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Introduction

The notion of quotient and localization of abelian categories by dense
subcategories (i.e. Serre classes) was introduced by Gabriel, and plays
an important role in ring theory [10], [33]. The notion ol triangulated
categories was introduced by Grothendieck and developed by Verdier
[14], [39], and is useful in representation theory [6], [12], [33]. The
quotient of triangulated categories by eépaisse subcategories was
constructed in [39]. These two quotients were indicated by Grothendieck,
and they resemble each other. We define localization of triangulated
categories, and study a relation between localizations and épaisse
subcategories. Beilinson, Bernstein and Deligne introduced the notion of
t-structure which is similar to torsion theory in abelian categories [4].
We consider a stable t-structure, which consists of epaisse subcategories,
and show that there is a correspondence between localizations of
triangulated categories and stable (-structures. Moreover, we show that
if <4/¢ is the quotient of an abelian category -4 by a Serre subcategory
¢, then the natural functor from the derived category D*(.4) ol -4 10
the derived category D*(-4/¢) of c4/¢ is a quotient functor, where * = -
+or b (Theorem 3.2).

For a ring A, we denote by Mod A (resp., mod A ) the category ol
right A-modules (resp., finitely presented right A- modules). Let T'be a
finitely generated right A- module, B an endomorphism ring End  (7T)
of T,and I a trace ideal of T'. If T is a projective A- module, then we
have an exact sequence of abelian categories: 0 — Mod A/] LModA S
Mod B — 0O, where Q and I are the natural quotient and the natural
inclusion functors, respectively. According to Theorem 3.2, we gel an
exact sequence of derived categories: 0 — Dy 4, (Mod A ) LD *(Mod A )

%D *(Mod B ) — 0O, where * = +, - or b. Moreover, Q' (resp., Q) is a
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localization (resp., a colocalization) functor (cf. [8, Proposition 2.1]). This
result indicates us three problems. First, what condition is O —D "(Maod
A/l ) L D*ModA)S D"Mod B) — 0 to be an exact sequence ol
derived categories? Secondly, when does a right A- module T" induce
an exact sequence of derived categories: 0 — Ker R "F — D"(Mod A )
D"(Mod B) — 0, where I' = Hom (7, -) ? Furthermore, what condition is
D "(Mod A) %' DMod B) to be a colocalization functor? Thirdly, when
does a ring morphism A — C induce an exact sequence ol derived
categories: 0 — D"(Mod () L DYMod A ) — D*(Mod A )/D"(Mod C ) —
0 7 Moreover, what condition is D(Mod A ) - D"(Mod A )/D"(Mod C)
to be a localization or colocalization functor? Considering the second
problem, we are given a hint by results on equivalences for derived
categories. Miyashita introduced the notion of tilting modules of finite
projective dimension [27]. Afterward, Happel, Cline, Parshall and Scott
showed that a tilting module T, induces a derived equivalence between
D "(ModA) and D "(ModB) |6], [12], [13]. Rickard introduced the notion
of a tilting complex T,* and showed that D*(ModA) is derived equivalent
to D*(Mod B), where B is an endomorphism ring Ind , ., (7,%) and * = -
or b [33], [34]. Thus, a tilting module or a tilting complex plays same
role in a derived category as a finitely generated projective generator in
a module category. Then, we consider a partial tilting module T in a
derived category as a finitely generated projective module in a module l
category. We show that projective dimension of a partial tilting module '

D "(mod

T as an End ,(7)-module is finite if and only if D"(mod A ) R)

B ) is a colocalization functor in case of A being a finite dimensional
algebra over a field k. Furthermore, we give the upper bound of the
number of isomorphism classes of indecomposable direct summands of
such a partial tilting module by calculating the Grothendieck groups of

derived categories. Concerning to the third problem, we give a necessary
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and suflficient condition [or the existence ol a localization functor I :

D" Mod A ) - D"(Mod C) which is the left adjoint of D"(Mod ) l'
D"Mod A ). Moreover, we study a relation between the second problem
and the third problem. Concerning to the first problem, the notion ol
recollement, which was introduced by Beilinson, Bernstein and Deligne,
is useful [4]. Cline, Parshall and Scott studied algebraic stratification
which induces recollement ol derived categories ol module categories.
In particular, they introduced heredity ideals which are idempotent
ideals inducing recollement of derived categories of module categories,
and studied quasi-hereditary algebras which have a sequence of heredity
ideals [8], [30], [31]. We give a necessary and sufficient condition for an
idempotent ideal AeA to induce an exact sequence of derived categories:
0 —D "(mod A/AeA ) LD (mod A ) % p “(mod eAe ) — 0 in case of A
being a finite dimensional algebra over a field k. Furthermore, we give
a necessary and sufficient condition for an idempotent ideal AeA 1o
induce recollement of derived categories in case of A being a left Noetherian
or semiprimary ring. In particular, we show that a minimal idempotent
ideal satisfies recollement conditions if and only if it is projective as
both right and left modules.

Various results on extensions of algebras and extensions of tilting
functors were given in representation theory. let 0 - A — A bean
extension of a ring A . What condition is T ®,A 1o be a tilting A-
module? What is the relation between O - A — A and bEnd (T) —
End,(T ®,A) ? Tachikawa and Wakamatsu showed that T ®,A is a
classical tilting module under the condition that T is a classical tilting
A-module and that A is a trivial extension algebra A xD(tA) of A by
D(tA ), where tA is a trace ideal of T [38]. In case of A = A xM, we had
a necessary and sufficient condition for T" ®,A to be a classical tilting

module [22]. Assem and Marmaridis gave a necessary and sufficient
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condition for T" ® ,A 1o be a classical tilting module, in case ol split-by-
nilpotent extensions of rings [1]. Miyashita considered a condition for 1
®,A 10 be a tilting module [27]. Hoshino showed a necessary and
sufficient condition for T ®,A to be a tilting module, in case of split
extensions of rings [5]. Rickard gave a sufficient condition for T *®/ A
to be a tilting complex, in case of A = A xM [35], [36]. Also, Rickard
showed that a finite dimensional algebra which is derived equivalent 1o
a symmelric algebra is itsell’ symmetric, and that if A and B are
derived equivalent algebras, then a trivial extension algebra A xDA and
a trivial extension algebra B xDB are also derived equivalent (see |30]
for details). In these two cases, there is the structure similar to Frobenius
extensions. In case that T is a finitely generated projective generator,
Miyashita showed that if O - A — A isa Frobenius extension, then 0
- End,(T) — End, (T ®,A) is also a Frobenius extension [26]. We give
conditions for extensions of rings inducing tilting complexes. Moreover
we show that Frobenius extensions are invariant under derived

equivalences which are induced by these tilting complexes.

In Chapter [, we study quotient and localization of abelian categories
and of triangulated categories, and the relation of them. In Section 1,
we recall standard notations and terminologies of quotient and localization
of abelian categories, and torsion theories. In Section 2, we define
localization of triangulated categories, and consider a relation between
localizations and stable t-structures (Theorem 2.6). In Section 3, we
show that if 4 — =4/¢ is a quotient of abelian categories, then D *(.4) —
D *(c4/¢) is a quotient of triangulated categories, where * = +,- or b
(Theorem 3.2). Moreover, in case of =4/¢ having enough injectives, il —~4
— A4/¢ is a localization of abelian categories, then D '(=4) — D '(.4/¢) is a

localization of triangulated categories (Corollary 3.3).
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In Chapter II, we apply the results of Chapter I to derived categories
of module categories. In section 4, we study quotient and localization ol
derived categories ol modules by using partial tilting modules of finite
projective dimension [6], [27] (Propositions 4.2, 4.3, Corollaries 4.4).
Moreover, in case ol a finite dimensional algebra A over a field K, we
show that if projective dimension of a partial tilting module T as an
Ind, (7T )-module is finite, then the number of isomorphism classes ol
indecomposable direct summands ol T is at most the rank ol the
Grothendieck group of A (Propositions 4.5, 4.6, Corollaries 4.7, 4.8). In
Section 5, we consider relations between ring epimorphisms and
localizations (Proposition 5.1, Theorem 5.2). Moreover, we consider that
partial tilting modules induce ring epimorphisms and their localization
of derived categories (Proposition 5.3, Corollary 5.4). In Section 6, we
give necessary and sufficient conditions for { D(Mod A/AeA) , P(Mod
A), D(Mod eAe)} 1o be recollement in case of A being left Noetherian
or semiprimary (Theorems 6.2, 6.3). In particular, we study when a
minimal idempotent ideal satisfies recollement conditions (Propositions
0.6, 6.7).

In Chapter III, we study extensions of rings and extensions of tilting
complexes. In Section 7, in case of split-extensions of rings, we give a
necessary and sufficient condition for T ‘®% A 1o be a tilting complex
(Theorem 7.7). In Section 8, in case of arbitrary extensions of rings, we
give a necessary and sufficient condition for T *®% A to be a tilting
complexand End ;0 (T*) = End oy (T°®% A) is ring extension (Theorem
8.1). Furthermore, we show that Frobenius extensions are invariant
under derived equivalences which are induced by tilting complexes

satisfying the condition of Theorem 8.1 (Theorem 8.3).
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Chapter I. Localization of Triangulated Categories
In this chapter, we assume that all categories are skeletally small.
§1. Preliminaries.

Let =4 be an abelian category. A collection & of arrows ol -+ is called

a multiplicative system il it satisfies the following conditions:

(FR-1) If £, g € 5, and fog exists, then fog € 5. For any X € o4, id,

belongs to .

(FR-2) In o4, any diagram:

e
Z=>X,
with s € S, can be completed to a commutative diagram:

75y
by s

Filo¥

with t € s. Ditto for the opposed statement.
(FR-3) If f and g are morphisms in -4, the following properties are

equivalent:

(i) there exists s & Ssuch that sof = Sog;
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(ii) there exists t € Ssuch that fol = gol.

A full subcategory ¢ of -4 is called dense provided that for every

exact sequence in o4

X and Z belong to ¢ if and only il Y belongs to .

We denote by ¢(¢) the system of all morphisms fsuch that Ker fand
Coker fare in <. Then ¢(¢) is a multiplicative system, and the quotient
category —4/¢ can be defined. Moreover, ¢ and -4/¢ are also abelian
categories, and the natural quotient functor -4 S o4/¢ is an exacl
functor. In this case, we will say that 0 — ¢ — -4 3 4/¢ — 0 is an exact
sequence of abelian categories.

The right adjoint of Q (if it exists) is called a section functor. If there
exists a section functor S, then {4/¢; Q, S} is called a localization of 4.
In this case, ¢ is called a localizing subcategory of c4. If {4/ (), S} is a
localization of =4, then S is fully faithful. On the other hand, il T: 4 — &
is an exact functor between abelian categories which has a fully faithful
right adjoint S: 8 — -4, then Ker T is a localizing subcategory of -4, and T
induces an equivalence between —4/KerT and B. Colocalization of .4 is
also defined, and similar results hold (see [10] and [32] for details).

