-known as Tietze-Urysohn’s extension theorem ([61], [62])

(cf. [3]).

Theorem 1.3.1 (Tietze-Urysohn's extension theorem [61], [62]). For a space X,
the following statements are equivalent:

(1) X s normal;

(2) Every closed subspace of X is C-embedded in X;

(3) Every closed subspace of X is C*-embedded in X ;

(4) Every closed subspace of X is z-embedded in X.

A space X is said to be y-collectionwise normal if every discrete closed col-
lection F of X with |F| < 7 can be separated by a disjoint open collection
of X. A space X is said to be collectionwise normal if X is vy-collectionwise
normal for every 7. It is well-known that X is w-collectionwise normal if and
only if X is normal (cf. [3] or [13]).

In the following theorem, (1) < (2) is due to Dowker [11], and (1) < (3)
is due to Blair [6].

Theorem 1.3.2 ([6], [11]). For a space X, the following statements are equiv-
alent:

(1) X s y-collectionwise normal;

(2) Every closed subspace of X is P7-embedded in X,

(3) Every closed subspace of X 1is z,-embedded in X.

It follows from Theorem 1.3.2 that a space X is collectionwise normal if and
only if every closed subspace of X is P- (or z,-) embedded in X.

The union of a locally finite collection of closed subsets is closed. On
the other hand, the union of a locally finite collection of zero-sets is not
necessarily a zero-set (see [24]). For calculation of some collection of zero-
sets, the theorem below is useful.




Theorem 1.3.3 (Morita-Hoshina [39]). Let X be a space and {A, : a € Q} a
uniformly locally finite collection of zero-sets of X. Then, | J{As : @ € Q} is
a zero-set of X.

Theorem 1.3.4 (Morita [37]). Let X be a space and {A, : a € Q} be a uni-
formly locally finite collection of C*- (respectively, C- or P"-) embedded sub-
spaces of X. If Ay U Ag is C*-embedded in X for every o, € €, then
U{Aq : @ € Q} is C*- (respectively, C- or P7-) embedded in X.

Next we review basic results of extensions of mappings on products with
a compact or a metric factor.

For the following result concerned with a compact factor, (1) < (2) is
due to Alo-Sennott [2], and (1) < (3) is due to Morita-Hoshina [39] or
Przymusinski [49].

Theorem 1.3.5 ([2], [39], [49]). Let X be a space and A a subspace of X.
Then, the following statements are equivalent:

(1) A is PY-embedded in X;

(2) AxXY is C*- (or P7-) embedded in X XY for every compact Hausdorff
space Y with w(Y) < 7;

(3) There exists a compact Hausdorff space Y with w(Y) = v such that
A XY is C*- (or P7-) embedded in X x Y.

By combining Theorems 1.3.4, 1.3.5 and 1.3.11, we have the following re-
sult; for a space Y, fw(Y) denotes the local weight of Y, ie., lw(Y) =
sup{w(y,Y) : y € Y} where w(y,Y) = min{w(U) : U is a neighborhood of

y}

Corollary 1.3.6. Let X be a space and A a subspace of X. Then, A is P7-
embedded in X if and only if A XY is C*- (or P7-) embedded in X x Y for
every locally compact paracompact Hausdorff space Y with tw(Y) < 7.

An application of Theorem 1.3.5 is the following result related to the homo-
topy extension property:

Theorem 1.3.7 (Morita-Hoshina [38]). Let X be a space and A a subspace of
X. Then, the following statements are equivalent:

(1) A is PY-embedded in X;

(2) (X x BYU (A xY) is P'-embedded in X xY for every compact
Hausdorff space Y with w(Y) < v and every closed subspace B of Y,

(3) (X x {0})U (A x I) is P"-embedded in X x I.

Related to a metric factor, we introduce the following result; it was
recently proved by Gutev-Ohta answering to Przymusirnski’s problem in [51].
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Theorem 1.3.8 (Gutev-Ohta [19]). Let X be a space, A a P?-embedded sub-
space of X and Y a metric space. Then, the following statements are equiv-
alent:

(1) A xY s C*-embedded in X XY,

(2) AxY is UY-embedded in X x Y

(3) AxY is P'-embedded in X x Y.

For Przymusinski’s problem [51], see also [19], [24], [25] and [45]. In compar-
ison with Theorem 1.3.8, note that C*-embedding on (2) and (3) of Theorem
1.3.5 can not be changed into U“-embedding in general (see [21]).

Next, we review some basic results concerning with m-embedding.

Definition 1.3.9 (Przymusinski [50]). A subspace A of a space X is said to be
m-embedded in X if A x Y is C*-embedded in X x Y for every space Y.

Notice that A is m-embedded in X if and only if A x Y is P-embedded in
X x Y for every space Y. The following theorem is known (see [24, Lemma
4.4)).

Theorem 1.3.10. Every compact subspace of a Tychonoff space X is m-embedded
in X.

Theorem 1.3.11 (Morita [36]). Every closed subspace of a locally compact para-
compact Hausdorff space X is m-embedded in X .

Theorem 1.3.12 (Michael, cf. [59]). Every closed subspace of a metric space
X 1is m-embedded in X .

Finally, we list other important results:

Theorem 1.3.13 (Morita [33]). For a normal vy-paracompact space X and a
compact Hausdorff space Y with w(Y) < v, the product X x Y is normal.

We denote by A(7) the one-point compactification of the discrete space with
cardinality ~.

Theorem 1.3.14 (Alas [1]). A space X is y-collectionwise normal and count-
ably paracompact if and only if X x A(y) is normal.

11




Chapter 2.

Extensions of locally finite partitions of
unity

In this chapter, we give a set-theoretical characterization of P(locally-finite)-
embedding. By using it, we show that P(locally-finite)-embedding is pre-
served by the product with a compact factor. Our basic idea is to “exactly”
extend locally finite covers of cozero-sets. We will make it clear how such
extensions differ from so called extensions of refinements.

1. P(locally-finite)-embedding and its characterization

Let X be a space and A a subspace of X. Let U = {U, : @ € 2} be an
indexed collection of subsets of A and V = {V,, : a € } an indexed collection
of subsets of X. If V,N A = U, for every a € €2, we say U is extended to V
or V is an extention of U. If U, C V, for every a € (2, we say V expands U
or V is an ezpansion of U. A partition {f, : @ € Q} of unity on X is said to
be locally finite if {f;1((0,1]) : a € Q} is locally finite in X.

Dydak defined in [12] the following notion.

Definition 2.1.1(Dydak [12]). Let X be a space and A a subspace of X. Then,
A is P7(locally-finite)-embedded in X if for every locally finite partition { f, :
a € Q} of unity on A with |Q] < v, there exists a locally finite partition
{ga : @ € 2} of unity on X such that g,|]A = f, for every o € Q. If A
is P7(locally-finite)-embedded in X for every v, A is said to be P(locally-
finite)-embedded in X.

In [12], it is stated that P?(locally-finite)-embedding implies P”-embedding,
and the inverse implication need not hold (see Example 2.1.7 below).
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From a set-theoretic viewpoint, we remind that the notion of P(locally-
finite)-embedding originally relates to Katétov [30] and Przymusinski-Wage
[54]. Katétov introduced in [30] some extension properties which are gener-
alizations of collectionwise normal countably paracompactness; these prop-
erties was named later by Przymusirniski-Wage [54].

Definition 2.1.2 ([30], [54]). A space X is said to be Katétov (respectively,
countably Katétov) if X is normal and for every closed subspace A of X,
every locally finite (respectively, countable locally finite) open cover of A
can be extended to a locally finite open cover of X. A space X is said to
be functionally Katétov (respectively, countably functionally Katétov) if X is
normal and for every closed subspace A of X, every locally finite (respectively,
countable locally finite) cover of cozero-sets of A can be extended to a locally
finite open cover of X.

Katétov showed in [30] that every collectionwise normal and countably
paracompact space is Katétov and that every functionally Katétov space is
collectionwise normal. Similarily, he also stated in [30] that every normal
and countably paracompact space is countably Katétov. So these extension
properties are concluded as the following:

Diagram 2.1.3. The following implications hold, where CN means “collection-
wise normal”, CP means “countably paracompact”, C. means “countably”
and F. means “functionally”.

CN+CP —— Katétov —— F. Katétov —— CN

l l l l

N+CP —— C. Katétov —— C. F. Katétov —— N

Przymusinski-Wage showed by examples in [54] any of implications is not
reversed. They also showed in [54] the following result; in their proof of
(1) of the “only if” part, the normality of X and the closedness of A are
essentially used.

Theorem 2.1.4 (Przymusiniski-Wage [54]). The following statements hold.

(1) A space X 1is functionally Katétov if and only if every locally finite
partition of unity on any closed subspace A of X can be extended to a locally
finite partition of unity on X.

(2) A space X 1is collectionwise normal if and only if every locally finite
partition of unity on any closed subspace A of X can be extended to a (not
necessarily locally finite) partition of unity on X .
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They also comment that (2) in the above can be generalized like (1) < (2)
of the following theorem; Dydak showed in [12] all of the conditions below
are equivalent.

Theorem 2.1.5 ([12], [54]). For a space X and a subspace A of X, the follow-
ing statements are equivalent:

(1) A is P7-embedded in X;

(2) Ewvery locally finite partition, with Card < v, of unity on A can be
extended to a (not necessarily locally finite) partition of unity on X;

(3) Every partition, with Card < 7y, of unity on A can be extended to a
partition of unity on X.

Thus, it is natural to ask whether a subspace A of a space X is P(locally-
finite)-embedded in X if and only if every locally finite cover of cozero-sets
of A can be extended to a locally finite cover of cozero-sets of X. From these
points of view, we prove this equivalence as follows:

Theorem 2.1.6 (Main). Let X be a space and A a subspace of X. Then, A
is P7(locally-finite)-embedded in X if and only if every locally finite cover,
with Card < 7y, of cozero-sets of A can be extended to a locally finite cover of
cozero-sets of X.

Theorem 2.1.6 shows that P(locally-finite)-embedding, which was defined by
Dydak in connection with algebraic viewpoints, is precisely equal to the no-
tion which had discussed by Katétov or Przymusinski-Wage in a set-theoretic
topology. From the points of Theorems 2.1.4 and 2.1.6, one may ask the fol-
lowing:

Is it true that A is P7-embedded in X if and only if locally finite cover,
with Card < 7, of cozero-sets of A can be extended to a cover of cozero-sets
of X 7

On the case of v = w, this is affirmatively answered easily. However on the
case of v > w, this is negative. Indeed, in Bing’s space H ([5, Example H],
see also [48]), there exists a closed subset A which is not P7-embedded in H.
We have that U U (H — A) is a cozero-set of H for every cozero-set U of A.
Therefore every locally finite cover of cozero-sets of A can be extended to a
cover of cozero-sets of H.

From now on, we use P(locally-finite)-embedding under the meaning of
the charactrization in Theorem 2.1.6 without reference. Here, we hold an
example which directly follows from Theorems 1.3.2 and 2.1.4.

Example 2.1.7 (Przymusiniski-Wage [54, Example 3]). The P-embedding need
not imply P%(locally-finite)-embedding.

14




We say that a subspace A of a space X is L7-embedded in X if every
locally finite collection U of cozero-sets of A with |[U/| < « has a locally finite
expansion of cozero-sets of X. A subspace A of a space X is said to be
L-embedded in X if A is L7-embedded in X for every +.

Proposition 2.1.8. Let X be a space, A a subspace of X and v an infinite
cardinal. Then, A is P7(locally-finite)-embedded in X if and only if A is C-
and L7-embedded in X .

From Proposition 2.1.8, it also follows that “P?(locally-finite)=P7 + L7”.
For the proof of Theorem 2.1.6, the following characterization of C-
embedding is essential (cf. Remark 2.1.10).

Lemma 2.1.9. Let X be a space and A a subspace of X. Then, A 1s C-
embedded in X if and only if for every continuous function f : A — I and
disjoint zero-sets Zy, Zy of X with Z; N A = f~1({i}) (i = 0,1), there exists
a continuous extension g : X — I of f such that Z; = g *({i}) (i = 0,1).

By Ishii-Ohta [27], a subspace A of a space X is said to be Ci-embedded
in X if any zero-set Z; of X and any zero-set Zy of A disjoint from Z; are
completely separated in X. In [27] it is proved that C)-embedding implies
well-embedding; and by [21] U“-embedding implies C-embedding. Hence it
follows from Theorem 1.2.3 that A is C-embedded in X if and only if A is
C*- and Cj-embedded in X ([27]).

Proof of Lemma 2.1.9. To prove the “if” part, assume that for every continuous
function f: A — I and disjoint zero-sets Zy, Z; of X with Z;NA = f~1({i})
(1 = 0,1), there exists a continuous extension g : X — I of f such that
Z; = g '({1}) (i = 0,1). To prove C-embeddability of A in X, it suffices
to show that any continuous function f : A — (0,1) can be extended to a
continuous function g : X — (0,1). Regard f as f : A — I and apply the
condition to Zy = Z, = (). Then the extension g of f satisfying the condition
maps X into (0,1). Hence g is the desired extension.

To prove the “only if” part, suppose A is C-embedded in X. Let f :
A — I be a continuous function and Zj, Z; disjoint zero-sets of X with
Z;NA = f'({i}) : = 0,1). Let £ : X — I be a continuous function
satisfying that ¢~'({i}) = Z; (1 = 0,1). At first, we prove the following
claim.

