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I ntrod uction 

Throughout this paper a11 spaces are assumed to be T1-spaces， and in Chapter 
4 a11 spaces are assumed to be regular spaces. The letter γdenotes an infinite 

cardinal， and κand入denotecardinals. This paper consists of mainly three 

subjects. The first one is to study an extension property ca11ed P(loca11y-
finite )-embeddi 時 The second one i臼stωO 剖則u以(の P(loca叫11)寸 n凶i比t旬e吋)-embeddin
from the viewpoint of products. The third one is to study co11ectionwise 

normality of products from the approach by an extension property ca11ed 
weak zγ-embedding. 

Among properties of extending continuous mappings on a subspace over 

the whole space， the notions of C¥C-and Pγ-embeddings are most fun-

damental. A subspace A of a space X is said to be C仁 (respectively，C-) 
embedded in X if every bounded real-valued (respectively， real-valued) con-
tinuous function on A can be extended to a continuous one over X. A 

su bspace A is said to be Pγ-embedded in X if every γ-separable continuous 

pseudo-metric on A can be extended to a continuous one over X. The C仁

and C-embeddings evidently come from the we11-known Tietze-Urysohn's ex-

tension theorem ([61]， [62])， and the notion of Pγ-embedding has its origin 

from a theorem of F. Hausdor百[20]on homeomorphic extensions of metric 

functions. These extension properties have played so far important roles in 

general topology and have been utilized in various areas such as dimension 

theory or shape theory， w here normal open covers of spaces are basica11y 

used. In fact， the theorem below shows that normal open covers describe 
these extension properties. These covers are often easier to handle than con-

tinuous functions or pseudo-metrics 

丁heo

X. Th印附eυTη叱~， A i臼sC*¥-(什res伊pectiωtυJely，C-0併ア Pγ，-う)embedded i仇ηX ザαTηLd only ザ
for eυθryηOγmαal 0叩peηC01υJerμOザ'fAωωit仇hlμ阿μ川|く ω(ヤTア、官'esωS叩pectiωtυJely，三ωor<γ)， 
tl町 eexistsαnormal open coverνof X such thαtν八A(={VnA : V εν}) 
refinesμ 

Recently， in consideration of the interface between set-theoretic and al-
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gebraic topology， Dydak [12] investigated an extension theory of continuous 
functions which take their values in metric simplicial complexes or CliV-

complexes. He proved some theorems characterizing several notions defined 

in terms of extensions of partitions of unity， and showed that these notions 
are closely related to Pγ-embedding. As one of such notions， it is defined in 
[12] that a subspace A of a space X is Pγ(locall)寸凶e)-embedded in X if 

for every locally finite partition {ん :αεn}of unity on A with In 1三γ7

there exists a locally finite partition {gα:αεn} of unity on X such that 
gCtIA =んforevery αεn. A subspace A of a space X is said to be P(locally-
finite) 引 I仇 dded in X i正fA iおsPγ吋市(いloca叫lly-fin凶i比tEωe斗3
The Pγ吋市(引locall)寸 n凶i比t旬e吋)-引embeddin時gis strictly stronger than Pγ.引巾eddin

We remind that the notion of P(locall)寸凶e)-embedding originally re-

lates to Katetov [30] and Przymusirisl川 Nage[54]. The main purpose of 

Chapter 2 is to give a characterization of Pγ(locally-finite)-embedding by 
locally finite covers of cozero-sets as the following: 

Theorem 2 (Theorem 2.1.6). Let X be a space and A a subspace of X. Then， 
A is Pγ( locαlly-finite) -embedded in X ザαηdonlyザeverylocally finite cover， 
with Cαrd <γ， of cozero-sets of A cαn be exte:nded to αlocαlly finite cover of 
cozero-sets of X. 

Theorem 2 was proved by Przymusi似品Nage[54] assuming that X is normal 

and A is closed in X; the assumption is essential in their proof. Theorem 2 

shows that P(locally-五nite)-embeddi時 definedby Dydak in connection with 

an algebraic viewpoint is precisely equal to the notion which was discussed 

by Kat針。v[30] or Przymusiriski-Wage [54] in a set社団oretictopology. With 

the aid of Theorem 2， we can prove the following result related to products 
with a compact factor. 

Theo附 n3 (Theorem 2.2.3 (3)). Let X beαspαce， Aαs似 spαceof X αηdγ 

an infinite cαrdinal. 1f A is Pγ( locαlly-finite) ..embedded in X， then A x C is 
pγ( locαlly-finite) -err仇 ddedin X x C for every cor叩 αctHaωdorff spαce C 

withω(C)三γyωhereω(C)denotes the weight of C 

When we put C = 1 in Theorem 3， it is an a伍rmativeanswer to a problem 

posed by Dydak in [12] 

In Chapter 3， the motivation of our results is from the following two 

theorems. 

Theorem 4 (Alo-Sennott [2]， Morita-Hoshina [39]， Przymusi制 <i[49]). Let X be 
αspαce， Aαsubspαce of X αηdγαη infinite cαrdinαl. Then， the following 
statementsαre equivalent: 

(1) A is Pγ-embedded in X: 
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(2) A x Y is C* -embedded in X x Y forωery cor叩 αctHαωdorff spαce 
Yωithω(Y)三γ;

(3) A x A(γ) is C* -embedded in X x A(γ) ，ωf町 eA(γ) denotes the one-
point compαctificαtion of the discrete spαce of cαrdinalityγ. 

Theorem 5 (P町 musl削くi[52]). Let κbe αcαrdinal， X αηormal spαceαηdA 
αclosed subspαce of X. Then， the following stαtementsαre equivaleηt: 

(1) Every countαble locαllyβnite cover of open F，κ-sets of A cαη be ex-
tended to a locally finite open cover of X ; 

(2) A x J(κ) is C* -embedded in X x J(κ) ; 

(3) A x Jo(κ) is C仁 err仇 ddedin X x Jo(κ) ， 
ωhere J(κ) denotes the hedgehog withκsp'lnesαηd Jo(κ) denotes the zero-
dimensionαl hedgehog withκsp'lnes. 

By introducing a new space Jγ(κ) and a new c1ass of spaces of type t(γ?爪入)， 
we characterize Pγ(locally-finite )-embedding as follows: 

Theorem 6 (Theorem 3.3.1). Let X be αspαce) Aαsωspαce of X αηdγαη 

infinite cardinal. Then， the folloωing stαtementsαre equ'lVαlent: 

(1) A is P'(locally-finite)-embedded in X; 
(2) A x Y is C* -embedded in X x Y for every spαce Y of type t(γ?叫 γ); 

(3) A x Jム州γ孔(いω) iωs C'恥:本4<_e

f A product s叩pa飢ceX x Y 0ぱfs叩pacesX and Y is called rectangu叫Ila紅rlynormal i汀

A x B is C -embedded in X x Y for any closed s叩ubspaceA and B 0ぱfX and 

Y， respectively [伊52河].A natural and in凶terestin叫時gquestion is that when X x Y 

is rectangularly normal. Only a few results which give rectangular normality 

have been known. Przymusiriski proved in [52] that a space X is a countably 

functionally Kat批ovspace (respectively， a countably Katetov space) if and 

only if X x J(ω) (respectively， X x J(κ) for every κ) is rectangularly normal 

Extending his result， we characterize (γ7κ)-Kat批ovspaces by rectangular 

normality of products with Jγ(κ) and spaces of type t(γ?爪 γ)as follows 

Theorem 7 (Theorem 3.4.2). Let X be αspαce， Aαs叫 spαceof X αηdγyκ 

infinite cαrdinαls. Then， the following stαtemeηtsαre equ'lVαleηt: 
(1) X is (γ?κ)-Katetov; 
(2) X x Y is rectangulαrlyηormal for e1貯 yspace Y of type t(γ3爪 γ); 

(3) X x Jγ(κ) is rectαηgularly normal 

In Chapter 4， we apply weak zγ-embedding， which is de五nedin Chapter 

2 as one of extension properties， to consider the classical problem that: 

Under what conditions， is the product X x Y' collectionwise normal if X x Y 

is normal? 
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Concerning this problem， in [40] Nagami showed the following: 

Theorem 8 (Nagami [40]). The followi旬 stαternentshold. 
(1) Forαpαracompαctσ叩 αceX αndαpαTαcompαctP叩 αceY， the prod-

uct X x Y is pαracompαct. 

(2) Forαpαracor叩 αctσ叩 αceXαηdα collectionwiseηormalP叩 αceY， 
the product X x Y is normal ifαηd only if X x Y is collectionwiseηormal. 

1n (1) of Theorem 8， the case replacing “σ叩 ace"by "1'1イ叩ace"was proved 

by Morita [34]. 1n another paper [41]， extending σ叩 acesas well as M -spaces， 
N agami defined new spaces called L:叩aces，and improved (1) of Theorem 8 

as well as the Morita's result as the following: 

Theorem 9 (Nagami [41]). ForαpαTαco叩 αctL:叩αceXαηdαpαraco叩 αct
P-spαce Y， the product X x Y is pαracompαct. 

This theorem is one of well-known results asserting that the product of two 

paracompact spaces is paracompact. After his paper [41]， taking products 

of P-spaces and L:-spaces， some analogous results were obtained. 1n view of 
Theorems 8 and 9， it is natural to ask whether “σ叩 ace"in (2) of Theorem 

8 can be generalized to “2叩 ace".1ndeed， Ya時 askedit in [73] as follows: 

Let X be a paracompact L:-space and Y a collectionwise normal P-space. 

Suppose that X x Y is normal. Then， is X x Y collectionwise normal? 

The case (1) of the following theorem is an affirmative answer to the above 

problem， that is， an improvement of (2) of Theorem 8. Moreover， the cases 
(3) and (4) are improvements of the K. Cl山正sresults in [10] 

Theorem 10 (Theorem 4.2.1). Suppose thαtXαndY sαtisfy one of the follow-
ing conditions. Then， X x Y is normal ifαηd only if X x Y is collectionwise 
ηormal. 

(1) X isαpαraco叩 αctL:叩αceαηdYisαcollectionwise normal P叩 αce;
(2) X isαcollectio問 zser川 malL:叩αceαndY isαcollectionωse normal 

first countαble P-spαce; 
(3) X is the closed continuous image ofαpαracompαct M叩 αceαηdY is 

αcollectionwise normal P -spαce; 
(4) X is the closed continuous image ofαnormal M叩 αceαηdY isα 

collectionωise normal first countαble P-spαce. 

Let us note that the cases (2) and (4) seem first positive ones wi七hno as-

suming the paracompactness of either X or Y. 

The results in this paper are mainly quoted from [67]， [68]， [70] and [71] 

The detailed citation will be denoted on the last part of each chapter. 
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Chapter 1. 

Preliminaries 

Throughout this paper， all spaces are assumed to be T1-spaces， the letter γ 

denotes an infini te cardinal， and κand入denotecardinals. The letter 1 stands 

for the closed unit interval [0， 1]. In this chapter， we review defi五凶ionsof som 

extension properties and their fundamental facts. As for basic references， see 
Alo-Shapiro [3]， E時 elking[13]， Gillman-Je釘rison[18司]and Hoωsh山ina[ロ24判4] l 

1. Defi n itions of basic extension properties 

First， we state the most basic notion in our research. 

Definition 1.1.1 (cf. [18]). A subspace A of a space X is said to be C*-
embedded (respectively， C -embedded) i凶nXi江fevery bounded real-valued (閃
spectiv刊ely，real-valued) continuous function on A can be continuously ex-
tended over X. 

A subspace A of a space X is said to be a zero-set of X if A = f-l({O}) for 
some continuous function f : X→1. The cornplement of a zero-set is called 

a cozero-set. 

Definition 1.1.2 (cf. [3]). A subspace A of a space X is said to be z-embedded 
in X if every zero-set in A is the intersection of A with a zero-set of X. 

Let A1- and A2-embeddings be extension properties. We mean by "A1-

embedding implies A2-embedding" that every Al-embedded subspace of any 

pace X is A2-embedded in X and write “Al→A♂. Likewise， w hen A 1 -

embedding is equivalent to A2-embedding， we write "A1 = A2". We denote 

by “Al + A2" Al-embedding and A2-embedding. By Definitions 1.1.1 and 

1.1.2， it is clear that C-embedding implies (7* -embedding， and the latter 
implies z-embedding. 
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For a cover U of a space X， put U* = {St(U，U) : U εU}. A sequence 

{μη :nεN} of open covers of a space X is said to be normal if U~+l く(=
refines) Uηfor each nεN. An open cover U' of X is said to be normal if 
there exists a normal sequence {Uη:nεN} of X such that U1く M

We adopt the definition of Pγ-embedding as follows instead of the original 
one which was stated in the introduction (cf. Thorem l.2.5) 

Definition 1.1.3 (cf. [3]). Asub叩 aceA of a space X is said to be Pγ-e的 edded
in X if for every normal open cover U of A with jυ|三γ，there exists a normal 

open cover νof X such that ν八A(={V n A : V εν})く U.A subspace 

A of a space X is said to be P -embedded in X if A is p"f -embedded in X for 
every γ. 

Definition 1.1.4 (Blair [6]). A subspace A of a space X is said to be zγ-
embedded in X if every normal open cover U of A with jUj三γ，there exists 
a cozero-set G of X containing A and a normal open cover νof G such that 

ν八Aく U.A subspace A of a space X is said to be z∞-embedded in X if A 
is zγ-embedded in X for every γ. 

Note that zγ-embedding was defined as a cardinal generalization of z-embedding， 
i.e.，“Zω = z" holds. 

Let X be a space and A = {Aα:αεn} a collection of su bsets of 

X. Then， A is said to be uniformly locαlly .finite (respectively， uniformly 
discrete) in X if there exist a locally finite (respectively， discrete) collection 
{Gα:αεn} of cozero-則 sof X and a collection {Z，α:αεn} of zero-sets 

of X such that AαcZαcGαfor every αεn (Morita [37]， Ohta [43] and 

Blair [6]) 

Definition 1.1.5 (Hoshina [21]). A subspace A of a space X is said to be Uγ-

embedded in X if every uniformly locally finite collection U of subsets of A 
with jUj三γisuniformly locally finite in X. A su bspace A of a space X is 
said to be U -embedded in X if A is Uγ-embedded in X for every γ. 

Note that Pγ-embeddi時 impliesUγに-embeddir時:

Some of the properties like the above ar了eoften called “"embe“ddimInlg?"?¥ ? 

“weakι仁←-embeddi泊ngピ"0ωr“weak extension proper此r比ti白es". 1n this paper， we call 
properties defined like the above simply “extension properties" . 

2. Review of characterizations of basic extension proper-

tles 

A collection {ム :αεn}of continuous functions from a space X into 1 is 
aid to be a partition of unity on X if Lαωfα(x) 1 for every x εX， 
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where 乞αωfα(x)means the least upper bound of all sums of finitely man 

fα(x)' s. A partition {ん :αεn}of unity on X is said to be subordinated 
to a cover {U，α:αε n} of X if f;l((O， 1]) C ~αfor every αεn. Disjoint 

subsets A1 and A2 of a space X are said to be completely separ，αted in X 
if there exists a continuous function f X →1 such that f(A1) = 0 and 

f(A2) = 1. Clearly， A1 and A2 are completely separated in X if and only if 
there exist disjoint zero-sets Zl and Z2 of X such that Ai c Zi (iニ 1，2)
N ormal open covers can be represented by varIlous forms as the following: 

Theorem 1.2.1 ([3]， [33]， [34]). Forαη open cover U ofαspαce X， the fol-
lowing stαtementsαre equ'lVαlent: 

(1)μ 'lSηormal; 
(2)υ is refiηed byαlocαllyβnite cover of cozero-sets of X; 
(3) U is refined byασ-locallyβnite (orσ-discrete) cover of cozero-sets of 

X; 
(4)μ hasαpαrtitioηof unity subordinαted to it; 

(5)μ is refined byαlocally finite cover {Vu : U εU} of cozer仇 setsof X 
such that Vu and X -U αre completely separαted in X for each U εμ 

Here， we review characterizations of C¥C -and z-embedding as the 

following. In the next theroem， (1)φ(2) is due to Gillman-Jerison [18] 

(1)仲間 isdue to Morita-Hoshina [38]， and (1)件 (4)is due to Morita 

[35]. The abbreviated word AR means the absolute retract for the class of 
metrizable spaces. 

Theorem 1.2.2 ([18]， [35]， [38]). Let X beαspαceαηdAαsωspαce of X 
Then， the following stαtementsαre equ'lVαlent: 

(1) A isC*-embeddedinX; 
(2) Every di勾ointzero-sets Zlαnd Z2 in A a陀 completelysepαγαted in 

X; 
(3) For every finite normal open coυer U of A， tl昨 eexistsαηormalopen 

coverνof X such thatν八Aく U;
( 4) Every contiηωus mαp f: A→Y into αco仰 αctAR is continuously 

extended over X. 

A subspace A of a space X is called ωell-embedded in X if every zero-set 
disjoint from A and A are completely separated in X. 

In the following theorem， (1)件 (2)is due to Gillman-Jerison [18] and 

Blair-Hager [7]， (1)φ(3) is due to Gantr町 [16]， and (1)φ(4) is due to 

Morita [35] 

Theorem 1.2.3 ([7]， [16]， [18]， [35]). Let X beαspαce and Aαsωspαce of X. 
Then， the following stαtementsαre equ'lVαlent: 
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(1) A is C-embedded in X; 
(2) A is z -(0 r C~\) embedded αnd well-embedded in X 
(3) For every countαbleηormal open cover l.A of A， there existsαηormαl 

open coverνof X such thαtν 八Aく μ;

(4) Every continuous mαp f: A→Y into αCech-complete sepαァαbleAR 
is continuously extended over X. 