A torsion theory for <4 consists of a pair (7, 9) of full subcategories

satisfying the following conditions:

(a) Hom_(7,9) =0,

(b) for every object X € -4, there exists an exact sequence:

O—=X'—>X— X0,
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with X'e Zand X" €9.

A torsion theory (7, 9) is called hereditary il 7 is closed under
subobjects. If (7, 9) is a hereditary torsion theory for .4, then 77 is a
dense subcategory of o4, and then 0 — T — .4 = .4/ — 0 is exacl. lbor
an object X € 9, X is called F-closed if lixll_‘.{;‘r, X )=0. Let®w be the full
subcategory ol -4 consisting ol all F-closed objects. For a hereditary
torsion theory (7, @) for -4, il 7 is a localizing subcategory ol -+, then
ie4/0; Q, St is localization of .4, and then Q and S induce an equivalence
between v and -4/7 We apply these ideas 1o triangulated categories in

the next section.
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§2. Localization of Triangulated Categories.

Dupnenions . A triangulated category 77 is an additive category endued
with an autofunctor T : 7 — 7 (we often denote T'X by X [i | for X € O)
and a collection S of triangles X Y — Z = TX | called the distinguished

triangles ol 7, which satisfies the following:

(TR-1) Every triangle which is isomorphic to some distinguished triangle
is distinguished. Every morphism X — Y can be imbedded in a
distinguished triangle X Y %> Z% TX . The triangle X 5X -0 — TX is
distinguished for every object X € 7.

» Y e W e . R e . . s xr V. W ey {13 oS
(TR-2) XY 7% TX isdistinguished if and only if Y > 7% TX ='T)

is distinguished.

(TR-3) Given two distinguished triangles X “>Y > 7 TX and X''> Y'%
7° 5T X and morphisms :X — X' and g:Y — Y' which satisfy gou =
u'of, there exists a morphism h:Z— Z' such that hov = v'og, T(f )ow =

w'oh.

(TR-4) Given distinguished triangles X =Y — Z2' - TX,X "SZ7Z - Y
—-TX and Y > Z - X' = TY, there exists a distinguished triangle 7' —

Y' - X' — TZ' which satisfies the following commutative diagram:

TY - X = X
! | |
T'X'-Y -Z->X —>TY
| | I !

Z —-Y ->X —>TZ

| |

TX =TX
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Given two triangulated categories © and ', a grade functor [rom %
to »' is a pair of an additive functor F: » — @' and an isomorphism @ :
FT — T'F, where T and T" are the translation functors of » and »',
respectively. A grade functor (F, ®) is called a ¢- functor if for every
distinguished triangle (X, Y, Z, u, v, w) in >, (X, Y, Z, Fu, Fv, ®dol'w ) is
distinguished in ®' (we often simply write F unless it confounds us) |14,
Chapter I, §1], [39,1, §1,n°1). Let F: > — @' be a #functor. Il I' has a
right or left adjoint G, then G is also a ¢- functor [18, 1.0 Proposition].

A subcategory u of B is called épaisse if 7 is a full triangulated
subcategory and ‘u satisfies the following condition: Forany : X — Y|
which factors through an object in .« and which has a mapping cone in
u, X and Y are objects in ‘. We denote by ¢(%) the set of morphisms [
which is contained in a distinguished triangle (X, Y, Z, f, g, h ) where Zis
an object of 2. Then ¢(w) is a multiplicative system which satisfies the

following conditions:

(FR-4) s € ¢(w) if and only if Ts € ¢(u), where T is the translation

functor.

(FR-5) Given distinguished triangles (X, Y, Z, u, v, w), (X', Y', Z', u', v/,
w'), if fand g are morphisms in ¢(2%) such that u'of = g ou, then there
exists a morphism h in ¢(%) such that (f, g, h ) is a morphism of

distinguished triangles (see [39, 1, §2, n" 1] for details).

In this case, the quotient category »/Uu is defined, and we will say
that 0 - 4 5 o 3 o/% — 0 is an exact sequence of triangulated
categories (see |4, 1.4.4], [39, 1, §2, n° 3] for details).

Limma 2.1, Let D be a triangulated category, it an épaisse subcategory

10
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of », and Q) : D —=D/u a natural quotient. For M € », the following are
equivalent.

(a) Forevery ['X — Y& ¢(w),Hom(f, M):Hom (Y, M) — Hom (X, M)
is bijective.

(b) Hom (% M) =0.

(c) For every X € D, Q(X, M) : Hom (X, M ) - Hom_, (QX , QM ) is

bijective.

Proof. (a) = (b): For every object U € u, 0 — U
distinguished triangle. Then O = Hom_(O,M ) = Hom (U, M ).
(b) = (¢): Every morphism of Hom , (QX , QM ) is represented by a

diagram:

s Nf
X M |

where s is contained in a distinguished triangle U —- X' - X — with U
€ u. Then there exists {': X — M in D such that f = f' os, because
Hom, (%, M )= 0. Hence Q(X, M) is surjective. Let U X' > X * be a
distinguished triangle with U & 2 If a morphism g: X — M satisfies
g os = 0, then there exist u: U[1] = M such that g = u of. Therefore g=
0, because u€ Hom, (u, M) = 0. Hence Q(X, M) is injective.

(c) = (a): Let f:X — Y be a morphism in ¢(%). Then we have the
following commutative diagram:

Hom, (Y, M) "% Hom, (X, M )
QY,M) | L Q(X, M)

Flom (CQF ON )

Hom,,,(QY,OM ) =" Hom,, (QX,QM )

11
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According to (¢), Q(X, M ) and Q(Y, M ) are bijective. Since QU/ = 0,

Hom(Qf, QM ) is bijective. Hence Hom(f, M ) is bijective.

An object M is called wu-closed if it satisfies the equivalent conditions
of Lemma 2.1. Let 0 - u — D — /U — 0 be an exact sequence of
triangulated categories. The right adjoint of Q) is called a section functor.
[f there exists a section functor §, then {/%; ), St is called a localization

. 38 L) P : . .
of », and 0 — u = > = »/u — 0 is called localization exact.
Limma 2.2, For every object V€ d/u, SV is u-closed.

Proof. For every [:X — Y& ¢(u), we have a commutative diagram:

THom(1,8V)

Hom,(Y,SV) — Hom,(X,SV)

1 (1
[Hom (V)

Hom_, (QY, V) = Hom_,(@QX, V)

Therefore Hom(f, SV') is an isomorphism. By Llemma 2.1, SV is ‘u—<losed.
Let #:QS -1, and ¥ :1, — SQ be adjunction arrows.

Provosition 2.3. Let {D/%; Q, S} be a localization of .
(a) @ isan isomorphism (i.e.S is fully faithful ).

Yy vy
(b) For every object X € D, the distinguished triangle U — X — SQX —

satisfies that U is in .

Proof. (a) For every X € ® and Y € /%, we have a commutative

diagram:



Hom (X,SY) = Hom,/(X,SY)
Q(X,SY) | e

Flom (N, dy)

Hom , (QX,OSY) >  Hom,_, (QX, Y).

By Lemma 2.1 and 2.2, Q(X, SY) is an isomorphism. Then Hom(QX,®, ) is
an isomorphism. For any Z € &/, there exists X € » such that 7 =X\,
Hence & is an isomorphism.

(b) It suffices to show that for any X € %, QW, is an isomorphism.
e
. ] ! . R .
By the property of adjunction arrows, we have QX — QSQX = QX

I x> and hence QY, is an isomorphism.

Corouiary 2.4. Let M€ . Then M is u-closed if and only if M =SQM.

Prorvosimion 2.5. Let D and & be triangulated categories, b : > — £ a -
functor which has a fully faithful right adjoint S : £ — . Then ¥ induces

an equivalence between /KerF and £.

Proof. Consider Q: » — »/KerF. Then by the universal property of ()

we have the following commutative diagram:

Z5 55 2
ONR
o/ Kerk

If £:X — Yisa morphism in o, then Ffis an isomorphism if and only if
Qf is an isomorphism. For every object M € », FM — FSFM is an
isomorphism, and then QM — QSFM is an isomorphism. Therefore Q —
QSF is an isomorphism. By the universal property of Q and QSF = QSRQ,

we have 1, =QSR. Since, RQS=FS = 1_, Ris an equivalence.

13
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Let « and @ be full subcategories of % such that: a) « and v are
stable for translations; b) Hom (%, ¥) = 0; ¢) For every X & o, there
exists a distinguished triangle U —- X -V — with Ue wand V & . Then
w and v are ¢épaisse subcategories of », and (i, V) is t-structure in the
sense of Beilinson-Bernstein-Deligne |4, 1.3]. We will call (¢, «¥) a stable
(-structure. Moreover, there exist exact sequences 0 — u = n = — ()
and 0 — v % » % 9, — 0 such that QQ is the left adjoint of R and that ()" is
the right adjoint of K, where K and R are natural inclusions (see |4, 1.4.4|
for details). Namely, {v; Q, R} is a localization of &, and | %; K, Q'] is a
colocalization of » . By Proposition 2.5 and [39, 6-6 Proposition], and
their duals, /U is a localization of » if and only if 2 is a colocalization
of D, and /U is a colocalization of » if and only if 2 is a localization of
. We later see that recollement, in the sense of [4, 1.4.3], is equivalent

to bilocalization.

Prorvosition 2.6. Let D be a triangulated category. If {v; Q, R} is a
localization of o, then R is fully faithful, and (Kwu,RV) is a stable t-structure,
where u = Ker Q and K is a natural inclusion. Conversely, if (., V) is a
stable t-structure in D, then a natural inclusion R : & — & has a left

adjoint Q such that {v; Q, R} is a localization.
Proof. Llet {v; Q, R} be a localization of ». Then, by Hom (K, RV) =
Hom, (QK%, ) = 0 and Proposition 2.3, it is clear that R is fully faithful

and (K%, Rv) is a stable t-structure. The converse is true by the above.

We have the same result of Cline-Parshall-Scott [8, §1, Theorem 1.1]

under the weak conditions.

Provosimion 2.7, Let F : > — &£ be a ¢ functor of triangulated categories.

14
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Assume that I has a fully faithful right (resp., left ) adjoint G : & — . 11
F has a left (resp., right ) adjoint 11 : & — o, then H is a fully faithfuli-

functor. In this case, (Kerl:, », &) is a recollement.

Proof. According to Proposition 2.5, Proposition 2.3, Theorem 2.0,

and their duals, it is clear.
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§3. Localization of Derived Categories.