Claim. There exists a continuous extension h : X — I of f such that Z; C
h({i}) (i = 0,1).

Proof of Claim. By induction, we shall construct continuous functions A, :

15




[—1/2"1,1/2"1] (n € N) which satisfy the following conditions:
(1) h7'({i}) D Z; (i=0,1) and A *({0}) D ZyU Z; (n > 2); and
2) |f-2r (hlA)| <1/2" (neN).

Let k; = f — ¢|A and put Fy = k;'([-1,-1/2) U [1/2,1]). Then, F; is a
zero-set of A disjoint from Zy U Z;. Since A is Ci-embedded in X, there
exists a continuous function j; : X — I such that

X -

Tt {1}) D Fi and j;7'({0}) = Z,U Z1.

Since A is C*-embedded in X, there exists a continuous function f; : X — I
such that fi|A = f. Define a continuous function h; : X — I by

hi(z) = ji(z) - fi(z) + (1 = ji(z)) - (x)

for every x € X. Then, h, trivially satisfies the conditions (1) and (2).

Next assume that the continuous functions hq, ..., h, are defined with the
properties (1) and (2) for i = 1,...,n. Put k,yy = f — > (hi|A). Then,
by the assumption (2), k41 takes its value in [—1/2",1/2"]. Put

- A 11
Fr = knil([— Bk [W’Q—HD-

Then, F,,. is a zero-set of A disjoint from ZyU Z;. Since A is C-embedded
in X, there exists a continuous function j,,; : X — I such that

j;il({l}) D Fyy1 and .7;+11({0}) = ZyU Z;.

Since A is C*-embedded in X, there exists a continuous function f,,;: X —
[—1/2™,1/2"] such that f,+1|A = kn41. Define a continuous function hj,
by

hnt1(%) = fri1(2) * Jngr ()

for every z € X. Then h,y : X — [-1/2",1/2"] is a continuous function
satisfying (1) and (2). Hence the induction completes.

Put h = ((3 ;enhi) A1) V0. It is not hard to see that h is continuous,
h|A = f and Z; C h='({i}) (i = 0,1). It completes the proof of Claim. O

Here, put D = h7'({0}) U h™'({1}) — Zy U Z;. Notice that D can be
represented as D = UieN D;, where each D; is a zero-set of X. Since
Anh{i}) = fF1{}) = AnZ (i = 0,1), we have AND = @ and
hence AN D; =0 (i € N). Since A is well-embedded in X, there exists zero-
set F; of X such that F;ND; = @ and A C F;. Since ﬂieN F; is a zero-set of X,
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there exists a continuous function ¢ : A — I such that (,.y F; = ¢~ '({1}).
Then it follows that

Ac e '({1}) and o' ({1H)n (R {OH)UR ({1} - ZoU Z)) = 0.

Define a continuous function g : X — I by

9(z) = p(z) - h(z) + (1 - p(z)) - £(z)

for every z € X. Then, ¢ is an extension of f. Finally we shall show that
Z; = g'({1}) (¢ = 0,1). Since Z; = £7*({i}) c A '({i}) (¢ = 0,1), we
have Z; € g7'({s}) (i = 0,1). Suppose z ¢ Zy U Z;. Then 0 < ¢(z) < 1.
If p(x) = 1, then 0 < h(z) < 1 because of the definition of ¢; it follows
that 0 < g(z) < 1. If p(z) < 1, then g(z) > (1 — ¢(x)) - £(z) > 0 and
g(z) < p(x)- 14+ (1 —¢(x))-1=1; it follows that 0 < g(z) < 1. These show
that X — ZoU Z; C ¢7'((0,1)). Thus we have Z; = g7'({i}) (i = 0,1). The
proof of Lemma 2.1.9 is completed. O

Proof of Theorem 2.1.6. The “only if” part is easy to see. Assume that every
locally finite cover, with Card < 7, of cozero-sets of A can be extended to
a locally finite cover of cozero-sets of X. By Theorems 1.2.1 and 1.2.3, we
first note that A is C-embedded in X. Let {f, : @ < 7} be a locally finite
partition of unity on A. From the assumption, there exists a locally finite
cover {U, : a < v} of cozero-sets of X such that U,NA = f.1((0, 1]) for every
a < 7. By Lemma 2.1.9, there exists a continuous extension g, : X — I of f,
such that ¢;'((0,1]) = U, for every a < . It is easy to see that qu gp is
continuous and positive-valued. Hence {ga/ > 5., 95 : @ < 7} is the required
locally finite partition of unity on X. O

Remark 2.1.10. Frantz proved in [14] Lemma 2.1.9 assuming the normality
of X and the closedness of A. According to [14], Frantz’s result shows that
Tietze-Urysohn’s extension theorem admits controlling the extended function
so as to take on certain specified values. Lemma 2.1.9 shows the controlling
extension itself equals C-embedding.

2. P(locally-finite)-embedding on products with a com-
pact factor

In this section, we discuss the extension of P(locally-finite)-embedding with
a compact factor. Our motivation of this section is the following problem
posed by Dydak in [12].
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Problem 2.2.1 (Dydak [12]). Let A be a P7(locally-finite)-embedded subspace
of a space X. Then, is A x I P7(locally-finite)-embedded in X x I7

He posed Problem 2.2.1 investigating the homotopy extensions of some ex-
tension properties containing P(locally-finite)-embedding. From this point
of view, he proved the following result.

Theorem 2.2.2 (Dydak [12]). Let X be a space and A a subspace of X. If
A x I is P7(locally-finite)-embedded in X x I, then (X x {0}) U (A x I) is
P7(locally-finite)-embedded in X x I.

For the products with a compact factor, we have the following conclusion.
The (1) and (3) were known for the case of P-embedding (cf. Theorem 1.3.10
and Corollary 1.3.6). An affirmative answer to Problem 2.2.1 follows from
(3) immediately.

Theorem 2.2.3. Let X be a space and A a subspace of X. Then, the following
statements hold.

(1) Let X be Tychonoff and A compact. Then for any space Y, A XY is
P(locally-finite)-embedded in X x Y.

(2) Let A,, a € Q, be L"-embedded subspace of X. If {Ay : € Q} has
a locally finite expansion of cozero-sets of X, then |J,cq Aa is L7-embedded
in X.

(3) Let A be P7(locally-finite)-embedded in X and Y a locally compact
paracompact Hausdorff space with fw(Y) < 7. Then, A XY 1is PY(locally-
finite)-embedded in X x Y.

As an application of Theorem 2.2.3, we show the following result; the
case of P7-embedding was known (cf. Theorem 1.3.7). The implication
“(1) = (3)” is also shown by Theorem 2.2.2 and (3) of Theorem 2.2.3.

Corollary 2.2.4. Let X be a space and A a subspace of X. Then, the following
statements are equivalent:

(1) A is PY(locally-finite)-embedded in X;

(2) (X x B)U (A xY) is P(locally-finite)-embedded in X xY for every
compact Hausdorff space Y with w(Y) < 7 and every closed subspace B of
X;

(3) (X x {0}) U (A x I) is P"(locally-finite)-embedded in X x I.
Let us prove Theorem 2.2.3.

Proof of Theorem 2.2.3. To prove (1), let X be Tychonoff, A compact and Y a
space. By Theorem 1.3.10, A x Y is P-embedded in X x Y. By Proposition
2.1.8, it suffices to show A x Y is L-embedded in X x Y. To prove this,
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let {U, : @ € Q} be a locally finite cover of cozero-sets of A x Y. Let
py : AxY — Y be the projection. Since the image of a cozero-set under an
open perfect map is a cozero-set (see [15, Lemma 3.4] or [13, 1.5.L]), py (U,)
is a cozero-set for every a € Q. Hence, {X X py(U,) : @ € Q} is a locally
finite cover of cozero-sets of X x Y and expands {U, : a € Q}. It follows
that A x Y is L-embedded in X x Y. So, (1) holds.

To prove (2), let {Us : § < v} be a locally finite collection of cozero-sets
of Uyeq Aa- Let {Gq : o € Q} be a locally finite expansion of {A, : a € Q}
of cozero-sets of X. For every a € (2, there exists a locally finite collection
{Bf : B < v} of cozero-sets of X such that Us N A, C Bf for every 3 < .
Then, it is easily shown that {{J,cq(B§ N Ga) : B < 7} is a locally finite
collection of cozero-sets of X such that Us C |J,cq(B§NG,) for every § < 1.
It follows that | J,cq Aa is L7-embedded in X.

To prove (3), let A be a P7(locally-finite)-embedded subset of X. Let
C be a compact Hausdorff space with w(C) < . To prove A x C' is L7-
embedded in X x C, let U = {U, : @ < v} be a locally finite collection
of cozero-sets of A x Y. Let py : A x C — A be the projection. Since
{pa(Uy) : a < 7} is a locally finite collection of cozero-sets of A, there exists
a locally finite expansion {V, : a € Q} of {pa(U,) : @ < 7} of cozero-sets of
X. Clearly, {V, x C : @ < «} is locally finite in X x C and U, C V, x C for
each a < 7. It shows that A x C' is L7-embedded in X x C.

Since Y has a uniformly locally finite cover of compact subsets with weight
< 7, from (1) and (2) of this proposition and the fact shown above, A x Y
is L7-embedded in X x Y.

On the other hand, by Corollary 1.3.6, A x Y is C-embedded in X x Y.
Hence by Proposition 2.1.8, A x Y is P7(locally-finite)-embedded in X x Y.
It completes the proof. O

Proof of Corollary 2.2.4. (1) = (2): Let Y be a compact Hausdorff space with
w(Y) < v and B a closed subspace of Y. Assume A is P7(locally-finite)-
embedded in X. By Theorem 1.3.7, (X x B) U (A x Y) is C-embedded
in X x Y. By Proposition 2.2.3, (X x B) U (A x Y) is L"-embedded in
X x Y. Hence it follows from Proposition 2.1.8 that (X x B)U (A x Y) is
P7(locally-finite)-embedded in X x Y.

(2) = (3): Obvious.

(3) = (1): Assume (3). Let {U, : @ < 7} be a locally finite cover
of cozero-sets of A. For a locally finite cover {U, x (1/3,1] : @ < v} U
{(A x [0,2/3)) U (X x {0})} of cozero-sets of (X x {0}) U (A x I), there
exists a locally finite cover {V, : a < v} U {W} of cozero-sets of X x I
such that V, N ((X x {0}) U (A x I)) = U, x (1/3,1] for every a < 7
and W N (X x {0)U(Ax 1) = (4 x[0,2/3)) U(X x {0}). Let Vj =

19




(VoUW)N (X x {1}). Then {Vg}U{VanN (X x {1}) : 1 < @ < v} can be
regarded as a locally finite cover of X extending {U, : @ < 7}. Hence A is
P7(locally-finite)-embedded in X. The proof is completed. O

Remark 2.2.5. In (3) of Proposition 2.2.3, local-compactness of Y can not be
replaced by Cech-completeness. Indeed, for Michael line X (see [13, 5.5.3])
and the irrationals Y, Q (= the rationals in X') is P(locally-finite)-embedded
in X and Q x Y is not C*-embedded in X x Y.

Finally, we introduce another problem posed by Dydak in [12]. In parallel
with Problem 2.2.1, he posed the following:

Problem 2.2.6 (Dydak [12]). Let A be a P”(point-finite)-embedded* subspace
of a space X. Then, is A x I P7(point-finite)-embedded in X x I7

3. P(locally-finite)-embedding and functionally Kat&tov
spaces

In this section, we give basic facts of P(locally-finite)-embedding and func-
| tionally Katétov spaces. For every n € N, the symbol [y]" stands for
{6 C 7y :]6] = n}. The [y]<¥ stands for {6 C v: |6] < w}.
Our motivation is the following result by Smith-Krajewski [58]:

A space X is y-expandable (i.e. every locally finite collection U of closed

subsets of X with [U| < vy can be expanded to a locally finite open collection
i of X) if and only if X is y-boundedly expandable (i.e. every locally finite
. collection U, with finite order, of closed subsets of X with [U| < 7 can be
\ expanded to a locally finite open collection of X) and w-expandable.

If X is assumed to be normal, the above fact is precisely the well-known
Katétov’s characterization of collectionwise normal and countably paracom-
pactness ([30], see also [3, Theorems 12.4, 21,25 and 21,26] and [13, 5.5.17]).
Motivated by the above result, we characterize P(locally-finite)-embedding
and functionally Katétov spaces by the statements composed by the count-
able cardinal case and the finite order case.

Theorem 2.3.1. Let X be a space and A a subspace of X. Then, A is P7(locally-
finite)-embedded in X if and only if A is P“(locally-finite)-embedded in X and
for every locally finite collection {U, : a < v} of cozero-sets of A with finite

*A subspace A of a space X is said to be P?(point-finite)-embedded in X if for every
point-finite partition {f, : @ € Q} of unity on A with || < ~, there exists a point-finite
partition {g, : @ € Q} of unity on X such that g,|A = f, for every a € .

20




order, there ezists a locally finite collection {V, : o < v} of cozero-sets of X
such that U, C V, for every a < .

Corollary 2.3.2. A space X is functionally Katétov if and only if X is count-
ably functionally Katétov and for every closed subspace A of X and every
locally finite collection {U, : o < 7} of cozero-sets of A with finite order,
there exists a locally finite collection {V, : a < v} of cozero-sets of X such
that U, C V, for every a < v.

