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INTRODUCTION

The Menger compacta were introduced by K. Menger [Me|. They were gen-
eralizations of the Cantor set and of the Sierpifnski’s universal curve [Si]. The
n-dimensional Menger compactum " is known as a universal space for at
most n-dimensional compacta and is very impotant in Dimension Theory. The
1-dimensional Menger compactum is called the universal curve and is charac-
terized topologically by R. D. Anderson [An1]. In 1984, M. Bestvina [Be] estab-
lished the topological characterizations for Menger compacta in all dimensions,
which give a new point of view that the n-dimensional Menger compactum is
the n-dimensional (finite-dimensional) analogue of the Hilbert cube. He also
build up the foundation of the Menger manifold theory parallel to the theory of
Hilbert cube manifolds. After his work, A. N. Dranishnikov, A. Chigogidze and
the others have been established many important theorems of Menger mani- .
folds ([Dr2], [Chl, 2, 3, 4, 5, 6], [GHW], etc). For the history and related topics
of Menger manifolds, see [CKT2].

In this paper, we first study some stable Menger manifolds (u7 -manifolds)
and give their topological characterization. Besides, we consider some mapping
properties and homeomorphism groups of Menger manifolds. Then we recon-

struct Menger manifolds to consider their product structure. Finally, we study

group actions on Menger manifolds.




In Chapter I, we give terminology and notations, and present some basic

properties of Menger manifolds which will be needed in the sequel.

In Chapter II, we define p™t!'-manifolds which is a class of non-compact
Menger manifolds and give a characterization theorem for p2*!-manifolds. A.
Chigogidze [Ch3] introduced the notion of the n-homotopy kernel of p™*!-
manifolds and established the stability of n-homotopy kernels. Our characteri-
zation theorem implies that the class of p2+!-manifolds coinside with the class

of x™*t'-manifolds which are homeomorphic to their n-homotopy kernels.

Brown and Cassler [Br] proved that each compact connected n-manifolds
can be obtained from the n-cube by making identifications on the boundary.
This was generalizes by Berlanga [Ber] to non-compact connected n-manifolds.
In Chapter III, we give a mapping theorem of Brown-Cassler type for pu™*!-
manifolds. Roughly speaking, it is shown that each compact connected p™+!-
manifolds can be obtained by makind identifications on some thin set.

It was proved by R. D. Anderson [An4| that the homeomorphism group of
the 1-dimensional Menger compactum is algebraically simple. Chapter IV is

devoted to extend this result to all dimensions.

In Chapter V, we introduce the infinite coordinate systems for x™-manifolds,
called p™-coordinate systems. Using p™-coordinate systems, we characterize Z-
sets in terms of infinite deficiency. Then we discuss how to define a kind of ~
the Cartesian product in the category of p™-manifolds. It should be noted that |
the Cartesian product of p"-manifolds (e.g. u™ x p™) is neither a p™-manifold
nor a u?"-manifold. However, p"-coordinate systems allow us to define the
An-product which plays the role of the Cartesian product in the category of
u"-manifolds.
In Chapter VI, we consider group actions on Menger manifolds and their

fixed piont sets. The main purpose of this chapter is to show that each p"-
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manifold M has the complete invariance property with respect to homeomor-
phisms, that is, if each non-empty closed subset of M is the fixed point set of
some autohomeomorphism of M. This gives the affirmative answers to the ques-
tions [S3| and [CKT2, Problems 6.4.3, 6.4.4] in full generality. More generally,
we can prove that any closed set of a Menger manifold can be the fixed point set
of some semi-free G-action, where G is a compacr zero-dimensional topological
abelian group. Using the notion of infinite deficiency which will be introduced
in Chapter V, the theorem above can be generalized to the pseudo-interiors
and pseudo-boundaries of Menger manifolds. Moreover, it is shown that every

u™-manifold admits a free G-action with a G-invariant pseudo-interior and a

G-invariant pseudo-boundary.




I. PRELIMINARIES

The purpose of this chapter is to introduce basic notations and terminologies
and to present some basic properties of Menger manifolds and absorbers which

will be needed in the sequel.

§1.1. GENERAL DEFINITIONS

All spaces considered in this dissertation are assumed to be separable metriz-
able and all maps are assumed to be continuous. By the letter d, we denote
the metric of any spaces under consideration unless otherwise stated.

For a subset A of a space X, Clx A, Intx A and Frx A denote the topological
closure, interior and boundary of A in X respectively.

Let U be a cover of a space X consisting of subsets of X and let A be a

subset of X. The star of A with respect to U is the set
St(A,U) = | {U e U|ANU # 0}.

Let X be a space, A a subspace of X and let 0 < n < co. We say that X is
connected 1n dimension n, abbreviated C", provided that for every 0 < m <n

every map f : S™ — X extends to a map f:B™1 5 X. Also, we say

that X is locally connected in dimension n, abbreviated LC™, provided that




for every z € X, for every neighborhood U of z and for every 0 < m < n and
for every neighborhood U of z in X, there exists a neighborhood V of z in X
such that every map f : S™ — V extends to a map f:B™* - U. We say
that A is a retract of X provided that there is a map r : X — A such that
r|la = id4. We say that A is a neighborhood retract of X provided that there
exists a neighborhood U of A in X such that A is a retract of U. A space X
is called a absolute neighborhood retract, abbreviated AN R provided that X is

a neighborhood retract of evvery space Y containing X as a closed subspace.

A compactum X is called a UV™-compactum provided that there is an
embedding of X into the Hilbert cube @ such that every neighborhood U of
X in @ has a smaller neighborhood V of X in @ with the following properties:
each map f : 8B — V can be extended to a map f : B — U fori =0,1,...,n.

A map is called a UV™-map if each fibre is a UV ™-compactum.

A map f : X — Y is called an n-soft if for every at most n-dimensional space
A, every closed subspace B of A and every mapsa: A — Y and f: B — X
with a|B = ff3, there exists a map y: A — X such that fy =« and v|B = §.

In casde B = (), then the map f is called an n-invertible.