Let -4 be an additive category, K (=4) a homotopy category of _+, and
K "(c4), K (%) and K "(=4) full subcategories of K (.4) generated by the
bounded below complexes, the bounded above complexes and the bounded
complexes, respectively. For an abelian category -4, a derived category
D (c4) (resp., D'(=4), D (=4) and D"(.4)) of -4 is a quotient of K (_+4) (resp.,
K '(4), K (=4) and K "(.4)) by a multiplicative set of quasi-isomorphisms.
Then K *(=4) and D *(-4) are triangulated categories, where * = nothing,
+,-or b|14], [39]. In general, we denote by K*(-4) a localizing subcategory
of K (cA4) (i.e. K*(=#4) is a full triangulated subcategory of K (-4) and
D*(o4) — D (-4) is a fully faithful ¢- functor, where D *(.4) is a quotient
of K*(<4) by a multiplicative set of quasi-isomorphisms) [14, [, §5], [39,
[I,§1, n"1]. For a thick abelian subcategory ¢ of -4 (i.e. ¢ is extension
closed in =4), we denote by D7, (4) a full subcategory of D*(.4) generated
by complexes of which all homologies are in ¢ [14, I, §4]. Let o (D *(.4),
D (B)) be a category of ¢- functors from D *(-4) to D(2) and Hom , (I, ;)
the set of morphisms from F to G for F, G € 9 (D*(-4),D (8)). Given a -
functor F : K*(-4) - K (8), we obtain a right derived functor R *I :
D*(-4) —D(8) if there exists an object R *F in ¢ (D*(-4),D (:8)) such that
Hom /(R *F, -) is isomorphic to Hom, (Q_*oF, —0Q),) in ¢ (D *(_4),D (&)),
where Q_* : K*(c4) — D*(=4),Q,: K (B) — D (®) are natural quotients, [14,
I, §5], [39, I, §2]. When R 'F: D'(A)— D (:8) exists, we say F has right
homological dimension< n on -4 if R 'F(X) = 0 for all X € -4 and for all
i >n|l4,1,§5], 39,1, §2, n°2]. And an object X in -4 is called a right
F-acyclic objectif R "F(X ) =0 for all i > 0. We also denote by R *I a
right derived functor of an induced 4- functor from F: -4 - 3. let F : 4
— B be a left exact additive functor between abelian categories. If -4

has enough injectives, and F has finite right homological dimension on

16
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4, then R F, R Fand R "F exist, and R Fl,. , = R *I', and moreover, R *F
has image in D*(8), where * = +, - or b |14, I, §5]|. We often denote

R*Fl,, « , by R "I, where D "(-4) is a full subcategory of D*(_+). On the
other hand, il <4 and B have enough injectives and projectives,
respectively, and if the derived functor R "' : D"(.4) — D () has image
in D8)and R "' : D"-4) — D"(8) has a left adjoint, then I' has a lelt
adjoint G : 8 — =4 and the derived functor L "G : D "(8) — D (_+) has

image in D"(c<4) which is the left adjoint of R “"F |6, (3.1) Lemmal.

Limma 3.1, Let D and & be triangulated categories and ' : » — £ a o-

functor. Consider the following commutative diagram :

D L* E
ON AT

>/ KerF
If F'is full dense, then ' is an equivalence.

Proof. It suffices to show that F' is faithful. Let f be a morphism in

»/KerF such that F'f = 0. Then [ is represented by a diagram in %:

with s: Y — Y eo(Ker F) and Ff= 0. Let X 5 Y' % 7z ' X [1] be the
distinguished triangle which contains ' in . Then we have a morphism

of distinguished triangles in o:
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EX "% Py 3 Fz 2 ExXI

oo | (}_‘”) [

(©) ©1)

25 () - s
FX = FY = FY'@®FX [1) FX[1].

Since ' is full, there exists a morphism s': Y' = Y" € ¢(Ker ') and y: 7
- Y" in D such that Fs' ox = Fy. Then Fs' = Fs' ox oFg=Fy oI'g = [(} og)
is an isomorphism. Therefore we have y og € ¢(Ker I'), and y og os

¢(Ker F). Then [ is represented by a diagram in %:

)/H
yogolf' /N Ny og o
X X,

and y og of' = 0. Hence [ is zero morphism in ®/Ker F .

Tiworem 3.2. Let O = ¢ — 4 — A/¢ — O be an exacl sequence of
abelian categories. Then O — D, (cA)— D *(c4) % D*(A/C) — 0 is an

exact sequence of triangulated categories, where * = +,— or b.

Proof. According to Ker Q* = D). (-4) and Lemma 3.1, it suffices (o
show that the induced & functor Q™ : D*(_4)/D.. (o4) — D *(_-4/¢) is full
dense.

(I) Thecaseof *=b. (i) Q" isdense. let X*:... >0 = X " T x ol

d il

d | . 0 . ) e ; o® s i
= ...—=> X"—> 0 — ... beacomplex in D"c4/¢). Then X * is represented

by a diagram in -4:



) S Qi X =
$ o LTS L O s o SN
e D, X 2 X" 00—,

ni+l

where s, € ¢(¢) for all i By induction on i, we have the following

I

commutative diagram in .4

\—n;”l“__‘ \'ll it |

and we have s',= s ,ol; € ¢(¢) and d' ,, od", = O for all i. Indeed, it is

I

clearin caseof 1 = 1 by taking X", i=X" oy ; X" = X _j, Sai=Lym , ;=

1.+ and d",= d ;. Next, by the property of a multiplicative system, we

have the following commutative diagram in -4:

jl‘
\/IIH i-1 5 -—larl \.’n i
o 4

8% 4 |8
d

xvHl 2y ‘

where s",, ‘€ ¢(c). Since d,;0d ;; = 0, there exists t’;, : X "= X ™"

i
such that s;,08" ;,ot';;, € ¢(0) and s’ ,0d"';od" . ot',, = 0. Then there
exists & ;X TH - X"H e ¢f2) such that d’jed! ot oty = 0. Let
Ly = 8lyotiget’y , diy = digetiyol'y, , 8ty = S.yot, . Then we
have the following commutative diagram in -4:

'
4

Xu}l _*‘an

Cip 4
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and we have s' ., = S, ol € ¢(0) and d',0od"',, = 0. It is easy Lo see

i )

that X " = (X ",d",) is a complex in D"(.4) such that QX "= X *,and Q'"\ " =
Xi

(ii) Q' is full. (a) We first show that for every morphism f:X'* - Y *
of complexes in K “(c4/¢), there exist a complex X " and morphisms s':
X" —=Y*and I":X" — Y * of complexes in K "(_4) such that foQs' = Q[
and Qs' is an isomorphism in K "(c4/¢). By (i), = (f) :X * — Y *is

represented by the lollowing diagram in _4:

R k=, e L i, T

T S I T b‘ n+l T 'S.ll
‘X’I n Xl n+l R \ 4]
l P—u 'L !‘-n»l l PH

o, k= W e L

where s, € ¢(¢) for all i . By induction on i, we have the following

commutative diagram in -4:

"' i T T ‘()' 1
X i 'I__; X" il
!'H ; l l t“_ gi
Y J_" Yy it

where s';€ ¢(¢), and we have f_;oQs" ,=Qf" ;and 3 "' 00 ' ;=0 for all i.
Indeed, itis clear in case of i = 0 by taking s' ,=s,,f",=f ,andé¢' = a,

Next, by the property of a multiplicative system, we have the following

commutative diagram in 4:



where s" ., € ¢(¢). Since fis a morphism ol complexes in ("(_+4 <),

there exist £ X ™ — X ™5 and £, X ** X" such that s";, of!

| Fi

= Sl € ¢(e)andsuch thatd. , of . ot =808 ™ olt . Lot ™
8" golly s 8y = Pyyely , 8"y = 8" gol"yy =8 ol « Then we have
the following commutative diagram in -4:
- 1] :
X~ = X
BSul O 18%,
a" g’
;X m-j- _"l ;Y n-j !
[.”_P_i l l !‘Il_‘

d

):J] e Yr -

where s ., € ¢(2) and we have [, Qs" ., =Qf" ., . Since §' 09 " 09"
=d.,0d.;, 08" ;; =0, there exists t" ,,: X"+ — X "+ € ¢(¢) such that

g g edlselly = 0 L @y = F el 5 Flay = PlgelTy 5 8 =

ol

s";, ot",, . Then we have the following commutative diagram in -4:

X g

S‘-H T Ts’-[

{\/ m-i-| 'i'_‘_; ‘X n-i h
J(".H .L l !"_,'

y-i! A Y-

where s',, € ¢(¢), and we have f,,0Qs",, =Qf",, and ¢' 00" ,, =0. Itis

easy to see that X = (X ", ') is a complex in K "(=4) and s'= (s"), "=
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(f') are morphisms in K "(c4) such that foQs'=Qf". (b) Any morphism [:
X*— Y*in D"(c4/¢) is represented by the following diagram in

K ?(=4/0):

tZ N\ 1
X* Y°

where tis a quasi-isomorphism. According to (a), it is easy to see that
there exist morphisms t':X,*— X *and s:X,*— X ,*in K "(c4) such that

t Qs=Q1',Qs isan isomorphism in K (4/¢c)and Q' is a quasi-isomorphism,
and that there exist morphisms " :X,*— Y *and s':X;"— X " in K "(-#4)
such that " oQs'= Qf"and Qs'is an isomorphism in K "(-4/¢). We have

the following morphism of distinguished triangles in K "(-4):

X 5K D%
I” l l SI‘ “

XA X7t

By QZ* = 0 in K "(c4/¢), r and (" are isomorphisms in K “(-4/¢2). Then
X t't") is a quasi-isomorphism in K "(c4/¢). Denoting by the same
symbols the induced morphisms in D "(_4), [ or and t'st" are morphisms
in D "(=4) such that t'st” € ¢(D,(4)) and f oQ’(t'ot") = f oRS o¥(s ol" ) =
RFPeQ(s'or ) = Q"(f'er ), where R: K "(4/¢c)— D"(4/¢) is a natural quotient.
Hence Q' is full.

(I) Thecaseof *=-, let X*:...m> X "= X™" - - X" 0-—...be
acomplexin D (A/¢),and X':...5 0= X' X" - [ - X">0 —..a
truncated complex in D *(c4/¢). Then, by (I), there exists a complex X

in D *(c4) such that s;: Q'"’X"* = X;".
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Moreover, for a natural inclusion X' — X, ,°, we have a commultative

diagram:

hy e thy (L]
Q"X > X
s, " g
X . T
Hence QX = lim QX" =« X °, where X ** = limX;". For any morphism

[:X*—=Y"in K (c4/¢), we have a commutative diagram:

’e /i .
/\‘ == Y!

| !

e

According to (I), there exist a complex Z"and morphisms s;: Z' — X" and

' : X'*— Y'* of complexes in K"(4) such that £, €Qs,' =QIf,'. Moreover,

for all i, we have the following commutative diagram:

Then we have foQs' =Qf , where Qs' = !lgplqs-,' is an isomorphism in

K"(c4/c) and Qf = limQf' . In the same way as (1), Q" is also full.

| —=

(III) The case of * = +. By (1) with the arrows reversed and the dual

of (I1), it is trivial.