To prove Theorem 2.3.1, we need a lemma.

Lemma 2.3.3. LetU = {U, : a < v} be a locally finite collection of cozero-sets
of a space X. For every 6 € U,en[7]", let Bs = Naes Ua — Upgs Us. Then,
for every n € N, there exists a locally finite disjoint collection {Bj : 6 € [y]"}
of cozero-sets of X such that Bs C By C ()5 Ua for every 6 € []™.

Proof. Fix n € N. We can express Bs = (J;cy Zj, where Zj is a zero-set

of X. Notice that {Z] : § € [y]*} is uniformly locally finite in X for every
j € N. Hence there exist a uniformly locally finite collection {F} : § € [y]"}
of zero-sets and a collection {G} : § € [7]"} of cozero-sets of X such that
Z3 C G C F{ C () ,es Ua for every 6 € [y]". Put

Bj = U(Gfs —({Fi:j<iney]* and p# 5})

1EN

for every & € [y]*. Since {F} : p € [y]"} is uniformly locally finite, by
Theorem 1.3.3, every Bj is a cozero-set of X. It is easily shown that {Bj :
6 € [y]"} is the required collection. This completes the proof. O

Proof of Theorem 2.3.1. It suffices to show the “if” part. Assume that A
is P“(locally-finite)-embedded in X and for every locally finite collection
{U, : @ < v} of cozero-sets of A with finite order, there exists a locally finite
collection {V,, : a < v} of cozero-sets of X such that U, C V, for every
a < 7. Since A is C-embedded in X, by Proposition 2.1.8, it suffices to show
that A is L7-embedded in X. Let U = {U, : @ < v} be a locally finite cover
of cozero-sets of A. Let A, = {z € A : ord(z,U) > n} (n € N). Then A,,
n € N, is a cozero-set of A, because A, = J{(Naes Ua : 0 € [7]"}. Since
{A, :n € N} is a locally finite cover of A, by the assumption, there exists a
locally finite cover {A} : n € N} of cozero-sets of X such that A* N A = A,
for every n € N. For every § € U,n[V]", let Bs = (Naes Ua — Upgs Us-
Then by Lemma 2.3.3, for every n € N, there exists a locally finite disjoint
collection {Bj : § € [y]"} of cozero-sets of A such that B; C Bj for every
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d € [y]™. From the assumption, for every n € N, there exists a locally finite
collection {V5 : 6 € [y]"} of cozero-sets of X such that By C Vj for every
§ € [7]". Then, {VzN A% : § € [y]",n € N} is a locally finite collection of
cozero-sets of X. Put

Ut = U{V,g NAy:6€e[y]"and a € 6,n € N}

for every av < y. Then we have that {U; : @ < v} is a locally finite collection
of cozero-sets of X and U, C U} for every a < . Hence A is L7-embedded
in X. It follows that A is P7(locally-finite)-embedded in X. It completes
the proof. O

In view of Proposition 2.1.8, it is natural to ask the following two problems.

Problem 2.3.4. Suppose that a subspace A of a space X is LY- and P7-
embedded (or equivalently, P“(locally-finite)- and P7-embedded) in X. Then
is A P7(locally-finite)-embedded in X7

)

Problem 2.3.5. Suppose that a space X is countably functionally Katétov and
collectionwise normal. Then, is X functionally Katétov?

Problem 2.3.5 is compared with Przymusirnski-Wage’s question in [54, Ques-
tion 3] that:

“Is a countably Katétov and collectionwise normal space a Katétov space?”

If Problem 2.3.4 is affirmative, then Problem 2.3.5 is also affirmative. Theo-
rem 2.3.1 or Cororally 2.3.2 may be regarded as a partial answer to each of
these problems.

4. Exact extensions versus extensions of refinements

The purpose of this section is to compare extensions of covers (we often call
them exact extensions) and extensions of refinements of covers, and to show
that they essentially differ.

Obviously we have that:

A subspace A of a space X is P7-embedded in X if and only if every normal
open cover, with Card < vy, of A can be extended to a normal open cover

of X.

This shows that extensions of normal open covers are the same as extensions
of some refinements of normal open covers.
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Next, with the indexed forms, we express the facts already given.

(1) A is P7(locally-finite)-embedded in X if and only if for every locally
finite cover {U, : @ < v} of cozero-sets of A, there exists a locally finite
cover {H, : a < v} of cozero-sets of X such that H, N A = U, for each
a < 7.

(2) Ais P7-embedded in X if and only if for every locally finite cover {U, :
a < v} of cozero-sets of A, there exists a locally finite cover {H, : a < v}
of cozero-sets of X such that H, N A C U, for each a < 7.

Example 2.1.7 shows, on the statement (2) of the above, “C” can not be
changed into “="(cf. (A) and (D) in the picture below). It shows that, on
the case of locally finite covers of cozero-sets, exact extensions and extenions
of some refinements are different.

Here, recall (3) of Theorem 1.2.1, a characterization of normal open cov-

ers. The P7-embedding is expressed as the following indexed form.

A subspace A of a space X is P7-embedded in X if and only if for every
locally finite cover {U, : a < v} of cozero-sets of A, there exists a cover
{H : i < w,a < 7y} of cozero-sets of X such that {H;, : @ < v} is locally
finite in X (i < w) and (U, Hia) N A C U, for every o < 7.

From our viewpoint, we ask the following:

In the above result, can “C” be changed into “="7

To answer this question, first, we give a definition of weak z,-embedding,
which will be a key notion in our discussion.

Definition 2.4.1. A subspace A of a space X is weakly z,-embedded in X if for
any uniformly discrete collection {F, : @ < 7} of zero-sets of A, there exist
locally finite collections H; = {H;, : @ < v} (i < w) of cozero-sets of X such
that F, C |UJ;., Hia for each a < v. If A is weakly z,-embedded in X for
every v, A is said to be weakly z.-embedded in X .

Notice that any subspace A of any space X is weakly z,-embedded in X. The
following characterizations show that for weak z,-embedding, local-finiteness
and uniformly local-finiteness play similar roles.

fThis notion is introduced in [69] to discuss a cardinal generalization of C*-embedding
concerned with Ohta’s problem in [46]. In this paper, we only give natural characteriza-
tions of weak z,-embedding and their proofs (cf. [69, Added in proof (2)]). For the details
about this topic, see [46] and [69].
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Theorem 2.4.2. Let X be a space and A a subspace of X. Then, the following
statements are equivalent:

(1) A is weakly z,-embedded in X;

(2) For every locally finite collection {U, : o < v} of cozero-sets of A,
there exist locally finite collections H; = {H;a : @ < v} (i < w) of cozero-sets
of X such that U, C |, Hia for each a < 1v;

(3) For every uniformly locally finite collection {U, : @ < v} of cozero-
sets of A, there exist uniformly locally finite collections H; = {Hio : @ < 7}
(¢ < w) of cozero-sets of X such that U, C U, Hia for each a < 1.

From Theorem 2.4.2, it follows that:

A subspace A of a space X is weakly z.,-embedded in X if and only if for
any collection {U, : @ < v} of A with locally finite expansion of cozero-sets
of A, there exist locally finite collections H; = {Hio : @ < v} (i < w) of
cozero-sets of X such that U, C |, . Hia for each o < .

<w
From Thorem 2.4.2, we have the following corollaries. Corollary 2.4.5
answers the question mentioned above affirmatively.

Corollary 2.4.3. A subspace A of a space X is z,-embedded in X if and only
if A is weakly z,-embedded and z-embedded in X. Moreover, a subspace A of
a space X is P7-embedded in X if and only iof A is weakly z,-embedded and
C'-embedded in X .

Corollary 2.4.4. A subspace A of a space X 1s z,-embedded in X if and only if
for every locally finite collection {U, : o < v} of cozero-sets of A, there exist
locally finite collections H; = {Hio : @ < v} (i < w) of cozero-sets of X such
that Uy = (U,<,, Hia) N A for each a < 7.

Corollary 2.4.5. A subspace A of a space X is P7-embedded in X if and only
if for every locally finite cover {U, : o < v} of cozero-sets of A, there exist
locally finite collections H; = {H;qo : a < v} (i < w) of cozero-sets of X such
that Uy = (U, Hia) N A for each o <y and X = J Hi,.

1<w <w,a<y

Let us proceed to the proofs. To prove Theorem 2.4.2, we need a lemma.

Lemma 2.4.6. Any discrete collection of zero-sets of a space X with a locally
finite expansion of cozero-sets is uniformly discrete in X.

Proof. Let {F, : a € §1} be a discrete collection of zero-sets of a space X
and {G, : a € Q} a locally finite expansion of {F, : @ € Q} of cozero-sets
of X. By Theorem 1.3.3, G, — U#a Fj is a cozero-set for each a € (.

24




Then, there exist a cozero-set W, and a zero-set Z, such that F, ¢ W, C
PR adls & “gl#a Fps for every a € 2. Take a cozero-set U, such that
i e e Dl e S G = Ud;ﬁa Zg for every a € 2. Then, we can see that
{Uy : @ € Q} is discrete. O

Proof of Theorem 2.4.2. (1) = (2): Let {U, : @ < v} be a locally finite
collection of cozero-sets of A. For every 6 € [y]<“, put Vs = [,c5Ua —
Upgs Us. Fix n < w arbitrarily. For every § € [y]", we can express Vs =
Uk<w Z5, where every Z§ is a zero-set of A. Since {(N,c;Uas : 6 € [7]"} is a
locally finite collection of cozero-sets and {Vj : § € [y]"} is disjoint, {ZF : § €
[v]"} is a discrete collection of zero-sets of A with a locally finite expansion
of cozero-sets for every k < w. Then, by Lemma 2.4.6, {ZF : § € [y]"} is
a uniformly discrete collection of A for every k < w. Fix k < w arbitrarily.
From the assumption, there exists a locally finite collection {W;™ : § € [y]"}
of cozero-sets of X for every m < w such that Z§f c |J,,., W™ for every
6 € [y]". Let us define now, for every k,m,n < w and o < v, Hympa =
U{W;”" :0 € [y]" and a € 6}. Then, {Himna : @ < v} is a locally finite
collection of cozero-sets of X for every k,m,n < w. Moreover, we have that
9 Uk‘mmw Hy mn.o for every a < 7.

(2) = (3): Since for any cozero-set H there exist cozero-sets H,, zero-sets
Z, and cozero-sets W, (n < w) such that H = {J, ., H, and H, C Z, C
W, C H for every n € N, (3) follows.

(3) = (1): Since any uniformly discrete collection of zero-sets has a uni-
formly discrete expansion of cozero-sets, (1) obviously follows. It completes
the proof. O

Proof of Corollary 2.4.3. The “if” part follows from (1) < (2) of Theorem
1.2.6 and (2) of Theorem 2.4.2 immediately.

To prove the “only if” part, assume that A is z,-embedded in X. Clearly
A is z-embedded in X. To prove A is weakly z,-embedded in X, let {F, :
a < 7} be a uniformly discrete collection of zero-sets of A. Let {U, : o < v}
be a discrete expansion of {F, : @ < 7}. By Theorem 1.2.6, there exists a
o-locally finite collection H of cozero-sets of X such that HAA < {Uy : a0 <
Y} U{A = U,y Fa}- So, we can easily construct sequences of locally finite
collection of cozero-sets of X as the definition of weak z,-embedding.

Moreover, another statement also holds from Theorems 1.2.3 and 1.2.5
immediately. It completes the proof. O

Proof of Corollary 2.4.4. 1t follows from (1) < (2) of Theorem 2.4.2 and Corol-
lary 2.4.3. O

Proof of Corollary 2.4.5. The “if” part follows from the definition of P-
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embedding and Theorem 1.2.1 immediately. The “only if” part follows from
Corollary 2.4.4 and (1) < (3) of Theorem 1.2.5. O

For convenience, we prepare some extension properties by the indexed
forms:

For a space X and a subspace A of X, some extension properties are
expressed as follows:

(1) A is z,-embedded in X if and only if for every locally finite cover
{Us : @ < 7} of cozero-sets of A, there exists a locally finite cover {H, :
a < v} of cozero-sets of some cozero-set G of X containing A such that
H,NnAcCU, for each a < 7.

(2) A is L7-embedded in X if and only if for every locally finite cover
{Uy : @ < v} of cozero-sets of A, there exists a locally finite collection
{H, : a < v} of cozero-sets of X such that U, C H, for each o < 7.

(3) Ais L7- and z-embedded in X if and only if for every locally finite
cover {U, : a < v} of cozero-sets of A, there exists a locally finite collection
{H, : a < v} of cozero-sets of X such that H, N A = U, for each o < .

Let X be a space and A a subspace of X. Let {U, : @ < v} be a locally fi-
nite cover of cozero-sets of A. Fix a U,. We illustrate this situation as follows:

Ua

The following picture illustrate the relation of U, and H, (or H;,) on some
extension properties.
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(Theorem 2.1.6) (Definition)
Ha Ha Hu
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A X A X A X
(D) P7-embedding (E) P7-embedding
(Definition 1.1.3) (Corollary 2.4.5)

7
S, P
b

A A X/
V
(F') z,-embedding (G) z,-embedding (H) weak z,-embedding
(Definition 1.1.4) (Corollary 2.4.4) (Thorem 2.4.2 (2))
|
Ha: Hm
|
L—
|
A X X

If we change “w” in Corollary 2.4.5 into “1”, the condition equals that A is
P7(locally-finite)-embedded in X (see (A) and (F) in the picture). Similarily
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if we change “w” in (2) of Theorem 2.4.2 into “1”, the statement equals that
A is L7-embedded in X (see (C) and (H) in the picture). Also similar argu-
ment hold in z,- and L7- +2- (see (B) and (G) in the picture). As for the
uniform local-finite case, the similar result holds. Indeed, if we change “w” in
(3) of Theorem 2.4.2 into “1”, the statement equals that A is U7-embedded
in X.