Especially， we have the following: 

Corollary 1.2.4 (Gantner [16]). The pw -err巾 ddingequals C -embedding 

Let κbe a cardinal. Let Is = 1 x {s} for every s <κDefine the 

equivalence relation E on Us<κIs as (x， sdE(y， s2) whenever x = y = 0 or 
(x二 yand sl = s2). Denote by J(κ) the set of all equivalence classes with 
respect to E and define a metric on J (κ) as follows: 

2
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for every (x， sl)， (y， s2)εJ(κ). The set J(κ) with this metric is called 
the hedgehog ωithκspines. The p stands for the class of J (κ) consisting of 

(O，s)，s <κThe letter (x， s) denotes the equivalence class of (x，の
The letter Jo (κ) denotes the zero-dimensional hedgehog with κsplnes， 

i.e.， the subspace {p} U {(ljη，s) : nεN，s <κ} of J(κ). The hedgehog 

is usually defined for infinite cardinals (cf. [13]). N otice that our definition 
admits the case thatκis finite. 

For a space Y，ω(Y) denotes the weight of Y. In the following theorem， 
(1)件 (2)is due to Hoshina [21] or Morita-Hoshina [39]， (1)件 (3)is due to 

Blair [6]， (4) is the original definition of Pγ-ernbeddi時 byShapiro [57] (see 

[3])， and (1)件 (5)件 (6)are due to Morita [35] or Przymusiriski [49] 

Theorem 1.2.5 ([6]， [21]， [35]， [49]， [57]). Let X beαspαceαηdAαs此 spαce
of X. Then， the following stαtementsαre equzvαlent: 

(1) A is Pγ-embedded in X; 
(2) A is Uγ-err仇 ddedαndz-(or C¥C-) embedded in X; 
(3) A is zγ-embeddedαηdωell-(or C -) embedded in X; 
(4) Everyγ-sepαγαble continuoω pseudo-rr~etric on A cαη be exter的 dto 

αcontinuous pseudo-metric 0η X; 
(5) Every cor山間ousmα.p f : A→J(γ is continuously extended over 

X; 

(6) Every continuous mαp f : A→Y intoαCech-cor叩 leteAR spαce 
withω(Y)三γiscontinuoωly exteηded over ~X 
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Theorem 1.2.6 (Hoshina [23]). Let X be αspαceαηdAαsωspαceofX. Then 
the following stαtementsαre equ'lVαlent: 

(1) A is zγ-embedded in X; 
(2) For every locallyβnite cover U of cozero-sets of Aωith IUI ::;γ， there 

existsασ-locallyβnite collectionνof cozero-sets of X such thαtν covers A 
αηdν 八Aく lイ.

3. Review of basic facts 

In this section， we mention useful facts for our later discussion. First we 

state the most basic result in our research. The implications (1)キ (2)and 

(1) =今 (3)are well-known as Tietze-U rysohn' s extension theorem ([61]， [62]) 

(cf. [3]) 

Theorem 1.3.1 (Tietze-Urysohn's extension theorem [61]， [62]). For a spαce X， 
the folloωng statements are equivαlent: 

(1) X is normal; 
(2幻)Every closed s似 5pace0，げ/X iωs C-イerr仇 dcledi仇ηX;
(3め)EzυJery closed S1ωLルbs伊pαceof X iωs C*-e 
(4め)E附、yclosed S1ωL必bs伊pace0，ザ/Xi臼sz-embedded in ηX 

A space X is said to be γ-collectionwise normαl if every discrete closed col-
lection F of X with IFI三γcanbe separated by a disjoint open collection 

of X. A space X is said to be collectionwise normal if X isγ-collectionwise 
normal for every γ. It is well-known that X is ω-collectionwise normal if and 
only if X is normal (cf. [3] or [13]) 

In the following theorem， (1)∞(2) is dueもoDowker [11]， and (1)∞(3) 

is due to Blair [6]. 

Theorem 1.3.2 ([6]， [11]). Forαspαce X， the}五Oω'oll刈IIωOωt仇Tη19stαωtemerηltSαγe equω1ωυ 
alθηt: : 

(1) X isγ-collectionω'lse normαl; 
(2) Ever・yclosed sωspαce of X is pi -err仇 ddedin X; 
(3) Every closed sωspαce of X is zγ-e的

It follows from Theorem 1.3.2 that a space X is collectionwise normal if and 
only if every closed subspace of X is p-(or z∞ー)embedded in X 

The union of a locally finite collection of closed subsets is closed. On 

the other hand， the union of a locally finite collection of zero-sets is not 

necessarily a zero-set (see [24]). For calculation of some collection of zero-

sets， the theorem below is useful. 

9 



Theo陀 m1.3.3 (Morita-Hoshina [39]). Let X be αspαceαηd{Aα:αεD}α 

uniformly locαllyβnite collection of zero-sets of X. Theη， U{Aα:αεD} is 
αzero-set of X 

Theorem 1.3.4 (Morita [37]). Let X be αspαceαηd {Aα:αεD} be αun'l-

formly locαlly finite collection of C*ー (respectively，C -or p1 -) embedded sub-
spαces of X'. 1f Aα uAβ is C仁 embeddedin .X for every a， s εD， then 
U{Aα:αεD} is C本ー (respectively， C -or p1 -) embedded in X 

Next we review basic results of extensions of mappings on products with 

a compact or a metric factor. 

For the following result concerned with a compact factor， (1)件 (2)is 

due to Alo-Sennott [2]， and (1)件 (3)is due to Morita-Hoshina [39] or 
Przymusi白ki[49] 

Theorem 1.3.5 ([2]， [39]， [49]). Let X beαspaceαηdAαsωspαce of X 
Then， the following stαtementsαre equ'lvαlent: 

(1) A is Pγ-embedded in X; 
(2) A x Y is C*一 (or P1 -) embedded in X x y~ for every compαctHαωdorff 

spαce Y withω(Y)三γ;

(3) Tlげ eexistsαcompαct Hαωdorff spαce Y withω(Y) = γsuch thαt 
AxYisC仁 (orPに )embedded in X x Y 

By combining Theorems 1.3.4， 1.3.5 and 1.3.11， we have the following re-
sult; for a space Y， g叫Y)denotes the locαl weight of Y， i.e.， gω(Y) = 
sup{ω(y，Y) : y εY} where ω(y， Y) = min{ω(U) : U is a neighborhood of 

y} 

Corollary 1.3.6. Let X beαspαceαηdAαsubspαce of X. Then， A is Pγ-

embedded in X ザαηdonlyげAxYisC仁 (orP1 -) embedded in X x Y for 
every locally compαctpαracompαct Hαusdorff spαce Yωth gω(Y)三γ

An application of Theorem 1.3.5 is the following result related to the homo-

topy extension property: 

Theorem 1.3.7 (Morita-Hoshina [38]). Let X be a space and A a sωspαce of 
X. Then， the folloωing statements are equivalent: 

(1) A is Pγ-embedded in X; 
(2) (X x B) u (A x Y) is Pγ-embedded iin X x Y for every cor叩 act

Hαusdorff spαce Y withω(Y)三γαηdevery dosed subspαce B ofY; 
(3) (X x {O}) U (A x 1) is Pγ-err巾 ddedin X x 1 

Related to a metric factor， we introduce the following result; it was 

recently proved by Gutev-Ohta answering to P町 musiriski'sproblem in [51] 
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Theorem 1.3.8 (Gutev-Ohta [19]). Let X be αspαce， Aαpγ-err山 ddedsub-
spαce of XαηdYαmetric spαce. Then， the following stαtementsαre equzv-
αleηt: 

(1) A x Y is C* -embedded in X x Y; 
(2) A x Y is U(匂 mbeddedin X x Y; 
(3) A x Y is Pγ-err仇 ddedin X x Y 

For Przymusinski's problem [51]， see also [19]， [24]， [25] and [45]. In compar-
ison with Theorem 1.3.8， note t山ha剖tC'わ*匂t
1.3.5 can not be changed into UW-embeddi時 ingeneral (see [21]) 

Next， we review some basic results concerning with 7r-embedding. 

Definition 1.3.9 (P町 musl制くi[50]). A subspace A of a space X is said to be 

7r-embedded in X ifAx Y is C仁embeddedin X x Y for every space Y. 

N otice that A is 7トembeddedin X if and only ifAx Y is P-embedded in 

X x Y for every space Y. The following theorem is known (see [24， Lemma 
4.4]) 

Theorem 1.3.10. Every compαct subspαce ofαTyrchonoff spαce X isπ-embedded 
in X. 

Theorem 1.3.11 (Morita [36]). Every closed sωspαce ofαlocαlly compαct para-
compαct Hαusdorff spαce X is 7r-embedded in X. 

Theorem 1.3.12 (Michael， cf. [59]). Every closed subspαce of αmetric spαce 
X is 7r-embedded in X. 

Finally， we list other important results: 

丁heo

compact HαuωL必sdo併rl万fs伊pαceY ωωit的hω(Y)三γ，the product X x Y isηormal 

We denote by A(γ) the one-point compactification of the discrete space with 
cardinali tyγ. 

Theorem 1.3.14 (Alas [1]). A spαce X isγ-collectionwise normalαηd C01川-

ably paracompαctげαndonlyザXx A(γ) is normal. 
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Chapter 2. 

Extensions of locally finite partitions of 

unlty 

In this chapter， we give a set-theoretical characterization of P(locally-fi凶 e)-

embedding. By using it， we show that P(locally-fi凶 e)-embeddi時 isp閃

served by the product with a compact factor. Our basic idea is to“exactly" 
extend locally finite covers of cozero-sets. We will make it clear how such 

extensions differ from so called extensions of refinements. 

1. P(locally-finite)-embedding and its characterization 

Let X be a space and A a su bspace of X. Let U = {U，α:αεD} be an 

indexed collection of su bsets of A and ν={九 :αεD}an indexed collection 

of su bsets of X. If九 nA=U.αfor every αεD， we say U is extended toν 
orνis an extention of U. If U.αC 九 forevery αεD， we say νexpands U 
orνis an expαηszoηofμA partition {ん:αεD}of unity on X is said to 
be locαllyβnite if {f~l ((0，1]) :αεD} is locally finite in X 

Dydak defined in [12] the following notion. 

Definition 2.1.1(Dydak [12]). Let X be a space and A a s山 spaceof X. Then， 
A is Pγ(locally-finite)-embedded in X if for every locally finite partition {ん:
αεD} of unity on A with IDI三γ，there exists a locally釦lItepartition 

{gα:αεD} of unity on X such that 9αIA :=ん forevery αεD. If A 

is Pγ(locally-finite)-embedded in X for every γ， A is said to be P( locαlly-
βnite)-embedded in X 

In [12]， it is stated that Pγ(locally-fi凶 e)-embedding implies p-r -embeddi時 ?

and the inverse implication need not hold (see Example 2.1.7 below) 

12 



From a set-theoretic viewpoint， we remind that the notion of P(いloca叫l日l‘-

a釦fini巾t印e)-吃embed“dir時 originallyrelates tωo Kate批tov[ロ30例]and PrロzymusiriおωS叫ki仁cl
[伊5弘叫4判].Kat 己批tovintroduced in [30] some extension properties which are gener-
alizations of collectionwise normal countably paracompactness; these prop-

erties was named later b匂yP恥rz勾ymu叩1S比ki仁cl

Definition 2.1.2 ([30]， [54]). A space X is said to be Kat針。v(respectively， 
countαbly Kαtetov) if X is normal and for every closed Sl伽 paceA of X， 
every locally finite (respectively， countable locally finite) open cover of A 
can be extended to a locally finite open cover of X. A space X is said to 

be functionally Kαtetov (respectively， countably fuηctionally K atetoゆifX is 
normal and for every closed subspace A of X， every locally finite (respectively， 
countable locally finite) cover of cozero-制 sof A can be extended to a locally 

finite open cover of X. 

Katetov showed in [30] that every collectionwise normal and countably 
paracompact space is Kat批ovand that every functionally Kat批ovspace 1S 

collectionwise normal. 8imilarily， he also stated in [30] that every normal 

and countably paracompact space is countably Kat批ov.80 these extension 

properties are concluded as the following: 

Diagram 2.1.3. The following implications hold， where CN means “collection-
wise normal"， CP means “countably paracompact"， C. means “countably" 
and F. means “functionally 

CN+CP 一一一→ Kat批ov 一一→ F. Katるtov 一一→ CN 

N+CP 一一一→ C.Katetov -一一→ C.F. Kat批ov-一一→ N 

Przymusirisl仏 Nageshowed by examples in [54] any of implications is not 

reversed. They also showed in [54] the following result; in their proof of 

(1) of the “only if" part， the normality of X and the closedness of A are 

essentially used. 

Theo附 n2.1.4 (Przymusiriski-Wage [54]). The folloω旬 stαtementshold 
(1) A spαce X is functionally Kαtetovザαndonly if every locallyβnite 

partition of unity 0ηαny closed subspace A of ).( can be extended to a locally 
finite partition of unity on X. 

(2) A spαce X is collectionwise normalザαndonlyザeverylocαllyβηite 
partition of unity onαny closed subspace A of X cαη be extended toα(ηot 
necessαrily locαllyβnite) pα付itioηofunity on X. 
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They a1so comment that (2) in the above can be generalized like (1)件 (2)

of the following theorem; Dydak showed in [12] all of the conditions be10w 

are equiva1ent. 

Theorem 2.1.5 ([12]， [54]). Forαspαce Xαηdαsωspαce A of X， the follow-
ing statementsαre equivalent: 

(1) A is Pγ-embedded in X; 
(2) Every locallyβnite pαrtition， with Cαrd三γ，of unity 0η A cαn be 

extended toα(ηot necessαrily locαlly finite) pαrtition of unity on X; 
(3) Every partition，ωith Card三γ，of unity on A cαn be exter的 dtoα 

pαrtition of unity on X. 

Thus， it is natura1 toωk whether a s山 spaceA of a space X is P(locally-
finite )-embedded in X if and on1y if every 10cally釦lIte cover of cozero-sets 

of A can be extended to a 10cally finite cover of cozero-sets of X. From these 

points of view， we prove this equivalence as follows: 

Theorem 2.1.6 (Main). Let X be αspαceαηdAαs叫 5pαceof X. Then， A 
is Pγ( locαlly-βnite)-embedded in X ザαηdonlyザeverylocαlly fiηite cover， 
with Cαrd <γ， of cozero-sets of A cαn be extended to αlocαlly fiηite cover of 
cozero-sets of X 

Theorem 2.1.6 shows that P(locally-finite)-embeddi時， w hich was defined by 

Dydak in connection with a1gebraic viewpoints， is precise1y equal to the no-
tion which had discussed by Katetov or Przymusinski-Wage in a set-theoretic 

topo1ogy.針。mthe points of Theorems 2.1.4 and 2.1.6， one may ask the fo1-
lowing: 

ls it true that A is p'Y-embedded in X if and only if locally finite cover， 
with Card :::;γ， of cozero-sets of A can be extended to a cover of cozero-sets 

of X ? 

On the case of γ=ω， this is affirmative1y answered easi1y. However on the 

case ofγ>叫 thisis negative. 1ndeed， in Binピsspace H ([5， Examp1e H]， 
see a1so [48])， there exists a closed subset A which is not P'Y -embedded in H 

We have that U U (H -A) is a cozero-set of H for every cozero-set U of A 
Therefore every locally finite cover of cozero-sets of A can be extended to a 

cover of cozero-sets of H. 
From now on， we use P(locally-finite)-embeddi時 underthe meaning of 

the charactrization in Theorem 2.1.6 without reference. Here， we ho1d an 
example which directly follows from Theorems 1.3.2 and 2.1.4. 

Example 2.1.7 (P町 musl制 <i-Wage[54， Example 3]). The P-embedding need 

not imply Pω(locally-finite )-embeddin 
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We say that a subspace A of a space X is L'Lembedded in X if ever 
locally finite collection U of cozero-sets of A with IUI三γhasa locally finit 

expansion of cozero-sets of X. A su bspace A of a space X is said to b 

L-embedded in X if A is Lγ-embedded in X for every γ. 

Proposition 2.1.8. Let X beαspαce， Aαsubspαce of X αηdγαη 2rl月nite
cαrdinαl. Then， A is Pγ( locαlly-βnite) -embedded in X ザαndonlyザAis C-
and Lγ-embedded in X. 

From Proposition 2.1.8， it also follows that “Pγ(locally-finite) =Pγ+L刊

For the proof of Theorem 2.1.6， the following characterization of C-
embedding is essential (cf. Remark 2.1.10) 

Lemma 2.1.9. Let X be αspαceαηdAαsubspαce of X. Then， A is C-

embedded in X ifαηd only if for every continuous funciion 1 : A→Iαηd 

disjoint zero-sets Zo， Zl of X with Zi n A = 1-1 
({ i}) (i二 0，1)， there exists 

αcontiηωus extension 9 : X→1 01 1 such thαt Zi = g-l ({ i}) (i = 0， 1) 

By Ishii-Ohta [27]， a subspace A of a space )( is said to be C1-embedded 
in X if any zero-set Zl of X and any zero-set Z2 of A disjoint from Zl are 
completely separated in X. In [27] it is proved that C1-embedding implies 

well-embedding; and by [21] UW-embeddi時 impliesC1-embedding. Hence it 

follows from Theorem 1.2.3 that A is C-embedded in X if and only if A is 

C*ー andC1-embedded in X ([27]) 

Proof of Lemma 2.1.9. To prove the “if" part， assume that for every continuous 
function 1 : A→1 and di司ointzero-sets Zo， Zl of X with Zi n A = 1-1 

({ i}) 

(i 0，1)， there exists a continuous extension 9 X →1 of 1 such that 
Zi = g-l({i}) (i = 0，1). To prove C-embeddability of A in X， it suffices 

to show that any continuous function 1 : A→(0，1) can be extended to a 

continuous function 9 : X→(0，1). Regard 1 as 1 : A→1 and apply the 
condition to Zo = Zl = o. Then the extension 9 of 1 satisfying the condition 
maps X into (0， 1). Hence 9 is the desired extension 

To prove the “only if" part， suppose A is C-embedded in X. Let f 
A→1 be a continuous function and Zo， Zl disjoint zero-sets of X with 

Z内 A= 1-1({i}) (i = 0，1). Let /!， : X →1 be a continuous function 

satisfying that /!，-l({i}) = Zi (i = 0，1). At白rst，we prove the following 
claim. 