Remark. By the proof of Theorem 3.2, K *(-4) L K *(A/c) is also a

quotient functor, where * = +, - or b.
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Coroniary 3.3. Let O = ¢ — 4 — A4/¢ — 0 be a localization }.+4/c; (), S|
of 4. Assume that -4/¢ has enough injectives. Then O — D (_+4) =D "(_+)
> D Y(4/¢) — 0 is localization exact, that is, {D *(<4/¢); Q',R 'S} is a
localization of D '(=A).

Proof. For any Y * € D*(c4/¢), there exists a complex [ * = (1,, d,) ¢
K “(c4/¢) where all [, are injective such that Y = [ *in D '(.4/¢). Then,
givenany X' € D'4) and Y* € D'(c4/¢), we have Hom,,, . (Q'X"Y *) =
Hom. QX °I°) = Hom . (X *SI ®). Since Q is exact and S is the right
adjointof Q, SI * = (SI ',Sd,) is a complex in K '(-#4), where all SI ' are
(A ERTSG Dk

injective. Then we have Hom, (X °SI *) = Hom,

[P

Therefore R 'S is the right adjoint of Q' . According to Theorem 3.2 and

Theorem 2.0, we are done.



Chapter II. Partial Tilting Modules and Ring Epimorphisms

Let A be aring. We denote by FreeA (resp., [recA ) the category ol
free right A-modules (resp., linitely generated Iree A-modules). For a
right A-module T, we denote by SumT the category ol direct sums ol

copies of T.
§4. Localization of Derived Categories of Modules.

Equivalences of derived categories of modules were considered in
[12], |6], [33]. Foraring A, we call a right A-module T a partial tilting
right A-module provided that it satisfies the conditions: a) 0 — P, — ...
- P, = P, - T — 0 is exact, where all P, are finitely generated
projective; b) Ext, (T, T') = O for all i > 0. Cline, Parshall and Scott
showed that if T is a partial tilting right A-module, then {D (Mod B ); -
®f; T, R Hom (T, -)} is a colocalization of D (Mod A ), where B = End (7).
Moreover, if pdim ,T < «, then {D(Mod B ); - @,’f'f‘, R "Hom (T, -)} is a
colocalization of D"(Mod A ) (see [0, (4.2)]). In this section, we consider
quotient and localization of derived categories of modules categories for
rings.

For a complex X *= (X ,, d,), we define the following truncations [14, I,

§71:

(X )= 0= Imd, = X =X

—
n+l n+2 Lol at

il X Vi X 5 =X 3 —=Ker'd, —~0 =....

For m < n, we denote by D '™"(Mod A ) a full subcategory of D "(Mod A)

generated by complexes of which homology H'=0 (i< m orn<i).




-_—v_

Linma 4.1, Let F : ¢ — D be a - functor between triangulated
categories. Suppose there exists a lamily 7 of objects in ¢ satislying the
following conditions:

(a) For every X € ¢, there exists an object T, € 7 and a morphism s, :
T, — X such that Z belongs to Ker F, where Ty, - X — 7 — is a
distinguished triangle.

(b) For X andY € ¢, there exists a morphism ' : T, — Y in ¢ such that
foFs, =Frf forany € Hom (FX I'Y).

(c) For every Y € D, there exists an object X € T such that Y = FX .

Then(O — Ker I —- ¢ — » — 0 is exact.

Proof. 1t is clear by Lemma 3.1.

Provosirion 4.2, Let T be a partial tilting right A-module, B = End (T)
and = Hom,(T,-) : Mod A — Mod B. If projective dimension of T, is
at most one, then 0 — Ker R'F —- D "(Mod A ) AR "Mod B) — 0 is

exact.

Proof. Let F-rac A be the full subcategory of ModA generated by the
modules M such that Ext, (T, M) =0 for all i>0, and let 7be a family
of complexes X ... > 0> X"—» .. > X" - X" >0 — .. (forallm<n)
€ K" (Mod A ), where X" & F-rac Aand X'is directsumsof T' (m<i <
n ). It suffices to show that 7 satisfies the conditions of Lemma 4.1.
Since Ext), (T, T') = 0 (i >0) and pdim T, <1, if X is generated by T, then
Ext, (T, X ) = O (i > 0). The condition (b) implies the existence of R'T.
Since D"(Mod B) = K "(Free B), for Y * € D'™"(Mod B), there exists T* &
K-(Sum T') such that FT* = Y *in D “(Mod B ). Furthermore, F(o,T ") =
0, (FT*)=FT*(t <m-1). Since Im d, is generated by T, o (T"*) is in 7.

Then (¢) of Lemma 4.1 is satisfied. Given X * € D'™"(Mod A ), there
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exists I * € K™™'W(F-rac A )such that X*=1°*in D"Mod A ). For FI °,

i

thereexist T*e K (SumT)and f: T*- 1] *in K (ModA) such that I'1 is
an isomorphism in D (Mod B ). Similarly, f = T* - o (T") —~ 1 "and I'g
is an isomorphism in D "(Mod B) (t < m-1). Then (a) of Lemma 4.1 is
satisfied. Moreover, for every X *and Y * &€ D'""(Mod A ), there exist T'*
and 7'*€ K (Sum T) such that FT*= X *and FT"'* = Y *, and then

Homs tigap (R°F(X ), RTEB(Y %)) sHomss yoau(ET ", FT'*). SinceFT *and FT""*
e D™"(Mod B), for t< m-1, we have Hom,, ,,,(FT %0 (FT"*)[i]) =0

forall i. Then we gel

HOM,, - (o (FT S ET"*) = Hom,, (y s (FT 0, (FT**))

o« Hom - youny (FT *,0,(ET"®)).

Hence we have

HOM . o 5 (FT %0 (FT" ) & HOM oy o105y (BT %), 0, (FT'*))

- Ii()mhf’ihlmi.r\l(uv!-! T'!”,{T' Wi

The condition (b) of Lemma 4.1 is satisfied.

Prorosition 4.3. Let A and B be semiprimary rings and F : Mod A —
Mod B a left exact additive functor. Assume that R'"F has image in
D"Mod B ) and that R*F : D"(Mod A ) =D "(Mod B ) is a colocalization.
Then there exists a right B-A-bimodule T such that: a) F =Hom ,(T,-);
b) B = End,(T);c) Ext, (T, T) =0 (i = 1); d) pdim T, , pdim ,T < .
Furthermore, R'**F = R'F and L"G is the left adjoint of R'F, where G =
-®,T.

Proof. There exists a left adjoint G of F such that L""G: D "(Mod B )
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>D"(Mod A ) is the left adjoint of R'"F, by [0, (3,1) Lemmal]. let T'= GB,
and then T is a B-A-bimodule such that F = Hom (7, -) and G = & 1.
Let J, and J, be Jacobson radicals of A and B, respectively. Since Rl
has image in D "(Mod B ), R""F(A /],) is in D "(Mod A ), and then there

exists an integer n such that R (A /],)

IR

Exty (T, A /J,) =0(i>n). By
[2, Proposition 7], pdim T, < . Similarly, pdim 1" < =. Then Rl =
Fand L"G= L'G. Next, since R'F is a colocalizationand 1" = L"G(B ), B
= R'FoL"G(B ) = R"F(T ) and T'is Ker R"I'-coclosed, by the dual of Lemma
2.2. Hence R F(T) = Ext, (T, T) =0 (i # 0), and B=End, (B ) =End (T) as

rings, by the dual of Lemma 2.1.

Corouary 4.4, Under the condition of Proposition 4.5, we have gl dim

B = gldim A + pdim ,T.

Proof. Since L"G : D"(Mod B ) — D"Mod A ) is fully faithful, for all

B-modules M, N, we have

Extly (M, N) = Hom,, s s(MNi])
= Hom,, by 1 (L"G(M ),LPG(N)[i ]).

Let pdim ,7 = n, then L"G(M) and L"G(N) are in D """(Mod B ). lence
we have Hom,, oy, (L"G(M ),L"G(N)[i]) =0 fori > gl dim A + n.

Let A be a finite dimensional algebra over a fixed field k. Then D =
Hom,(-,k ) induces a duality between mod A and A-mod, where A -maod
is the category of finitely generated left A-modules. Therefore, D induces
the duality, which we use the same symbol D, between D *(mod A ) and
D*(A-mod), where (*,#) = (+,-), (-,+) or (b,b ), by (DX *)'= DX ', where X *

= (X !, d,). For a finite dimensional algebra A, we know that the
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Grothendieck group of mod A is isomorphic to a free abelian group
which has the complete set ol non-isomorphic indecomposable projective
A-modules as a basis. We denote by Grot(-4) the Grothendieck group ol
A, where -4 is an abelian category or a triangulated category. Here, we
use Grot(mod A) = Grot(D "(mod A)) and Proposition of Grothendieck

(see [11] for details).

Provostiion 4.5, Let A be a [inite dimensional k-algebra and T a
partial tilting right A-module. If projective dimension of T, is at mosl

one, then 0 — Ker R"F - D"(mod A ) 2 D"(mod B ) — 0 is exact.
Proof. It is trivial by Proposition 4.3.

Remark. According to Bongartz's lemma [5, 2.1 Lemma] and an
equivalence of derived categories ([0, (2.1) Theorem| or [33, Theorem

3.1.2]), we get another proof of Proposition 5.1 by Theorem 3.2.

Prorosition 4.6. Let A and B be finite dimensional algebras, F : mod A
—mod B a left exact additive functor. Then R""F has image in
D "(modB) and R""F : D"(mod A )—-D"(mod B) is a colocalization if and
only if there exists a finitely generated B-A-bimodule T such that:
(a) T, is a partial tilting right A-module,
(b) F=Hom,(T,-),
(¢) B=End, (T),
(d) pdim ;T < .

Proof. By Proposition 4.3 and [0, (4.2)], it is clear.

Corotiary 4.7. Under the condition of Proposition 4.6, we have gl dim




B<gldim A + pdim ,T'.

Proof. 1t is trivial by Corollary 4.4.

For a finitely generated A-module M, Let n(M ) be the number of

isomorphism classes of indecomposable direct summands of AL

Coroiary 4.8. Let T be a finitely generated right A-module such that:
a) Exty (T,T)=0( = 1);b) pdim T, , pdim ,T < e, where B =End,(T).

Then we have n(T) < n(A).

Proof. According to Proposition 4.6, 0 — Ker R"F — D"(mod A ) —
D "(mod B ) — O is a colocalization. Then, by [11, §3], we have the
following split exact sequence:

0 — Grot(Ker R"F) — Grot(D"(mod A )) — Groty(D"(mod B )) — 0.