Finally, we give a result from another viewpoint. Let A be a P-embedded
subspace of a space X. In view of Theorem 2.1.5 and the above discussion,
for a given locally finite partition of unity on A or a locally finite cover of
cozero-sets of A, its extension to X can not be required to be locally finite. If
we require the exact extensions to be locally finite, P-embedding is expressed
as follows. It seems to be interesting when we compare this result with Theo-
rem 2.1.6. We say a partition {f, : @ € Q} of unity on X is uniformly locally
finate if {f71((0,1]) : @ € Q} is uniformly locally finite in X.

Theorem 2.4.7. For a space X and a subspace A of X, the following state-
ments are equivalent:

(1) A is P7-embedded in X,

(2) Every uniformly locally finite cover, with Card < 7, of cozero-sets
of A can be extended to a uniformly locally finite (or locally finite) cover of
cozero-sets of X;

(3) Every uniformly locally finite partition, with Card < =, of unity of
A can be extended to a uniformly locally finite partition (or a locally finite
partition, a partition) of unity on X.

Proof. (1) = (2): Let {U, : @ < v} be a uniformly locally finite cover of
cozero-sets of A. By Theorem 1.2.5, A is U7-embedded in X. Hence, we can
take locally finite collections {H, : @ < v}, {Zs : @ < 7} and {G, : a < 7}
of X such that H, and G, are cozero-sets of X, Z, is a zero-set of X and
U, C H, C Z, C G, for each a < 7. Since A is z-embedded in X, we can
take H, N A = U, for each o < 7. Since A is well-embedded in X, there
exists a cozero-set H* of X such that AN H* =0 and H*UJ,., Ha = X.
Replace Hy = HyU H*, Zy = X and Gy = X. Since {G, : a@ < v} is a locally
finite cover of cozero-sets of X and {Z, : @ < v} is a locally finite cover of
zero-sets of X, it follows that { H, : a < 7} is a uniformly locally finite in X.
Obviously, {H, : a < 7} is a cover of cozero-sets of X extends {U, : @ < 7}.
So, (2) holds.

(2) = (1): Let U be a normal open cover of A with || < 7. From
(1) & (5) of Theorem 1.2.1, U has a uniformly locally finite refinement V of
cozero-sets of A with |V| < . Hence, by (3), V can be extended to a locally
finite cover of cozero-sets of X. It shows that A is P7-embedded in X.
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(2) = (3): By the quite same way as the proof of Theorem 2.1.6, we can
show them.

(3) = (1): Assume that every uniformly locally finite partition, with Card
< 7, of unity of A can be extended to a partition of unity on X. To complete
the proof, it suffices to show A is P7-embedded in X. Let {U, : a < ~}
be a normal open cover of A. By Theorem 1.2.1, {U, : @ < v} has a
uniformly locally finite partition {f, : @ < 7} of unity on A subordinated to
{U, : @ < 7v}. Hence, by the assumption, {f, : @ < v} can be extended to a
partition of unity on X. It shows that A is P7-embedded in X. It completes
the proof. O

Corollary 2.4.8. Let X be a space and A a subspace of X. Assume that every
locally finite collection, with Card < vy, of cozero-sets of A is uniformly locally
finite in A. Then, A s PY-embedded i X if and only if A s P7(locally-
finite)-embedded in X.

[t follows from Corollary 2.4.8 that every collectionwise normal P-space (=ev-
ery Gs-set is open) is functionally Katétov. On the other hand, Rudin’s
Dowker space [55] is a collectionwise normal P-space but not countably
Katétov ([54, Example 2]).

Remark 2.4.9. Theorem 2.1.6 is proved in [70], the proof in this paper is
essentially the same to the original but Lemma 2.1.9 is added here. On (3)
of Theorem 2.2.3, the case that Y is compact Hausdorff is proved in [70].
The definition of weak z,-embedding and Corollary 2.4.3 are stated in [69],
and other results are added here. For detailed results related to weak z. -
embedding, see [69].




Chapter 3.

Rectangular normality of product spaces

In this chapter, introducing a space J,(x) and spaces of type t(v, ,7), we
first characterize P7(locally-finite)-embedding by products with these spaces.
Next, extending Przymusiniski’s result in [52], we also characterize Katétov
spaces and functionally Katétov spaces by rectangular normality of products
with these spaces. Moreover, we give characterizations of v-collectionwise
normal spaces, and y-collectionwise normal A-paracompact spaces by prod-
ucts with these spaces.

1. The space J,(k) and spaces of type (7, k, A)

Let k be a cardinal. A subspace A of a space X is called an F-set if it is the
union of x many closed sets in X. In [52] Przymusinski proved the following
result, which is a motivation of our research.

Theorem 3.1.1 (Przymusinski [52, Proposition 2.2]). Let k be a cardinal, X a
normal space and A a closed subspace of X. Then, the following statements
are equivalent:*

(1) Ewvery countable locally finite cover of open Fy-sets of A can be ex-
tended to a locally finite open cover of X ;

(2) A x J(k) is C*-embedded in X x J(K);

(3) A x Jo(k) is C*-embedded in X x Jo(k).

Here, we give detailed definitions of Katétov spaces. Let k be a cardinal.
In [45], a subspace A of a space X is called a k-open set if it is the union of

*In [52, Proposition 2.2], “C*-embedding” in (2) and (3) is written as “C-embedding”.
However his proof actually shows C*-embedding of them, and only comments about C-
embedding. If we use Theorem 1.3.8 or [66, Theorem 1.1], C-embedding of (2) or (3) is
implied by C*-embedding.
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less than k many cozero-sets of X. The complement of a k-open set is called
a k-closed set. The letter k* denotes the smallest cardinal larger than .
In particular, wi-open sets mean cozero-sets. A k-open cover (respectively,
a k-open collection) of a space X means a cover (respectively, a collection)
consisting of k-open sets of X.

Let v and & be infinite cardinals. We say that a space X is (v, k)-Katétov
if X is normal and every locally finite k™-open cover, with Card < ~, of any
closed subspace of X is extended to a locally finite x*-open cover of X. A
space X is said to be (00, k)-Katétov (respectively, (v, 0o)-Katétov or (0o, 00)-
Katétov) if X is (v, k)-Katétov for every v (respectively, for every & or for ev-
ery v and ). Notice that (oo, co)-Katétov, (w, co)-Katétov, (oo, w)-Katétov
and (w,w)-Katétov mean Katétov, countably Katétov, functionally Katétov
and countably functionally Katétov, respectively, in Definition 2.1.2. Like-
wise Diagram 2.1.3, they follow that any ~y-collectionwise normal and count-
ably paracompact space is (7, co)-Katétov, that any (v, k)-Katétov space is
(7', k")-Katétov if ' < v and &’ < &k, and that any (v, k)-Katétov space is
v-collectionwise normal.

Next we define a space J, (k) and spaces of type ¢(v,x,A). Let v be an
infinite cardinal and x a cardinal. Let J, (k) = {p} U{(a, f) : @ < 7,3 < K}
be a space satisfying that the point p has basic neighborhoods of the form

{p} U {(a,ﬁ) Ta€y—10, f< ,{6}; § € [y]<

and other points (a, ) are isolated. From now on, we denote points («, 3)
by (a, 3) as the definition of J(k). Notice that, for each 5 < &, {p}U{(c, §) :
« < v} can be regarded as A(y), where A(7) is the one-point compactification
of the discrete space with cardinality 7. Note that J,(1) = A(y) and J, (k)
can be regarded as Jy(k).

Let v be an infinite cardinal and x and A cardinals. A Tychonoff space Y
is said to be a space of type t(vy, k, \) if Y satisfies the following conditions:

(1) Y can be represented as Y' U {p}, where p ¢ Y

(2) there exist a locally finite open cover {U? : a < v, 8 < K} of Y’ with
w(UP) < A for every o < v and 3 < k and a cover {Z° : a < v, < k} of
compact sets of Y’ such that Z? c U? for every a < y and 8 < k;

(3) {Us(p) : 6 € [y]<“} is a neighborhood base of p, where Us(p) denotes
{p} UU{UP : a € v — 6,8 < k} for every § € [y]<¥;

(4) for every § € [y]<¥, there exists §' € [y]<“ with § C ¢’ such that
(U{UZ : a € 6,8 < k}) NUs(p) = 0.

The condition (3) are illustrated as follows:
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Notice that the existence of {Z° : a < 7,3 < k} of (2) implies local com-
pactness and paracompactness of Y'. Hence we may assume each U’ is a
cozero-set of Y’ and each Z” is a compact zero-set of Y’. This will be fre-
quently used without reference.

The class of spaces of type t(7, &, A) includes spaces listed below from (a)
to (d) as special cases.

(a) A(y) is of type t(v,1,1),
(b) J(k) is of type t(w, k,w),
(e) J,(k) is of type t(7, , 1),

(d) A(Bacy(A+1)a) is of type t(7, 1, A),
where A(@q<y(A + 1)) is the one-point compactification of the topological
sum of y-many A + 1’ s (with the usual topologies).

Basic facts of spaces of type t(v,k,A) are the following; the proofs are
easy and omitted.

Proposition 3.1.2. The following statements hold.

(1) Every space of type t(v, K, A) is paracompact.

(2) A space of type t(vy,k,A) is of type t(v, k', N) if v <9, kK < k' and
ALN,

(3) Let Y be a closed subspace of a space of type t(y,k,A). If p € Y,
then Y is also a space of type t(y,k,A). If p ¢ Y, then Y is locally compact
paracompact, w(Y) < k- A and bw(Y) < A.




(4) Let Y be a compact Hausdorff space with w(Y) < X\ and 7y an infinite
cardinal. Then, Y 1is a closed subspace of some space of type t(y,1, ).

2. Extensions of locally finite k™ -open covers and prod-
ucts

In this section, we give a result concerning with extendability of locally finite
kT-open covers of a subspace of a space X to those of X. This will be a key
result of our later ones.

For an infinite cardinal k, we say a subspace A of a space X satisfies
the condition (x,) if every zero-set Z of A and every k*-closed subset F' of
X with ZN F = (), there exists a cozero-set U of X such that Z C U and
UNF = (. Note that any subspace A of a space X satisfies (x,), and that
every closed subspace A of a normal space X satisfies (x,) for every k.

Theorem 3.2.1. Let v and k be infinite cardinals. For a space X and a sub-
space A of X, consider the following conditions.

(1) Every locally finite k™ -open cover U of A with |U| < 7 can be extended
to a locally finite k™ -open cover of X, and A is P"-embedded in X .

(2) Every locally finite k*-open collection U of A with [U| < v can be
extended to a locally finite k*-open collection of X, and A is P"-embedded
m X.

(3) AxY is C*-embedded in X x Y for every space Y of type t(v,k,7).

(4) A x Jy(k) is C*-embedded in X x Jy(K).

Then, the implications (1) = (2) and (3) = (4) = (2) always hold. If A
satisfies (%), then all conditions are equivalent.

Before the proof, we give a lemma.

Lemma 3.2.2. Let 7y be an infinite cardinal, and k and A cardinals. Let X be a
space and Y a space of type t(v,k, ). LetY =Y'U{p} and {UP :a < v, <
k} be as the definition of t(y,k,A). Let go : X = T andg: X xY' — I
be continuous functions and {H, : « < v} a locally finite open collection
of X. Let ¢ : X xY' — I be a continuous function which satisfies that
71((0,1]) € Upey Uper(Ha x UY). Define a function h: X xY — I by

ho,y) go(z) if  g=1p,
WIT,y) =
"3 Y(z,y) - 9(z,y) + (1 —¥(z,y)) - go(z)  otherwise

for each (z,y) € X x Y. Then, h is continuous.
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Remark 3.2.3. In Lemma 3.2.2, assume further that A is a subspace of X x Y
satisfying that px(A) x {p} C A, where px : X x Y — X is the projection.
If a function f : A — I is given so that g|(AN (X xY")) = fI|(AN (X x Y")),
{(z,y) € A: |f(z,y) = flp,y)l > 1/3} C ¥7'({1}), {a € X : f(a,p) <
1/3} C g5 ({0}) and {a € X : f(a,p) > 2/3} C gy ({1}), then the function
h defined like Lemma 3.2.2 satisfies f~'({i}) € h='({i}) (: = 0,1). This fact
was essentially proved by Przymusinski [52].

Proof of Theorem 3.2.1. (1) = (2) and (3) = (4): Obvious.

(4) = (2): First we prove that A is P7-embedded in X. Since A(7) is
homeomorphic to {p} U {(e,0) : @ < v}, we may say that A x A(y) is C*-
embedded in A x J,(w). From the assumption, A x A(y) is C*-embedded in
X x Jy(w), hence in X x A(vy). By Theorem 1.3.5, A is P7-embedded in X.