Claim. There exists a continuous extension h : _X →1 of 1 such that Zi C 

h -1 ( {i}) (i = 0， 1). 

Proof of Claim. By induction， we shall construct continuous functions hn 
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X→卜1/2n-1， 1/2η-1] (ηεN) which satisfy the following conditions: 

(1) h11({i})コZi(i = 0，1) and h~l( {O})コZoU Zl (ηど2);and 

(2) 11-乞7=1(んIA)1 < 1/2n (ηεN) 

Let k1 = 1 -flA and put Fl二 k1
1(ト1，-1/2] U [1/2，1 J). Then， F1 is a 

zero-set of A disjoint from Zo U Zl・ SinceA is C1-embedded in X， there 
exists a continuous function jl : X→1 such that 

j1l({1})コFl and j1l( {O}) == Zo U Zl・

Since A is C仁embeddedin X， there exists a continuous function 11 : X→I 

such that 11lA = 1. Define a continuous function h1 : X→1 by 

h1(x) = jl(X) . 11(X) + (1 -jl(X))・f(x)

for every X εX. Then， h1 trivially satisfies the conditions (1) and (2) 

Next assume that the continuous functions h1， ・・・ ，hn are defined with the 

properties (1) and (2) for i = 1，. • . ，ηPut kn+l = 1 -2:7=1 (hiIA). Then， 
by the assumption (2)， kr川 takesits value in [-1/2η，1/2n]. Put 
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Then， Fn+l is a zero-set of A disjoint from Zo U ZI・ SinceA is C1-embedded 
in X， there exists a continuous function jn+l : X→1 such that 

j~~l ({1})コ凡+1and j~~I({O}) = Zo U Zl 

Since A is C* -embedded in X， there exists a continuous function 1n+l : X→ 
[-1/2n，1/2n] such that 1n+llA = kn+l' Define a continuous function hn+l 
by 

hn+l (X) = 1n+l (X) . jn+l (X) 

for every X εX. Then九η+1:X →ト1/2ぺ1/2n]is a continuous function 
satisfying (1) and (2). Hence the induction completes 

Put h = ((2:iεN hi) ̂  1) V O. It is not hard to see that h is continuous， 
hlA = 1 and Zi C h-1({i}) (i = 0，1). It completes the proofofClaim 口

Here， put D = h-1({0}) U h-1({1}) -Zo U ZI' Notice that D can be 
represented as D UiξN Di' where each Di is a zero-set of X. Since 
A n h-1({i}) = f-l({i}) = A n Zi (i = 0，1)， we have AηD  二日 and

hence A n Di =日(iε N).Since A is well引 nbedldedin X， there exists zero-
et Fi of X such that Fi n Di = o and A C Fi' Since niEN Fi is a zero-set of X， 
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there exists a continuous function cp : A→1 such that n酬 Fi=cp-1({1})
Then it follows that 

A c cp -1 ( {1 }) an d cp -1 ( {1 } )ハ (h-1({0})U h-1({1}) -Zo u Zl) =日

Define a continuous function 9 : X→1 by 

g(x) = cp(x) . h(x) + (1 -ψ(x) )・P(x)

for every x εX. Then， 9 is an extension of 1. Finally we shall show that 

Zi = g-l( {i}) (i = 0，1). Since Zi = P-1
( {i}) C h-1

( {i}) (i = 0，1)， we 
have Zi C g-l({i}) (i = 0，1). Suppose x 手ZoU Zl. Then 0く P(x)く 1

Ifψ(x) = 1， then 0く h(x)< 1 because of the definition of ψit follows 

that 0 < g(x)く1. Ifψ(x)く 1，then g(x)三(1-ψ(x)). P (x) > 0 and 
g(x)く伊(x).l+(l-ψ(x)). 1 = 1; it follows that 0く g(x)< 1. These show 

that X -Zo U Zl C g-l((O， 1)). Thus we have Zli = g-l({i}) (i = 0，1). The 

proof of Lemma 2.1.9 is completed.口

Proof of Theorem 2.1.6. The “only if" part is easy to see. Assume that every 
locally五nitecover， with Card ~γ， of cozero-sets of A can be extended to 

a locally finite cover of cozero-sets of X. By Theorems 1.2.1 and 1.2.3， we 
first note that A is C-embedded in X. Let {ん :α<γ}be a locally finite 

partition of unity on A. From the assumption， there exists a locally finite 

cover {~α:α く γ} of cozero-sets of X such that ~αnA = 1;;1 ((0，1]) for every 
α<γ. By Lemma 2.1.9， there exists a continuous extension 9α:X→1 of 1α 

such that g;;l ((0，1]) = ~αfor every αく γ1t is easy to see that I:β<γgs is 
continuous and positive-valued. Hence {gα/ I:s<'i 9β:α く γ}is the required 
locally finite partition of unity on X.口

Remark 2.1.10. Frantz proved in [14] Lemma 2.1.9 assuming the normality 

of X and the closedness of A. According to [14]， Frantz's result shows that 
Tietze-Urysohn's extension theorem admits controlling the extended function 

so as to take on certain specified values. Lemma 2.1.9 shows the controlling 

extension itself equals C-embedding. 

2. P(locally-finite)-embedding on products with a com-

pact factor 

In this section， we discuss the extension of P(locally-finite)引出eddingwith 

a compact factor. Our motivation of this section is the following problem 

posed by Dydak in [12] 
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Problem 2.2.1 (Dydak [12]). Let A be a Pγ(locally-.五nite)-embeddedsubspace 

of a space X. Then， is A x 1 Pγ(locally-finite )-er山 eddedin X x 1? 

He posed Problem 2.2.1 investigating the homotopy extensions of some ex-

tension properties containing P(locally-finite )-ernbeddi時 Fromthis point 

of view， he proved the following result. 

Theorem 2.2.2 (Dydak [12]). Let X be αspαceαηdAαs似 spαceofX. 1f 
A x 1 is Pγ(locαlly-βηite)-embedded in X x 1， then (X x {O}) U (A x 1) is 
P'Y (locαlly-finite)-embedded in X x 1 

For the products with a compact factor， we have the following conclusion. 
The (1) and (3) were known for the case of P-embedding (cf. Theorem 1.3.10 

and Corollary 1.3.6). An affirmative answer to Problem 2.2.1 follows from 

(3) immediately 

Theorem 2.2.3. Let X be αspaceαηdAαsubspace of X. Then， the following 
stαtements hold. 

(1) Let X be Tychonoffαnd A compαct. Then forαηy spαce Y， A x Y is 
P(locαlly-finite) -err巾 ddedin X x Y 

(2) Let Aαyαεn， be L'Y -err山 ddedsωspace ofX. 1f{Aα:αξn} 1ω 
αlocαlly finite expαnsion of cozero-sets of X， then UαεnAα is Lγ-embedded 
in X. 

(3) Let A be Pγ(locαlly-finite)-embedded in XαηdYαlocαlly cor卯 αct
pαracompαct Hαωdorff spaceωith fω (Y) 三 γ Tl附~， A x Y is Pγ( locαlly-
βnite)-err仇 ddedin X x Y. 

As an application of Theorem 2.2.3， we show the following result; the 
case of P'Y -embeddi時 wasknown (cf. Theorern 1.3.7). The implication 

“(1)今 (3)"is also shown by Theorem 2.2.2 and (3) of Theorem 2.2.3 

Corollary 2.2.4. Let X beαspαceαηdAαsubspace of X. Then， the following 
stαtementsαre equ2vαlent: 

(1) A is Pγ(locally-finite) -embedded in X; 
(2) (X x B) U (A x Y) is Pγ( locally-finite) -eγnbedded in X x Y for every 

compαct Hαusdorff spαce Y ωithω(Y)三γαηdevery closed subspαce B of 

Y; 

(3) (X x {O}) U (A x 1) is Pγ( locαlly-fiηite)-embedded in X x 1 

Let us prove Theorem 2.2.3. 

Proof of Theorem 2.2.3. To prove (1)， let X be Tychonoff， A compact and Y a 

space. By Theorem 1.3.10， A x Y is P-embedded in X x Y. By Proposition 

2.1.8‘it su伍cesto show A x Y is L-embedded in X x Y. To prove this 
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let {U，α:αεD} be a locally fi凶 ecover of cozero-制 sofAx Y. Let 
py:AxY→Y be the projection. 8ince the image of a cozero-set under an 
open perfect map is a cozero-set (see [15， Lemma 3.4] or [13， 1.5.L])， py(uα) 
is a cozero-set for every αεD. Hence， {X x py (U，α) :αεD} is a locall 
釦lite cover of cozero-制 sof X x Y and expands {U，α:αε D}. It follows 
that A x Y is L-embedded in X x Y. 80， (1) holds 

To prove (2)， let {Us : sく γ}be a locally fini te collection of cozero-sets 

of UαεnAα Let {Gα:αεD} be a locally fi凶 eexpansion of {Aα:αεD} 
of cozero-sets of X. For every αεD， there exists a locally finite collection 

{Bs:。く γ}of cozero-sets of X such that Us n Aαc Bs for every s <γ 

Then， it is easily shown that {Uαε口(Bsn Gα) : sく γ}is a locally finite 
collection of cozero-sets of X such that Us C UaEn (Bs n Gα) for every sく γ
It follows that UαεnAα is Lγ-embedded in X 

To prov刊e(3め)， let A be a P γ吋市(引locall砂y-ι五fin凶凶it旬eめ)-引引e白佃I目]巾[

C be a c∞ompact Hausdor百spacewith匂ω叫;(C)三γ.To prove A x C is L 'L 

embedded in X x C， let U = {Uα:α<γ} be a locally finite collection 

of cozero-sets ofAx Y. Let P A A x C →A be the projection. 8ince 
{PA(U，α) :α く γ}is a locally fi凶 ecollection of cozero-附 sof A， there exists 
a locally finite expansion {九 :αε S1}of {PA(Uα) :αく γ}of cozero-sets of 
X. Clearly， {九 xC:α<γ} is locally finite in )C x C and UαC Va X C for 

each α<γ. 1 t shows that A x C is Lγ-embedded in X x C. 

8ince Y has a uniformly locally finite cover of compact subsets with weight 
三γ，from (1) and (2) of this proposition and the fact shown above， A x Y 
is L i -embedded in X x Y. 

On the other hand， by Corollary 1.3.6， A x Y is C-embedded in X x Y. 
Hence by Proposition 2.1.8， A x Y is Pγ(locally-finite)-embedded in X x Y 

It completes the proof.口

Proof of Corollary 2.2.4. (1)キ (2):Let Y be a cornpact Hausdor百spacewith 

ω(Y)三γandB a closed subspace of Y. AssUlme A is Pγ(locally-finite )-
embedded in X. By Theorem 1.3.7， (X x B) u (A x Y) is C-embedded 

in X x Y. By Proposition 2.2.3， (X x B) u (A x Y) is Lに embeddedin 

X x Y. Hence it follows from Proposition 2.1.8 that (X x B) u (A x Y) is 
pγ(locally-finite)-embedded in X x Y 

(2)今 (3):Obvious 
(3)今 (1): Assume (3). Let {U，α:α<γ} be a locally fi凶 ecover 

of cozero-制 sof A. For a locally finite cover {U，αx (1/3，1] :α く γ}u

{(A x [0，2/3)) u (X x {O})} of cozero-sets of (X x {O}) u (A x 1)， there 
exists a locally finite cover {九 :α く γ}u {W} 0ぱfc∞ozero-set臼s0ぱfX x 1 

h t凶ha瓜t九パ ((Xx {伊O}η)u (μAxIη)) = U仇α><(ο1/バ3，1]for every α<γ 
and W n (( X x {O}) U (A x 1)) = (A x [0ぅ2/3))U (X x {O}). Let Vo* = 
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(九 uW) n (X x {1}). Then {Vo*} u {九 n(X x {1}) : 1三αく γ}can be 

regarded as a loca11y fi凶 ecover of X extending {~α:α<γ}. Hence A is 

pγ(loca11:y寸凶e)-embeddedin X. The proof is completed 口

Remark 2.2.5. In (3) of Proposition 2.2.3， local-colmpactness of Y can not be 
replaced by Cech-completeness. Indeed， for Michael line X (see [13， 5.5.3]) 
and the irrationals Y， Q (= the rationals in X) is .P(loca11y-fi凶 e)-er巾 edded
in X and Q x Y is not C九embeddedin X x Y. 

Fina11y， we introduce another problem posed by Dydak in [12]. In parallel 

with Problem 2.2.1う heposed the following: 

Problem 2.2.6 (Dydak [12]). Let A be a Pγ(point-finite )-embedded * subspace 

of a space X. Then， is A x 1 Pγ(point-finite)-embedded in X x 1? 

3. P(locally-finite)-embedding and functionally Katetov 

spaces 

In this section， we give basic facts of P(loca11y-finite)-embeddi時 andfunc-

tiona11y Katetov spaces. For every nεN， the symbol [，]n stands for 

{o C γ: 101 = n}. The [γ]<ωstands for {o Cγ: 161 <ω} 

Our motivation is the fo11owing result by Smith-Krajewski [58]: 

A spαce X isγ-expandαble (i. e. every locallyβnite collection U of closed 
subsets of Xωith 1υI~γcαη be expαnded toαlocαllyβηite opeηcollection 
of X)ザαndonlyザX isγ-boundedly expαndαble (i. e. every locαlly finite 
collection U，ωithβnite order， of closed subsets of X ωth IUI三γcanbe 
expanded toαlocαllyβnite open collectioηof X')αndω-expandαble. 

If X is assumed to be normal， the above fact is precisely the well-known 

Katetov's characterization of collectionwise normal and countably paracom-

pactness ([30]， see also [3， Theorems 12.4， 21，25 and 21，26] and [13， 5.5.17]) 
Motivated by the above result， we characterize Pつ(引loca叫11匂y-白fin凶i比t旬eめ)-embeddin
and functiona11y Kat 益批tovspaces by the statements composed by the count-

able cωar吋di凶na叫1case and the fin凶1廿it旬eorder case 

Theorem 2.3.1. Let X beαspαceαηdAαsωspαce of X. Then， A is Pγ( locαlly-
finite)-err仇 ddedin X ifαηd onlyザAisPω( locαlly-finite) -embedded in Xαηd 

for every locally finite collectioη{~α:α く γ} of cozero-sets of Aωith finite 

* A subspace A of a spaα X is said to be Pγ(point-jinite)-embedded in X if for every 
point-finite partition {ん :αεO}of unity on A with 101 ~γ) there exists a point-finite 
partition {gα:αεO} of unity on X such that 9αIA=んforevery αεO. 
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order， there existsαlocαllyβnite collection {九 :α く γ}of cozero-sets of X 
such thαtUαC九 foreveryα<γ. 

Corollary 2.3.2. A spαce X is functionαlly Kαtetoυifαηd only if X is count-
αbly functionαlly Kαtetovαηd for every closed s'Llbspαce A of Xαηd every 
locαllyβnite collectioη{~α:α<γ} of cozero-sets of A with finite order， 
there existsαlocαllyβnite collection {九 :α く γ}of cozero-sets of X such 
thαtUαC九 foreveryαく γ.

To prove Theorem 2.3.1， we need a lemma. 

Lemma 2.3.3. Let lイ={U1α:α<γ} beαlocαllyβnite collectioηof cozero-sets 

ofαspαce X. For every dεUnEN[γ]n， let Bo = (ìαεó~α- Uß~ó Us. Then， 
for every nεN，tl問、eexistsαlocαllyβnite disjoint collection {B'8 : dε[γ]n} 
of cozero-sets of X such thαt Bo C B'8 C nαEO ~α for every dε[γ]n 

Proof Fix ηεN. We can express Bd UjEN ZJ， where ZJ is a zero-set 

of X. Notice that {ZJ : dε[γ]n} is uniformly locally finite in X for every 

j εN. Hence there exist a uniformly locally finite collection {Fi : dε[γ]n} 
of zero-sets and a collection {C~ dε[γ]n} of c:ozero-制 sof X such that 

zjC qc Fjc nαωUαfor every dε[γ]n. Put 

BJ=U(C1-U{可:J三九με[γrandμ 針})

for every dε[γ]n. Since {Fi με[γr} is uniformly locally finite， by 
Theorem 1.3.3， every B'8 is a cozero-set of X. It is easily shown that {B'8 : 

6ε[γ!っisthe required collection. This completes the proof口

Proof of Theorem 2.3.1. It su伍cesto show the “if" part. Assume that A 
is Pω(locally-finite)-embedded in X and for every locally fi凶 ecollection 

{~α:α<γ} of cozero-制 sof A with finite order， there exists a locally釦lite

collection {九 :α<γ}of cozero-sets of X such that U1αC  九 forevery 

α<γ. Since A is C-embedded in X， by Proposition 2.1.8， it su伍cesto show 

that A is L 'Y-embedded in X. Let U = {~α:α<γ} be a locally finite cover 

of cozero-sets of A. Let An = {xεA : ord(ιυ)三n}(nεN). Then An， 
nεN， is a cozero-set of A， because Aη=  U{r1αωUα: dε[γ!っSince
{An:ηεN} is a locally finite cover of A， by the assumption， there exists a 

locally finite cover {A~ :ηεN} of cozero-sets of X such that A~ 内 A = An 
for every nεN. For every dεUnEN[γ]n， 1etBo = nαεó~α- Uß~8 Us 
Then by Lemma 2.3.3， for every nεN， there exilsts a locally finite disjoint 

collection {B'8 : dε[γ]n} of cozerか setsof A such that Bo c B'8 for every 
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6ε[γ]n. From the assumption， for every nεN， there exists a locally finit 

collection {Vd : Oε[γ]η} of cozero-sets of X such that BJ C vd for every 
6ε[γ]n. Then， {竹内 A~ Oε[γlη?ηεN} is a locally finite collection of 
cozero-sets of X. Put 

に=U{ Vd n A~ : Oε[γt andαε い εN}

for every αく γThenwe have that {U~ :α く γ}is a locally fi凶 ecollection 

of cozero-sets of X and U.α C  U~ for every α<γ. Hence A is Lγ-embedded 

in X. It follows that A is Pγ(locallJ寸 nite)-embeddedin X. It completes 

the proof.口

1n view of Proposition 2.1.8， it is natural to ask the following two problems. 