Since Grot(D ?(mod A )) = Grot(mod A ) = Z " and Grot(D "(mod B )) =

Grotitmod B) = Z ™" we have n(T) <n (A ).

Remark. Under the conditions of Proposition 4.0, in case that Ker R"l

being not zero implies Grot(Ker R") being not zero (for example, A is

hereditary), D "(mod A ) is equivalent to D"(mod B ) if and only if n (71")
=n(A).




§5. Ring Epimorphisms and Derived Categories.

In this section, we consider conditions that ring homomorphisms
induce localization and colocalization of derived categories. Moreover,
we consider the case that a partial tilting module induces a ring morphism
which induces a colocalization of derived categories.

For a ring A, we denote by ¢, the category ol finitely generated

projective right A -modules.

Prorosition 5.1. Letx: A — C be a ring homomorphism between finite
dimensional k-algebras, £ = - ® C, : mod C — mod A , and E'= ,C®,- :
C-mod - A-mod. Then the following are equivalent.

(a) E: D (mod C)—D (mod A ) has a left adjoint G such that

{D-(mod C); G, E} is a localization of D (mod A ).

(b) E: D'(mod C)—=D*(mod A ) has a right adjoint I' such that

{D'(mod C); E, f?] is a colocalization of D '(mod A ).

(c) E': D (C-mod)—D (A-mod) has a left adjoint G such that

{D (C-mod); f]', E'} is a localization of D (A -mod).

(d) E': DY (C-mod)—D'(A-mod) has a right adjoint I'* such that

{D*(C-mod); E', F'! is a colocalization of D '(A -mod).

(e) = is a ring epimorphism, and 'l‘or‘f‘ (G C)=0 foralli >0. f

Moreover, in this case, lixli\ (C,, C,) = Extly (,C,,C)=0 foralli > 0.

Proof. It is well known that = is a ring epimorphism if and only if
the natural morphism C®,C— C is an isomorphism as an C-C-bimodule
morphism. If x is a ring epimorphism, then the natural ring morphism
C— End(C,) is an isomorphism (see [37]).

(e) = (a): LetG=-®,C ,and then G is the left adjoint of E. For X * &

D (mod A ), there exists a complex P * € K (free A ) such that X *= P *in
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D (mod A). Given Y*€ D (mod C), we have

M

HOom -t X HEY T « HOM - pnia 4P SEY ")

o HOM =i (GP Y °)

Since E is exact and G is the left adjointof E, GP *isin K (o2, ). Then we

have
HOMG 21 viiny (X SEY ) HOM il LVGIX ), ¥

And for Y * € D (mod C), there exists a complex Q * € K (free C) such
that Y*= Q*in D (mod C). Since C®,C= C and Tor} (G C) =0 for all i
> 0, we have L GoE(Y *) = GoE(Q°) = Q*by |21, Chapter XII, Theorem 12.1,
12,2]. Hence we have L GoE =id, ouc) -

(a) = (e): By the above, we have 6wk G, where G = - ®,(;-. Then
L GolE(C) = C in D (mod C ), and hence the natural morphism C® (' — (
is an isomorphism and 'l‘()r}" (CO=0foralli >0.

(c) = (e): Itis similar to (a) < (e).

(a) < (d) and (b) < (¢): Since DED =E'and DE'D = E , they are trivial
by the duality.

The conditions (b) and (d) imply C =R'Hom (C,, -)ol:(C ) in D '(mod ()
and C = R'Hom,(,C -)ol'(() inD "(C-mod), respectively. Hence we have
Bxt) (G, C)=Exth (.G ,C)=0foralli >0

Remark. Replacing mod A and modC by Mod A and Mod C in Proposition
5.1, respectively, the proof of Proposition 5.1 implies that the assertions

(a), (¢) and (e) are equivalent for arbitrary rings A and C.

Tuorkm 5.2, letx: A — C be a ring homomorphism between finite
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dimensional k-algebras, b = - ®,(; : mod C - mod A , and I'= C® -:
c-mod - A-mod. Then the following are equivalent.

(a) E: D(mod C)—-D"(mod A ) has a right adjoint I' such that

iD"(mod C); E, f\-‘i is a colocalization of D "(mod A ).

(b) E': D"(C-mod)—D"(A-mod) has a left adjoint G such that
{D"(C-mod); 6‘;', I''} is a localization of D "(A -mod).

(c) i) The natural morphism C— End(C,) is an isomorphism as a ring, ii)
pdim C, <=, and iii) Ext (C,, C,) =0 foralli > 0.

(d) i) pisa ring epimorphism, ii) pdim C, < =, and iii) Tor;' (C,C) =0 for

alld =0,

Proof. (a) <> (b) < (d) and (a) = (¢): They are trivial by Proposition
5.2.

(c) = (a): Itis trivial by Proposition 4.6.

For a finitely generated right A-module T, , let add T, be the full
subcategory of mod A generated by direct summands of finite direct

sums of T, .

Prorosition 5.3. Let A be a linite dimensional k-algebra, T a finitely
generated right A-module, B=End(T,) and C=End(,T)". Assume that T
satisfies the following conditions:

(a) Extly (T,T)=0( = 1),

(b) pdim T, < m,

(¢) there exists an exact sequence 0 - C— T, - T, - ...— T, — 0 in mod
A ,whereall T,are in add T, .

Then R*’F has image in D *(mod B ) and R*"F :D"(mod A ) - D"(mod B )
is a colocalization. In this case, ;T is a left tilting B-module with finite

projective dimension, in the sense of |27], and C satisfies the conditions
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of Theorem 5.2.

Proof. First, it suffices to show that pdim ,T < «. By the conditions
(a) and (c¢), we have the following exact sequence in B-mod: 0
Hom,(T,, T') — ...—= Hom (T, ,T) - Hom,(C,T) — 0. It easy to see thal
41 is a direct summand of Hom ,(C,T"), and that all Hom (7,,T") are left

projective B-modules. Then pdim T < n. Next, applying Hom  (-,T) (o

the above sequence, we get the following commutative diagram:

Hom,(Hom,(C,T),T )—Hom(Hom,(T,,T),T ) — ... —~Hom,(Hom (T,,T),T)

I e e

O~ G = T Sl g 1 > (.

Then iixli; (Hom,(C,T ), T) = 0, and [Exlﬂ,. (T',T)=0foralli >0. By the
condition (b), we have a projective resolutionof T inmod A : 0 - P, —
w—> P —- P, = T — 0. Applying Hom,(-,T ) 1o it, we get an exacl

sequence in B-mod:
0 — Hom (7,T) — Hom (P, T) = Hom (P, T ) =>:.. > Hom,(P_.T') =0,

where B=Hom,(T,T) and all Hom ,(P,T") are in add T,. Hence ,T is a
left tilting B-module with finite projective dimension. Then it is easy 1o

see that {D"(mod C);- ®,(, R"™Hom ,(C,,-)} is a colocalization of D" (modA).

Gorotiary 5.4, Let T be a finitely generated right A-module such that:
a) I_Exli\ (I, T)=0( = 1); b) pdim T, < «; ¢) there exists an exact

sequence O - C—» T, - T, -...—~T, -0 in mod A , with T.€ add T

for all i , where C = Biend(T,). Then we have n (C)=n (,

n(A).

T) = n(T,) <

]




Example. Let A be a finite dimensional algebra over a flield kK with

the following quiver with relations:

o
o O B Y

| «—2 4—3 €4+—4

withda =a’=06f =y =0. Thengldim A=, let T = I(3)®(I(3)/5(3)),
where S(3) is a simple right A-module corresponding to a vertex 3 , and
I(3) is an injective hull of S(3). Then pdim T, = 2 and l:'.\‘l_’_'\ (T, T)=0
for all i > 0. Moreover, T satisfies the conditions of Proposition 5.3.
Next, B=End,(T) have a quiver with a relation:

5—» o6 O '
with & = 0. Then we have gl dim B = « and pdim ,7= 1. Hence

R°Hom,(T, -) : D"(mod A ) — D "(mod B ) is a colocalization functor

which has -®f; T as a cosection functor.




§6. Idempotent Ideals and Derived Categories.

Recall that an ideal I of aring A is called idempotentif [ = AeA
for some idempotent e of A ;in particular, I is a minimal idempotent
ideal provided that e is primitive. An ideal J of A is said to be a
heredity ideal of A if JF =] , J(Rad A)J= 0, and J, is projective.
Then, in case of A being a semiprimary ring, / is a heredity ideal il
and only if there exists an idempotent e of A such that: (1) /= AeA ;
(2) Ae®,.,.eA = AeA; (3) eAe is a semisimple ring [9], [31]. In this case,
Cline, Parshall and Scott showed that {D(Mod A/AeA) , D(Mod A) ,
D’(Mod eAe)} is recollement [31]. Moreover, they studied idempotent
ideals which induce recollement of derived categories of modules |31,
Theorem 2.7], [8, §1 and 2]. Auslander, Platzeck and Todorov considered
homological properties of idempotent ideals |[3]. We give a necessary
and sufficient condition for idempotent ideals to induce recollement of

derived categories of modules.

Prorosition 0.1. Let A be a finite dimensional k-algebra, e an idempotent
of A, 1: mod A/AeA - mod A the natural inclusion and Q: mod A —
mod eAe the natural quotient. Then the following are equivalent.

(a) 0 — Dmod A/AeA ) e D?(mod A ) Q D "(mod eAe) — 0 is exact.
(b) Tor{ (A/AeA,A/AeA) =0 foralli > 0.
(¢) (i) Tor% (AeAAeA) =0 foralli >0, (ii) AeA®,AeA = AeA.

Proof. (a) = (b): According to (a), I"is fully faithful. Then we have
Tor? (A/AeAA/AeA) =DExt, (A/AeA,,D(A/AeA),)

= HOM b0 14 s en (A/ACAIA/ACA)|i])

=0 foralli > 0.
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(b) = (a): By Proposition 5.1, 1" is fully faithful. According to |8,
(1.3)], D "(mod A/AeA) = D) 4v44 (Mmod A ). Then we are done by
Theorem 3.2.

(b) « (c): Itis easy.

RemarKk. In the same way as [31, Theorem 2.7], it is easy to see that
() " . .
0 — D (mod A/AeA )5 D (mod A) > D (mod eAe) — 0 is colocalization
eAe

exact if and only if (i) Tor;”" (Ae,eA) = 0 forall i > 0, and (ii) Ae®_, eA

= AeA . In this case, we have Tor (A/AeAA/AeA) =0 forall i = 0.