Let {U, : @ < v} be a locally finite k"-open collection of A. Since k is
infinite, U, can be expressed as Uy = g, F? = Use, WE, where FF is a
zero-set of A, WP is a cozero-set of A and F¥ C WP’ for each 8 < k. For
every a < v and 3 < k, take a continuous function f? : A — I satisfying
that (f%)~1({1}) = F? and (f?)~1({0}) = A — W¥A. Define a continuous
function f : A x J,(k) — I as follows: f(z,y) =0ify =p; f(z,y) = f5(x)
if y = (o, B). By (4), there exists a continuous extension g : X x J, (k) — [
of f. Put

Ve = {m € X :|g(z,p) — g(z, (o, B))| > 1/2}

for each a < v and 8 < k. And, for every a < v, put V, = U,3<,<, V8. Then,
{V, : @ < v} is a locally finite k*-open collection of X such that V,NA = U,
for every o < y. Hence we have (2).
Next we prove (2) = (1) and (2) = (3) assuming that A satisfies ().
(2) = (1): Assume that A satisfies (x.). Let {U, : @ < 7} be a locally
finite k™-open cover of A. By (2), there exists a locally finite x*-open col-
lection {V, : @ < v} of X such that V, N A = U, for every @ < . Here

Vo can be expressed as ;.. W8, where W/ is a cozero-set of X for every

B <k PutV =), Vo Since V= s (User, WP and {W£ : a < v}
is a locally finite collection of cozero-sets of X, V' is a xk*-open set of X. By
(%x), there exists a cozero-set U of X such that A C U and U C V. Since A is
well-embedded in X, there exists a cozero-set V* of X such that V*UU = X
and ANV* = (. Replace V; by V, UV*. Then, {V, : @ < v} is the required
locally finite x*-open cover of X extending {U, : @ < v}. Hence we have
(1).

(2) = (3): Assume that A satisfies (x,). Let Y =Y" U {p} be a space of
type t(v, &,7), where Y = {{a, 8) : a < 7,8 < k}. Let {UP : a < v, < K}
and {Z? : a < v, 3 < Kk} be the same as in the condition (2) of the definition
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of Y. Let f: AXY — I be a continuous function. Notice that A x Y’
is C-embedded in X x Y’ by Corollary 1.3.6. So, there exists a continuous
function g : X x Y’ — I such that g|/(A x Y') = f|(A x Y'). Since A is
C*-embedded in X, there exists a continuous function gy : X — I such that

{reA: f(z,p) <1/3} Cgy'({0}) and {z € A: f(x,p) > 2/3} C g5 ' ({1}).

For every a < 7 and 3 < k, define

GP = {T € A:|f(z,p) — f(z,y)| > 1/6 for some y € fo} and

KP = {117 € A:|f(z,p) — f(z,y)| > 1/3 for some y € Zf}

Since ZP is compact, each G? is a cozero-set of A and K” is a zero-set of
A. For every a < v, put Go = g, G?; it is a k*-open set of A. Notice
that {G, : @ < v} is locally finite in A. By (2), there exists a locally finite
kT-open collection {H, : a < v} of X such that G, = H, N A for every
a < . By (%), for every a < v and 3 < &, there exists a cozero-set H? of
X such that Kg & H{j C H,. Define

= U U xUﬁ and F = U LJ .Kg X Zg)

a<ly <k a<ly <k

Then, F C G and G is a cozero-set of X x Y’. Since K? x Z? c A x UP
and {A x UP : a < 7,8 < k} is a locally finite collection of cozero-sets of
AxY' {KPx ZP : a < 7,8 < k} is a uniformly locally finite collection
of zero-sets of A x Y'. Hence, by Theorem 1.3.3, F'is a zero-set of A x Y.
Since A x Y’ is Cj-embedded in X x Y’, there exists a continuous function
¥ : X xY' — I'such that FF C ¥~ 1({1}) and (X xY')—G C ¥~({0}). Then,
the function A : X x Y — [ constructed as in Lemma 3.2.2 is continuous
and f~'({i}) € h7'({i}) (i = 0,1) (see Remark 3.2.3). Hence A x Y is
C*-embedded in X x Y (3) is satisfied. It completes the proof. O

In Theorem 3.2.1, the infiniteness of k is essential. Because, if k is finite,
the conditions (1) and (2) are equal to P7(locally-finite)-embeddability of A,
and the conditions (3) and (4) are equal to P7-embeddability of A (cf. the
proof of Theorem 3.5.1).

On the other hand, we remark that in Theorem 3.1.1, k is not assumed
to be infinite. Notice that, in Thorem 3.1.1, if  is finite, then each of the
conditions from (1) to (3) always holds for a normal space X and a closed
subspace A of X.
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Remark 3.2.4. The author does not know all of the conditions in Theorem
3.2.1 are equivalent without (%,). At least, either (1) or (4) in Theorem 3.2.1
need not imply (%,). For, consider the Tychonoff plank 7' = ((w; +1) X (w +
1)) — {(w1,w)}. Let X =T and A = w; x {w}. Then, for kK = w; and any
infinite cardinal vy, A satisfies conditions (1) and (4), but not (*,,). That A
satisfies (1) and that A does not satisfy (%,,) are easy to see (cf. Ohta [45,
footnote p.6, English translation]). To prove that A satisfies (4), notice that
J,(wy) is a Frechét space. Hence, by [13, Theorem 3.10.7], the projection
Piyw) : w1 X Jy(w1) = Jy(w:) is the closed map. So, by [13, Theorem
3.12.21(a)], wy X Jy(wy) is C*-embedded in fw; x J,(w;). By the same way
as [45], we have that A x J,(w;) is C*-embedded in X x J,(w;). Indeed,
A X Jy(w)(= wr x {w} x Jy(wy)) is C*-embedded in fw; x {w} x J,(w)
(= (w1 +1) x {w} x Jy(wy)). Moreover, (w; + 1) x {w} x Jy(wy) is C*-
embedded in (w; +1) x (w+1) x J,(w;). Hence A x J,(w;) is C*-embedded
in (w; +1) X (w+1) x Jy(w;); hence in X x J,(wy).

3. Applications to P(locally-finite)-embedding

In this section, we characterize P(locally-finite)-embedding by products.

Theorem 3.3.1 (Main). Let X be a space, A a subspace of X and ~y an infinite
cardinal. Then, the following statements are equivalent:
(1) A is P7(locally-finite)-embedded in X;
(2) AxY is C*-embedded in X XY for every space Y of type t(v,w,);
(3) A x Jy(w) is C*-embedded in X x J,(w).

In combination with (4) of Proposition 3.1.2, we have the following result. It
may be natural if we compare the following result with Theorem 1.3.5.

Corollary 3.3.2. Let X be a space, A a subspace of X and 7y an infinite car-
dinal. Then, A is P?(locally-finite)-embedded in X if and only if A xY
is C*-embedded in X XY for every closed subspace Y of a space of type

t(y,w, 7).

On the case of ¥ = w, Theorem 3.3.1 can also be stated as follows (cf.
Przymusiniski [52]):

Corollary 3.3.3. Let X be a space and A a subspace of X. Then, the following
statements are equivalent:
(1) A is P“(locally-finite)-embedded in X;
(2) AxY is C*-embedded in X x Y for every space Y of type t(w,w,w);
(3) A x Jy(w) is C*-embedded in X x Jo(w);
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(4) For some non-locally compact metric space Y, A XY is C*-embedded
e XY

(5) A xY is C*-embedded in X x Y for every separable metric space Y
such that Y — Y is locally compact for some closed discrete subspace Y, of

¥~
Let us proceed to the proofs.

Proof of Theorem 3.3.1. Since A satisfies (x,) and w-open sets mean cozero-
sets, Theorem 3.3.1 directly follows from Theorem 3.2.1. O

Proof of Corollary 3.3.2. The “if” part is contained in Theorem 3.3.1. The only
“if” part follows from Corollary 1.3.6, (3) of Proposition 3.1.2 and Theorem
$.3.1.°'0

To prove Corollary 3.3.3, we need a lemma.

Lemma 3.3.4. Let v and k be infinite cardinals. Let X be a space and A a
subspace of X. Assume that A XY is C*-embedded in X XY for every space
Y of type t(w, k,w). Then, A XY is C*-embedded in X xY for every metric
space Y with w(Y') < k such that Y — Y] is locally compact for some closed
discrete subspace Yy of Y.

Proof. First, let Z be a metric space with w(Z) < ksuch that Z' = Z—{yo} is
locally compact for some point y, € Z. We shall prove Z is of type t(w, K, w).
Take a local base {U, : n < w} of yy such that Z = U, and U,,, C U, for
every n < w. There exists a countable locally finite open cover V =, _ V»

of Z' such that each V, = {V/ : B < «} satisfies Vi C U, — U, for every
n < w and 3 < k, and that V is compact for every V € V. Hence it follows
that Z is a space of type t(w, k,w).

To complete the proof, let Y be a metric space with weight < k and Y;
a closed discrete subspace of Y satisfying that Y — Y] is locally compact.
Then, there exists a uniformly locally finite closed cover Z of Y such that
Z = Z,U 2,5, where 2, consists of compact subsets of Y and 2, is a disjoint
collection of subsets of Y satisfying that, for every Z € 25, Z —{yo} is locally
compact for some point yy € Z. Hence, by the fact shown above, every
member of Z; is a space of type t(w, k,w). Then, A x Z is C*-embedded in
X x Z for every Z € Z. To show this, first notice that A is C-embedded in X.
Hence, if Z € Z, it follows from Thorem 1.3.5 that A x Z is C*-embedded in
X x Z. If Z € Z,, it follows from the assumption. Next, by Theorem 1.3.12,
A x Z is C*-embedded in X x Y for every Z € Z. Moreover, A x (Z; U Z5)
is C*-embedded in X x Y for every Z;, Z; € Z. Indeed, if Z,, Z5 € Z, then
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Z1 U Zy is compact, if Z,,7Z, € Z5 then Z, N Zy = (), and if Z; € Z, and
Zy € Z, then Z, U Z, is a space of type t(w, k,w). Therefore by the similar
argument to the above, A x (Z; U Z3) is C*-embedded in X x Y. It follows
from Theorem 1.3.4 that A x Y is C*-embedded in X x Y. It completes the
proof. O

Proof of Corollary 3.3.3. (1) < (2) < (3): It follows from Theorem 3.3.1.
(3) = (4) and (5) = (3): Obvious.
(4) = (3): It can be shown similarily to [52, Proposition 2.2].
(2) = (5): It follows from Lemma 3.3.4. O

4. Applications to (v, k)-Kat&tov spaces

Our main purpose in this section is to characterize (v, k)-Katétov spaces by
rectangular normality of products.
First, we extend Theorem 3.1.1 to general cardinals as follows:

Theorem 3.4.1. Let X be a normal space, A a closed subspace of X and vy and
k infinite cardinals. Then, the following statements are equivalent:

(1) Every locally finite k™ -open cover U of A with |U| < ~y can be extended
to a locally finite k*-open cover of X;

(2) AxY is C*-embedded in X XY for every space Y of type t(v, k,7);

(3) A x J,(k) is C*-embedded in X x J,(k).

Theorem 3.4.1 need not hold without the assumption of the normality of X
if kK > w. Because for a non-normal countably compact Tychonoff space X
with w(X) < &, there exists a closed subspace A of X which satisfies (1) but
does not satisfy (3).

As applications of Theorem 3.4.1, we describe (v, k)-Katétov spaces by
rectangular normality of products with J,(x) and spaces of type t(v, k,7).
A product space X x Y is said to be rectangularly normal if for every closed
subspace A of X and closed subspace B of Y, A x B is C-embedded in X x Y
[62]. Clearly, if X x Y is normal then X x Y is rectangularly normal, and it
is not necessarily reversed (for, let X be any Dowker space and let Y = I).
Przymusinski proved in [52, Theorems 2.3 and 2.4] that:

X is (w, k)-Katétov if and only if X x Jo(k) (or X x J(k)) is rectangularly
normal.
We also extend this result as follows:

Theorem 3.4.2 (Main). Let X be a space and vy and k infinite cardinals. Then,
the following statements are equivalent:
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(1) X is (v, k)-Katétov,
(2) X x Y s rectangularly normal for every space Y of type t(~, k,7);
(3) X x J,(k) s rectangularly normal.

On (2) in Theorem 3.4.2, t(7, k,7y) can not be replaced by t(v, &, A) in
general. Let X be a normal countably paracompact space which is not w;-
collectionwise normal (e.g. [48]). Then, X has a closed subspace A which is
not P“'-embedded in X. Since every normal countably paracompact space
is countably functionally Katétov, A is P“(locally-finite)-embedded in X.
Let Y = A(@®n<w(wi + 1),). Then, A x Y need not be C*-embedded in
X x Y for Y. Indeed, on the contrary, A x Y is C*-embedded in X x Y. By
Theorem 1.3.10 and the assumption, we have A X (w; + 1) is C*-embedded
in X X (wy + 1). It follows from Theorem 1.3.5 that A is P“'-embedded in
X, it is a contradiction.

It is known that A is C-embedded in X if and only if A x Y is C*- (or
equivalently, C-) embedded in X x Y for every locally compact metric space
Y even if either Y is separable or not (see [25], also see Corollary 1.3.6).
That is, this fact does not depend on the weight of Y. On the other hand,
the condition on the weight of Y is essential in the following proposition.

Corollary 3.4.3. A space X is (w, k)-Katétov if and only if for every metric
space Y with w(Y) < k having a closed discrete subspace Y| with locally
compact Y — Yy, the product X x Y s rectangularly normal.