Let {Xi, piT"}32, be an inverse sequence and let X = lim{X;, p;*'}32, be
the inverse limit. We denote the projection onto the ¢th coordinate X; by p; :
X — X, and denote pf : X; — Xj, j > i for the map induced by the bonding !
maps. We assume that X; is metrized by a metric d; with diam(X;) < 2 and !
endow the product space []io, X; with the metric d(z, y) = >0, di(zs, ¥i)-
For each n > 0, we consider []}_, X; as a subspace of [];2; X;.

Let K and L be simplicial complexes. The barycentric subdivision of K
is denoted by B(K). The n-skeleton of a simplicial complex K is denoted by

K™, By K x L, we mean the simplicial complex obtained as the barycentric

subdivision of the cell complex {a > 4 | c€E K, TE€ L}. We remark that for a

5




vertex v of L, K x {v} = B(K).

§1.2. BASIC PROPERTIES OF MENGER MANIFOLDS

In this section, we present some basic properties of Menger manifolds which
will be needed in the sequel.

Let I*¥ be the k-cell in R and let Ky = {I¥}. Fori = 0,1,2,..., let K, be
the cell complex whose k-cells are cubes obtained by dividing the k-cube I* by
all linear (k — 1)-varieties in R* determined by equations of the form z; = 1/37,
§=1,238,..,05< 3.

Let My = |Ko| and 0 < n < k. We inductively define M;, i > 1 as follows:
A[i — St(lK;n_ll, Kl) N A{i——l-

Then the intersection M¥ = N{M,}°, is called the Menger compactum of
type (k,n). The n-dimensional universal Menger compactum p™ is the Menger
compactum of type (2n+1,n), that is, u™ = M2"*!. There are many construc-
tions of the universal Menger compactum. For example, Lefschetz’s construc-
tion, Pasynkov’s construction, Bestvina’s construction, etc., see [Be], [Dr3] and
[CKT2].

An n-dimensional Menger manifold (p™-manifold) is a topological manifold
modeled on the n-dimensional universal Menger compactum u™.

A space X satisfies the disjoint k-disks property (DD* P, for short), if for
each open cover U of X and each pair of maps f1, fo : B¥ — X, there are maps
g1, g2 : B¥ — X with disjoint images such that f; and g; are U-close, i = 1,2.

The following is the Bestvina’s characterization theorem for p™-manifolds

[Be].

Theorem 1.2.1 (Characterization). An n-dimensional space (respectively,

compactum) X is a p"-manifold (respectively, homeomorphic to p™) if and
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only if X satisfies the following conditions:

(i) X is locally compact (respectively, compact),
(i) X is LC™! (respectively, LC™1 N C™"!) and
(ili) X satisfies DD™P.

We say two (proper) maps f,g: X — Y are (properly) n-homotopic (nota-
tion: f ~" g, f ~7 g, respectively) if, for any (proper) map a: Z — X from
a space Z with dim Z < n into X, the compositions fa and ga are (properly)
homotopic in the usual sense. The notion of n-homotopy equivalence is defined

in obvious way.

Proposition 1.2.1 [Hu]. Let f : X — Y be a map, where dimX < n and
Y is LC™. Then for any open cover U of Y, there are maps ¢ : X — P and
¥ : P — Y such that f and ¢ are U-homotopic, where P is a locally finite

polyhedron with dim P < n. In particular, we can choose v as a proper map.

Let us recall that a map f : X — Y is said to be n-invertible if for any space
Z with dimZ < n and any map a: Z — Y, there exists a map f: Z —» X
such that f3 = a.

Proposition 1.2.2 [Ch2|. Every p™-manifold admits a proper n-invertible

UV ™ _surjection onto a Q-manifold.

Proposition 1.2.3 [Ch3]. Two u™-manifolds admitting proper UV ™ !-sur-

jections onto the same LC™ '-space are homeomorphic.

A closed subset A of X is called a Z-set in X provided that for every open
cover { of X thereis amap f: X — X\ A such that f and id x are U-close. For

a locally compact LC™!-space X with dim X < n, this definition is equivalent

n

to the following: for any map f : I" — X and any € > 0, there is a map

g :I™ — X\ A which is e-close to f (cf. [Be, Proposition 2.3.6]).
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The following theorem is due to Bestvina [Be], where it is stated in terms
of p-homotopy. However, as is known [Ch1], the notion of g-homotopy coin-
cides with one of n-homotopy for maps between locally compact LC™-spaces

of dimension at most n + 1.

Theorem 1.2.2 (Z-set unknotting theorem). Let M be a p™*'-manifold
and f : A — B be a homeomorphism between Z-sets in M. If f ~7 ida in M,

then f extends to a homeomorphism h : M — M.

An n-homotopy kernel of a p™*'-manifold M is defined to be the comple-
ment M \ f(M) of the image of an arbitrary Z-embedding f : M — M with
f =~ idy. Using the Z-set unknotting theorem, two n-homotopy kernels are
homeomorphic by an ambient homeomorphism of M onto itself. By Ker(M),
we denote a representative of n-homotopy kernels of M.

Let us recall that a map f : X — Y is said to be n-invertible if for any space
Z with dimZ < n and any map a : Z — Y, there exists a map f: Z — X
such that f3 = a.

The following proposition is actually proved in [Ch3].

Proposition 1.2.4. For each p™*'-manifold M there exists a proper (n + 1)-
invertible UV ™-surjection f : M — M x [0,1] such that f~'(M x [0,1)) =
Ker(M).

Theorem 1.2.3 [Dr2]|. There exists an (n + 1)-invertible UV ™-surjection f, :
p™t1 — Q satisfying the following condition:

(*) f71(X) is a p™*-manifold for any locally compact LC™-space X C Q.

n

Theorem 1.2.4 [Ch4]. For each locally finite polyhedron K, there exists a
proper (n + 1)-invertible UV ™-surjection frx : Mg — K from a p™*'-manifold

My onto K satisfying the following conditions:

(a) fr' (L) is a p"*'-manifold for any closed subpolyhedron L of K;
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(b) f;l (Z) is a Z-set in fz;' (L) for any Z-set Z in a closed subpolyhedron
L of K.