Corouiary 6.2. The following are equivalent.
(a) 0 - DP"mod A/AeA ) Lp "‘'mod A ) %D "(mod eAe) - 0 is
colocalization exact.
(b) (i) Tor{* (A/AeA,A/AeA) = 0 forall i >0, (ii) pdim ,AeA < o,
(c) (i) Exty, (A/AeA,,A/AeA,) =0 foralli >0, (ii) pdim ,AeA < =,
(d) (i) Tor? (AeA,AeA) = 0 forall i >0, (i) AeA®,AeA = AeA, (iii)
pdim ,AeA < o,
(e) (i) Tor$?€ (AeeA) =0 forall i >0, (ii) Ae®,, .eA = AeA, (iii) pdim

t.‘,—'\{‘eA < @&,

Proof. (a) <« (b) <« (¢): According to section 2, this is trivial by
Theorem 5.2 and Proposition 6.1.
(b) < (d): This is easy.

(a) « (e): See [31, Theorem 2.7].

Remark. Replacing modA/AeA, modA and mod eAe by ModA/AeA,
ModA and Mod eAe in Corollary 6.2, respectively, the assertions (a), (b)
and (e) are equivalent for an arbitrary ring A , by the same reason of

the remark after Proposition 5.1 (see also [30, (2,1) Theorem]).
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Turorim 6.3. Suppose A is a left Noetherian or semiprimary ring.
Let e be an idempotent of A. The following assertions are equivalent:
(a) {D"(Mod A/AeA) , D" (Mod A), D"(Mod eAe){ is recollement,

(b) (i) 'l'm‘j‘ (A/7AeA,A/AeA) =0 foralli >0 (ii) (1) or(3)} and }(2)
or (44,

(c) (i) li,\'l_{\ (A/AeA,,A/AeA,) =0 foralli = 0;(ii) (1) and }(2) or (4)§,
(d) (1) li,\'l_’_', (LA/AeA, ,A/7AeA) =0 foralli >0 ;(ii) (2) and }(1) or(3){,
(e) (i) Ae®. €A =AeA and Tor }“\” (Ae,eA) =0 forall i >0 ;(ii) §(1)
or (3)} and {(2) or (4),

where (1) pdim A/AeA, < », (2) pdim ,A/AeA< =, (3) pdim Ae_,. <

o, and (4) pdim,_,.eA < =,

Proof. First, we show that if A is left Noetherian or semiprimary,
then we have wdim,A/AeA=pdim,A/AeA and wdim,_,.eA=pdim_, eA.
[f A isleft Noetherian, then ,AeA is a finitely generated left A-module.
Therefore we have an epimorphism ,Ae" — ,AeA for some integer n.
This implies that eA is a finitely generated left eAe-module. By |2,
Theorem 4], we have wdim,A/AeA = pdim , A/AeA and wdim_ eA =
pdim_,.eA. If A is semiprimary, then we have also same results by |2,
Proposition 7]. According to section 2 and 3, it suffices to show that the
condition (i) in (a) - (e) hold, in order to show that (a) implies the other
assertions. Conversely, if the functor D*(Mod A/AeA) — D"(Mod A) is
fully faithful, then 0 - D"(Mod A/AeA) —- D"(Mod A) — D "(Mod eAe)
— () is exact in the sense of [4]. According to section 2, (1) and (2) are
equivalent to (3) and (4) , respectively. And (ii) of the other assertions
imply that {D"(Mod A/AeA), D°(Mod A), D?(Mod eAe)} is recollement
(see sections 2 and 3 for details).

(a) = (b): D"Mod A/AeA) — D"(Mod A) has a left adjoint, say G .

ThenG =« L *(-®,A/AeA) (see the remark after Corollary 6.2). Therefore
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we have the following isomorphism in D”(Mod A/AeA) :
A/AeA = L'(-®,A/AeA)(A/AeA) .
In particular, we have
'I'()r,l\ (A/AeA,A/AeA) =0 foralli > 0.

(b) = (a): According to the remark after Corollary 6.2, we have a
fully faithful functor D*(Mod A/AeA) - D?(Mod A) .
(a) < (e): See [30, (2,1) Theorem] and [31, Theorem 2.7].

(a) = (c): This is trivial by the following isomorphisms:

[ixt[’;‘ (A/ACAA,A/ACAA) = Hom v\ q0 (A/7ACA,,A/A€A,lI])
= Hom ;v oaaaen (A7ACA,,A/A€A, L))
=0 foralli >0.

(c) = (a): By Rickard's results there exists a fully faithful functor
D (Mod A/AeA) — D (Mod A), in particular, a fully faithful functor
D"(Mod A/AeA) — D"(Mod A) (see [19], [33] and [34]).

(d) = (b): Considering (¢) = (a) in case of the left module categories
(we need not assume that A is right Noetherian), { D "(A/AeA-Mod) ,
D"(A-Mod) , D"(eAe-Mod)} is recollement. As well as (a) = (b), we get
Tor{ (A/AeA,A/AeA) =0 foralli >0.

(b) = (d): Since the condition (b) is right and left symmetric,
{DYA/AeA-Mod) , D "(A-Mod), D "(eAe-Mod)} is recollement (we need

not assume that A is right Noetherian). As well as (a) = (¢), we get

Extl, (,A/AeA,,A/AeA)=0 foralli>O0.




Remark. (b) - (e) in the above theorem are also equivalent for right

Noetherian rings.

Recall that a ring A is called an artin algebra if its center Z(A) is an

Artinian ring, and A is a [initely generated 7(A)-module.

Provostiion 6.4, Let A be an artin algebra, and e an idempotent. The
following assertions are equivalent:
(a) {D"(mod A/AeA), Dmod A), D"(mod eAe)} is recollement,
(b) {D"(Mod A/AeA) , D" (Mod A) , D"(Mod eAe)} is recollement.

Proof. In general, if R is a right coherent ring, then we have
D" «Mod R) = D"mod R). Let J, be the Jacobson radical of A. For a
given X€ mod R, if Exth (X,A/],) =0orTor? (A/],,Y) =0 forall i
n, then pdim X, < n (see [2] for details).

(a) = (b): Let F and G be right and left adjoint functors of D "(mod
A/AeA) - DP(mod A), respectively. Since A is Artinian and A/AcA
is a finitely generated A-module, we have G = L " (- ®,A/AeA), and
Tor? (A/AeA,A/AeA) =0 forall i > 0 as in the proof (a) = (b) of
Theorem 6.3. Also we have 'I‘orf‘ (A/], ,A/AeA) = I((A/],)) forall i.
Since F(A/],) is contained in D "(mod A), pdim ,A/AeA < =, We have

the following isomorphisms:

Exty, (A/AeA,A/],) = Homy b, (GA/AeA),A/] L)
Tmod A7 ACA r{/\'/‘f\ e‘/\‘l(‘/\l‘;)lll)
= H(F(A/],)) for all i.

= Hom,,:

Since F(A/],) is contained in D "(mod A) , we get pdim A/AeA, < = .
Hence {D"(Mod A/AeA), D"(Mod A), D"(Mod eAe)} is recollement by
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Theorem 06.3.

(b) = (a): Let E and Il be right and left adjoint functors ol D “(Mod
A/AeA) — D"(Mod A), respectively. It is clear that D"(mod A AeA)
D "(mod A) has a left adjoint. Since A is an artin algebra, and A~ Ae¢A
is finitely generated, I".,\'l_’,'1i (A/AeA,X) is a finitely generated A /AeA-
module for all Xemod A . Then it is easy to see that ITm Hl, s, IS

contained in D" (Mod A) . By the above equivalence, D "(mod

mixd A

A/AeA) — D"(mod A) has a right adjoint. We are done by Theorem 6.3.

Let A be a left (or right) Noetherian or semiprimary ring. An ideal |/
of A 1is called a recollement ideal of A if [ = AeA with some
idempotent e of A which satisfies the equivalent conditions (b) - (e)
of Theorem 6.3. The next proposition is useful to exhibiting examples of

recollement ideals.

Prorosriion 0.5. Let R be a commutative ring, and A and B R-
algebras. Suppose A is a left or right Noetherian ring and B is a
linitely generated projective R-module. If I is a recollement ideal of

A, then I ®,B is a recollement ideal of A®,B .

Proof. First, A®,B is a left or right Noetherian ring, because B isa
finitely generated R-module. Since B is R-projective, we have pdim [,
= pdim I ®B,, and pdim ,I =pdim ,, .,/ ®B . And let P~ be a

projective resolution of A/I. Then we have

TorX*® (A/1 ®,B,A/I ®;B) « H(P ‘®,B®,, ,A/I ®B)
= H(P '®,A/I }®,B
= Tor? (A/1,A/I)®,B
=0 forall i >0.




Lisma 6.5, IF A s a local semiprimary ring, then pdim M is O or =,

for all modules M.

ProrosriioN 6.6. Suppose A is a semiprimary ring. lLet [ be a
minimal idempotent ideal of A. Then [ is a recollement ideal of A if

and only if I is projective as both a left and right A-module.

Proof. If I = AeA is projective as both a left and right A-module,
then it is easy to see that A/AeA satisfies the condition (b) of Theorem
6.3.. Conversely, If I = AeA is a recollement ideal, then AeA has
finite projective dimension. Let P* be a projective resolution of Ae as
right eAe-modules. Then given any left A-module X, we get

Tor{ (AeA,X) = Tor{ (Ae®,,.eA,X)
H, (P'®, . eA®,X)

= Tor $4¢ (Ae,eX) .

]

For every left eAe-module Y, there exists a left A-module X such
that Y is isomorphic to eX. Then Ae has finite projective dimension
in Mod eAe. Since [ is a minimal idempotent ideal of A, eAe is a
local semiprimary ring. Therefore Ae is a projective right eAe-module
by Lemma 6.5. Hence AeA is a projective right A-module by the

above isomorphisms. Similarly, AeA is also a projective left A-module.

According to the above proposition, in order to find minimal recollement
ideals, it suffices to find idempotent ideals which are two-sided projective.

But the following proposition implies that heredity ideals are best possible

in case of rings of finite global dimension.




Provosition 6.7.  Suppose A is a semiprimary ring of finite global
dimension. Let [ be a minimal idempotent ideal. Then [ is a

recollement ideal if and only if I is a heredity ideal.

Proof. lLet [ be AeA with some idempotent e ol A, and P a
projective resolution of eAe/eje as right eAe-modules. Then P& ¢A
is a projective resolution ol eA/eJeA as right A-modules, where | is

the radical of A . Therefore, we get

Tor §4€ (eAe/efe.eX)

[

H(P'®,,.eA®,X)

n

Tor ‘,'-\ (eA/eJeAX) .

According to assumption, pdim eA/eJeA < = , and pdim eAe/eje < = .
Since eAe isalocal semiprimary ring, eAe/ejfe is a projective eAe-module

by Lemma 6.5. Hence eJe=0.