Problem 2.3.4. Suppose that a subspace A of a space X is LW_ and P'-
embedded (or e刊qu山lV刊a叫，1加l

i白sA P γ吋市(locall匂y-fin凶 e吋)-embe“dde吋din X? 

Problem 2.3.5. Suppose that a space X is countably functionally Kat批ovand

collectionwise normal. Then， is X functionally Kat批ov?

Problem 2.3.5 is compared w叩it山hP針rz勾ymu凶1S討1I白is叫北k恒【cl

tion 3] that: 

“1s a countably Katetov and collectionwise normal space a Kat批ovspace?" 

If Problem 2.3.4 is affirmative， then Problem 2.3.5 is also affirmative. Theo-

rem 2.3.1 or Cororally 2.3.2 may be regarded as a partial answer to each of 

these problems. 

4. Exact extensions versus extensions of refinements 

The purpose of this section is to compare extensions of covers (we often call 

them exact extensions) and extensions of refinements of covers， and to show 
that they essentially differ. 

Obviously we have that: 

A subspαce A ofαspαce X is Pγ-embedded in X ifαηd only if every normal 
opeηcover，ωith Cαrd <γ， of A cαη be extended to αnormal opeηcover 
ofX. 

This shows that extensions of normal open covers are the same as extensions 

of some refinements of normal open covers. 
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Next， with the indexed forms， we express the facts already given. 

(1) A is Pγ(locally-白山e)-embedded in X if and only if for every locally 

fini te cover {U，α:α く γ}of cozero-則 sof A， there exists a locally finite 

cover {H，α:α<γ} of cozero-sets of X such tl-.凶 HαnA= Uαfor each 
α<γ. 

(2) A is P'-embedded in X if and only if for every locally finite cover {U，α: 

αく γ}of cozero-制 sof A， there exists a locally finite cover {H，α:α<γ} 

of cozero-sets of X such that H，αパAcU，αfor eachα く γ.

Example 2.l.7 shows， on the statement (2) of the above， "c" can not be 
changed into "="(cf. (A) and (D) in the picture below). It shows that， on 
the case of locally finite covers of cozero-sets， exact extensions and extenions 
of some refinements are different. 

Here， recall (3) of Theorem l.2.1， a cha訂ra飢ct悦eぽr白 a剖tionof normal open cov-

ers. The Pγ-embedding is expressed as the followi.ng indexed form. 

A subspace A of a space X is Pにembeddedin X if and only if for every 

locally finite cover {U
1α:α<γ} of cozero-制 sof A， there exists a cover 

{Hiα: i <叫α<γ}of cozero-sets of X such that {Hiα:α く γ}is locally 

finite in X (i <ω) and (Ui<w Hiα)nAcU1αfor every α<γ 

From our viewpoint， we ask the following: 

In the above result， can “c" be changed into “="? 

To answer this question，五rst，we give a definition of weak zγ-embedding↑? 
which will be a key notion in our discussion. 

Definition 2.4.1. A subspace A of a space X isωωkly z，-embedded in X if for 
any uniformly discrete collection {F:α:α く γ}of zero-sets of A， there exist 
locally finite collections 冗i= {Hiα:α<γ} (i <ω) of cozero-sets of X such 
that F，αC Ui<ωHiCi for each α<γ If A is weakly Zγ-embedded in X for 
every γ， A is said to be weakly Z∞-embedded in X. 

Notice that any subspace A of any space X is weakly zw-embedded in X. The 

following characteriza七ionsshow that for weak zγ-embedding， local-finiteness 
and uniformly local-finiteness play similar roles. 

↑This notion is introduced in [69] to discuss a cardinal generalization of C* -embedding 
concerned with Oht山 problemin [46]. In this paper， we only give natural characteriza-
tions of weak z-y-embedding and their proofs (cf. [69， Added in proof (2)]). For the details 
about this topic， see [46] and [69] 
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Theorem 2.4.2. Let X be αspαceαηdAαsubspαce of X. Then， the following 
stαtementsαre equivalent: 

(1) A is weαkly z，-e的 eddedin X; 
(2) For every locαllyβnite collectioη{U，α:α<γ} of cozero-sets of A， 

tlげ θexistlocallyβηite collectionsチti= {Hiα:α<γ} (iく ω)of cozero-sets 

of X such thαtUαC Ui<ω Hiαfor eachαく γ;
(3) For every uniformly locallyβnite collection {~α:α く γ} of cozero-

sets of A， tl町 eexist uniformly locαllyβnite collections冗i= {Hia :α く γ}
(i <ω) of cozero-sets of X such thαtUαC Ui<ω J-lia for eαchα<γ 

From Theorem 2.4.2， it follows that: 

A subspαce A ofαspαce X is weakly zγ-embedded in X ifαηd only if for 
any collection {~α:α<γ} of A with locαlly finite expαηsion of cozero-sets 
of A， there exist locαllyβnite collectionsチti= {Hiα:α<γ} (i <ω) of 
cozero-sets of X such thαt U.αC Ui<ω Hiαfor eachα<γ 

From Thorem 2.4.2， we have七hefollowing corollaries. Corollary 2.4.5 

answers the question mentioned above affirmatively. 

Corollary 2.4.3. A subspαce A ofαspαce X is zγ-embedded in X ifαηd only 
if A isωeakly z， -embeddedαnd z-embedded in X. Moreover，αsubspαce A of 
αspαce X is Pγ-embedded in X ifαnd only if Ais weαkly zγ-embedded αnd 
C -embedded in X. 

Corollary 2.4.4. A subspαce A ofαspαce X is z， -en'Lbedded in X ifαnd only if 
for every locαllyβnite collection {U，α:α<γ} of cozero-sets of A， there exist 
locαlly finite collectionsチti= {Hiα:α<γ} (i <ω) of cozero-sets of X such 
thαtUα=(UωH叫 nA for eachαく γ.

Corollary 2.4.5. A subspαce A of αspαce X is p， -embedded iη X ifαnd only 
if for every locαlly finite cover {U1α:α く γ}of cozero-sets of A， there exist 
locαllyβηite collections冗i= {Hiα:α<γ} (iく ω)of cozero-sets of X such 

thαt U.α=(UωH叫 nAfor ωchαく γαηdX == Ui<叩 <γHiα

Let us proceed to the proofs. To prove Theorem 2.4.2， we need a lemma. 

Lemma 2.4.6. Any discrete collection of zero-sets of αspαce X withαlocally 
finite expansion of cozero-sets is uniformly discreite in X. 

Proof Let {~α:αεn} be a discrete collection of zero-sets of a space X 

and {Gα:αεn} a locally finite expansion of {凡 :αεn}of cozero-sets 

of X. By Theorem 1.3.3， Gα-U伴 αFsis a cozero-則 foreach αεQ  
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Then， there exist a cozero-set Wαand a zero-set Zαsuch that F.αζ防/αC

Za c Gα-Us向乃 forevery αεn. Take a cozero-制 Uαsuchthat 

Fαcu.αcu.αcW:α-Uβ向 Zsfor every αεn. Then， we can see that 
{U1α:αε n} is discrete口

Proof of Theorem 2.4.2. (1)キ (2):Let {U，α:α く γ}be a locally finit 

collection of cozero-sets of A. For every 6ε[γ]<ぺput~ = nαωUα-
Uβμ Us. Fix n <ωarbitrarily. For every 6ε[γr¥we can express Vd 

Uk<ωZk， where every Zk is a zero-set of A. 8ince {nαEd U，α:6ε[γ]n} is a 
locally fi凶 ecollection of cozero-則 sand {Vd : 6ε[γ]n} is disjoint， {Zk : 6ε 
[γ]n} is a discrete collection of zero-sets of A with a locally finite expansion 

of cozero-制 sfor every kく ωThen，by Lemma 2.4.6， {Zk : 6ε[γ]n} is 
a uniformly discrete collection of A for every kく ω.Fix kく ωarbitrarily.
From the assumption， there exists a locally finite collection {W;，m : 6ε[γ]n} 

of cozero-附 sof X for every m く ωsuchthat Z~~ C Um<ωw;，m for every 
6ε[γ]n. Let us define now， for every k， m，η く ωandαく γ，Hk川 n，α二

U{W;，m : 6 ε [ γ ]n and α ε 6}. Then， {Hk，m，n，a : α < γ } is a locally 白釦h削nl
collection of c∞ozero-setωs 0ぱfX for every k， m，川η く ω.Moreover， we have that 
UαC Uk.m.n<ωH k，m，n，a for every αく γ

(2) =今 (3):8ince for any cozero-則 Hthere exist cozero-則 sHn， zero-sets 
Zηand cozero-sets Wn (n <ω) such that H = lJn<ωHn and Hn c Zn c 
Wn c H for every nεN， (3) follows 

(3)今 (1):8ince any uniformly discrete collection of zero-sets has a uni-
formly discrete expansion of cozero-sets， (1) obviously follows. It completes 
the proof.口

Proof of Corollary 2.4.3. The “if" part follows from (1)∞(2) of Theorem 

1.2.6 and (2) of Theorem 2.4.2 immediately 
To prove the “only if" part， assume that A is z.-y-embedded in X. Clearly 

A is z-embedded in X. To prove A is weakly zγ引 nbeddedin X， let {F:α: 
αく γ}be a uniformly discrete collection of zero-sets of A. Let {U，α:α く γ}
be a discrete expansion of {F:α:α く γ}.By Theorem 1.2.6， there exists a 
σ-locally finite collection 冗 ofcozero-制sof X such that冗八 A< {U1α:α< 
γ} u {A -Uα<γFα}. 80， we can easily construct sequences of locally finite 
collection of cozero-sets of X as the definition of weak z，，-embedding. 

Moreover， another statement also holds from Theorems 1.2.3 and 1.2.5 

immediately. 1 t com pletes the proof.口

Proof of Corollary 2.4.4. It follows from (1)∞(2) of Theorem 2.4.2 and Corol-

lary 2.4.3.口

Proof of Corollary 2.4.5. The "if" part follows from the definition of p-
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embedding and Theorem 1.2.1 immediately. The “only if" part follows from 
Corollary 2.4.4 and (1)φ(3) of Theorem 1.2.5.仁l

For convenience， we prepare some extension properties by the indexed 
forms: 

For a space X and a su bspace A of X， some extension properties are 
expressed as follows: 

(1) A is zγ-embedded in X if and only if for every locally finite cover 

{U，α:α<γ} of cozero-制 sof A， there exists a locally finite cover {H，α: 
α<γ} of cozero-制 sof some cozero-則 Gof X containing A such that 

Hα 内AcUαforeach αく γ.

(2) A is Lにembeddedin X if and only if for every locally finite cover 

{U，α:α<γ} of cozero-制 sof A， there exists a locally finite collection 

{H，α:α<γ} of cozero-則 sof X such that Uαc H，αfor each α<γ 

(3) A is L i -and z-embedded in X if and only if for every locally fini te 

cover {U，α:α く γ}of cozero-則 sof A， there exists a locally finite collection 

{Hα:α く γ}of cozero-則 sof X such that HαnA=Uαfor each αく γ

Let X be a space and A a subspace of X. Let {i~α:α く γ} be a locally fi-

nite cover of cozero-sets of A. Fix a Uα. We illustrate this situation as follows: 

A X 

The following picture illustrate the relation of U1αand H.α(or Hiα) on some 
extension properties. 
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(D) Pにembedding

(Definition 1.1.3) 
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(F) zγ-embedding 
(Defi凶 ion1.1.4) 
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A G X 

(B) L'Y-+ z-
embedding 
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(C) Lγ-屯embeddin

(De白n凶ition)

今

A X A X 

(E) Pγに-embeddin

(Corollary 2.4.5) 
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(Thorem 2.4.2 (ρ2)リ) 

二=ヰ〉

A 

(G) z句γ-embeddin
(Corollary 2.4.4) 
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A X A X 

If we change "w" in Corollary 2.4.5 into “1"， the condition equals that A is 
pγ(locally-finite)-embedded in X (see (A) and (E) in the picture). Similarily 
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if we change "w" in (2) of Theorem 2.4.2 into γ ， the statement equals that 
A is Lに embeddedin X (see (C) and (H) in the picture). Also similar argu-
ment hold in zγ-and Lγ-+z-(see (B) and (G) in the picture). As for the 

uniform local-finite case， the similar result holds. lndeed， if we change 'い"in 
(3) of Theorem 2.4.2 into “1"， the statement equalls that A is Uγ-embedded 
in X. 

Finally， we give a result from another viewpoint. Let A be a P-embedded 

subspace of a space X. ln view of Theorem 2.1.5 and the above discussion 
for a given locally finite partition of unity on A or a locally finite cover of 

cozero-sets of A， its extension to X can not be required to be locally finite. If 
we require the exact extensions to be locally finite， P-embedding is expressed 
as follows. It seems to be interesting when we compare this result with Theo-
rem 2.1.6. We say a partition {ん :αεn}of unity on X is uniforrr均 locαlly
finite if {f;l ((0， 1]) :αεn} is uniformly locally finite in X 

Theorem 2.4.7. For a spαce X andαsubspace A of X， the following state-
mentsαre equzvαlent: 

(1) A is Pγ-embedded in X; 
(2) Every unifor・mlylocαlly finite cover， with Cαrd三γ，of cozero-sets 

of A can be extended to a uniformly locally finite (or locally finite) cover of 
cozero-sets of X; 

(3) Every uniformly locallyβnite partition， w付hCard三γ，of unity of 
A cαn be extended to αuniformly locαllyβnite partitioη (orαlocally finite 
partition，αpαrtition) of unity on X 

Proof (1)今 (2):Let {U，α:α く γ}be a uniformly locally finite cover of 

cozero-sets of A. By Theorem 1.2.5， A is Uγ-embedded in X. Hence， we can 
take locally fi凶 ecollections {H，α:α<γ}， {Zα:α<γ} and {Gα:α く γ}

of X such that H.αand Gαare cozero-sets of X， Zαis a zero-set of X and 

Uα cH.αc Z.αcGαfor each αく γ.8ince A is z-embedded in X， we can 
take H.αnA  = U.αfor each α<γ. 8ince A is well-embedded in X， there 
exists a cozero-set H* of X such that A n H*二日 andH* u Uα<γHα=X 

Replace Ho = Ho u H'¥Zo = X and Go = X. 8ince {Gα:α<γ} is a locally 
fini te cover of cozero-制 sof X and {Z，α:α く γ}is a locally finite cover of 

zero-sets of X， it follows that {H，α:α く γ}is a uniformly locally白litein X 

o bviously， {H，α:α<γ} is a cover of cozero-制 sof X extends {U，α:α く γ}

80， (2) holds 
(2)キ (1): Let U be a normal open cover of A with Iυ|三γFrom

(1)件 (5)of Theorem 1.2.1， U has a uniformly locally finite refinementνof 

cozero-sets of A wi th Iν|三γHence，by (3)，νcan be extended to a locally 

finite cover of cozero-sets of X. It shows that A is p"Y-embedded in X. 
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(2)キ (3):By the quite same way as the proof of Theorem 2.l.6， we can 
show them. 

(3) =今 (1):Assume that every uniformly locally 白litepartition， with Card 
<γ， of unity of A can be extended to a partition of unity on X. To complete 

the proof， it su伍cesto show A is pi -embedded in X. Let {U，α:α く γ}

be a normal open cover of A. By Theorem l.2.1， {U1α:α く γ}has a 

uniformly locally finite partition {ん :α く γ}of unity on A subordinated to 
{U，α:α<γ}. Hence， by the assumption， {ん :α く γ}can be extended to a 

partition of unity on X. It shows that A is Pγ-embedded in X. It completes 
the proof.口

Corollary 2.4.8. Let X be a spaceαηdAαsubspace 0] X. Assume that every 
locαllyβnite collection， with Cαrd <γ， 0] cozero-sets 0] A is uni]oT・mlylocαlly 
finite in A. Then， A is Pγ-embedded in X げandonlyザAis Pγ( locαlly-
finite)-embedded in X 

It follows from Corollary 2.4.8 that every collectionwise normal P-space (=ev-
ery Go-set is open) is functionally Kat批ov. On the other hand， Rudin's 
Dowker space [55] is a collectionwise normal P-space but not countably 

Katetov ([54， Example 2]) 

Remark 2.4.9. Theorem 2.l.6 is proved in [70]， the proof in this paper is 

essentially the same to the original but Lemma 2.l.9 is added here. On (3) 

of Theorem 2.2.3， the case that Y is compact Hausdorff is proved in [70] 

The de白山ionof weak zγ.embedding and Corollary 2.4.3 are stated in [69]， 
and other results are added here. For detailed results related to weak zγ-

embedding， see [69] 
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Chapter 3. 