Let f : X — Y be a proper map. We say that f induces an epimorphism
of jt* homotopy groups of ends if for every compactum C C Y there exists a
compactum K C Y such that for each point z € X \ f~!(K) and every map
a:(S7,%x) = (Y\K, f(z)) there exist a map &: (S7,*%) — (X \f~!(C),z) and a
homotopy f& ~ arel .xin Y\ C. Also we say that f induces a monomorphism
of jt* homotopy groups of ends if for every compactum C C Y there exists a
compactum K C Y such that for every map &: 87 — X \ f~1(K) with fa ~
in Y \ K it follows that & ~ * in X \ f~1(C). It is said that f induces an
isomorphism of jt* homotopy groups of ends if f induces both epimorphism

and monomorphism of jt* homotopy groups of ends.

Theorem 1.2.5 (Classification)[Be]. Let f : M — N be a proper map
between pu™-manifolds. If f induces isomorphisms of homotopy groups of di-
mension < n — 1 and of ends of dimension< n — 1, then f is properly (n — 1)-

homotopic to a homeomorphism.

§1.3. ABSORBERS

This section is devoted to present some basic facts concerning absorbers of
Polish spaces. The facts stated in this section will be used only in chapter I'V.
Let X be a Polish space, i.e., a complete separable metric space. By Auth(X),
we denote the space of all homeomorphisms of X endowed with the limitation
topology. Let I' be a closed subgroup of Auth(X) and K be a closed hereditary,
additive and I'-invariant collection consisting of closed subsets of X, i.e., if D
is a closed subset of some member of K then D € K and if A,B€ Kand f €T
then f(AU B) € K. Let {4;}2; be a tower of members of K. Then {A;}$°,

is called a I'-K-skeleton provided that for each open cover U of X, for each




A,B € K, for each f € I with f(B) C A;, there is h € I which is U-close to
f such that h|B = f|B and h(A) C A; for some j > i. The union U2, A; is
called a I'-K-skeletoid if the collection {4;}$2, is a I'-K-skeleton. A subset A
of X is called a I'-K-absorber if there is a family { K;}$°, of members of K with
A = U2, K; such that for each open collection U of X, for each B € K, there is
h € T such that h|X \ UU = id, h|UU is U-close to id and h(BN(UU)) C A. In
case I' = Auth(X), I-K-skeletons, I'-K-skeletoids and I'-K-absorbers are called
K-skeletons, K-skeletoids and K-absorbers respectively.

A subset A C X is called a thin set if for each open cover U of X and for
each open set V' O A, there is f € Auth(X) which is U-close to id such that
fIX\V =1id and f(A)N A = 0. A closed hereditary, additive and Auth(X)-
invariant collection K of a Polish space X is called a perfect collection provided

that

(1) each member of K is a compact thin set in X,

(2) for each A € K, for each neighborhood V of A and each open cover
U of X, there exists an open refinement V of i such that VB € K
with B € V, V homeomorphism f : A — B which is V-close to id,
JF € Auth(X) which is U-close to id with F|A = f and F|X \V =id.

For each open subset U of X, we put K(U) = {K € K | K C ik

Auth(X||X \U) = {F € Auth(X) | F|X \ U =id}.

Theorem 1.3.1 [BP, Chap. IV, Theorem 4.1]. Let K be a perfect collection, A
a K-skeletoid in X and U an open subset of X. Then ANU is an Auth(X|| X\
U)-K(U)-skeletoid in X.

Hence any K-skeletoid is a K-absorber if K is a perfect collection. The

uniqueness of ['-K-absorbers follows from the next theorem.

Theorem 1.3.2 [We]. Let A and B be two I'-K-absorbers in X. Then for
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each open collection U of X, there is f € I" which is U-close to id such that
f(ANn (WU)) = BN (UU) and f|X \ (UU) = id.

Proposition 1.3.1 [BP, Chap. IV, Proposition 4.1]. Let K be a perfect col-
lection in a space X and let {A;}{2, be a collection of members of K such that
A; C Aiyy for each i € N. Then {A;}2, is a K-skeleton if and only if, for
every Z € K, k € N, € > 0, there exists an embedding f : Z — X such that
d(f,id) <e, f|ZN Ax = idzna, and f(Z) C A; for some j > k.

Theorem 1.3.3 [Ch4|. For each locally finite polyhedron K, there exists a
proper n-invertible UV " -surjection fx : Mg — K from a u™-manifold M
onto K satisfying the following conditions:
(a) fr'(L) is a p™-manifold for any closed subpolyhedron L of K;
(b) fx'(Z) is a Z-set in fz;' (L) for any Z-set Z in a closed subpolyhedron
L of K.
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II. STABLE MENGER MANIFOLDS

In [Ch3], Chigogidze introduced the notion of the n-homotopy kernel of
a p"tl-manifold and proved the following classification theorem for p™+!-
manifolds: Two p™*!-manifolds have the same n-homotopy type if and only
if their n-homotopy kernels are homeomorphic. There are close relations be-
tween Hilbert cube manifold (Q-manifold) theory and Menger manifold theory
and the n-homotopy kernel of a p"*1-manifold plays the role of the product
X x [0,1) of a Q-manifold X with [0,1). It is said that X is [0,1)-stable if it is
homeomorphic to (=) X x [0,1).

Wong [Wo| showed that a @Q-manifold X is [0,1)-stable if and only if X
is properly contractible to oo, that is, for any compactum K in X there is a
proper map jg : X — X \ K which is properly homotopic to idx. Replacing
a proper homotopy with a proper n-homotopy, we have the notion of properly
n-contractible to co. Moreover we say that X is properly locally (n-)contractible
at oo if for any compactum K C X there is a compactum L C X with K C L
such that for each compactum L' C X with L C L' there exists a proper map
jrr : X\ L — X \ L' which is properly (n-)homotopic to idx\z, in X \ K. In

this chapter we define u™*'-manifolds as p™*'-manifolds which are properly
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n-contractible to co and properly locally n-contractible at oo and show the

following characterization theorem for pu”}!-manifolds (Theorem 2.1.1).