Related to Corollary 3.4.3, Przymusinski states in [51, Theorem 4] that X is
countably Katétov if and only if for every closed subset A of X and every
o-locally compact metric space Y, AxY is C*-embedded in X xY. However
he gives its proof only for the case of dim}Y = 0, and comments “I have a
very complicated proof that eliminates the assumption of dimY = 0” and
asks the reasonable simple way of eliminating dimY = 0. The author does
not know whether if the general case is true.

Proof of Theorem 3.4.1. Since X is normal and A is closed in X, A satisfies
(*¢). Hence all conditions of Theorem 3.2.1 are equivalent. To prove The-
orem 3.4.1, it suffices to show that (1) of Theorem 3.4.1 implies that A is
P7(locally-finite)-embedded in X. To prove this, let i = {U, : @« < 7} be a
locally finite cover of cozero-sets of A. By (1) of Theorem 3.4.1, there exists
a locally finite k*-open cover {V, : @ < v} of X such that V, N A = U, for
every a < 7. Since X is normal and A is closed in X, there exists a cozero-
set W, of X such that W,N A = U, and W, C U, for each a < . Take
a cozero-set W' of X satisfying that W' N A =0 and W' U, Wa = X.
Replace Wy by Wy U W'. Then, {W, : a < 7} is a locally finite cover of
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cozero-sets of X extending Y. It completes the proof. O

To prove Theorem 3.4.2, some preliminary results are needed. Lemma 3.4.5
below gives a class of spaces in which every closed subspace is m-embedded.

Lemma 3.4.4. Let X be a Tychonoff space, A a compact subspace of X andY a
space. Leth :Y — I and f : AXY — I be continuous functions. Then, there
exists a continuous extension g : X xY — I of f such that |g(z,y) —h(y)| <
gy for every (z,y) € X x Y, where ¢, = sup{|h(y) — f(a,y)| : a € A}.

Proof. By Theorem 1.3.10, A is m-embedded in X. Hence, there exists a
continuous extension f : X X Y — I of f. Define a function g: X x Y — I

by g(z,y) = f(z,y) A (h(y) +&y) V (h(y) —&y) for each (z,y) € X x Y. Then,
g is the required continuous extension of f. O

Lemma 3.4.5. Let v be an infinite cardinal, and k and A cardinals. Then,
every closed subspace of a space X of type t(vy, k, ) is m-embedded in X .

Proof. Let A be a closed subspace of a space X of type t(7y,k,A) and Y a
space. Let f: AxY — I be a continuous function. Let X' = X — {p} be a
subspace as in the condition (1) of type t(v, s, ). Let {U? : a < 7,8 < k}
and {Z? : a < 7,8 < k} be the same as in the condition (2) of the definition.
Take a locally finite cover {V/? : o < 7, 8 < k} of cozero-sets of X' such that
V£ is compact and Z8 ¢ V# ¢ Vif ¢ UP for each a < v and f < k.

Case 1. Assume p € A. For every a < 7 and < k, we shall define a
continuous function g8 : U? x Y — I as follows.

In case AN VY # (), by Lemma 3.4.4, take a continuous extension ¢ :
U xY — I of fI(ANVE) x Y such that [g2(z,y) — f(p,y)| < sup{|f(a,y) -
f(p,y)|:a€ A rw_f} for every (z,y) € U x Y.

In case ANVE = (), define a continuous function g? : U? x Y — I by
g%(z,y) = f(p,y) for each (z,y) € U5 x Y.

Let {p? : a < 7,8 < k} be a partition of unity on X’ such that
(P2)=1((0,1]) c V¥ for every @ < vy and 8 < k. Define a function g
X xY — I by

Z{pg(;zr) g8(z,y):a<y,B<k} ifz#p,
9(z,y) = e

Clearly g is an extension of f. It is easy to see that g is continuous at (z,y)
if z # p. We shall show that g is continuous at (p,y). Let y € Y and £ > 0.
Since f is continuous, there exist § € [y]<“ and a neighborhood O of y in Y
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such that |f(z',y') — f(p,y)| < €/4 for every (2',y') € (Us(p) N A) x O. Take
¢' € [y]<¥ with § C ¢’ such that (U{U? : a € 6,8 < k}) NUs(p) = 0. Let
(@', y") € Us(p) x O. We shall show that |g(z',y') — g(p,y)| < . We may
assume ' # p, because the case of 2’ = p is (‘dSll} shown.

Let v € v — ¢ and 8 < & satisfy that 2’ € US and AN VEZ £ 0. Then,

98" y) = f )| < sup{|f(a,) - fp,y)] e e ANVEY
£/2.

It follows that

195z, ) = fo, )|+ 1f (. y') — F(p,y)|

192(", ) — g(p,y)| <
< €/2+¢€/4=(3/4)c

Let @« € v — § and 3 < k satisfy that 2’ € U? and AN VZ = (. Then

bl

195(", ") — g(p, )| < 122", y) — Fo,¥)| + |f (0, ¥)) — f(p,)]
< 0+¢/4=¢/4

Let @ < v and 8 < k. If pf(2') > 0, then 2’ € U? and a ¢ §. Hence, it
follows from the facts shown above that

9= y) —gpy)l < Y (p‘i(:r) lga (', y') — g(p, y)i) <e

a<y,B<kK

Case 2. Assume p ¢ A. Define a continuous function f': (AU{p})xY — I
as follows: f'|(AxY) = f and f'(p,y) = 0 for each y € Y. So it comes back
to Case 1. It completes the proof. O

Lemma 3.4.6. Let v and A be infinite cardinals and k a cardinal. Let A be a
P*-embedded subspace of a space X and Y a space of type t(7,k, ). Then,
A XY 1s well-embedded in X x Y.

Proof. Let f : X xY — I be a continuous function satisfying that f~'({0})N
(AxY)=0. From the definition of Y, for every @ < 7 and 3 < k, we can
take a cozero-set V2 of Y’ such that Vf is compact and Z8 c V¥ C Vﬂ
UB. By Corollary 1.3.6, A x Y’ is C-embedded in X x Y’. There exists
a continuous function g X x Y" — I such that A x Y' C ¢g~({0}) and
“L{o}) N (X x Y') € g7 '({1}). Moreover, let gy : X — I be a continuous
function such that A o go '({0}) and {z € X : f(z,p) =0} C g5 ({1}). For
every a < v,3 < k and n € N, put

H o= {I € X :|f(z,y) — f(z,p)| > 1/(n+1) for some y € l—(f}
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Note that {{J, . H}s : @ < 7} is locally finite in X for each n € N. Since

B . -
Vs is compact, we have H?, is a cozero-set of X. For every n € N, put

X[

H, = U U (szlﬁ X ‘2?)-

a<ly <K

Then, H, is a cozero-set of X x Y’'. For every n € N, let ¢, : X x Y’ — I be
a continuous function such that H, = 1, ((0,1]). For every n € N, define a
continuous function A, : X x Y — [ as in Lemma 3.2.2. Put

W= (U (0.1) 0 (0. x¥),

neN

which is a cozero-set of X x Y. Then one can show that (A X Y)NW =0
and f~1({0}) C W. Hence A x Y is well-embedded in X x Y. The proof is
completed. O

Proof of Theorem 3.4.2. (1) = (2): Let Y be a space of type t(v, k,7). Let A
be a closed subspace of X and B a closed subspace of Y. By Lemma 3.4.5,
A x B is C-embedded in A x Y. It follows from Theorem 3.4.1 and Lemma
3.4.6 that A x Y is C-embedded in X x Y. Hence, A x B is C-embedded in
X x Y. Thus, X x Y is rectangularly normal.

(2) = (3): Obvious.

(3) = (1): The normality of X easily follows. It follows from Thorem
3.4.1 that X is (v, k)-Katétov. It completes the proof. O

Proof of Corollary 3.4.3. It suffices to show the “only if” part. Let X be an
(w, k)-Katétov space, Y a space as in the proposition, A a closed subspace of
X and B a closed subspace of Y. By Theorem 1.3.12, A x B is C-embedded
in A xY. By Lemma 3.3.4 and Theorem 3.4.2, A x Y is C*-embedded in
X xY. By Theorem 1.3.8, A xY is C-embedded in X x Y. Hence it follows
that X x Y is rectangularly normal.O]

Remark 3.4.7. (a) On Theorems 3.4.1 and 3.4.2, Corollary 3.4.3 and Lemmas
3.4.5 and 3.4.6, all of C*-embedding can be replaced by C-embedding (use
Theorem 1.3.8 or Lemma 3.4.6).

(b) On Theorems 3.4.1 and 3.4.2 and Lemma 3.4.5 and 3.4.6, the part
of “spaces of type t(,,A)” can be changed into “closed subspaces of a
space of type t(v,k,A)”. Indeed, by (3) of Proposition 3.1.2, if p € Y then
the assertion is obvious because Y is of type t(v,k,A). If p ¢ Y then Y is
locally compact paracompact Hausdorff and fw(Y) < A, hence the assertion
is contained in the known results (cf. Corollary 1.3.6).
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5. Applications to y-collectionwise normal A-paracompact
spaces

The aims of this section are to state y-collectionwise normal spaces, and -
collectionwise normal A-paracompact spaces along the same line of Theorem
3.4.2, and to explain Diagram 2.1.3 from the viewpoint of products. We have
the following results.

Proposition 3.5.1. Let X be a space, v an infinite cardinal and n € N. Then,
the following conditions are equivalent:
(1) X 1is y-collectionwise normal,;
(2) X x Y is rectangularly normal for every space Y of type t(y,n,~);
(3) X x Jy(n) is rectangularly normal.

Proposition 3.5.2. Let X be a space, v and X infinite cardinals and k a car-
dinal. Then, the following statements are equivalent:

(1) X is y-collectionwise normal and A-paracompact,

(2) X x Y is normal for every space Y of type t(7y, k, A);

(3) X X A(@acy(A+1)4) is normal.

Corollary 3.5.3. Let X be a space, v an infinite cardinal and k a cardinal.
Then, the following statements are equivalent:

(1) X s y-collectionwise normal and countably paracompact,

(2) X xY s normal for every space Y of type t(7, k,w);

(3) X x Jy(k) is normal.
Namely, X x J,(k) is normal if and only of X x J,(1) is normal.

On Proposition 3.5.2, an equivalent condition similar to (3) was also obtained
by Katuta [29, Theorem 1.2]. Moreover, he proved in [29, Theorem 1.2] the
equivalence of (1) of Proposition 3.5.2 and the normality of X x Y for ar-
bitrarily compact space ¥ with w(Y) < v and v(Y) < &, and Ohta showed
n [44] the condition v(Y) can be replaced by a smaller cardinal u(Y') (see
[29] and [44] for the definitions of v and u). On Corollary 3.5.3, the equiv-
alence of (1) and the normality of X x J,(1) was proved by Alas (Theorem
1.3.14). An equivalent condition similar to (3) was also obtained by Katuta
[29, Proposition 3.6]. On Corollary 3.5.3, (1) = (3) also follows from by
Katuta’s result in [28].
Let us proceed to the proofs.

Proof of Proposition 3.5.1. (1) = (2): Let Y a space of type t(y,n,7). Notice
that Y is compact Hausdorff and w(Y) < . By Theorems 1.3.2, 1.3.5 and
1.3.10, X x Y is rectangularly normal.
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(2) = (3): Obvious.

(3) = (1): Let A be a closed subspace of X. Then, A x J,(n) is C*-
embedded in X x J,(n). By Theorem 1.3.5, A is P7-embedded in X. Hence
X is ~y-collectionwise normal; this completes the proof. O

Next we prove Proposition 3.5.2. The proof is given along the same line
to our previous discussion using Lemma 3.2.2.

Proof of Proposition 3.5.2. (1) = (2): Let Y be a space of type t(v, %, \) and
Fy and F) be disjoint closed subspaces of X xY. Put A = FoUF,U(X x{p}).
Since X is normal, we can take a continuous function f : A — I satisfying
that f(F;) =14 (¢ = 0,1). Define a function gy : X — I by go(z) =0V (3-
f(@,p)—1)ALl Let F* = (Fon({z € X : f(z,p) > 1/3} xY))U(Fin({z €
Xadlo,p) <2/3} Y)) Then, F* is a closed subspace in X x Y disjoint
from X x {p}. Let p: X x Y — X be the projection. For every a < v, put
Ae = p(F* 0 (X x Uge, 2E)). Then, {Ay : o < 7} is locally finite in X.
Since X is 7y-collectionwise normal and countably paracompact, there exists
a locally finite open collection {H, : a < v} of X such that A, Cc H, for
each a < 7. Let

F=JJ(#ax2E) and S BN T

a<ly B<k a<y <k

Then, it follows that F'is closed in X x Y’, G is openin X x Y’ and F' C G.
Notice that X xY" is normal, since it has a locally finite closed cover of normal
subspaces X x Z8 (a < v, < k). Hence, there exist continuous functions
Y, g: X xY" — I such that F C v~ '({1}), X x Y' — G C ¢¥'({0}) and
gl(AN(X xY")) = fI(AN(X xY")). The continuous function h: X xY — I
defined as in Lemma 3.2.2 satisfies F; C h™'({i}) (i = 0,1) (see Remark
3.2.3). It follows that X x Y is normal.

(2) = (3): Obvious.