Rectangular normality of product spaces 

In this chapter， introducing a space Jγ(κ) and spaces of type t(γ7κ?γ)， we 
first characterize Pγ吋(loca心11砂y.λ.命 11比tωe吋)-embeddin時gby products with these spaces 

Next， extending Przymusiriski's result in [52]， we also characterize Katetov 

spaces and functionally Kat批ovspaces by rectangular normality of products 

with these spaces. Moreover， we give characterizations of γ-co11ectionwise 
normal spaces， and γ-collectionwise normal入-paracompactspaces by prod-

ucts with these spaces. 

1. The space Jγ(κ) a nd spaces of type t (γぅκぅ入)

Let κbe a cardinal. A subspace A of a space X is ca11ed an FK，-set if it is the 
union of κmany closed則 sin x. In [52] Przymusiriski proved the following 

result， which is a motivation of our research. 

Theorem 3.1.1 (Przymusiriski [52， Proposition 2.2]). Let κbe αcαrdinal， X α 

normal spαceαηdAαclosed subspαce of X. Then， the following stαtements 
αre equ'lVαleηt:* 

(1) Every countαble locαlly finite COl貯 ofopen F:κ-sets of A cαη be ex-
tended toαlocαllyβnite opeη cover of X ; 

(2) A x J(κ) is C匂 rr巾 ddedin X x J(κ) ; 
(3) A x Jo(κ) is C* -embedded in X x Jo (κ) . 

Here， we give detailed definitions of Kat批ovspaces. Let κbe a cardinal. 

In [45]， a subspace A of a space X is ca11ed a κ-open set if it is the union of 

*In [52， Proposition 2.2]，“C* -embedding" in (2) and (3) is written as “C-embedding" 
However his proof actually shows C¥embedding of them， and only comments about C-
mbeddi略Ifwe use Theorem 1.3.8 or [66， Theorem 1.1]、C-embeddingof (2) or (3) is 
implied by C九embedding.
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less than κmany cozero-sets of X. The complement of a ん openset is called 
a κ-closed set. The letter κ+ denotes the smallest cardinal larger than κ. 

In particular， Wl-open sets mean cozero-sets. Aκ-opeη cover (respectivelj 
a κ-open collection) of a space X means a cover (respectively， a collection) 
consisting ofκ-open sets of X. 

Let γand κbe infinite cardinals. We say that a space X is (γ?κ)-Kαtetov 
if X is normal and every locally finiteκ+ーopencover， with Card ::;γ， of any 
closed su bspace of X is extended to a locally finite κ+ーopencover of X. A 

space X is said to be (∞?κ)-Kαt針。v(respectively， (γ?∞)-Kαtetov or (∞?∞)-
Kαtetov) if X is (γ?κ)-Katetov for every γ(respecti vely， for every κor for ev-
eryγand κ). N otice that (∞?∞)-Kat批ov，(ω?∞).-Katetov， (∞?ω)-Katるtov
and (叫ω)-Katetovmean Kat批ov，countably Kat批ov，functionally Kat批ov

and countably functionally Kat批ov，respectively， in Definition 2.1.2. Like-

wise Diagram 2.1.3， they follow that any γ-collectionwise normal and count-
ably paracompact space is (γ?∞)-Kat批ov，that a町 (γ?κ)-Kat批ovspace is 

(γκ')-Katるtovifγf三γandK，' ::; K" and that a町 (γ?κ)-Katetov space is 

γ-collectionwise normal. 

N ext we define a space Jγ(κ) and spaces of type t(γ?κ?入).Let γbe an 
ln泊白白fin凶1

be a s印pacesatisfying t出ha抗tthe point p has basic nei氾Lεghboωrho∞od白s0ぱfthe form 

{p} u {(α，s) :αε γ-6， s <κ}; 6ε[γ]<ω 

and other points (α，s) are isolated. From now on， we denote points (α， s) 
by (α， s) as the defi凶 ionof J(κ). N otice that， for each s <κ， {p}U {(α，s) : 

α<γ} can be regarded as A(γ)， where A(γ) is the one-point compactification 
of the discrete space with cardinalityγNote that Jγ(1) = A(γ) and ~ω(κ) 
can be regarded as Jo (κ) 

Let γbe an in五nitecardinal and κand入cardinals.A Tychonoff space Y 
is said to be a space of type t(γ?爪入)if Y satisfies the following conditions: 

(1) Y can be represented as Y' U {p}， where p tt Y'; 

(2) there exist a locally finite open cover {ug :α<γ，s <κ} of Y' with 
ω(ug)三入 forevery αく γands <κand a cover {zg :α<γ，sく κ}of 

compact制 sof Y' such that zg c ug for every αく γands <κ; 

( 3 ) {U o (p) : 6ε[γ]<ω} is a neighborhood base of p， where Uo (p) denotes 
{p} U U{ug :αε γ-6，s <κ} for every 6ε[γ]<ω; 

(4) for every 6ε[γ]<(ぺthereexists 6'ε[γ]<ωwith 6 c 6' such that 

(U{ug:αε 6，sく κ})n Uo' (p) = o. 
The condition (3) are illustrated as follows: 
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a neighborhood base of p 

N otice that the existence of {Z~ :α<γ，s <κ} of (2) implies local com-

pactness and paracompactness of Y'. Hence we rnay assume each U~ is a 

cozero-制 ofY' and each Z~ is a compact zero-set of Y'. This will be fre-

quently used without reference. 

The class of spaces of type t (γぅ爪入)includes spaces listed below from (α) 

to (d) as special cases 
(α) A(γ) is of type t(γ，1，1) ， 
(b) J(κ) is of type t(ω?κ，ω) ， 
(c) Jγ(κ) is of type t(γ?κ，1) ， 
(d) A( EBα<γ(入+1)α) is of type t(γ，1，入)， 

where A(EBα<γ(入+1)α) is the one-point compactification of the topological 

sum ofγ-many入+l' s (with the usual topologies) 

Basic facts of spaces of type t (γ3κ?入)are the following; the proofs are 

asy and omitted. 

Proposition 3.1.2. The following stαtements hold. 
(1) Every spαce of type t(γ?爪入)is paracompact 
(2) A space of type t(γ7爪入)is of type t(γκ 入')ザγ三γκ 三κ，and 

入<入

(3) Let Y be a closed sωspαce of a space 01 type t(γ?爪入). 1f pεY， 
then Y is alsoαspαce 01 type t(γ?爪入).11 p ~ Y， then Y is locally cor叩 αct
pαracompαct，ω(Y)三κ・入 αηdfω(Y)三入
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(4) Let Y be αcompαct Hαusdorff spαce withω(Y)三入 αηdγαη infinite
cαrdinal. Then， Y isαclosed sωspαce of some spαce of type t(γ，1，入)

2. Extensions of locally finite κ+ーopencovers a nd prod-

ucts 

In this section， we give a result concerning with extendability of locally finite 

κ+ーopencovers of a subspace of a space X to those of x. This will be a key 

result of our later ones. 

For an infinite cardinal 爪 wesay a subspace A of a space X satisfies 

the condition (九)if every zero-set Z of A and everyκ+ -closed su bset F of 
X with Z n F =日， there exists a cozero-set U of X such that Z c U and 

U n F = o. Note that any subspace A of a space .x satisfies (九;)ぅ andthat 

every closed subspace A of a normal space X satisfies (*1¥;) for every κ 

Theorem 3.2.1. Let γαηdκ be infinite cαrdinαls. Forαspace Xαndαsub-
spαce A of X， consider the following conditions. 

(1) Every locαllyβniteκ+-opeηcover U of A with IUI三γcαnbe extended 
toαlocαlly finiteκ+ -open cover of X，αηd A is Pγ-embedded in X. 

(2) Every locally finiteκ+-opeηcollectioηU of A with Iυ|三γcαη be
extended toαlocαlly finiteκ+ -open collection of )C， and A is Pγ-embedded 

in X. 
(3) A x Y is C* -embedded in X x Y for every space Y of type t(γ?爪 γ). 

(4) A x Jγ(κ) is C* -embedded in X x Jγ(κ) 

Then， the implications (1)今 (2)and (3)キ (4)=} (2)αlways hold. 1f A 

sαtisfies (犬κ)，then αII conditionsαre equzvαlent. 

Before the proof， we give a lemma. 

Lemma 3.2.2. Let γbe αη infinite cαrdinal，αηdκαnd入cαrdinals.Let X be α 

spαceαηdYαspαce of type t(γ7爪入).Let Y = Y'U{p}αηd {ug:α<γ，sく

κ} be as the definition of t(γ川?入). Let go : X→Iαnd 9 : X x Y'→I 
be continuous functionsαηd {H，α:α<γ}α locαlly finite open collection 
of X. Letゆ X x Y'→1 be αcontinuous functionωhich satisfies that 

'lt-l((O， 1]) c Uα<γUs<κ(H，αx ug). Defiηeα functioηh: X x Y→1 by 

h(x，ド j ω(x)
lψ(x，y)' g(x，y) + (1-ψ(x， y)) . go (x ) 

for eαch (x， y)εX  x Y. Then， h is coηtinuous. 
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Remark 3.2.3. In Lemma 3.2.2， assume further that A is a subspace of X x Y 

satisfying that px(A) x {p} c A， where Px : X x Y→X is the projection 
If a function f : A→1 is given so that gl(An (X x: Y')) = fl(An (X x Y'))， 
{(x，y)εA : I f (x， y) -f (p， y) I > 1/3} c ψ-1({1})， {αε X : f(α，p)三
1/3} C g(;l ({O}) and {αε X: f(α，p)三2/3}C go-l ({1})， then the function 
h de白釦nedlike Lemma 3.2.2 satisfies f-1({i}) C h-1(れわれ=0，1). This fact 
was essentially proved by Przymusiriski [52] 

Pro∞of of Theorem 3.2.1. (υ1) =今今 (ρω2幻)and (3め)=今今 (μ例4め):Obv吋10U
(μ刊4め)=今今 (ρ2): First we prove that A is Pγ-embedded in X. Since A(γ) is 

homeomorphic to {p} U { (α，0) :α<γ}， we may say that A x A(γ) is C*-

embedded in A x Jγ(ω). From the assumption， A )< A(γ) is C仁embeddedin 

Xx Jγ(ω)， hence in X x A(γ). By Theorem l.3.5， A is Pγ-embedded in X 

Let {U，α:α<γ} be a locally finiteκ+ーopencollection of A. Since κlS 

infinite， U，αcan be expressed as U，α= Us<κFg = Us<κwg， where Fg is a 

zero-set of A， wg is a coze時制 ofA and Fg c wg for each s <κFor 

every α<γand sく爪 takea continuous function fg : A→1 satisfying 
that (fg)-l({l}) = Fg and (fg)-l({O}) = A -11fg. Define a continuous 

function f : A x Jγ(κ)→1 as follows: f(x， y) = 0 if y = p; f(x， y) = fg(x) 
if y = (α， s). By (4)， there exists a continuous extension 9 : X x Jγ(κ)→I 

of f. Put 

d小={←Zε X: Ig(い仰川，p刈)一 g仰(付Z丸川山山?ベ収(似仇α久，sめ附州)リ川)川|怜>ゆ

for each α<γand sく κAnd，for everyα<γ， put九二 Us<κvf Then? 
{九 :α<γ}is a locally finite K，+ -open collection of X such that九nA=U，α
for every αく γHencewe have (2) 

Next we prove (2)キ (1)and (2)キ (3)assuming that A satisfies (*~) 
(2) 二今 (1): Assume that A削 isfies(*~). Let {U;α : α < γ} be a locally 

finiteκ+ーopencover of A. By (2)， there exists a locally finiteκ+ーopencol-

lection {九 :α く γ}of X such that九 nA= U，αfor every αく γHere

九 canbe expressed as Uβ<κW乙wherewg is a cozero-制 ofX for every 

s<κPut V = Uα<γ九 SinceV = Uß<~(Uα<γ wg) and {wg :α く γ}
is a locally finite collection of cozero-sets of X， V ilS a κ+ーopenset of X. By 

(大κ)，there exists a cozero-set U of X such that A c U and U c V. Since A is 
well-embedded in X， there exists a cozero-set V* of X such that V* U U = X 

and A n V* = o. Replace Vo by 九uV*. Then， {九 :α く γ}is the required 
locally五niteκ+ーopencover of X extending {U1α:α<γ}. Hence we have 

(1) 
(2)今 (3):Assume that A satisfies (*~). Let Y = y' U {p} be a space of 

type t(γ?爪 γ)，where Y' = {(α?グ):α<γ，s <κ}附 Let{ug :α<γ，s <κ} 
and {Z~ :α く γ，sく κ}be the same as in the condition (2) of the definition 
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of Y. Let f : A x Y→1 be a continuous function. Notice that A x Y' 
is C-embedded in X x Y' by Corollary 1.3.6. So， there exists a continuou 

function 9 X x Y'→1 such that gl(A x Y') == fl(A x Y'). Since A is 
C仁 embeddedin X， there exists a continuous function go : X→1 such that 

{xεA : f(x，p)三1/3}C 9 01 
( {O }) an d {xεA : f(x，p)ど2/3}cgo1({1})

For every αく γandsく κ，define 

G~ = {x E A : If(り)-f(川 )1>仰 fωsome y ε z~} and 

バ={x E A : If(リ)-f(川 )1三1/3for some y ε Z~} 

Since zg is compact， each G~ is a cozero-制 ofA and Kg is a zero-set of 

A. For every αく γ，put Gα=uβ<κG2;it is a κ+ーopenset of A. Notice 
that {Gα:α く γ}is locally finite in A. By (2)， there exists a locally finite 

κ+ -open collection {H，α:α<γ} of X such that Gα二 HαnA for every 

α<γBy (犬κ)，for everyα く γands < 爪 thereexists a cozero-set Hg of 
X such that Kg c Hg c H.αDefine 

G二 uU (H~ x U~) and F = U lJ (K~ x z~) 
α<γβ<κ α<γs<κ 

Then， F c G and G is a cozero-set of X x Y'. Since Kβx z~ c A x U~ α 

and {A x ug :α<γ，s <κ} is a locally fi凶 ecollection of cozero-制 sof 

A×Yf?{kf×zf:α<γ，s <κ} is a uniformly locally白utecollection 

of zero-sets ofAx Y'. Hence， by Theorem 1.3.3， F' is a zero-set of A x Y'. 

Since A x Y' is C1-embedded in X x Y'， there exists a continuous function 
ψ:XxY'→1 such that F cψ-1 ( {1 }) and (X x Y.') -G cψ-1( {O}). Then， 
the function h : X x Y→1 constructed as in Lemma 3.2.2 is continuous 

and f-1({i}) C h-1({i}) (i = 0，1) (see Remark 3.2.3). Hence A x Y is 
C同

In Theorem 3.2.1， the infiniteness of κis essential. Because， ifκis finite 
the conditions (1) and (2) are equal to Pγ(locally-白ute)-embeddability of A， 
and the conditions (3) and (4) are equal to Pγ-embeddability of A (cf. the 

proof of Theorem 3.5.1) 

On the other hand， we remark that in Theorern 3.1.1，κis not assumed 
to be infinite. Notice that， in Thorem 3.1.1， ifκis finite， then each of the 
conditions from (1) to (3) always holds for a nornlal space X and a closed 

ubspace A of X. 
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Remark 3.2.4. The author does not know all of the conditions in Theorem 

3.2.1 are equivalent without (*"，). At least， either (1) or (4) in Theorem 3.2.1 
need not imply (*"，). For， consider the Tychono百plankT = ((ω1+1)x(ω+ 
1)) -{(L九 ω)}.Let X = T and A =ω1 X {ω}. Then， for κ= W1 and any 
i凶 nitecardinal γ， A satisfies conditions (1) and (4)， but not (*wJ. That A 

制 lS五es(1) and that A does not satisfy (九Jare easy to see (cf. Ohta [45， 
footnote p.6， English translation]). To prove that A satisfies (4)， notice that 
Jγ(ω1) is a Frechet space. Hence， by [13， Theorem 3.10.7]， the projection 

PJ"((ωdω1 X Jγ(ωd→Jγ(ω1) is the closed map. 80ぅ by[13， Theorem 
3.12.21(a)]， ω1 X Jγ(ω1) is C仁 embe“edin sW1 x Jγ(ω1)' By the same way 
as [45]， we have that A x Jγ(ω1) is C仁 embeddedin X x Jγ(ωd. Indeed， 
AxJγ(ω1)( =ω1 X {ω} x Jγ(ω1)) is C仁embeddedin sω1 X {ω} x Jγ(ω1) 
(= (ω1 + 1) x {ω} x Jγ(W1))' Moreover， (ω1 + 1) x {ω} x Jγ(ω1) is C仁

embedded in (ω1 + 1) x (ω+ 1) x Jγ(ω1)' Hence A x Jγ(ω1) is C仁 embedded

in (ω1十 1)x (ω+ 1) x Jγ(ω1); hence in X x Jγ(ωd 

3. Applications to P(locally-finite)引 nbedding

In this section， we characterize P(locally-finite)-ernbedding by products 

Theorem 3.3.1 (Main). Let X be αspαce， Aαsωspαce of X αηdγαη infinite 
cαrdinal. Then， the folloωing stαtementsαre equ'lVαlent: 

(1) A is P'Y ( locαlly-finite) -embedded in X; 
(2幻)AxYi臼sC'本0彰~-e

(3め)AxJムγ(いω)i臼sC*¥-イerけy仇 ddedin ηXxJγ(ω) 

In combination with (4) of Proposition 3.1.2， we have the following result. It 
may be natural if we compare the following result with Theorem 1.3.5. 