Theorem 1. Let M be a p™*'-manifold. Then M is a p?'-manifold if and

only if M is homeomorphic to its n-homotopy kernel Ker(M).

We will show that two n-homotopic proper maps into a p”!'-manifold are
properly n-homotopic (see Lemma 2.2.1). Thus we can remove the requirement
of an n-homotopy between x”!-manifold to be proper, whence we obtain the
following Z-set unknotting theorem for p”}t!-manifolds. Then we can obtain

the following (Theorem 2.2.1).

Theorem II. Each homeomorphism between two Z-sets in a p"}t'-manifold
M extends to an ambient homeomorphism of M onto itself if it is n-homotopic

toid in M.

From Theorem 2.2 in [Ch3], it follows that two pZ}!-manifolds of the same
n-homotopy type are homeomorphic. Similarly to [C1, Theorem 5|, we can
clarify the relation between n-homotopy equivalences and homeomorphisms

(Theorem 2.2.2), that is,

Theorem III. An n-homotopy equivalence between two p?t'-manifolds is

n-homotopic to a homeomorphism.

Moreover as same as [0,1)-stable Q-manifolds [C1, Lemma 3.6], we can

strengthen the open embedding theorem (Theorem 2.2.3), see [Ch2,3].

Theorem IV. Each map from a pu™'-manifold into a pu™*'-manifold is n-

homotopic to an open embedding.

§2.1. CHARACTERIZATION OF put!'-MANIFOLDS

A space X is said to be properly (n-)contractible to oo if for any compactum

K in X there exists a proper map jx : X — X \ K which is properly (n-
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yhomotopic to idx. If for any compactum K C X there exists a compactum
L C X with K C L such that for each compactum L' C X with L C L’ there
exists a proper map jrr : X \ L — X \ L' which is properly (n-)homotopic to
idx\z in X \ K then a space X is said to be properly locally (n-)contractible at
oo. It is easy to see that for any space X, X x [0,1) is properly contractible to

oo and properly locally contractible at oo.

Lemma 2.1.1. Let X be properly n-contractible to oo and properly locally
n-contractible at co. Then for each compact cover {X;}ien of X with X; C
int X1, there exist a subcover {X; |k € w, 0 = ip < i3 <12 < ---} and a
collection of proper maps {fr : X — X \ X,, }recw such that fo = idx and
| 7 g frin X\ X;,_, for k> 1, where X;_, = 0.

Proof. For technical reasons we assume that Xo = (. Let L_o = L_; = Lo = 0.
We shall inductively choose integers 0 =:1_o =i_; =19 < 73 < 122 < --+ and
construct compacta Ly_; C X;, C Ly and proper maps ji : X\Lk—2 — X\X;,,
k € w, satisfying the following conditions:

(1) jo =idx.

(2) For each compactum M D Lj there is a proper map jpr : X \ Ly —

X \ M such that jp ~7 idx\r, in X \ X;, _,.

(3) Jr ~p idx\L,_, in X \ Xi_,.
Let 234 = 1. Being X properly n-contractible to oo and properly locally n-
contractible at oo, there exist a proper map j; : X — X \ X;;, with j; ~7 id
and a compactum L; D X, satisfying (2). Since X = U;g,X; and X; CintX, 4,
there exists 15 > 7; such that X;, D L;. As in the above arguments there exist
a proper map j; : X — X \ X, with j» ~7 idx and a compactum L, D Xj,
satisfying (2).

Assume that, for £ > 2, 39 < 93 < -+- < %k, Lg, and ji : X \ Lr—2 —
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X\ X, have been constructed. Choose ix,; > ix so that X D L. Since

ikt
Xirs1 D Lg—1, by the property (2) of Lix_,, there exists a proper map jX"Hx :
X\ Lgy — X\ X;,,, such that B, S0 Wy, in X \ Xi,_,. Then put
Jh41 = jX;k+1~ Since X is properly locally n-contractible at oo, there exists a
compactum Li41 D Xj, ., satisfying (2).

Now define fr = jr---jo: X — X \ X;, for £ € w and observe that the

collections of compacta {X;, }re, and maps {fi}rew are as desired. O

A p"*t'-manifold is called a p™t!-manifold if it is properly n-contractible
to oo and properly locally n-contractible at co. Theorem I is contained in the

following.

Theorem 2.1.1 (Characterization). For a u™*'-manifold M the following

conditions are equivalent:

(1) M is a u2}'-manifold.

(2) M = Ker(M).

(3) There is a proper (n + 1)-invertible UV ™-surjection f : M — X onto
some [0, 1)-stable Q-manifold X.

(4) There is a proper (n + 1)-invertible UV ™-surjection g : M — Y onto
a space Y which is properly n-contractible to oo and properly locally

n-contractible at oo.

Proof. We shall prove that (1) = (2). First we shall choose a compact cover
{M,;}icw of M with M; C intM;1, 1 € w such that the topological frontier FrM;
is a Z-set in M \ intM;. To this end, fix a proper UV™-surjection g : M — X
onto a Q-manifold X. Then choose a compact cover {X;}ic. of X consisting
of Q-manifold with X; C intX;;; such that FrX; is a Z-set in both X; and
X \intX;, i € w (see [C2], [CS]). For each i € w, by the relative triangulation
theorem for Q-manifolds [C3], we may assume that X = PxQ, X; = P{xQ and
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X\ intX; = P} x Q for a locally finite polyhedron P and closed subpolyhedra
P}, P; C P. Note that P} N P} is a Z-set in Pi. Let fp : Mp — P be a proper
UV ™-surjection from a p™t!-manifold Mp onto P satisfying the condition (b)
in Theorem 1.2.4. Since the composition 7pg : M — P is proper UV™ (where
mp ¢ P x Q — P is the canonical projection), there is a homeomorphism
k : Mp — M by Proposition 1.2.3. Then by the property (b) of fp, f5' (PiNP})
is a Z-set in fp'(P) and so is the topological frontier of f5'(Pf). Now let
M; = kfp'(P}), i € w. Then the compact cover {M;}ic., of M is the required

one.