Examples. (a) Let A be a finite dimensional algebra over a field k

which has a quiver with relations:

o €

with « =¢’=yg =0. Then Ae /A is projective as both sides. Moreover,

e Ae, is isomorphic to k[x]/(x*) asaring, and A/Ae, A has the following

quiver with relations:




with ¢ =0. Hence we have gldim A = gldim e Ae, = gldim A/Ae A

|
(b) Let A be a finite dimensional algebra over a field k which has a

quiver with relations:

with Ba = oy =f’=0"= 0. Then A(e +e,)A is a recollement ideal. But

Ae,A is not a recollement ideal because of pdim Ae,A, = w |




Chapter IlI. Ring Extensions and Tilting Complexes

§7. Ring Homomorphisms and Tilting Complexes.

In this section, we consider tensor products which induced by ring
morphisms. In particular, a split extension of a ring yields a necessary
and sufficient condition for tensor product of a complex to be a tilting
complex.

Let A be a ring. We denote by Proj-A the category of all projective

right A-modules. Rickard defined a tilting complex T *for A as follows,

(i) T* € K¥,),
(ii) Homy o, (T, T°[i]) =0 forall i =0,
(iii) addT *, the additive category of direct summands of finite direct

sums of copies of T*, generates K "(<»,) as a triangulated category.

Rickard also showed that (iii) can be replaced by

(iii)" For each non-zero object X * of K (Proj-A ), there is a some i such

that Homyyou(T'% X *[i 1) = 0.

Then there is a derived equivalent functor D “(ModB ) —D (ModA )
which sends B to T*, where B = End,,,,..,(T°) (see [34] for details).

For a tilting complex T *for A, we call H"T" a tilting A-module provided
that HT *=0foralli =0 ([13] and [27]). In this case, we have T * =
H'Tin D?(ModA ). Furthermore, we call a tilting module T a classical
tilting module if projective dimension of T is less than or equal to 1.

In case that A is a finite dimensional algebra over a field k, there exist

two-sided tilting complexes A * in D "(Mod(B "®,A )) and V * in
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D "(Mod(A"®,B)) such that A ‘®% Vv *= B,and V'®/;A "= A, (see|30]

for details).

Limva 7.1, Let A4, B and ¢ be additive categories, H, L. : o4 — «
additive functors, n:H — L. a morphism of functors and G : A4 — 3 an
additive functor which has the right adjoint ¥ : 8 — 4. Given X 7' &
(AA4), Y € Ad¢) and U *e (A B), the [ollowing results hold.

(a) Hom* (X *, Z*) - Hom"* (HX *, HZ"®) induces an End, (X *)-End,, (Z°)-
homomorphism Hom,, (X *, Z°[i |) - Hom,, . (HX *, HZ"[i ]) for all i.

(b) Hom® (X *, X *) — Hom" (11X *, HX °) induces a ring homomorphism
Endy_,(X °) = End,,,(HX °) .

(¢) Hom*(Y*, HZ®) -Hom"(Y ", LZ") induces an End,_, (Y *)-End, . (Z°)-
homomorphism Hom,(Y *, HZ"[i |) - Hom (Y *,LZ"[i ]) for all i .

(d) Hom’,(GX*, U®) = Hom® (X °, FU °) induces an End,_, (X *)-End, , (U])-
isomorphism Hom,, (GX °, U*[i ]) = Hom_ (X *, FU*[i ]) for all i .

Furthermore, these correspondences are functorial.

Limvma 7.2, Let A — A be a ring homomorphism and T *° a tilting
complex for A. If Hom, ..\, (T" T'®% A |i])=0 forall i =0, then

T '®% A is a tilting complex for A.

Proof. We have T*'®%A =T '®,A in D(Mod A ), and T°®,A belongs
to K Ax,). Since Hom*,(T*®,A , T*®,A ) = Hom*,(T*, T°®,A ,), we have

the following isomorphisms:

Hom,, o (T °®% A, T°®% A [i]) « HHom® (T *®,A , T*®,A )
= HHom*,(T*, T*®,A ,)

= Homy, (yioan) (T %, T "®5 A ,[il)

=0foralli =0.




Let X * be an object of K (Proj-A ) such that Hom,, .. (T ‘®% A, X *[i])

- (0 forall i. Then we have the following isomorphisms:

Hom,, s (T % X °®,A 4[i]) = HHom®,(T*, X *®,A )
= HHom"* (7T *'®,A, X °)
=« Hom,, uo(T ' ®% A , X *[i])

O foralli.

Since T'* is a tilting complex, X *®, A , =0 in D (Mod A ), that is,
H(X ‘®,A ,) =H(X*) =0 forall i. Therefore X*=0in D (Mod A ).

Coronary 7.3 (Miyashita [27]). Let A — A be a ring homomorphism
and T a tilting A-module. If Tor? (T,A) = Exty, (T,T®,A,) =0 for all i

>0, then T®,A is a tilting A-module .

Proof. lLet P* be a projective resolution of T. Since Tor ';-‘ (T,A)=0
foralli >0, P*®,A is a projective resolution of T®,A and
Hom,; i) (P> P "®% A 4[i]) = Exty (T,T®,A,) forall i >0. Then we are

done by Lemma 7.2.

In case of a finite dimensional algebra A over a field k, there exist a
duality D:D "(modA ) — D (A mod), where D = Hom,(-,k ). Then we

can define a cotilting complex T * as follows,

(i) T*e K"™4g,), where g, is the category of finitely generated injective
right A-modules,

(ii) Hom,, (T T°[i]) =0 foralli =0,

(iii) DA € 9(addT *), where Z(addT*) is the triangulated subcategory

of K"(g,) generated by objects in addT'*.
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Happel showed that if X * belongs to K "(<»,), then there exists an
Auslander-Reiten translation ©, X * which is isomorphic to vX *[-1], where
v = @"\ DA, and then there exists an Auslander-Reiten triangle r X * —
y*—=X*—-> 1, X°[1]in D "(mod A ) (see [13]). Then «,T *isa cotilting
complex for A il T *is a tilting complex for A. As well as Proposition

1.2 in [22], we have the following result.

Provosiiion 7.4, Let A — A be a k-algebra homomorphism between
finite dimensional k-algebras. If X *€K "(&,), then (X ‘®5A ) is

isomorphic to R Hom,(,A,, t,X *) in D "(modA ).

Proof. We have the following isomorphisms:

(X '®5A) = (X'®,A)0 DA, [-1]

[

X '®,DA, [-1]

n

=DHom,(X *, A,)[-1]
=D(A®,Hom (X *,A))[-1]

= Hom (A ,, DHom (X *,A )[-1])
= R Hom,(,A,, t,X °).

Coroniary 7.5. Let A — A be a k-algebra homomorphism between
linite dimensional k-algebras, and T * a tilting complex for A . If
Hom,, oun (T %, T°®% A 4[]) =0 forall i =0, then R Hom,(,A,,t,T") is a

cotilting complex for A.

Limma 7.6. Let A — A aring homomorphism and T * an object of
D (ModA ). If T*®% A is a tilting complex for A, then we have
Hom,, you (TS, T°®% A Lli]) =0 for all i = 0.
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Proof. We may assume that T°*is an object of K (Proj-A ), then we

have T '®5A =« T'®,A in D (Mod A ), and T *®,A belongs to K (v,).

Since Hom*(T ‘®,A , T *‘®,A ) = Hom*,(T °, T *®,A ,), we have the

following isomorphisms:

Hom,, g (T *, T*®,A ,[i]) = HHom® (T, T*®,4 ,)
= HHom* (T""®,A, T"'® A )
= ll()n]”,.\hnm( !‘.Q()I‘ ,o" ) II‘.{XJ!{ (‘ |j|]

=0 foralli =0.

Tueorim 7.7. Let p:A — A and ¢:A — A be ring homomorphisms
such that eopn=id,, and T * an object of D (ModA ). Then T'®% A isa
tilting complex for A if and only if T *®is a tilting complex for A and
Hom,, yoan (T, T*®% A Lli]) = O forall i = 0.

In this case, there exist ring homomorphisms w:B — I and=x:I' — B
such that moy =idy, where B=End, . (T"°) and I =

[ind,, [Mm}\b(,r .®fl A )

Proof. The 'if* part has been proved in Lemma 7.2. We may assume
that T*is an object of K (Proj-A ), then we have T'®%5 A = T*'®,A in
D (Mod A ). Since T*®,A is isomorphic to an object in K "(¢,), there
exists an object Q* in K ?(®,) such that T *'®,A = Q" in K (Proj-A ).
Applying ®,A , to it, we get T*'®,A ®,A , = Q'®,A , in K (Proj-A ).
Therefore T* is isomorphic to an object in K "(¢»,), because sop = id , and
A®A ,=A ,. Byeou=id,, T"is a direct summand of T*®,A , in
D(Mod A ). According to Lemma 7.6, we get Hom,, y, (T %, T °[i]) =0

forall i = 0. Then we have the following isomorphisms:

Hom, (ou (T @A , T°®,A®,A ,i]) = HHom® (T *®,A , T°®,A®,A ,)
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= “I“(}ITI.\{T.. T |.j<_.-’\.‘l \_m‘_-\ )

\

= Hom, v, T °, T °li])

=0 foralli = 0.

By Lemma 7.2, T'®,A®,A , , thatis, T"*is a tilting complex for A. By ¢op
=id, , pand ¢ induce p*:Hom*(T*, T"*) - Hom (T *®,A,T *® A ) and ¢":
Hom* (T ‘®,A , T*®,A ) — Hom",(T°, T *) such that ¢’ou* = id. By Lemmau

7.1, wegetn:B - I' and x:I' — B such that na) =id,.

Corouiary 7.8 (Hoshino [15]). Let pw:A — A ande:A — A be ring
homomorphisms such that eson = id,, and T an A-module. Assume that
Tor? (T,A) =0 forall i >0. Then T®,A is a tilting A-module if and

only if T is a tilting A-module and Ext), (I, T®,A ) =0forall i >0.

Proof. In the same way as the proof of Corollary 2.2, we are done by

Theorem 7.7.

S0




§8. Extensions of Rings and Tilting Complexes.

In this section, we consider a condition for an extension (not necessan
split) of a ring to induce a extension of a ring. Furthermore, we show
that a Frobenius extension of a ring induces a Frobenius extension ol a

ring. Next theorem is a generalization of Corollary 5.4 in [306].

Tiorim 8.1. Let A be an extension of a ring A such that 0 — A
A — M — 0 is an exact sequence as A -A -bimodules. Let T *° be a
tilting complex for A, and B =En@p (T ), I' =Endy; 4,60(T "©5 A )
and N =Hom,, . (T, T'®% M ). Then the following are equivalent.
(a) (i) T ®‘; A is a tilting complex for A, and (ii) I’ is an extension of a
ring B suchthat O = B - I' - N — 0 is an exact sequence as B -B -
bimodules,

(b) Homy,, (T T°®L M [i]) =0 forall i = 0.