Corollary 3.3.2. Let X be a space， A a subspace of X andγαη infinite car-
dinal. Then， A is Pγ( locαlly-finite)-err山 ddedin X ザαndonlyザAxY
is C* -embedded in X x Y for every closed subspαce Y ofαspαce of type 

t(γ7ω?γ) 

On the case of γ=ω， Theorem 3.3.1 can also be stated as follows (cf. 
Przymusiriski [52]): 

Corollary 3.3.3. Let X be a space and Aαsubspαce of X. Then， the following 
stαtements are equivalent: 

(1) A is Pω( locαlly-finite) -embedded in X; 
(2) A x Y is C¥embedded in X x Y for every 8pαce Y of type t(ω?叫 ω); 

(3) A x Jo(ω) is C* -embedded in X x Jo (ω) ; 
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(4) For some non-locally compact metric spαce 'Y， A x Y is C*-err仇 dded
in X x Y; 

(5) A x Y is C* -embedded in X x Y for every sepαrable metric spαce Y 
such thαt Y -Y1 is locαlly compαct for some closed discrete subspαce Y1 of 
Y. 

Let us proceed to the proofs. 

Proof of Theorem 3.3.1. Since A凶 isfies(九))and ω+ -open sets mean cozero-
sets， Theorem 3.3.1 directly follows from Theorem 3.2.1.口

Proof of Corollary 3.3.2. The “if" part is contained in Theorem 3.3.1. The only 
吋f"part follows from Corollary 1.3.6， (3) of Proposition 3.1.2 and Theorem 
3.3.1.口

To prove Corollary 3.3.3， we need a lemma. 

Lemma 3.3.4. Let γandκbe infinite cardinals. Let X be a space and A a 

subspace 0] X. Assume that A x Y is C* -embedded in X x Y ]or every space 
Y 0] type t(叫爪ω).Then， A x Y is C* -embedded in X x Y ]or every metric 
spαce Yωithω(Y)三κsuchthαtY一丸山 locαllycompαct for some closed 
discrete subspace Y1 0] Y. 

Proof First， let Z be a metric space with ω(Z)三κ:suchthat Z'二 Z-{yo} is 
locally compact for some point Y。εZ.We shall prove Z is of type t(ω?爪ω)

Take a local base {Un :η<ω} of Yo such that Z = Uo and Un+1 C Un for 

every n <ωThere exists a countable locally白niteopen cover ν=uη<ωνn 
of Z' such that each 凡 ={V! : s <κ}削 isfieslt1 c Un一広三 forevery 
n<ωand ß く~， and that V is compact for every V εν. Hence it follows 
that Z is a space of type t(ω?κ?ω) 

To complete the proof， let Y be a metric space with weight三κandY1 

a closed discrete subspace of Y satisfying that Y -Y1 is locally compact. 

Then， there exists a uniformly locally五niteclosed cover Z of Y such that 
Z = Zl U Z2， where Zl consists of compact subsets: of Y and Z2 is a disjoint 

collection of su bsets of Y satisfying that， for every ZεZ2， Z -{Yo} is locally 
compact for some point Y。εZ. Hence， by the fact shown above， every 
member of Z2 is a space of type t(叫爪ω).Then， A x Z is C* -embedded in 
X x Z for every Z εZ. To show this， first notice that A is C -embedded in X. 
Hence， if Z εZl， it follows from Thorem 1.3.5 that A x Z is C仁 embeddedin 

X x Z. If Z εZ2， it follows from the assumption. Next， by Theorem 1.3.12， 
AxZisC仁embeddedin X x Y for every Z εZ. Moreover， A x (Zl U Z2) 

C* -embedded in X x Y for every Zl， Z2εZ. lndeed， if Zl， Z2ξ Zl then 
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Zl U Z2 is compact， if Zl， Z2εZ2 then Zl n Z2二日， and if ZlεZl and 
Z2εZ2 then Zl u Z2 is a space of type t(ω?爪 ω).Therefore by the similar 

argument to the above， A x (Zl U Z2) is C仁embecldedin X x Y. I t follows 

from Theorem 1.3.4 that A x Y is C仁 embeddedin X x Y. It completes the 
proof.口

Proof of Corollary 3.3.3. (1)φ(2)仲 (3):It follows from Theorem 3.3.1 
(3)キ (4)and (5)キ (3):Obvious. 

(4)キ (3):It can be shown similarily to [52， Proposition 2.2]. 
(2)二今 (5):It follows from Lemma 3.3.4 口

4. Applications to (γ?κ)-Katetov spaces 

Our main purpose in this section is to characterize (γ?κ)-Katるtovspaces by 

rectangular normality of products. 

First， we extend Theorem 3.1.1 to general cardinals as follows: 

Theorem 3.4.1. Let X be αnormal spαce， Aαclosed subspace of X αηdγαηd 

κinfinite cαrdinαls. Then， the following stαtement.sαre equzvαlent: 
(1) Every locally finiteκ+ -open cover U of A with IUI三γcanbe extended 

toαlocαlly finiteκ+ -open cover of X; 
(2) A x Y is C川 mbeddedin X x Y for every spαce Y of type t(γ?爪 γ); 

(3) A x Jγ(κ) is C* -embedded in X x Jγ(κ) 

Theorem 3.4.1 need not hold without the assumption of the normality of X 

ifκ>ω. Because for a non-normal countably cornpact Tychonoff space X 
with ω(X)三爪 thereexists a closed subspace A of X which satisfies (1) but 
does not satisfy (3) 

As applications of Theorem 3.4.1， we describe (γ?κ)-Katるtovspaces by 

rectangular normality of products with Jγ(κ) and spaces of type t (γ?爪 γ)

A product space X x Y is said to be rectαngularly normal if for every closed 
su bspace A of X and closed su bspace B of Y， A x 11 is C -embedded in X x Y 

[52]. Clearly， if X x Y is normal then X x Y is町 :ta時 ularlynormal， and it 
is not necessarily reversed (for， let X be any Dowker space and let Y = 1) 

Przymusinski proved in [52， Theorems 2.3 and 2.4] that: 

X is (ω?κ)-KαtetovザαndonlyザXx Jo(κ) (or X x J(κ)) is rectαηgularly 
normal. 

We also extend this result as follows: 

Theorem 3.4.2 (Main). Let X be a space andγαndκinfinite cardinals. Theηy 
the following stαtementsαre equzvαlent: 
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(1) X is (γ?κ)-Katetov; 
(2) X x Y is rectangularly normal for every spαce Y of type t(γ， K"γ) 

(3) X x Jγ(κ) is rectαηg山 rlyr附 mal

On (2) in Theorem 3.4.2， t(γ?κ， T') can not be replaced by t(γ?爪入)in 

general. Let X be a normal countably paracompact space which is not ω1-

collectionwise normal (e.g. [48]). Then， X has a closed subspace A which is 

not pW1-embedded in X. Since every normal countably paracompact space 
is countably functionally Kat批ov，A is P(ωJJ (locally、予y-五fin凶1
Let Y = A(EB η < ω ( ω 1 + 1)ル川7ηρt). Then， A x Y need not be C* -embedded in 
X x Y for Y. lndeed， on the contrary， A x Y is C* -embedded in X x Y. By 
Theorem 1.3.10 and the assumption， we have A x (ω1 + 1) is C仁embedded

in X x (ω1 + 1). It follows from Theorem 1.3.5 that A is Pωl-embedded in 

X， it is a contradiction. 

It is known that A is C-embedded in X if and only ifAx Y is C仁 (or

equivalently， C-) embedded in X x Y for every locally compact metric space 

Y even if either Y is separable or not (see [25]， also see Corollary 1.3.6) 

That is， this fact does not depend on the weight of Y. On the other hand， 
the condition on the weight of Y is essential in the following proposition. 

Corollary 3.4.3. A spαce X is (ω?κ)-Katetovザαndonlyザforevery metric 
spαce Y withω(Y)三κhα仇ηgα closeddiscrete subspace Y1 with locαlly 
compαct Y -Y1， the product X x Y is rectαngularly normal. 

Related to Corollary 3.4.3， Przymusiriski states in [51， Theorem 4] that X is 
countably Kat批ovif and only if for every closed su bset A of X and every 

σ司 locallycompact metric space Y， A x Y is C仁embeddedin X x Y. However 
he gives its proof only for the case of dimY = 0， and comments “1 have a 

very complicated proof that eliminates the assumption of dimY = 0" and 

asks the reasonable simple way of eliminating dimY = O. The author does 

not know whether if the general case is true. 

Proof of Theorem 3.4.1. Since X is normal and A is closed in X， A satisfies 
(*K)' Hence all conditions of Theorem 3.2.1 are equivalent. To prove The-

orem 3.4.1， it suffices to show that (1) of Theorelffi 3.4.1 implies that A is 

P~ (locallJ寸nite)-embedded in X. To prove this， let μ={U，α:α<γ} be a 

locally finite cover of cozero-sets of A. By (1) of Theorem 3.4.1， there exists 
a locally釦liteK，+ -open cover {九 :α<γ}of X such that 九円A=Uαfor
every αく γ.Since X is normal and A is closed in X， there exists a cozero-

set Wαof X such that WαnA = Uαand U.ノαcU，αfor each αく γ.Take 

a cozero-set W' of X satisちT1時 thatW' n A = o and W' u Uα<γWα 二 X

Replace Wo by Wo U W'. Then， {W;α:α<γ} is a locally白litecover of 
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cozero-sets of X extending U. It completes the proof.口

To prove Theorem 3.4.2， some preliminary results are needed. Lemma 3.4.5 
below gives a class of spaces in which every closed subspace is 7r-embedded. 

Lemma 3.4.4. Let X be αTychonoff spαce， Aαcompact subspαce of XαηdYα 

spαce. Let h : Y→1 and f : AxY→1 be continuous functions. Then， there 
existsαcontinuous extension 9 : X x Y→1 of f such thαt Ig(xぅy)-h(y)1三
ら forevery (x， y)εX xY，ωfげ θεy= sup{lh(y) -f(α，y) I :αε A} 

Proof By Theorem 1.3.10， A is 7r-embedded in)C. Hence， there exists a 

continuous extension f : X x Y→1 of f. Define a function 9 : X x Y→I 

by g(x， y) = f(xぅy)八(h(ν)+ら)V (h(y)ーら)for each (x， y)εX x Y. Then， 
9 is the required continuous extension of f.口

Lemma 3.4.5. Let γbe αηtηfinite cαrdinαl，αηdκαηd入 cαrdiηαls. Then， 

every closed subspαce ofαspαce X of type t(γ?爪入)is 7r-err仇 ddedin X. 

Proof Let A be a closed subspace of a space X of type t(γ?κ?入)and Y a 

space. Let f : A x Y→1 be a continuous function. Let X' = X -{p} be a 

subspace as in the condition (1) of type t(γ?爪入).Let {ug :αく γ，sく κ}

and {zg :α<γ，s <κ} be the same as in the condition (2幻)of the defin凶 iぬon1 

Take a locally finite cover {V! :α<γ，s <κ} of cozero-則 sof X' such that 

V! is compact and zg c V! c V! c ug for each αく γandsく κ

Case 1. Assume pεA. For every α<γand s < 爪 weshall define a 

continuous function gg : ug x Y→1 as follows. 

In case A n v!チ仇 byLemma 3.4.4， take a continuous extension gg 

uf×Y→1 of fl(A n V!) x Y such that Igg(x， y) --f(p， y) I三sup{lf(α，y)-

f(p， y) I :αε A n V!} for every (x， y)εuf×Y 

In case A n v! =日， define a continuous function gg ug x Y→1 by 
gg(x， y) = f(p， y) for each (x， y)εuf×Y 

Let {pi:α<γ，sく κ}be a partition of unity on X' such that 

(p~)-l((O ， 1]) c vt for every α く γands <κ. Define a function 9 

XxY→1 by 

{乞{p~( x) . gg ( x， y) :α<γ，s <κ} 
g(x，y) = < 

f(p，y) 

if x 1= pう

if x = p. 

Clearly 9 is an extension of f. It is easy to see that 9 is continuous at (x， y) 
if x 1= p. We shall show that 9 is continuous at (p， y). Let yεYand ε>0 
Since f is continuous， there exist c5ε[γ]<ωand a neighborhood 0 of y in Y 

40 



such that If(x'， y') -f(p， y)1 <ε/4 for every (x'，のε(Uo(p)n A) x O. Take 
5'ε[γ]<ωwith 5 c 5' such that (U{ug :αε 5，s <κ} ) n Uo' (p) = o. Let 
(x'， y')εUo，(p) x O. We shall show that Ig(x'，ダ)-g(p， y) 1 <εWe may 
assume x' # p， because the case of x' = p is easily shown. 

Let αεγ-5 and sく κsatisfythat x'εug and An vtヂ日 Then，

Ig~(山') -f(p， y') 1三 sup{If(ば)-f(川 )1:aEAn沼)
<ε/2 

It follows that 

Ig~(x' ， y') -g(p ， y)1 三 Ig~(x' ， y') -f(p， y')1 + If(p， y') -f(p， y)1 

三 ε/2+ε/4 = (3/4)ε 

Let αεγ-5 and sく κsatisfythat x'εuf and A n vf=日Then，

Ig~(x' ， の - g(p， y)1 三 Ig~(x' ， y') -f(p， y') I + If(p， y') -f(p， y) 1 

三 0+ε/4=ε/4 

Let α<γand s <κ If ~(ど) > 0， then x' E ug and α~ 5. Hence， it 
follows from the facts shown above that 

Ig(x'， y') -g(川 )1三玄(ぱ(x). Ig~(x' ， y')一肌ω1)く ε

α<γ，β<κ 

Case 2. Assume p ~ A. Define a continuous function f' : (AU{p}) x Y→I 
as follows: f'I(A x Y) = f and f'(p， y) = 0 for each y εY. 80 it comes back 
to Case 1. It completes the proof.口

Lemma 3.4.6. Let γαnd入beinfinite cαrdinalsαndκα cardinal. Let A be a 
P入-embeddedsωspαce ofαspαce X and Yαspαce of type t(γ?爪入). Then， 
A x Y is well-embedded in X x Y. 

Proof Let f : X x Y→1 be a continuous function satisfying that f-1 ( {O}) n 

(A x Y)二日 Fromthe definition of Y， for every αく γandsく爪 wecan 

take a coz町 O司制 vt of Y' such that vt is compact and Z~ c vt c vt c 
ug. By Corollary 1.3.6， A x Y' is C-embedded in X x Y'. There exists 

a continuous function g X x Y'→1 such that A x Y' C g-l( {O}) and 
f-1( {O}) n (X x Y') C g-l ({1}). Moreover， let go : X→1 be a continuous 

function such that A c gu1({0}) and {x E X: f(x，p) = O} C gu1({1}). For 
every α<γ，sく κandnεN， put 

H~ß = {xεX: If(川)-f(リ )1>内+1)おrsome yε可)
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Note that {Uß<κ H~ß α く γ} is locally finite in .X for each nεN. Since 

vt is compa仇 wehave H~ß is a cozero-側 ofX. For every nεN， put 

Hη= u U (H~ß xだ)

Then， Hn is a cozero-set of X x Y'. For every nεN，let ψη:XxY'→1 be 

a continuous function such that Hn = ψ~1 ((0，1]). For every nεN， define a 

continuous function 仇 :Xx Y→1 as in Lemma 3.2.2. Put 

W二(u hn -1 ((叩])) u (gol ((0，1]) x Y)， 

which is a cozero-set of X x Y. Then one can show that (A x Y) n w = o 
and j-1 ({O}) c W. Hence A x Y is well-embedded in X x Y. The proof is 

completed.口

Proof of Theorem 3.4.2. (1) =今 (2):Let Y be a space of type t(γ?爪 γ).Let A 
be a closed subspace of X and B a closed subspace of Y. By Lemma 3.4.5， 
A x B is C-embedded in A x Y. It follows from Theorem 3.4.1 and Lemma 

3.4.6 that A x Y is C申 embeddedin X x Y. Hence， A x B is C -embedded in 

X x Y. Thus， X x Y is rectangularly normal. 

(2)キ (3):Obvious 

(3) => (1): The normality of X easily follows. It follows from Thorem 

3.4.1 that X is ("κ)-Katetov. It completes the proof口

Proof of Corollary 3.4.3. It su伍cesto show the “only if" part. Let X be an 
(ω?κ)-Kat批ovspace， Y a space as in the proposition， A a closed subspace of 

X and B a closed subspace of Y. By Theorem 1.3.12， A x B is C-embedded 
in A x Y. By Lemma 3.3.4 and Theorem 3.4.2， A x Y is C*-embedded in 

X x Y. By Theorem 1.3.8， A x Y is C-embedded in X x Y. Hence it follows 

that X x Y is rectangularly normal.口

Remark 3.4.7. (α) On Theorems 3.4.1 and 3.4.2， Corollary 3.4.3 and Lemmas 
3.4.5 and 3.4.6， all of C* -embeddi時 canbe replac:ed by C -embedding (use 

Theorem 1.3.8 or Lemma 3.4.6) 

(b) On Theorems 3.4.1 and 3.4.2 and Lemma 3.4.5 and 3.4.6， the part 
of "spaces of type t(γ?κ?入)"can be changed 

pace of type t(γ3爪入)".lndeed， by (3) of Proposition 3.1.2， if pεY then 

the assertion is obvious because Y is of type t(γ?爪入). If p ~ Y then Y is 

locally compact paracompact Hausdorff and ew(Y)三入，hence the assertion 
is contained in the known results (cf. Corollary 1.3;.6) 
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5. Applications to γ-collectionwise normal入-paracompact

spaces 

The aims of this section are to state γ-collectionwI.se normal spaces， and γ-
collectionwise normal入-paracompactspaces along the same line of Theorem 
3.4.2， and to explain Diagram 2.1.3 from the viewpoint of products. We have 

the following results. 