By Lemma 2.1.1, there is a collection of maps {f; : M — M \ M,}ie. such
that fo = idar, fi ~p fiqa in M \ M;_, for i« € w. Using the Z-embedding
approximation theorem for p™*!-manifolds [Be, 2.3.8], we can choose f; as a
Z-embedding for each i € w. Put K; = M \ fi(M) for + > 1. Then since
fi =% idps, by the definition of n-homotopy kernels, we have K; = Ker(M).
By Theorem 1.1, being f; 22 fit1 in M\ M;_; and FrM,_, a Z-set in M \
int M;_,, there exists a homeomorphism h; : M — M such that h;f; = fiqa
and h;|p,_, = id. Note that h;(K;) = K;+;. Now we define h : K; — M
by h = limjeo hi---h1. Then h|p-1(inerr;) = hiv2-+-hiln-1¢inerr;)- In fact,
suppose that h(z) # hiyo---hi(z) for some z € b~ (intM;). Then there is an
open subset U of intM; such that h(z) € U C U and h;ro---hy(z) ¢ U. Since
hjlintms;, =1id for 5 > i+ 2, hj---hi(z) = higa---hi(z) ¢ U for all j > i+ 2.
This contradicts the definition of A.

One can easily see that h is injective. Moreover, since M = U;e, M; and
hi---hi(K;) = K; D M, it follows that h is surjective. To finish the proof, it

only remains to note that h is open. Thus A is a homeomorphism.

To prove (2) = (3), assume M = Ker(M). Then, by Proposition 1.2.4, there
is a proper (n+1)-invertible UV ™-surjection g : M — M'x[0,1). Leth: M - Y
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be a proper UV ™-surjection onto a Q-manifold Y (Proposition 1.2.2). Since
Y x [0,1) is a [0,1)-stable Q-manifold, the composition (h x idjg1))g : M —
Y % [0,1) is the required one.

(3) = (4) is trivial.

Finally we shall show that (4) = (1). Let h: M — X be a proper (n + 1)-
invertible UV ™-surjection onto a space X properly mn-contractible to oo and
properly locally n-contractible at co. Let K be a compactum in M. Then there
exists a compactum L' in X with A(K) C L’ such that for each compactum F’
with L' C F' there exist proper maps iZ(K) : X » X\h(K) and j& : X\L' —
X \ F' such that i) g, ~7 idy in X and jp o7 idy\p in X \ h(K). Let
L =h71(L') and F be a compactum containing L. Since h is proper (n + 1)-
invertible, there exist proper maps ix : M - M\ K and jp: M\ L - M\ F
such that hig = i;l(K)h and hjp = j;;(F)h'

Consider a proper map a: Z — M\ L (C M\ h~'h(K)), where dim Z < n.
We shall now show that jra is properly homotopic to @ in M \ K. From
Proposition 1.2.1, we may assume without loss of generality that Z is a locally
finite polyhedron. Let H : (X \ L') x [0,1] — X \ h(K) be a proper homotopy
from idx\z+ to ji(r)- Then H(ha xid) : Z x [0,1] — X \ h(K) is a proper
homotopy from ha to jj pyha = hjpa. Being hlam\h-1n(xy : M\ hTA(K) —
X\ h(K) is proper UV™, by [La, §3, Lemma A], there exists a proper homotopy
F:Zx|[0,1] —» M\ h~1h(K) from «a to jpa. Thus jp ~7 idp\ L in M\ K.

Similarly, we can conclude ip >~} Lol aa D

§2.2. PROPERTIES OF pt'-MANIFOLDS

Lemma 2.2.1. Let f : X — Y be a map from a locally compact space X into a
LC™-space Y admitting a proper (n+1)-invertible UV ™-surjection onto a space

Y x [0,1). Then f is n-homotopic to a proper map whenever dim X < n + 1.
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Moreover, if f is a proper map n-homotopic to a proper map g : X — Y then

il 8
Proof. Fix a proper map p : X — [0,1) and let o : ¥ — Y x [0,1) be a
proper (n + 1)-invertible UV ™-surjection. Let ¢ : X — Y x [0,1) be the map
defined by ¢(z) = (h1 f(z),p(z)), where h(z) = (hi1(z), ha(z)), z € X. Then ¢
is proper and homotopic to hf. By the (n+ 1)-invertibility of &, there is a map
f': X = Y such that hf’ = q. Note that f’ is proper and hf’ ~ hf. Thus by
the lifting property of h [La, §3, Lemma A], we conclude that f ~™ f'.

Next suppose that f is a proper map n-homotopic to a proper map g : X —
Y. Let « : Z — X be a proper map, where dimZ < n. We shall show that
fa ~p ga. By Proposition 1.2.1, we may assume without loss of generality
that Z is a locally finite polyhedron. Let {Y;}.c. be a compact cover of Y
with Yo = 0 and Y; C intY;41, ¢ € w. Then for each ¢ > 1, let Z; be a compact

subpolyhedron of Z such that
(hfa) Y (W;) U (hga)™ (W,) C Z; C intZ;4,,

where Zy = 0 and W, = Y; x [0,1 —27"]. Since f ~™ g, we can fix a homotopy
Go:Z x [0,1] = Y from fa to ga. For k > 1, we shall inductively construct

a homotopy
Gr: (Z\ intZag_g) x [0,1] = Y \ A= (War_s)

from the restriction fa| of fa to the one ga| of ga satisfying the following
conditions:

(e Gi((Z )\ intZax) x [0,1]) C Y \ A7 (War_2);

(2)k G = Gg—1 on FrZy,_5 x [0,1].