Proof. 1t is clear that T *®% A belongs to K "(,). We have the

following commutative diagram:

Hom*,(T*, T*) — Hom" (T '®,A ,T "®,A )

[ |
0 — Hom*,(T*, T*) - Hom",(T*, T°®,A ,) — Hom*,(T*,T*®,M,) — 0,

where the bottom row is exact and vertical arrows are isomorphisms.
(b) = (a): Sinece Hom, joun(T %T °*[1 1) = Hom,, e (T ST °®L M[i]) =0

forall i = 0, by taking homology of the above diagram, we have

Hom, o (T °®% A, T°®% A [i]) « Hom, joun, (T T °®% A Lli ])

= Hom,, (o0 (T, T .®ﬁ M,li])
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Oforalli =0
And we get the following commutative diagram:
(T, T) > Hom (T ®F A T®% A )

[ |

0 —=Hom kT = T ) —=Hom

Hom 0.4

soiean T T ®% A ) = Hom (T °T°®% M) — 0.

where the arrow of the top row is a ring homomorphism, the bottom
row is exact as B -B -bimodules and vertical arrows are isomorphisms
as B -B -bimodules. By Lemma 7.2, T"'®% A is a tilting complex for A.
(a) == (b): The condition (ii) implies that Hom ,,,,.,,,,(7, T*)—=Hom,,,, .. (T,
T '®% A ,) is injective. Since T *®% A is a tilting complex for A, by

lemma 7.1, we have

”()mmruuun('r.(@if AT .®,I4' A i ]) = Homy, o, (T, T.®fi Apli])

=0 foralli = 0.

Then we have Hom, y,u,(T %, T *®5 M [i]) = O for all i = 0O, by taking

homology of the above exact sequence of complexes.

Remark. let A and B be R-algebras which are projective as R-modules.
[f A and B are derived equivalent R-algebras, then M is just an
A-bimodule which corresponds to a B-bimodule N under the induced

equivalence D"(Mod A*®,A ) — D"(Mod B "®,B) (see [306]).

Example. Let A be a finite dimensional algebra over a field k which

has the following quiver with relations:




o

& R

| 2 3

with «'=0,and A be a finite dimensional algebra over a field kK which

has the following quiver with relations:

(8}

B

with af =pa =0 and «’=p°. Then A is a non split extension of A , and

we have the following exact sequence as A-A-bimodules:
0—+A —-A - S51)°®X—0,

where S(1) is simple left A-module corresponding to vertex 1 and X is a

right A-module,

Let T, , T, and T, be the following right A-modules, respectively:

J J
CTRMI R T G
ke ="k k i—pk - » k2 and 0 » » 0

0 P - i o 2 % ia's
where | = C‘::EH) ,}--‘:(8('}(:). lhen T = T, ®T, @7, satisfies the condition
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of Theorem 8.1, and B has the following quiver with a relation:

with a'= 0, I' has the following quiver with relations:

p

with op = pa = 0 and o’ = p* and we get the following exact sequence as
B-B-bimodules:

0=B —->I —>Y®S(1)—0,

where S’ (1) is a simple right B-module corresponding to vertex 1 and Y

is a left B-module:

0

'

k —»k 4——0

For a subring A ofA, A is called a Frobenius extension of A provided
that A, is a finitely generated projective right A-module, and that A

]

=« Hom,(,A,, +A,) as A-A- bimodules [16].

Limma 8.2, Let A be aring and T * a tilting complex for A. Given X *
€ K@), if Hom, npoan) (T, X 117} = BOM, e (X5 T[1]) =10 forall 1

0, then X * is isomorphic to a direct summand of a finite direct sum of
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copies of T".

Proof. let B =Ind, you (T ) and G :D (ModA ) — D (ModB ) a
quasi-inverse functor of an equivalence functor induced by 7°. Then

we have the following isomorphisms,

HOMY, ivioans (T X °[1 ]) & HOMYs s (B, GX*[1]) = O forall i =0 (1)

Hom,, o (X 5 T°li ]) = Homy; o GX 5B [i]) =0 foralli =0 (2).

Since X * € K («,), GX * is isomorphic to an object in K "%, ). Then,
according to (1), we may assume that GX * is a B-module of finite
projective dimension, which has a finitely generated projective resolution.
Therefore, according to (2), GX* is a finitely generated projective B-module.
Hence X °® is isomorphic to a direct summand of a finite direct sum of
copies of T"

The next theorem is the tilting complex version of a result of Miyashita
[26].

Tirorim 8.3. Let A be a Frobenius extension of a ring A such that
0—=-A - A - M — 0 isan exact sequence as A -A -bimodules. Let T*
be a tilting complex for A such that Hom,, y,,(T*, T *®% M [i]) = O for
alli «0,and B =End;ean(T*), I' =Endp mea(T®% A) and N =
”“mmmm*u)( 75T .®£{ M).

Then T *®%A is a tilting complex for A, and I is a Frobenius
extension of a ring B such that O - B — ' — N — 0 is an exacl

sequence as B -B -bimodules.

Proof. By Theorem 8.1, it suffices to show that I is a Frobenius

extension of B. Since T * is a tilting complex for A and A, is a finitely
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generated projective right A-module, T *'®,A, belongs to K "(<»,). Since
A, = Hom,(,A,, ,A,) as A-A- bimodules, we have the f(ollowing

isomorphisms:

Hom,, jyou (T °®% A ,,T°[i ]) = HHom® (T *®,A ,,T°)
= H'Hom*, (T *,Hom (A ,T"))
= [I'Hom" (T *,T'®,A ,)
& Homy, ol T T @5 A1)

=0foralli =0.

By Lemma 8.2, T'®% A , is a direct summand of a finite direct sum of
copies of T *. Since ,I'; is isomorphic to Hom,, . (T T ‘®%A ,), asa
I-B-bimodule, I, is a finitely generated projective right B-module.

And we get the following isomorphisms as B-I-bimodules:

Homul By 3 By) mHoml HoMs, «had T T 85 A Dy JHOM 5 duiiCT S T8
w Homj neuins (P @5 A, T)
" ['lomman;(T.®,{{ Ap T.®f{ Ay

syl .

Gorouary 8.4. In the situation of Theorem 3.3, End,, y o (T "®% A,) is

a Frobenius extension of End,, 4, (T ‘®% A ).

Proof. By theorem of Kasch [17], Endj(End,, ., (T ‘®5A ), is a

Frobenius extension of End,, .. (T ‘®% A ,). And we have

End ,(End,; poa(T °®% A ,)p) « Endy(Hom,; ey (T*; T°®% A 4))
= Endy jcan(T0% A )
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The next proposition is useful in exhibiting examples of Frobenius

extensions of algebras which satisfy Theorem 8.3.

Prorosiiion 8.5. Let A be a finite dimensional Frobenius algebra over
a field k such thatO - kK - A — M — 0 is an exact sequence in mod K.
For a linite dimensional k- algebra A and a tilting complex T *, let B
Bndsctean0T 50 =Bl (uign(T 05 (A @A ))and Ne=Homj juu (T T
®% (A ®M)). Then A ®A is a Frobenius extension of A which satist)
theorem 3.3 with an exact sequence ) - A -A®A — A®,M — 0, and
B ®A is a Frobenius extension of B such that an exact sequence 0 — B
-B®A — B®M — O isisomorphicto O - B —-I' -N — 0 as a

B-B-bimodule.

Proof. It is well known that A ®A is a Frobenius extension of A
(see [29] for an example). Since A ® M is a finite direct sum of copies
of A as an A-A-module, T °'®,(A ®,A ) satisfies the condition of Theorem

8.3. We have the following commutative diagram:

0 — Hom' (7", T") = Hom" (T",T " )® A — Hom" (T, T )®M — 0
I 1
Hom", (7", T") = Hom' 4o , (T"®A T ' ®,A )
I |
Hom' (7", T") = Hom’ ;o , (T"®(A®A) ,T'® (AB®A ))
I |
0 — Hom' (7", T") = Hom"(T",T"®,(A®,A ) ) — Hom (T, T'® (A ®AM),) =0,

where the top and the bottom rows are exact sequences, and vertical
arrows are isomorphisms. Then we have the following commutative

diagram:
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0 — End (T") = End ., (T ®,A —End

e

IXMad A) Ir,\\!“““t ’.](’E)i”‘ > ()

Il
End,yyn(T) = End 00 (T'®5 (A®A )
Il e

(T") —Hom ,,, , (T T'®% (A®A ),) —Hom

0 —End, .,/ (T, T'®% (A @A) — 0.

(ERY IS N
where the top and the bottom rows are exact sequences as B-B-bimodules,
vertical arrows are isomorphisms as B-B-bimodules and arrows between

the top row and the second row are isomorphisms as rings.

Remark. For a subring A of A, A is called a quasi-Frobenius extension
of A provided that A, isa finitely generated projective right A-module,
and that ,A, is a direct summand of a finite direct sum of copies of
Hom,(,A,, 4A,) as A-A- bimodulesand Hom,(,A,, ,A,) isadirect summand
of a finite direct sum of copies of ,A, as A-A- bimodules [28]|. Then "a
Frobenius extension" in Theorem 8.3 can be replaced by "a quasi-Frobenius

extension".

Examples. (a) k [X]/(X") and kG satisfy the condition of Proposition
8.5, where G is a finite group and k is a field.

(b) Let A be a finite dimensional k-algebra which has the quiver: |
- 3 <« 2, and 0:A — A a k-lgebra automorphism induced by
interchanging vertex 1 with vertex 2. For a group G = {1, o}, we define
a strongly G- graded k-algebra A = ® ¢ A, such that A, has a natural
left action of A and a right action of A which is through g (ie. a
crossed product of A with G which has a trivial factor set). lLet T =
P(1)®P(2)®I(3), where P(i) (resp., I(i)) is a projective (resp., injective)
indecomposable right A-module corresponding to vertex i. Then A is a

Frobenius extension of A, T satisfies Theorem 8.3.
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(¢) According to |20], we have the [ollowing example. Given positive
integer n, let A be a finite dimensional algebra over a field K which has

the following quiver with relations:

with a,a, = 8,8, = 0 and (a,a,BB,)" = (B,B,,,)". let o :A — A be a
k-algebra automorphism induced by interchanging vertex 2 with vertex

3. Let A=®,c5A,, where G = {1, o}, and let T* be the following

complex:
P(2)2®P(3) M- P(1),
where M = (0 a, B, 0). Then A is a Frobenius extension of A, and T

satisfies Theorem 8.3. Then B = End ., (T )" is a finite dimensional

algebra over a field k which has the following quiver with relations:

with YWo=YYs=YsY, = 00,=08,=089, = 0, ¥,0, = 0,y; , 0,7, = (Y:ﬁ,\)” and Y30, =
(d,y,)". Let o:B — B bea k-algebra automorphism induced by interchanging

vertex 2 with vertex 3. Then [I' is ring-isomorphic to ®,¢; B, , where
G =1{1, o}
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