Proposition 3.5.1. Let X be αspαce，γαn infinite cαrdiηαJαηdnεN. Then， 
the following conditions αre equ'tvαleηt: 

(1) X isγ-collectionωse normαl; 
(2) X x Y is rectangularly normal for every spαce Y of type t(γ?爪 γ); 
(3) X x Jγ(η) is rectαηgularlyηormal 

Proposition 3.5.2. Let X beαspace，γαηd入infinuecαrdinalsαηdκαcαr-
dinal. Then， the following stαtementsαre equivaleηt: 

(1) X isγ-collectionωse normalαηd入-pαracorrtpαct;
(2) X x Y isηormal for every spαce Y of type t(γ?爪入); 

(3) X x A(aα<γ(入+1)α) isηormal 

Corollary 3.5.3. Let X be αspace，γan infinite cαrdinal andκαcαrdinal 
Then， the following statements are equivaleηt: 

(1) X isγ-collectionwise normalαηd Co7.川αblypαracompact; 
(2) X x Y is normal for every spαce Y of type t(γ?爪ω); 
(3) X x Jγ(κ) is normal 

Nαmely， X x Jγ(κ) is normalザandonly if X x Jγ(1) is normal 

On Proposition 3.5.2， an equivalent condition similar to (3) was also obtained 
by Katl山 [29，Theorem 1.2]. Moreover， he proved in [29， Theorem 1.2] the 

equivalence of (1) of Proposition 3.5.2 and the normality of X x Y for ar-

bitrarily compact space Y with w(Y)三γandvCY) 三~， and Ohta showed 

in [44] the condition v(Y) can be replaced by a srnaller cardinal u(Y) (see 
[29] and [44] for the definitions of v and u). On Corollary 3.5.3， the equiv-
alence of (1) and the normality of X xム(1)was proved by Alas (Theorem 

1.3.14). An equivalent condition similar to (3) was also obtained by Katuta 

[29， Proposition 3.6]. On Corollary 3.5.3， (1)キ (3)also follows from by 

Katutぜsresult in [28] 

Let us proceed to the proofs. 

Proof of Proposition 3.5.1. (1) =* (2): Let Y a space of type t("爪 γ).Notice 

that Y is compact Hausdorff and ω(Y)三γByTheorems 1.3.2， 1.3.5 and 
1.3.10， X x Y is rectangularly normal. 
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(2)今 (3):Obvious. 

(3) =今 (1):Let A be a closed subspace of X. Then， A x 1γ(n) is C'¥ 
embedded in X x 1γ(n). By Theorem 1.3.5， A is p'"Y-embedded in X. Hence 
X isγ-collectionwise normal; this completes the proof.口

Next we prove Proposition 3.5.2. The proof is given along the same line 
to our previous discussion using Lemma 3.2.2. 

Proof of Proposition 3.5.2. (1) =? (2): Let Y be a space of type t(γ7爪入)and 
Fo and F1 be di可ointclosed subspaces of X x Y. Put A二九UF1 U (X x {p } ) . 
Since X is normal， we can take a continuous function f : A→1 satisfying 

that f(Fi) = i (i = 0，1). Define a function go : X→1 by go (x) = 0 v (3・

f(x，p) -1)八1.Let F*二(九n({xεX : f(x，p)三1/3}x Y)) U (F1 n ({ xε 
X : f(x，p)三2/3}x Y)). Then， F* is a closed subspace in X x Y disjoint 
from X x {p}. Let p : X x Y→X be the projection. For every α<γ， put 
Aα = p(F* n (X x Uß<~ zg)). Then， {Aα:α<γ} is locally白 山 inX 

Since X is午 collectionwisenormal and countably paracompact， there exists 
a locally finite open collection {H，α:α く γ}of X such that Aαc H，αfor 

each α<γ. Let 

F=  U U(石 xz~ ) and G = U lJ ( H，α×げ)

Then， it follows that F is closed in X x Y'， G is open in X x Y' and F c G. 

Notice that X x Y' is normal， since it has a locally finite closed cover of normal 

subspaces X x zg (α<γ，s <κ). Hence， there exist continuous functions 
ψ，g: X x Y'→1 such that F cゆ-1( {1} )， X x Y' -G cψ-1 ({O}) and 
gl(An (X x Y')) = fl(An (X x Y')). The continuous function h : X x Y→I 

defined as in Lemma 3.2.2 satisfies Fi C h-1({i}) (i = 0，1) (see Remark 
3.2.3). It follows that X x Y is normal 

(2) =今 (3):Obvious 
(3)キ (1): Since A(γ) and入+1 can be seen as closed su bspaces of 

A(aα<γ(入+1)α)， by Theorem 1.3.14 and [52， Corollary 3.7] it follows. It 
completes the proof.口

Proof of Corollary 3.5.3. By Proposition 3.5.2， (1) 二今 (2) follows. The im-

plication (2) =今 (3)are obvious， and (3)今 (1)follows by Theorem 1.3.14 

immediately.口
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6. Locations of extension properties 

In this section， let us comment where P(locally-finite )-embedding locates 
among extension properties. Let C be a class of spaces. A su bspace A of a 

space X is said to be 7r c-embedded in X ifAx Y is C仁embeddedin X x Y 
for every space Y belonging to C [50]. Let Mκbe the class of all metrizable 

spaces with weight ~κand ん1 the class of all metrizable spaces. 

Answering tωo Prロzymu凶悶1凶si凶d白ω、S剥句sl

in [19] 7rM "，-embeddi時 introducingthe following notions. In [19] a map 

Q:κ<ω →Coz(A)κis said to be monotone decreαsing if {Q[σ〈α](s): s <κ} 

refines {Q[σ](s) : s <κ} for every σεκ<ωandαε~， where Coz(X) 
denotes the collection of all cozero-sets of X. 

Theorem 3.6.1(Gutev-Ohta [19]). Let X be a spαceαηdAαsωspαce 0] X 
Theη， A is 7rM"， -embedded in X i]αηd only i] A is C -embedded in X αηdA 
has the ]ollowi句 property(~)κ; 
(~)κ Every monotone decreαsz句 mα.pQ:κ<ω →Coz(A)κhasαη expαη-
szoη冗 :κ<ω →Coz(X)κ(ie.， Q[σ](α)c 1-l[σ](α) ]or everyσεκ<ω 

x 
αηdαεκ) such thαt nn<ωUαεκチl[tln](αr- =日 ]orevery t εκωωith 

nn<ωUαεκQ[tln](α)A=0. 

Related to this result， we have the following: 

Proposition 3.6.2. Let X be αspaceαηdAαsubspace 0] X ωth the property 
(~)κ ・ Then， every countαble locally finiteκ+-opeη collectioη 0] A can be 
expanded to a locallyβniteκ+ -open collection 0] X. 

Proof Let {Un :η<ω} be a locally finite collection of κ+ -open sets of A 

For every nく ω，let Un = Uαεκ U::， w here each U:: is a cozero-set of A 
Define a monotone decreasing map 9 :κ<ω →Coz(A)κby 

r Ui>n U.αifσ= (0， .. • ，0)η?αεκ 
Q[σ](α < -.y'.⑮ 

o otherwise， 

where (0，・，O)nεκη.Then， Q is monotone decreasing. By the ωsumption， 

there exists an expansion冗 :κ<ω →Coz(X)κsuchthat nn<ωUαεκ1-l[tln](α)x 
A 

=日 forevery t εκωwith nn<ωUαεκQ[tlη](α)'4 = oNotice that 
A 一一

凡<ωUα臼 Q((O，...，O)n)(α)'4= o. Hence nn<ωUαεκ 冗((0，• .. ，0)η)(αr-= 

o. For every n < 叫 defineVn as follows: 1ぺ=lJαεκ冗[(0)](α)and Vn = 
(Uαεκ冗[(0，・，0)η](α))ハVn-1 for η>  1. Then， {Vn :η く ω}is a locally 

finite collection of ~+ -open sets of X and Un c Vn for each nく ω.The proof 
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is completed.口

By Theorem 3.3.3 or Proposition 3.6.2， we have the following result. It clar-
ifies the location of Pω(locall)寸 nite)-embedding in the realm of extension 

properties. 

Corollary 3.6.3. The 7rMω-err市 ddi旬 impliespw (locαlly-finite) -embedding 

Remark 3.6.4. (1) Michael's example ([13， 5.1.32]) shows that Corollary 3.6.3 
can not be reversed (see [36]， see also [24， Example 4.13]). Related to it， we 
comment about the products with J(κ)ωLet X be a space， A a subspace 

of X and κan ln五nitecardinal. The letter Cκmeans the class of all Cech-

complete metric spaces with weight ::;κ. Then， we can easily show that: A is 
7rc~ -embedded in Xザαndonly ifAx J (κ)ω is C* -errlbedded in X x J (κ)ペand

that: For Micl附 llineX andαsωspαce Q 0 f X， (Q x J (ω) is C* -err仇 dded
in X x J(ω)αnd Q x J(ω)ω is not C* -embedded in X x J (ω)ω 

(2) The 7rM-embedding need not imply Pγ-embedding in the case γ>ω 

(see [13， 5.5.3] or [48]). Namely， Corollary 3.6.3 need not hold for the general 
cardinality. 

Wasko gave in [63] and [64] locations of extension properties like πc-

embedding. She showed that “7rM + P 7rMxC"， whereんイ xC is the 
class of spaces consisting of all of the prod uct spaces of metric spaces and 

compact spaces [64]. Since Jγ(ω) is Frechetσ-conlpact， by Theorem 3.3.1， 
η-embedding implies P(locally-finite)-embeddi時， w here F means the class 

of all Frechetσ-compact spaces. From the above argument， it seems to be 

natural to ask the followings: 

Problem 3.6.5. Does作M + P-embedding imply P(locally-finite)-embedding? 

Problem 3.6.6. Let P be a class of all paracompc主ctM-spaces. Does π? 

embedding imply P(locally-finit 

Related to Problem 3.6.5， note that in Example 2.l. 7 the subspace A is not 

7r M-embedded in X. 
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Diagram 3.6.7. Some extension properties are located as follows: the symbol 

κmeans a class of all paracompact k-spaces， and P(l.f.) stands for P(locally-
finit 

7r 

7rκ 

π? 7r:F 

¥ 
¥ 

¥守¥¥
¥ / 

7rんイ
¥ 
¥.  P(l.f. ) - p 一一一..... ;2;∞一一一→ weak z∞ 

¥ L---r寸/
7rルiω PW~ j C - z 

(~)ω . Lω 

Remark 3.6.8. The definitions of Jγ(κ) and spaces of type t(γ?爪入)are given 

in [71]. All of the results in Sections 2， 3， 4 and ~) and Corollary 3.6.3 are 
proved in [71]. Other results are added here 

47 



Chapter 4. 

Normality and collectionwise normality 

of prod uct spaces 

In this chapter， we apply weak z')'-embedding to stUldy the following classical 

problem: Under what conditions is the product space X x Y of collectionwise 
normal spaces X and Y collectionwise normal if X x Y is normal? We give 

some new results about this problem. Especially， one of our results is an 

a伍口nativeanswer to Ya時 'sproblem in [73]， and an essential improvement 
of Nagami's theorem in [40]. All spaces in this chapter are assumed to be 

regular and T1・

1. I¥lagami's theorems 

In [40]， Nagami showed the following results; a space X is said to be a σ-space 
if X has a O"-locally finite network， and the definition of P-space will be seen 
later. 

Theorem 4.1.1 (Nagami [40]). The following stαtements hold. 
(1) Forαpαracompαctσ叩 aceXαnd apαracom，pαct P叩 αceY， the prod-

uct X x Y is pαracompact. 
(2) For a paracompactσ叩 αceand a collectionwise normal P叩 αceY， 

the product X x Y is normal if and only if X x Y is collectionwise normal. 

The (1) is compared with the following result by l¥1orita 

Theorem 4.1.2 (Morita [34]). Forαpαracompαct M叩 aceX and a pαracom-
pαct P-spαce Y， the product X x Y is Pαracompαct 

In another paper [41]， extending the notions of σ叩 acesand M-spaces， 
agami defined a new class of spaces called ~-spaces ， and gave the follow-
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ing results. Especially (1) is an essentia1 improve:ment of the result (1) of 
Theorem 4.1.1 as well as Theorem 4.1.2. 

Theorem 4.1.3 (Nagami [41]). The folloω句 stαtementshold 
(1) Forαpαracompαct L:叩αceX αηdαpαracompαct P叩 αceY， the 

product X x Y is pαγαcompαct. 
(2) Forαpαracompαct L:叩αceX αηdαηormal P叩 αceY，ザXx Y is 

normal then X x Y is countαbly pαracompact. 

The (1) of Theorem 4.1.3 is famous as one of those that give a paracom-

pact product of two spaces， and was suggestive to subsequent studies. In 

fact， some analogous resu1ts ho1d as follows (see Nagami [41]， Mizokami [32]， 
Lutzer [31] and Burke [8]): 

Theorem 4.1.4 ([8]， [31]， [32]， [41]). Let X and Y be spαces. 1f X isαLindelof 
(respectively， metacompαct， subpαracompαct or sω附 tαco仰 αct)L:叩αceαnd
Y isαLindelof (respectively， metacompαct， subpαracor叩 αctor sωmetαcompαct) 
P -space， then X x Y is Lindelof (respectively， metacompαct， subpαracor卯 αct
or sωmetacompact) . 

In comparison with Theorems 4.1.1 and 4.1.3， it is natural to ask whether 

“σ叩 ace"in (2) of Theorem 4.1.1 can be genera1ized to "~叩ace". Indeed， 
Yang posed it as a prob1em in [73] as follows: 

Problem 4.1.5 (Yang [73]). Let X ba a paracompact L:叩aceand Y a collec-

tionwise normal P-space and X x Y normal. Then， is X x Y collectionwise 

normal? 

In [73]， Yang proved Problem 4.1.5 affi.rmative1y assuming t1川 Yis countably 

compact; and his assumption was improved to that Y is a ~叩ace in [26] by 

Hoshina and the author. However this problem has been unknown even in 

the case that X is a perfect space. We shall give an a伍rmativeanswer to 

Prob1em 4.1.5 in the next section. 

In this section， let us comment about di百erencesof the behavior between 

σ-spaces and L:-spaces. By Hoωslぬhin

Theorem 4.1.3 iおsa叫ls印otrue. Hence it follows that: 

For a paracompαctσ-spαceXαηdα normal P-spαce Y， the product X x Y 
is normal if and only if X x Y is countably paracompαct. 

As is [22]， (2) of Theorem 4.1.1 can a1so be proved by the above result and 

Theorem 1.3.14 indirectly. We shall demonstrate his proof from [22]. Let 

X be a paracompactσ-space and Y a γ-collectionwise normal P -space and 

49 



X x Y normal. By the above result， the normal space X x Y is count-

ably paracompact. Hence， (X x Y) x A(γ) is countably paracompact. Since 
Y x A(γ) is a normal P-space， by the above result， the cou凶 ablyparacom-

pact space (X x Y) x A(γ) = X x (Y x A(γ)) is normal. Hence， by Theorem 
1.3.14， X x Y isγ-collectionwise normal. This proof shows， under some 
kinds of conditions， "the equivalence of normality and collectionwise nor-
mality" indirectly follows from “the equivalence of normality and countable 
paracompactness" . 

On the other hand， the inverse implication of (2) of Theorem 4.1.3 itself 

does not hold in general (consider (ω1 + 1) xω1)' It means that the indi-

rect method demonstrated above can not be used in proving Problem 4.1.5 

affirmatively. 

For two collectionwise normal spaces X and y" the result which asserts 

normality of X x Y implies its collectionwise norlllality has been proved in 

some cases. These are mainly as the following: (1) is due to Okuyama [47] 
and improved as (3) or (4); (2) is due to Starbird [59] and improved as (4); 

(3) is due to Hoshina [22]; (4) is due to Rudin-Starbird [56]; (5) is due to K 

Chiba [10]; (6) is due to Nagami [40]; and (7) and (8) are due to K. Chiba 

[10] 

Theorem 4.1.6 ([10]， [22]， [40]， [47]， [56]， [59]). Let;~ αηd Y be collectionwise 
normal spαces. 1f XαηdYsαtisfy one of the following conditions， then X x Y 
'lS normαl if and only if X x Y is collectionwise normal: 

(1) Y is a metrizable spαce; 
(2) Y isαcompαct spαce; 
(3) Y isαLα5ηev (= the closed image* ofαmetrizαble) spαce; 
(4) Y isαparacompαct M叩 αce;
(5) Y isασ-locally compαct Pαracor叩 αctHαusdorff spαce; 
(6) X isαpαraco叩 αctσ叩 αceαηdY isαcollectionwise normal P叩 αce;
(7) X is the closed image ofαnormal M叩 αceαηdY isαparacompαct 

first countαble P-spαce; 
(8) X is the closed image ofαparacompαctβrst countαble M -spαceαηd 

Y isαcollectionwise normαl ~-spαce. 