Let F; : [0,1) — [1 — 27 1) be the map defined by

Fi(t) =1+ (t—1)2""
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for each 7« > 1. Suppose that a homotopy

Gr : (Z\ intZop_2) x [0,1] = Y \ A~} (War_s)
has been constructed for k¥ € w. Then let

Apy1 = (Z \intZy) x {0,1} U FrZy, x [0,1]

and

Bk+1 = (th)_l(‘/V;)_k_*_l) N (Z \ intZ2k+2) X [0, 1]

Since Ag4+1 and By, are disjoint closed, we can choose 8 : (Z\intZ2;) x[0,1] —

[0, 1] such that 8(Ag41) = 0 and B(Bg41) = 1. Define

;c+1 ¢ (Z \ intZQk) X [0, 1] — Y X [0,1) \ Wok_o

k1 (w) = (sk(w), (1= B(w))te(w) + B(w) Faryatr(w)),

where hGy(w) = (sk(w), tx(w)), w € (Z\intZsx) %[0, 1]. By the lifting property

[La], there is a homotopy
Gk+1 . (Z \ intZk) X [0, 1] —Y \ WQk_g

from fa| to ga| with hGjy1 = G),; and Gy = Gy on Apy, (i.e. satisfying
(2)k+1) such that Gy satisfies (1)k41.

We define H : Z x [0,1] = Y by H = G} on each (Zy \ intZax—2) x [0,1].
Then H is a well-defined homotopy from fa to ga. Note that since h is proper,
{h=Y(W;)}icw is a compact cover of Y with A= (W;) C int A= (W;41). Thus it

follows from our construction that H is proper. The proof is finished. O
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Theorem 2.2.1. Each homeomorphism between two Z-sets in a p™}'-mani-
fold M extends to an ambient homeomorphism of M onto itself if it is n-

homotopic to id in M.
Proof. The theorem directly follows from Theorem 1.2.2 and Lemma 2.2.1. 0O

Lemma 2.2.2. If f : M — N is a proper n-homotopy equivalence between
pF-manifolds then f induces an isomorphism of homotopy groups of ends of

dim < n.

Proof. By Theorem 2.1.1, we can fix proper (n + 1)-invertible UV "-surjections
g: M —> X x[0,1) and h: N - Y x [0,1), where X and Y are some Q-
manifolds. Let C be a compactum in N. Then there is a compactum C” C Y
such that C” x [0,#] D h(C) for some t' € (0,1). Since h is proper, C' =
h=1(C" x [0,¢]) is a compactum with C’ D C. Note that, since f is proper,
g(f~1(C")) is a compactum in X x [0,1). Thus there exists ¢t; € (0,1) such
that
L=nx(g(f71(C") x [0,t] > g(fH(C")),

where mx : X x [0,1) — X is the canonical projection. Similarly, being g

proper, there exists t2 € (0,1) such that

K' =y (hf(g7 (L)) x [0,t2] D hf(g7' (L)),

where 7y : Y x [0,1) — Y is the canonical projection. Put K = h™'(K’)
and let zg € M\ f~Y(K), j < n, and a : (§7,%x) —» (N \ K, f(z0)). Since
f is an n-homotopy equivalence there exists a; : (S7,%) — (M, zo) such that
far ~ a rel .« Being aj'(zo) and a7 '(g71(L)) are disjoint closed sets in
S7. we can choose a map 8 : 87 — [0,1] such that B(a;'(z)) = 0 and
Blar (g~ (L)) = 1. Say gen(z) = (mxgoa(s),z)) € X x [0,1), z € &7,
Define a : (87, %) — (X x [0,1),g(zq)) by

az(z) = (rxgoa(x), (1 - t1) - t(z) + t1)B(z) + (1 - B(=)) - t(z)), z € §°.
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Clearly as ~ gay rel .x and ay(S?) N L = @. Using the lifting property [La]
of the proper UV ™-surjection g, there exists & : (87,*%) — (M,zg) such that
imgaNL = @ and & ~ o rel .x. Hence we have f& ~ arel .x and f&(S7)NC’' =
0. By the same technique we performed above, we can choose a homotopy so
that fa~ a rel .xin N\ C.

Next let v : 7 — M\ f~}(K) be a map such that fy ~ % in N \ K. Since f
is an n-homotopy equivalence, gy ~ * in X x [0,1). By sliding the [0, 1)-factor
of the homotopy upward as the above, we have gy ~ x in X x [0,1) \ L. By the
lifting property of g [La], it follows that v ~ x in X\ f~1(C). Thus we conclude

that f induces an isomorphism of homotopy groups of ends of dim < n. O

Theorem 2.2.2. An n-homotopy equivalence between two p+!-manifolds is

n-homotopic to a homeomorphism.

Proof. Let f : M — N be an n-homotopy equivalence between p™}!-manifolds.
Then by Lemma 2.2.1 there is a proper map h : M — N such that f ~" h;
consequently, h is a proper m-homotopy equivalence. By Lemma 2.2.2 and
Theorem 1.2.5, h is properly n-homotopic to a homeomorphism. Thus f is

n-homotopic to a homeomorphism. [

Theorem 2.2.3. Each map from a pu"t'-manifold into a p™t'-manifold is

n-homotopic to an open embedding.

Proof. Let f : M — N be a map from a p7!-manifold to a x™+!-manifold. By
replacing N with Ker(/V), we may assume that N is also a u2}'-manifold. By
the triangulation theorem for x™*!-manifold [Dr2], we can fix proper (n + 1)-
invertible UV ™-surjections ¢ : M — K and h : N — L, where K and L
are locally finite polyhedra of dimension at most n + 1. Then by the (n + 1)-
invertibility, g has a section p : K — M (i.e. gp = idg). Since N is a pu7}!-