(3) = (1): Since A(y) and A + 1 can be seen as closed subspaces of
A(®a<cy(A + 1)a), by Theorem 1.3.14 and [52, Corollary 3.7] it follows. It
completes the proof. O

Proof of Corollary 3.5.3. By Proposition 3.5.2, (1) = (2) follows. The im-
plication (2) = (3) are obvious, and (3) = (1) follows by Theorem 1.3.14
immediately. O




6. Locations of extension properties

In this section, let us comment where P(locally-finite)-embedding locates
among extension properties. Let C be a class of spaces. A subspace A of a
space X is said to be me-embedded in X if A x Y is C*-embedded in X x Y
for every space Y belonging to C [50]. Let M, be the class of all metrizable
spaces with weight < x and M the class of all metrizable spaces.

Answering to Przymusiriski’s problem in [50], Gutev-Ohta characterized
in [19] 7w, -embedding introducing the following notions. In [19] a map
G : k<% — Coz(A)" is said to be monotone decreasing if {G[o"a](B) : B < K}
refines {G[o](B) : B < k} for every 0 € k< and a € &, where Coz(X)
denotes the collection of all cozero-sets of X.

Theorem 3.6.1(Gutev-Ohta [19]). Let X be a space and A a subspace of X.
Then, A is T, -embedded in X if and only if A is C-embedded in X and A
has the following property ()x;

(#)x FEvery monotone decreasing map G : k< — Coz(A)* has an expan-
sion H : £<¢ — CoxX)* (i.e, Glo](a) C H[o](a) for every o € k<
and a € k) such that (,_, UQEKH[ﬂn](a)/\ = 0 for every t € k¥ with

A
mn<w Uaen g[t|n](a) = @

Related to this result, we have the following:

Proposition 3.6.2. Let X be a space and A a subspace of X with the property
(#)x. Then, every countable locally finite k*-open collection of A can be
expanded to a locally finite k™ -open collection of X .

Proof. Let {U, : n < w} be a locally finite collection of k*-open sets of A.
For every n < w, let U, = [Jue, U, where each UF is a cozero-set of A.

n?

Define a monotone decreasing map G : k<“ — Coz(A)" by

e U =i e, Dy 0 E R,
g[ana):{ul” e

0 otherwise,

where (0,...,0), € k™. Then, G is monotone decreasing. By the assumption,

there exists an expansion H : k<“ — Coz(X)" such that (), ., Usex H[tln](a)x
= () for every t € k“ with [,.., Unex Q[ﬂn](()z)A = (). Notice that

A X
MNicw Uaex 9((0,...,0)p) () = 0. Hence [, Usex H((0,...,0)n)(a) =
0. For every n < w, define V;, as follows: Vi = (J ¢, H[(0)](a) and V;, =
(Uaex ®I(0,...,0)n)(a)) N Voo for n > 1. Then, {V;, : n < w} is a locally
finite collection of k*-open sets of X and U, C V,, for each n < w. The proof
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is completed. O

By Theorem 3.3.3 or Proposition 3.6.2, we have the following result. It clar-
ifies the location of P“(locally-finite)-embedding in the realm of extension
properties.

Corollary 3.6.3. The 7w, -embedding implies P* (locally-finite)-embedding.

Remark 3.6.4. (1) Michael’s example ([13, 5.1.32]) shows that Corollary 3.6.3
can not be reversed (see [36], see also [24, Example 4.13]). Related to it, we
comment about the products with J(k)“. Let X be a space, A a subspace
of X and k an infinite cardinal. The letter C, means the class of all Cech-
complete metric spaces with weight < k. Then, we can easily show that: A is
e, -embedded in X if and only if Ax J(k)¥ is C*-embedded in X x J(k)¥, and
that: For Michael line X and a subspace Q of X, Q x J(w) is C*-embedded
in X x J(w) and Q x J(w)¥ is not C*-embedded in X x J(w)*.

(2) The mp-embedding need not imply P7-embedding in the case v > w
(see [13, 5.5.3] or [48]). Namely, Corollary 3.6.3 need not hold for the general
cardinality.

Wasko gave in [63] and [64] locations of extension properties like mc-
embedding. She showed that “may + P = maqxe”, where M x C is the
class of spaces consisting of all of the product spaces of metric spaces and
compact spaces [64]. Since J,(w) is Fréchet o-compact, by Theorem 3.3.1,
7 r-embedding implies P(locally-finite)-embedding, where F means the class
of all Fréchet o-compact spaces. From the above argument, it seems to be
natural to ask the followings:

Problem 3.6.5. Does 7y + P-embedding imply P(locally-finite)-embedding?

Problem 3.6.6. Let P be a class of all paracompact M-spaces. Does mp-
embedding imply P(locally-finite)-embedding?

Related to Problem 3.6.5, note that in Example 2.1.7 the subspace A is not
mm-embedded in X.




Diagram 3.6.7. Some extension properties are located as follows: the symbol
K means a class of all paracompact k-spaces, and P(L.f.) stands for P(locally-

finite).
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Remark 3.6.8. The definitions of .J, (k) and spaces of type (7, k, A) are given
in [71]. All of the results in Sections 2, 3, 4 and 5 and Corollary 3.6.3 are
proved in [71]. Other results are added here.




Chapter 4.

Normality and collectionwise normality
of product spaces

In this chapter, we apply weak z,-embedding to study the following classical
problem: Under what conditions is the product space X x Y of collectionwise
normal spaces X and Y collectionwise normal if X x Y is normal? We give
some new results about this problem. Especially, one of our results is an
affirmative answer to Yang’s problem in [73], and an essential improvement
of Nagami’s theorem in [40]. All spaces in this chapter are assumed to be
regular and 7.

1. Nagami's theorems

In [40], Nagami showed the following results; a space X is said to be a o-space
if X has a o-locally finite network, and the definition of P-space will be seen
later.

Theorem 4.1.1 (Nagami [40]). The following statements hold.

(1) For a paracompact o-space X and a paracompact P-space Y, the prod-
uct X XY is paracompact.

(2) For a paracompact o-space and a collectionwise normal P-space Y,
the product X X Y s normal if and only if X X Y 1s collectionwise normal.

The (1) is compared with the following result by Morita.

Theorem 4.1.2 (Morita [34]). For a paracompact M-space X and a paracom-
pact P-space Y, the product X x Y s paracompact.

In another paper [41], extending the notions of o-spaces and M-spaces,
Nagami defined a new class of spaces called ¥-spaces, and gave the follow-
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ing results. Especially (1) is an essential improvement of the result (1) of
Theorem 4.1.1 as well as Theorem 4.1.2.

Theorem 4.1.3 (Nagami [41]). The following statements hold.

(1) For a paracompact Y-space X and a paracompact P-space Y, the
product X X Y 1s paracompact.

(2) For a paracompact L-space X and a normal P-space Y, if X x Y is
normal then X XY 1is countably paracompact.

The (1) of Theorem 4.1.3 is famous as one of those that give a paracom-
pact product of two spaces, and was suggestive to subsequent studies. In
fact, some analogous results hold as follows (see Nagami [41], Mizokami [32],
Lutzer [31] and Burke [8]):

Theorem 4.1.4 ([8], [31], [32], [41]). Let X and Y be spaces. If X is a Lindelof
(respectively, metacompact, subparacompact or submetacompact) X-space and
Y is a Lindelof (respectively, metacompact, subparacompact or submetacompact)
P-space, then X XY is Lindelof (respectively, metacompact, subparacompact
or submetacompact).

In comparison with Theorems 4.1.1 and 4.1.3, it is natural to ask whether
“o-space” in (2) of Theorem 4.1.1 can be generalized to “Y-space”. Indeed,
Yang posed it as a problem in [73] as follows:

Problem 4.1.5 (Yang [73]). Let X ba a paracompact X-space and Y a collec-
tionwise normal P-space and X x Y normal. Then, is X x Y collectionwise
normal?

In [73], Yang proved Problem 4.1.5 affirmatively assuming that Y is countably
compact; and his assumption was improved to that Y is a X-space in [26] by
Hoshina and the author. However this problem has been unknown even in
the case that X is a perfect space. We shall give an affirmative answer to
Problem 4.1.5 in the next section.

In this section, let us comment about differences of the behavior between
o-spaces and X-spaces. By Hoshina [22], the inverse implication of (2) of
Theorem 4.1.3 is also true. Hence it follows that:

For a paracompact o-space X and a normal P-space Y, the product X xY
is normal if and only if X XY is countably paracompact.

As is [22], (2) of Theorem 4.1.1 can also be proved by the above result and
Theorem 1.3.14 indirectly. We shall demonstrate his proof from [22]. Let
X be a paracompact o-space and Y a 7y-collectionwise normal P-space and
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X x Y normal. By the above result, the normal space X x Y is count-
ably paracompact. Hence, (X x Y') X A(y) is countably paracompact. Since
Y x A(y) is a normal P-space, by the above result, the countably paracom-
pact space (X xY) x A(y) = X x (Y x A(y)) is normal. Hence, by Theorem
1.3.14, X x Y is ~y-collectionwise normal. This proof shows, under some
kinds of conditions, “the equivalence of normality and collectionwise nor-
mality” indirectly follows from “the equivalence of normality and countable
paracompactness” .

On the other hand, the inverse implication of (2) of Theorem 4.1.3 itself
does not hold in general (consider (w; + 1) X wy). It means that the indi-
rect method demonstrated above can not be used in proving Problem 4.1.5
affirmatively.

For two collectionwise normal spaces X and Y, the result which asserts
normality of X x Y implies its collectionwise normality has been proved in
some cases. These are mainly as the following: (1) is due to Okuyama [47]
and improved as (3) or (4); (2) is due to Starbird [59] and improved as (4);
(3) is due to Hoshina [22]; (4) is due to Rudin-Starbird [56]; (5) is due to K.
Chiba [10]; (6) is due to Nagami [40]; and (7) and (8) are due to K. Chiba
(10].

Theorem 4.1.6 ([10], [22], [40], [47], [56], [59]). Let X and Y be collectionwise
normal spaces. If X andY satisfy one of the following conditions, then X xY
is normal if and only if X X Y 1is collectionwise normal:

(1) Y is a metrizable space;

(2) Y is a compact space;

(3) Y is a Lasnev (= the closed image* of a metrizable) space;

(4) Y s a paracompact M -space;

(5) Y is a o-locally compact paracompact Hausdorff space;

(6) X is a paracompact o-space and Y 1is a collectionwise normal P-space;

(7) X is the closed image of a normal M-space and Y is a paracompact
first countable P-space;

(8) X is the closed image of a paracompact first countable M -space and
Y is a collectionwise normal ¥X-space.

A space Y is a P-space [34] if for any index set Q and for any collection
{G(ay,...,an) & ai,...,a, € Q,n € N} of open subsets of ¥ such that
G(ai,...,an) C G(ay,...,0n,0ny1) for ai,...,an,onq € 82, there exists
a collection {F(ay,...,an) : a1,...,0, € Q, n € N} of closed subsets of ¥
such that the conditions (a) and (b) below are satisfied:

(8) U, v ) Gl o s} TOE T, .., , Q€ €D,

*The closed image means the image of some continuous closed map.
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(b) Y =U{Glay,...,on):neN} =Y =|HF(ay,...,00) : n € N}.
A Y-space [41] is a space X having a sequence, called a ¥-net, {£, : n € N}
of locally finite closed covers of X which satisfies the following conditions:

(c) &, is written as {E(ay,..., o) : a1,...,q, € Q} with an index set Q,
(d) E(ai,...,an) = UH{E(a1,--.,0n, Qnt1) : any1 € Q} for ay,...,a, € Q,
(e) For every x € X, C(x) is countably compact, and there exists a se-
quence «i, s, -+ € ) such that C(z) C V with V open implies C(z) C
E(oy,...,ay) C V for some n, where C(z) =({EF:y € E € &, n € N}.
We call {E(a,...,a,) :n € N} a local net of C(z).

2. Results

In this section, we obtain some new results related to the problem stated in
the previous section. In the following theorem, (1) is an affirmative answer
to Problem 4.1.5, i.e. an improvement of (2) of Theorem 4.1.1 (i.e. (6) of
Theorem 4.1.6), and (3) and (4) in the following result are also improvements
of (7) and (8) of Theorem 4.1.6. Notice that (w; + 1) x w; shows, under each
of the conditions from (1) to (4) of the following theorem, X x Y is not
necessarily normal.

Theorem 4.2.1(Main). If X and Y satisfy one of the following conditions, then
X XY s normal if and only if X XY 1s collectionwise normal:

(1) X is a paracompact X-space and 'Y is a collectionwise normal P-space;

(2) X s a collectionwise normal ¥-space and Y is a collectionwise normal
first countable P-space;

(3) X s the closed image of a paracompact M -space and Y is a collec-
tionwise normal P-space;

(4) X 1is the closed image of a normal M-space and Y is a collectionwise
normal first countable P-space.

It should be noted that (2) and (4) in the above theorem seem to be first
cases that these conclusion are implied under the conditions that neither X
nor Y is paracompact.

Our motivation of (2) of Theorem 4.2.1 is K. Chiba’s result in [9] as
follows:

If X is a collectionwise normal ¥-space and Y is a paracompact first count-
able P-space, then X x Y s collectionwise normal.
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3. Key lemmas for the proof

In this section, for the proof of Theorem 4.2.1, we prepare key lemmas.

Lemma 4.3.1. Let X be a paracompact ¥-space and Y a y-collectionwise nor-
mal P-space. Then, every closed subspace of X XY is weakly z,-embedded
A %KY,

Lemma 4.3.2. Let X be a collectionwise normal X-space and'Y a ~y-collectionwise
normal first countable P-space. Then, every closed subspace of X x Y s
weakly z.,-embedded in X x Y.