A space Y is a P叩 αce[34] if for any index set 0 and for any collection 

{G(α1， • • • ，αη) : α1，・ ・7αη ε 0，η ε N} of open subsets of Y such that 

G(α1，・・ 7αη) c G(α1，・ ・?αmαn+1) for α1， • • • ，αmαη+1ε0， there exists 
a collection {F (α1，・ ?αη):α1， • • • ，αη ε0，ηεN} of closed su bsets of Y 

such that the conditions (a) and (b) below are satisfied: 

(a) F(α1，・ ?αη)c G(α1， • • • ，αη) for α1，うαηε0，

*The closed image means the image of some continuous dosed map. 
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(b) Y=U{G(α1， • • • ，αη) :ηεN} =今 Y= U{F(α1，... ，απ) :ηεN} 
A ~-space [41] is a space X having a sequence， called a ~-net， {ι :nεN} 

of locally finite closed covers of X which satis五esthe following conditions: 

(c)ιis written as {E(α1， .タn):α1，... ，αηεn} with an index set rl， 
(d) E(α1，... ，αη) = U{E(α1，... ，αn，αη+1) :αη+1εrl} for α1，... ，αnεQ 
(e) For every x εX， C(X) is countably compact， and there exists a se-
quenceαぃα2，. • .εrl such that C(x) c V with V open implies C(x) c 
E(α1，... ，αη) c V for some n， where C(x) = n{lS : y εE  εEn， nεN} 
We call {E(α1，・ ?αη):ηεN} a locαl net of C(x). 

2. Results 

In this section， we obtain some new results related to the problem stated in 
the previous section. In the following theorem， (1) is an affirrr川 iveanswer 

to Problem 4.1.5， i.e. an improvement of (2) of Theorem 4.1.1 (i.e. (6) of 
Theorem 4.1.6)， and (3) and (4) in the following result are also improvements 
of (7) and (8) of Theorem 4.1.6. Notice that (ω1 + 1) xω1 shows， under each 
of the conditions from (1) to (4) of the following theorem， X x Y is not 
necessarily normal. 

Theorem 4.2.1(Main). 1f XαηdYsαtisfy one of the .following conditions， theη 
X x Y is normal ifαηd only if X x Y is collectionwise normal: 

(1) X isαpαracor叩 αct~叩αceαηd Y is a collectioηw'lse normαlP叩 αce;
(2) X is αcollectio問 'lseηormal~叩αce and Y is a collectionwise normal 

first countable P -space; 
(3) X is the closed image ofαparacompact M -space and Y isαcollec-

tionωise normal P -spαce; 
(4) X is the closed image ofαnormal M叩 αceαndY isαcollectionωse 

normal first countαble P叩 αce

It should be noted that (2) and (4) in the above theorem seem to be first 
cases that these conclusion are implied under the conditions that neither X 

nor Y is paracompact. 
Our motivation of (2) of Theorem 4.2.1 is K. Chiba's result in [9] as 

follows: 

1f X isαcollectionwise normal ~-space αηd Y is a pαracompactβrst count-
αble P-spαce， then X x Y is collectionwiseηorm.al. 
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3. Key lemmas for the proof 

In this section， for the proof of Theorem 4.2.1， we prepare key lemmas. 

Lemma 4.3.1. Let X be a pαracompαct ~-spαce αηdY αγ-collectionwise nor-
mal P-spαce. Then， every closed subspace 01 X x Y is weakly zγ-embedded 
in X x Y. 

Lemma 4.3.2. Let X be αcollectionwise normal ~-spαce and Yαγ-collectionwise 
ηormal first countαble P-spαce. Then， every closed subspαce 01 X x Y is 
ωeαkly zγ-embedded in X x Y. 

Since proofs of Lemmas 4.3.1 and 4.3.2 are similar， we only prove Lemma 
4.3.1. 

Pro∞of of Lem仰 ma
be a uniformly discrete collection of zero-sets of X' x Y. Let {En :ηεN}， 
where ム={E(α1，... ，αη) :α1ぅ ?αηεD}(nεN)， be a ~-net of X. Since 
X is collectionwise normal and countably paracompact， for each nεN， En 
has a locally finite expansion {L(α1，... ，αη) :α1， • • • ，αnεD} of cozero-則 s
of X. For each α1，... ，αηεD，ηεN and dε[γ] <u.'， put 

(*) G(j(α1， ・・ ?αη)= u{ 0 0 is open in Y and 

(E(α1，... ，αη) x 0) n (U{ Fs : s ~ d}) =日}，

and G(α1，... ，αn) = U{ G(j(α1，... ，αη) : dε[γ]<ω}. Then， we have G(α1， 
?αη) c G(α1，・ 1α川 αn+dfor each α1，... ，αmαη+1εD. Since Y is a 

P-space， there exists a closed collection {M (α1，... ，αη) :α1，... ，αη モD，ηε
N} of Y such that M (α1，... ，αη) c G(α1，... ，αn) for each α1，... ，αηεQ 

and nεN， and 

Y = U {G(α1， • • • ， an) : n E N}コ Y=U{l¥![(α1，品):ηεN} 

Here we may assume that M (α1， • • • ，αη) c M(α1，... ，αη?αη+1) for each 
α1，・・・ ?αmαη+1εD. Define 

(料)P(j(α1，... ，αη) = {yεY: (E(α1， タη)x {y}) n乃手。

for each α1，... ，αηξD，ηεN and dε[γ]<ω 

Fix αぃ・・・ ?αηεDand nεN arbitrarily. 

if and only if s εd} 

仁laim1. The collection {M(α1，... ，αη)n乃(α1，...，αη) : dε[γ]<ω} is locally 

finite in Y. 

Proof of Claim 1. Let y ξY. Since M(α1，... ，αn)l is closed in Y， to prove 
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Claim 1 we may assume that y εM(α1， • • • ，αη). Since yεG(α1，... ，αη) 
there exists ゐε[γ]<ωsuchthat y εGdy (α1，... ，αn)' Suppose that G dy (α1 

?αη) n乃(α1，...，αη) -=1 o. Then we shall show 0 C Oy. To show 
this， let s εO. Select a point z εGdy (α1， • • • ，a71， ) ハ乃(α1，...，a71， ). Since 
(E(α1，... ，αη) x {z}) n Fsチ日， we have (E(α1，... ，αη) X Gdy (α1，... ，αη)) n 
Fsチo.By the definition of Gdy (α1，.. .， αη)， we have 

(E(α1，... ，α71，) X Gdy (α1，... ，αη)) n (U{l~ :μ~ Oy}) =。
1 t shows that s εゐ.Hence 0 Cゐ;it completes the proof of Claim 1.口

Since Y isγ-collectionwise normal and countably paracompact， 
{M(α1，... ，αη) n Pd(α1，... ，αη) : 0ε[γ]<ω} has a locally finite expansion 
{Hd(α1，... ，αη) : 0ε[γ]<ω} of cozero-sets of X. Define 

H71，s二 U{L(α1，• • • ，αη) x Hd(α1，... ，αη) :0ε[γlくωands ε0;α1ぅ ?αηξD}

for each nεN and sく γThen，it follows that {H71，s : sく γ}is a locally 
finite collection of cozeroωsets of X x Y for each nεN. 

Claim 2. Fs C U{H71，s : nεN} for every s <γ 

Proof of Claim 2. Let (x， y) ε乃 Choose α1，α2，・・・ εD such that {E(α1， 
αη) :ηεN} is a local net of C (x). Before everything， we show that Y 二

U{G(α1，... ，αη) :ηε N}. Let zε Y and Oxz二 {μ<γ:(C(x)x{z})n凡子
。}. Then，ら isfinite. Moreover， since C(x) x {z} is compact (on the 
case of Lemma 4.3.2， since C(x) x {z} is countably compact and Y is白川

countable)， there exist open subsets 0 and 0' of X and Y， respectively， such 
that C(x) x {z} C 0 x 0' C X x Y -U{~μ:μ~ Oxz}' From the property 
of the local net， there exists an nεN such that C(x) c E(αぃ・ ?αη) c 0 
Therefore (E(α1，... ，αη) x 0') パ (U{~μ:μ~ Oxz}) = o. Hence， z εO'c 
Gdxz (α1，... ，αη) c G(α1，・ ?αη);it shows that Y = U{G(α1，... ，αη) :ηε 
N} 

So we have Y = U{M(α1， • • • ，αη) :ηε N}. There exists an nεN such 
that yεM(α1，... ，αη). Let Oxy = {μ く γ:(C(x)>({y})n~μ# 日}. Likewise 
the matter shown above， we have Oxyε[γ]<ω， andl there exist open su bsets 
Ox and Oy of X and Y， respectively， such that 

C(x) x {ν} c Ox x Oy C X x Y -U{凡 :μ~ OXy} 

From the property of the local net， there exists an m <ωsuch that C(x) x 
{ν} c E(α1，... ，αm) x {y} c Ox x Oy， where we can select m三ηHence，

(E(α1 ) 品)x {叶)n (U{~μ:μ 仇}) =日
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Moreover， by the definition of dxy and the fact C(x) c E(α1， • • • ，αm)， ¥Ve 
have (E(α1，・ ?αm)X {Y})内 Fμ チofor every με dxy. It follows that 

U εP8xy (α1，タm)and yεM(α1，・ ?αη)c M(α1，タm). 80 we have 

νε M(α1， • • • ，αm)n乃xy(α1， • • • ，am) C 1[8月 (α1，• • • ，αm) 

Thus， (x， y)εL(α1， • • • ，αm) X H8町 (α1，• • • ，αm). Since (X，y)εFs， we have 

that s εdxy. 1 t follows that (xぅy)εH州， which proves that Fs c U{Hns : 
ηεN}. This completes the proof of Claim 2 口

Hence， it follows that A is weakly z，，-embedded in X x Y. It completes 
the proof of Lemma 4.3.1.口

Defining as (料)is our essential idea of the proof. We compare (**) with 
(*); defini時 like(*) is often used in proving results of products. In general， 
Gd(α1， • • • ，αn) and乃(α1，• .・ぅαn)are not included in each other 

( *) 料)

G{s}(α1， • • • ，αη /P{β} (α1， • • • ，αη) 

Y ¥IY  

X I ~X 

E(α1，・ 3αη E(α1，・?αη)
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4. Proofs 

First we prove the cases (1) and (2) of Theorem 4.2.1 

Proo合ofthe cases (1) and (2) of Theorem 4.2.1. Since the proofs of the cases 
of (1) and (2) of the theorem are similar， we only prove the case (1). Let 

X and Y be as in the conditions in (1). Assume X x Y is normal and A a 

closed subspace of X. By Theorem 1.3.1， A is z-embedded (or equivalentl)ら

C-embedded) in X. By Lemma 4.3.1， A is weakly zγ-embedded in X x Y 

By Proposition 2.4.3， A is zγ-embedded (or equivale凶 y，pγ-embedded) in 

X x Y. It follows from Theorem 1.3.2 that X isγ-collectionwise normal. It 
com pletes the proof.口

As the proofs of the cases (1) and (2)， in order to prove the cases (3) and 

(4)， it suffices to show the following two lemmas 

Lemma 4.4.1. Let X be the closed imαge of a paracompαct M -spαce， Y α 

γ-collectionwise normal P -space and X x Y normal. Then， every closed 
subspαce of X x Y is weakly zγ-embedded in X x Y. 

Lemma 4.4.2. Let X be the closed imαge ofαnormal M -space， Y αγ-collectionwise 

normal first countable P -space and X x Y is norm~al. Then， every closed sub-
spαce 0 f X x Y is weakly zγ-embedded in X x Y. 

Since the proofs of Lemmas 4.4.1 and 4.4.2 are sirnilar， we only prove Lemma 
4.4.1. First， we give a technical lemma. 

Lemma 4.4.3. Let X beαspαce. Suppose αdiscrete collectioη{Ks:s εA} 

of closed subsets of X sαtisfies the followi旬 conditions(i)αηd (ii) beloω: 
(i) Tl問、eexist locally finite open collectionsチli= {His : sεA} (iく ω)

of X such thαt K s C Ui<w His for every s εA; 

(ii) There existsαη opeηsubset vvヤofX such that Ks c Ws and Ws n 
(U{K，μ:μ#グ?μεA})= o for every s εA 

Then， there existsαdisjoint open collectioη{ <:dβ:sεA} of X such thαt 
Ks c Qs for every sεA. 

Proof Let凡 (iく ω)and {Ws : s εA} be the collections described in the 

conditions (i) and (ii). Here we put Ris = His n Ws for each s εA  and 

i <ω. Define 

Qs = U{ Ris -U{瓦 :J三リ εAandμ 刊}: iくω)
for each s εA. Then， we can easily show that {<:ds : s εA} is the required 

collection.ロ
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Proof of Lemma 4.4.1. Let X x Y be normal， A a closed subspace of X x Y 

and {Ds : s <γ} a uniformly discrete collection of zero-sets of X x Y. Let 
Z be a paracompact M -space and f a closed continuous map from Z onto 
X. By Nagata [42， Theorem VII，4]， we can express that X = U{ Xi : i三O}，
w here Xi is closed discrete for every iど1and f-1 (x) is compact for each 

Z εXo 
First we remark that for a subset A of Z x Y the following equality holds: 

(f x 1y)(A) n (Xo x Y) = (f x 1y)(A) n (Xo x Y) 

For each i ~ 1， X and Y are collectionwise normal， we can take a discrete 

collection {His : s <γ} of coze時 setsof X x Y such that Dsn(Xi x Y) c His 
for every s <γ. 

Let Fs = D s -U {His : i三1}for each sく γThen，it follows that 
{(f x 1y)-1(Fs) : sく γ}is a discrete closed collection of Z x Y 

Claim. The {(f x 1y)-1(Fs) : s <γ} has a disjoint open expansion of Z x Y 

Proof of Claim. Let A = U
s
<γ(f x 1y)-1(Fs). Then A is closed subspace of 

Z x Y. Since Z is a collectionwise normal L:-space， by Lemma 4.3.1う Ais 

weakly zγ-embedded in Z x Y. Hence， there exists a locally日nitecollection 

{His : s <γ} of cozero-sets of Z x Y for each iく ωand(f x 1y)-1(Fs) c 
UωJJ His for every s <γSince X x Y is normal， for each s <γぅthereexists 

an open subset Ws of X x Y such that Fs c Ws c Ws C XxY-Uμ#Fμ 

Then we have (f x 1y)-1(乃)C (f X 1y)-1(VVs) and (f x 1y)-1(Ws) n 
(Uμi=s(f X 1y)-1(凡))二日 forevery s <γBy Lemma 4.4.3， Claim follows 
口

Define 1令 =X x Y -(f x 1 y ) (Z x Y -Q 13) for each s <γ. Then， 
{1令:sく γ}is a disjoint open collection of X xY. Since Fs C Xo x Y， we 
can show that Fs C 乃foreach s <γBy the normality of X x Y， there 
exists a discrete collection {Hoβ :sく γ}of coze時 setsof X x Y such that 

Fs C HoβC  乃foreach sく γ.The collection {liis :グ <γ，z三O}has the 

properties that Ds C U{ His : i三O}for each s <γand that {His : s <γ} 
is discrete for each i三O.It follows that A is wealkly zi'-embedded in X x Y. 

It completes the proof.口

5. Related problems and results 

If we replace the paracompactness of X and Y by the collectionwise normality 
in (1) of Theorem 4.1.1， then even the normality of X x Y need not be implied 
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in general. Thus the following problem naturally arises. The cases of (1) and 

(2) in Theorem 4.2.1 can be regarded as partial answers to this problem 

Problem 4.5.1. Let X be a collectionwise normal ~~-space and Y a collection-

wise normal (or a paracompact) P-space. Is X x Y collectionwise normal if 
it is normal? 

Corresponding to N agami's result above， we have the following theorem 

Theorem 4.5.2. Let X be the closed image ofαpαracompαct M -spαceαηdY 
αpαracompαct P-spαce. Then， X x Y isηormal ifαηd only if X x Y is 
pαracompαct. 

Proof First we note the fact that for spaces X and Y given in the theorem， 
X x Y is normal if and only if X x Y is countably paracompact; the proof is 

similar to Beslagie-Chiba [4， Section 5]. Assume that X x Y is normal and 

K is a compact space. Then， Y x K is a paracornpact P-space， and by the 
fact above the countably paracompact space (X x Y) x K = X x (Y x K) 

is normal. It follows from Tamano's theorem [60， Theorem 2] that X x Y is 

paracompact.口

1n view of Theorem 4.5.2， under the similar consideration to Problem 4.5.1， 
the following prob1em a1so arises. The cases of (3) and (4) ofTheorem 4.2.1 

can be regarded as partia1 answers. 

Problem 4.5.3. Let X be the closed image of a norma1 M -space and Y a 

collectionwise normal (or a paracompact) P-space. Is X x Y collectionwise 

normal if it is norma1? 

Remark 4.5.4. Defining 1ike (刈 isfirst introduced in [72] for the other pur-

pose. The (1) of Theorem 4.2.1 is proved in [67]， and (2)ぅ (3)and (4) of 

Theorem 4.2.1 are proved in [68] by the direct way， i.e. proving collection-

wise norma1ity of X x Y under the assumption of normality of X x Y. The 

proof of Lemma 4.3.1 in this paper is essentially the same of [68， Lemma 2.2] 
All of the results in Sections 4 and 5 are stated in [68] 

The proof of Lemma 4.3.1 actually shows that X x Y has the following 

property: For every locally finite closed collectioη{Fcα:α<γ}， there exist lo-
cαlly finite open collections {HnCt :α<γ} (ηεN) such thαtFαC UnEN HnCt 

for eαchα<γ(see a1so [68， Lemma 2.2]). This property is called as a-

expandable by Zho時 [74].Yajima discussed in [65] some properties of prod-

ucts by the notion of special r閃efi釦finer

(1リ)0ぱfTheorem 4.2.1. For problems concerning extensions of mappings on 

products of ~-spaces and P-spaces， see Ohta [46]. Other results on extension 

properties on products， see [66] or [72]. 
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