manifold, by Lemma 2.2.1, f is n-homotopic to a proper map f' : M — N.
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Then ¢ = hf'p: K — L is a proper map. Let M(¢p) be the mapping cylinder of
¢, that is a space obtained from the disjoint union K x [0,1]® L by identifying
(z,1) with ¢(z), = € K. Define ¢, : M(p) — L by c,(z,t) = ¢(z), z € K.
Let fn : p™' — Q be a proper (n + 1)-invertible UV ™-surjection satisfying
the condition (%) in Theorem 1.2.3. Embed M () into @, whence f,1(M(p))
is a p"*t!-manifold. We denote the restriction of f, to f71(M(p)) by fal.
Observe that f;'(K x {0}) @ M and f,;'(L) & N by Proposition 1.2.3. We
identify f7'(K x {0}), f,7'(L) with M, N respectively. Abusing notations,
by g: M —- K x {0}, h: N - L we denote the restrictions of f, to M, N
respectively. Using the (n+ 1)-invertibility of k, we can fix a sectionq : L — N
of h. Note that since c,fn| : fi'(M(¢)) — L and h : N — L are proper
UV ™-surjections, f'(M(p)) = N by Proposition 1.2.3. Observe that the map
gcy fn| is an n-homotopy equivalence between pZt'-manifolds f,;(M(p)) and
N. Then by Theorem 2.2.2, there is a homeomorphism s : f;'(M(p)) — N
such that s ~™ gc, fn|. Note that M’ = f1(K x [0,1)) is open in f;1(M(p))
and is a u”+!-manifold by Theorem 2.1.1. Since the inclusioni: M = f;1(K x
{0}) — M’ is an n-homotopy equivalence, by Theorem 2.2.2, we can choose
a homeomorphism r : M — M’ with r ~™ 4. Then the map sr : M — N
is an open embedding which is n-homotopic to gc,(fnl)i = qpg = qhf'pg.
Since pg ~7 idy and gh ~} idn, we have ghf'pg ~p f' ~™ f. The proof is
finished. [
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III. A MAPPING THEOREM

Brown and Cassler [Br| proved that each compact connected n-manifold M
can be obtained from the n-cube I" by making identifications on the boundary
OI", that is, there is a map ¢: I™ — M such that p(I" \ 9I") = M \ p(0I") is
dense in M and ¢|I™ \ 9I" is an embedding. This was generalized by Berlanga
[Ber] to a non-compact connected n-manifold M, that is, there exists a map
¢: I" — M such that E = @((M)) C 81", p|E is a homeomorphism of E
onto E(M), p(I" \ 0I™) = M \ ¢(0I") is dense in M and ¢|I™ \ 8I" is an
embedding into M, where £(X) is the space of ends of X and X = X U £(X)
is the Freudenthal compactification of X. For £(X), refer to [Ber, §1].

Hilbert cube manifolds (Q-manifolds) or (n + 1)-dimensional Menger mani-
folds (u™*-manifolds) are paracompact topological manifolds modeled on the
Hilbert cube Q = I“ or the (n + 1)-dimensional universal Menger compactum
pu™ 1, respectively. The Q-manifold version of the above Brown-Cassler map-
ping theorem was established by Prasad [Pr]. Some other infinite-dimensional
versions were proved in [S1]. In this chapter, we prove the p"*!-manifold
version of the above Berlanga’s mapping theorem. The @Q-manifold version is
proved in [IS] using the mapping cylinder technique used in [S1], which is an

elegant approach but could not be applied to u"-manifolds. We take another
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approach for p™*!-manifolds, which is also valid for Q-manifolds. One should

remark that our approach simplifies the Berlanga’s proof in [Ber].

§3.1. A MAPPING THEOREM FOR p™t!-MANIFOLDS

Given a Z-set ugt' in u™*! which is homeomorphic to x™t'. Then p"+! <

pgt! is an n-homotopy kernel of u™+', which plays the role of @ x [0,1) (cf.
[Ch3]). Let (N,6N) be a pair of closed sets in a g™ *!'-manifold M. According
to [Ch5], the pair (N, §N) is said to be n-clean in M provided the following

conditions are satisfied

(1) N, 6N and (M \ N)U N are p™t!-manifolds;
(2) 6N is a Z-set in both N and (M N\ N)UéN;
(3) N\ 46N is openin M (i.e.,, bdps N C 6N).

Lemma 3.1.1. Each point ¢ of a p™*'-manifold M has an arbitrarily small
neighborhood W with 6W C W \ {z} such that the pair (W,6W) is n-clean

in M and homeomorphic to (u™+*, ug™).

Proof. By [Ch4, Theorem 1.3], there exists a proper (n + 1)-invertible UV "-
map f: N — [0,2) from a p™*!-manifold N onto [0, 2) such that f~([0,1]) and
f1({1}) are p"*'-manifolds and f~'({1}) is a Z-set in both f~!([0,1]) and
£71(0,2)). Observe that N is homeomorphic to its n-homotopy kernel Ker(V)
by [Iw1, Theorem 2.1]. Using [Iwl, Theorem IV], we have an open embedding
h: N — U. By the Z-set Unknotting Theorem [Be, p.102|, we may assume
that z € h(f~1([0,1))). Let W = hf~1([0,1]) and 6W = hf~({1}). Then
W = §W = u™t! by the Bestvina’s characterization of ™! [Be, 5.2.3]. By
the Z-set Unknotting Theorem [Be, 3.1.5], we have (W,6W) = (p™+1, ugt1).
Since W is a Z-set in (A(N) N\ W)U W, it is also a Z-set in (M ~ W)U W.
Hence (W, 8W) is n-clean in M. [

The following is the p"*!-manifold version of Berlanga’s theorem:
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Theorem 3.1.1. For each connected pu™*t'-manifold M, there exists a map
p: p"t — M such that
() E = (E(M)) € i3t
(ii) @|E is a homeomorphism of E onto E(M);
(iii) @(p™t < ppt') = M < (ug*?) is dense in M;

(iv) @|u™tt N ugt! is an embedding into M.

To prove Theorem 3.1.1, we show the following homeomorphism extension

lemma:

Lemma 3.1.2. Let f: A — B be a bijection between finite sets A and B
in a p"*'-manifold M such that each a € A and f(a) € B are contained in a
connected open set U, in M. Then f extends to a homeomorphism f: M- M

such that f(U,) = U, for each a € A and FIM ~ Usea Ua =id.