Since proofs of Lemmas 4.3.1 and 4.3.2 are similar, we only prove Lemma
4.3.1.

Proof of Lemma 4.3.1. Let A be a closed subspace of X xY and {Fj : § < 7}
be a uniformly discrete collection of zero-sets of X x Y. Let {&, : n € N},
where £, = {E(a1,...,an) : a1,...,0n € Q} (n € N), be a Z-net of X. Since
X is collectionwise normal and countably paracompact, for each n € N, &,
has a locally finite expansion {L(ay,...,ay) : aq,...,a, € Q} of cozero-sets
of X. For each ay,...,a, € Q,n € Nand 6 € [y]<¥, put

(*)  Gs(ay,...,an) =UJ{O : OisopeninY and

(Blay,...,an) x O) N (U{Fp : B ¢ 0}) = 0},

and G(ay,...,q,) = U{Gg((ll,...,(ln) (0 € ['y]<“’}. Then, we have G(ay,
ey @) C Gloy, ..., Qn,an41) for each ay,...,an,any1 € Q. Since Y is a
P-space, there exists a closed collection {M(aq,...,a) :q,...,0n € Q0 €
N} of Y such that M(ay,...,a,) C G(ay,...,0y,) for each ay,...,a, € Q
and n € N, and

Y =J{G(a,...,an) :neN} =Y = J{M(a,...,an) : n € N}.

Here we may assume that M(aq,...,a,) C M(ay,...,an, a,yq) for each
Q1,...,0n, Gpyq € §2. Define
(xx) Ps(aq,...,an) = {y €Y : (E(ay,...,on) x{y)NFz #£0

if and only if g € (5}

for each ay,...,0, € Q, n € Nand § € [y]<“.
Fix aq,...,a, € Q2 and n € N arbitrarily.

Claim 1. The collection {M (a, ..., an)NPs(ay, ..., o) 1 § € [y]<“} is locally
finite in Y.

Proof of Claim 1. Let y € Y. Since M(ay,...,ay,) is closed in Y, to prove
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Claim 1 we may assume that y € M(aq,...,a,). Since y € G(ay,...,
there exists d, € [y]<“ such that y € G, (a,...,a,). Suppose that G, (a;,

, o) N Ps(ay,...,a,) # 0. Then we shall show § C §,. To show
this, let 8 € 4. Select a point z € G5, (ay,...,a,) N Ps(ay, ..., ay). Since
(E(ou,...,0n) x {z}) N Fg # 0, we have (E(ay,...,an) X Gs, (04, ...,05))N
Fj # 0. By the definition of G, (v, ..., ), we have

(E(al, A+ ) & O () e ,(xn)) N (U{Fl‘ ¢ 6y}) =1,
It shows that 8 € d,. Hence 6 C §,; it completes the proof of Claim 1. O

Since Y is 7y-collectionwise normal and countably paracompact,
{M(ay,...,an) N Ps(ag,...,ay) : § € [y]<“} has a locally finite expansion
{Hs(an,...,ap) : 6 € [y]<“} of cozero-sets of X. Define

H,3 = U{L(al, vooy Q) X HelO, 1, -, 00) 6 € [H™ and BE & ay,... 04 € O}

for each n € N and < 7. Then, it follows that {H,s : < 7} is a locally
finite collection of cozero-sets of X x Y for each n € N.

Claim 2. F3 C |J{Hyus : n € N} for every 8 < 7.

Proof of Claim 2. Let (z,y) € Fs. Choose o, ay, - -+ € Q such that {E(ay, ...,
ay,) : n € N} is a local net of C(z). Before everything, we show that Y =
U{G(a1,...,an) :n € N}. Let z€ Y and 6,, = { < v: (C(z) x{2})NF, #
(0}. Then, 0., is finite. Moreover, since C(z) x {z} is compact (on the
case of Lemma 4.3.2, since C'(z) x {z} is countably compact and Y is first
countable), there exist open subsets O and O’ of X and Y, respectively, such
that C(z) x {2} COxO' C X xY — | J{F, : p ¢ 65.}. From the property
of the local net, there exists an n € N such that C(z) C E(ay,...,a,) C O.
Therefore (E(ay,...,an) x O) N (U{F, : p ¢ 6z.}) = 0. Hence, z € O' C
Gs,.(a1,...,0n) C G(ay,...,ay); it shows that Y = | J{G(ay,...,a,) :n €
N}.

So we have Y = |J{M(a,...,a,) : n € N}. There exists an n € N such
that y € M(aq,...,an). Let 6 = {u <v:(C(z)x{y})NF, # 0}. Likewise
the matter shown above, we have d,, € [y]<“, and there exist open subsets
O, and O, of X and Y, respectively, such that

Cle) x {y} CO:x Oy C X x Y = | J{Fy: 1u ¢ 6y }.

From the property of the local net, there exists an m < w such that C(z) x
{y} C E(ay,..., am) X {y} C O, x O, where we can select m > n. Hence,

(E(al, v oy Dag T X {y}) N (U{E, TN 511,}) = 0.
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Moreover, by the definition of d,, and the fact C(z) C E(ay,..., Q,), We
have (E(ai,...,am) X {y}) N F, # 0 for every p € d4y. It follows that
y € P, (a1,...,00,) and y € M(ay,...,0n) C M(ay,...,qn). So we have

g € MG, 5 0) NP (00,0, 0m) C Hy {00, .., Q)

Thus, (z,y) € L{oa, ..., 0m) X Hs, (04, ...,0m). Since (z,y) € Fg, we have
that § € d,. It follows that (z,y) € Hyg, which proves that Fg C (J{Hp :
n € N}. This completes the proof of Claim 2. O

Hence, it follows that A is weakly z,-embedded in X x Y. It completes
the proof of Lemma 4.3.1. O

Defining as (**) is our essential idea of the proof. We compare (*%) with
(x); defining like () is often used in proving results of products. In general,
Gs(ai,...,ay) and Ps(aq,...,q,) are not included in each other.

(+)

(%)

.....




4. Proofs
First we prove the cases (1) and (2) of Theorem 4.2.1.

Proofs of the cases (1) and (2) of Theorem 4.2.1. Since the proofs of the cases
of (1) and (2) of the theorem are similar, we only prove the case (1). Let
X and Y be as in the conditions in (1). Assume X x Y is normal and A a
closed subspace of X. By Theorem 1.3.1, A is z-embedded (or equivalently,
C-embedded) in X. By Lemma 4.3.1, A is weakly z,-embedded in X x Y.
By Proposition 2.4.3, A is z,-embedded (or equivalently, P7-embedded) in
X x Y. It follows from Theorem 1.3.2 that X is v-collectionwise normal. It
completes the proof. O

As the proofs of the cases (1) and (2), in order to prove the cases (3) and
(4), it suffices to show the following two lemmas.

Lemma 4.4.1. Let X be the closed image of a paracompact M-space, Y a
v-collectionwise normal P-space and X X Y normal. Then, every closed
subspace of X XY is weakly z,-embedded in X X Y.

Lemma 4.4.2. Let X be the closed image of a normal M -space, Y a y-collectionwise

normal first countable P-space and X XY is normal. Then, every closed sub-
space of X x Y is weakly z,-embedded in X x Y.

Since the proofs of Lemmas 4.4.1 and 4.4.2 are similar, we only prove Lemma
4.4.1. First, we give a technical lemma.

Lemma 4.4.3. Let X be a space. Suppose a discrete collection {Kg : f € A}
of closed subsets of X satisfies the following conditions (1) and (ii) below:

(i) There exist locally finite open collections H; = {H;p : B € A} (i < w)
of X such that Kz C |J,, Hip for every B € A;

(ii) There exists an open subset W5 of X such that Kz C Ws and Ws N
(U{K,:n+#06,u€A}) =0 for every B € A.

Then, there exists a disjoint open collection {Qg : f € A} of X such that
Kg C Qg for every B € A.

Proof. Let H; (i < w) and {Wj : B € A} be the collections described in the
conditions (i) and (ii). Here we put Rig = H;s N Wj for each # € A and
i < w. Define

Qs :U{Riﬁ_U{R—ﬂl:j <i,u € A and /1,#/3} :i<w}

for each 3 € A. Then, we can easily show that {Qs : f € A} is the required
collection. O




Proof of Lemma 4.4.1. Let X x Y be normal, A a closed subspace of X x Y
and {Dg : # < v} a uniformly discrete collection of zero-sets of X x Y. Let
Z be a paracompact M-space and f a closed continuous map from Z onto
X. By Nagata [42, Theorem VII 4], we can express that X = [ J{X; :7 > 0},
where X; is closed discrete for every ¢ > 1 and f~!(z) is compact for each
z € Xg

First we remark that for a subset A of Z x Y the following equality holds:

(f x Iy)([A) N (Xo x V) = (f x 1y)(A) N (Xo x ).

For each 7 > 1, X and Y are collectionwise normal, we can take a discrete
collection { H;s : # < v} of cozero-sets of X xY such that DgN(X;xY) C Hyg
for every 8 < 7.

Let F3 = Dg — |J{Hip : © > 1} for each § < 7. Then, it follows that
{(f x 1y)"Y(Fp) : B < v} is a discrete closed collection of Z x Y.

Claim. The {(f x 1y)™'(Fj) : § < v} has a disjoint open expansion of Z x Y.

Proof of Claim. Let A = Js_.,(f X 1y)"'(F}p). Then A is closed subspace of
Z x Y. Since Z is a collectionwise normal ¥-space, by Lemma 4.3.1, A is
weakly z,-embedded in Z x Y. Hence, there exists a locally finite collection
{H.s : B < v} of cozero-sets of Z x Y for each i < w and (f x 1y)~!(Fp) C
U<, Hig for every 3 < ~. Since X x Y is normal, for each # < v, there exists
an open subset Wj of X x Y such that Fs C Wy C W3 C X xY — U ses Fis-
Then we have (f x 1y) ' (Fs) C (f x 1ly) " (Wp) and (f x 1y)~1(W;s) N
(U (f x 1y)71(F,)) = 0 for every # < v. By Lemma 4.4.3, Claim follows.
4

Define Vs = X XY — (f x1y)(Z xY — Qp) for each § < 7. Then,
{Vs: B <~} is a disjoint open collection of X x Y. Since Fg C Xy x Y, we
can show that Fz C Vj for each § < . By the normality of X x Y, there
exists a discrete collection {Hog : f < 7} of cozero-sets of X x Y such that
F3 C Hyg C Vj for each < . The collection {H,s : 3 < 7,1 > 0} has the
properties that Dg C |J{Hip : © > 0} for each § < v and that {H;3: 8 < v}
is discrete for each ¢ > 0. It follows that A is weakly z,-embedded in X x Y.
[t completes the proof. O

5. Related problems and results

If we replace the paracompactness of X and Y by the collectionwise normality
in (1) of Theorem 4.1.1, then even the normality of X xY need not be implied
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in general. Thus the following problem naturally arises. The cases of (1) and
(2) in Theorem 4.2.1 can be regarded as partial answers to this problem.

Problem 4.5.1. Let X be a collectionwise normal ¥ -space and Y a collection-
wise normal (or a paracompact) P-space. Is X x Y collectionwise normal if
it is normal?

Corresponding to Nagami’s result above, we have the following theorem.

Theorem 4.5.2. Let X be the closed image of a paracompact M -space and Y
a paracompact P-space. Then, X XY s normal iof and only if X x Y is
paracompact.

Proof. First we note the fact that for spaces X and Y given in the theorem,
X x Y is normal if and only if X x Y is countably paracompact; the proof is
similar to Beslagi¢-Chiba [4, Section 5]. Assume that X x Y is normal and
K is a compact space. Then, Y x K is a paracompact P-space, and by the
fact above the countably paracompact space (X xY) x K = X x (Y x K)
is normal. It follows from Tamano’s theorem [60, Theorem 2] that X x Y is
paracompact. O

In view of Theorem 4.5.2, under the similar consideration to Problem 4.5.1,
the following problem also arises. The cases of (3) and (4) of Theorem 4.2.1
can be regarded as partial answers.

Problem 4.5.3. Let X be the closed image of a normal M-space and Y a
collectionwise normal (or a paracompact) P-space. Is X x Y collectionwise
normal if it is normal?

Remark 4.5.4. Defining like (*x) is first introduced in [72] for the other pur-
pose. The (1) of Theorem 4.2.1 is proved in [67], and (2), (3) and (4) of
Theorem 4.2.1 are proved in [68] by the direct way, i.e. proving collection-
wise normality of X x Y under the assumption of normality of X x Y. The
proof of Lemma 4.3.1 in this paper is essentially the same of [68, Lemma 2.2].
All of the results in Sections 4 and 5 are stated in [68].

The proof of Lemma 4.3.1 actually shows that X x Y has the following
property: For every locally finite closed collection {F, : o < 7y}, there exist lo-
cally finite open collections {Hpq : @ < v} (n € N) such that Fy C |, ey Hna
for each a < 7y (see also [68, Lemma 2.2]). This property is called as o-
expandable by Zhong [74]. Yajima discussed in [65] some properties of prod-
ucts by the notion of special refinements; see [65] for some related results to
(1) of Theorem 4.2.1. For problems concerning extensions of mappings on
products of X-spaces and P-spaces, see Ohta [46]. Other results on extension
properties on products, see [66] or [72].
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