Proof. Without loss of generality, we may assume that U, (a € A) are dis-
joint. By Lemma 3.1.1, there is an n-clean pair (W,,8W,) in U, such that
a € Wy~ 6W,. By the Z-set Unknotting Theorem [Be, p.102]|, we may assume
that a, f(a) € W, \ 6W,. Since W, is a Z-set in W,, using the Z-set Unknot-
ting Theorem [Be, 3.1.5], there is a homeomorphism f,: W, — W, such that
fa(a) = f(a) and f,|6W, = id. Then the required homeomorphism fiM—>M
can be defined by f{M \ U,cs Wa = id and f|W, = f, for eacha € A. O

Proof of Theorem 3.1.1. Since M is metrizable, we may assume that M is a
metric space given a metric d. In the following, we construct ¢: p"*t! — M as

the composition of three maps:

Ao ANy IRy y RNy §

Step 1: By the analogue of [Be, 5.1.3] (p.103), there exists a locally finite

simplicial complex K with dim K < n+1 and a proper map ¢: |K| — M which
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induces isomorphisms of homotopy groups of dimension < n and of homotopy

groups of ends of dimension < n. We define
X =|K| x [-1,0]U|T| x [0,1],

where T be a maximal tree of the 1-skeleton K1), Let p: X — |K| be the
projection. By [Ch4, Theorem 1.3] (cf. [Ch3, Theorem 1.6]), there exists an
(n+1)-invertible UV™map fx: Mx — X of a p™*t'-manifold Mx onto X such
that N = f3'(|T|x[0,1]), No = 3 (|T|x{0}) and N* = f3*(|K|x[~1,0]) are
p™*t1-manifolds and Ng = NN N* is a Z-set in both N and N*. Observe that
N and Ny are n-connected and N\ Ny = f5' (| K| x (0,1]) is open in Mx. And
pfx|N: N — |T| extends to a map k: N — |?| such that k(E(N)) = E(|T)).
It is easy to see that £(|T|) is a Z-set in [’7\‘/| Since fx|N: N — |T| is (n+ 1)-
invertible and dim N = n + 1, it follows that £(V) is a Z-set in N. Then N
is an (n + 1)-dimensional n-connected LC™ compactum which has the disjoint
(n + 1)-cells property. Hence N = p™t1 by the Bestvina’s characterization of
u™*! [Be, 5.2.3]. Similarly Ny & u™*t'. By the Z-set Unknotting Theorem [Be,
3.1.5], we have a homeomorphism f: g™t — N such that FGdT ) = No.

Since gpfx : Mx — M induces isomorphisms of homotopy groups of dimen-
sion < n and of homotopy groups of ends of dimension < n, we have Mx = M
by [Be, Ch.6, Theorem|. Therefore we identify Mx = M. Then N \ N is
an open set in M and Ny is a Z-set in both N and N* = (M ~\ N) U N,.
The inclusion N C M induces a homeomorphism between the spaces of ends
because so is |T| C |K|. Hence we can regard £(Ng) = E(N) = £(M) and
Ny C NcC M.

We can write K = UieN K;, where each K; is a finite subcomplexes of K
and |K;| C int|g||Ki41|. For each i € N, let S; be a simplicial neighborhood of
SdK; in Sd K and T; = S; N Sd T, where Sd K is the barycentric subdivision
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of K. Then
K| = ISil, 1T] = |J I3, 1S:] € intyxy|Sizal, |T3] C intjrey| Tiga,
i€N iEN
and each bd|k[S;| is a Z-set in both |S;| and clg|(| K| \ |Si|), each bd7||T}|
is a Z-set in both |T;| and clj(|T| \ |T;|) and each |T;| meets all components

of |Si| N\ |Si—1| (So = 0). For each i € N, let

M; = £ (1S:] x [-1,0] U |Ty| x [0,1]) = fz'p(|S:]),

6M; = fx'p~ (bdig|Sil) and Ni = fx'(IT:| x 27, 1))

Then as is easily observed, M = |J,.n Mi, N N~ Ng = |J,n Vi, each pair

i€N i€N
(M;,8M;) is n-clean in M and each N; meets all components of M; \ (6 M; U

M;_,), where My = . (Each (N;,8N;) is also n-clean in M, where
5N,‘ = f;l(|T.,l X {2_i} U blellTll X [2_i, 1])

But this fact is not used.)

Step 2: By local path-connectedness of M;, we can choose €y > €9 > -+ >0
so that each z,y € M, can be connected by a path with diameter less than 2~* if
d(z,y) < €;. Foreachi € N, choose a finite £;-dense set A; in M;\ (6 M;UM,_;)
(My = 0), that is, for each point z € M; \ (6 M; U M;,_,) there is a point a € A;
such that d(a,z) < . Note that (M; \ M;_;) U §M;_; is a compact p"t1-
manifold and §M;_, USM, is a Z-set in (M; ~ M;_;)U6M,;_,. Since N; meets
each component of M; \ (6M; U M;_,), we can apply the Z-set Unknotting

Theorem [Be, 3.1.4] to construct a homeomorphism
(1% (Mi N Mi—l) UdM,_; — (Mi 53 A/-[i—-l) UdM,;_,

so that A; C g;(N; ~ M;_,) and g;|6M; U 6M;_, = id. We define a homeo-
morphism g: M — M by g|(Mi ~ M;_1) U §M;_, = g;. Then g(M;) = M;,
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g(6M;) = 6M; and g(N;) \ (6M; U M;_,) is g;-dense in M; \ (6 M; U M;_,) for
each 1 € N.

Step 3: Let B, be a finite eo-dense set in M; \ (6M; U g(N;)). Since
g(N1) N\ 6M; is a e1-dense in My N\ §M; and g(N;) C intprg(N2), it follows that
g(Na) N (M N (6M; U g(Ny))) is e1-dense in M; \ (6 M; U g(V;)), whence we

have an injection
J1: By = g(N2) N (My N\ (M1 U g(N1)))

which is ;-close to id. Then we can assume that each b € B, and j;(b) can be
connected by a path in M; \ (6M; U g(NV;)) with diameter less than 271. We

choose a connected open set Uy in M; such that diam U, < 27! and
b, 71(b) € Uy C M; \ (M7 U g(Ny)).

By Lemma 3.1.2, we have a homeomorphism A : M->M by hi|j1(B) = ji!
and h1|M~U,cp Us = id. Then hy is 2~ -close to id, h1|g(N1)U(M~ M) = id
and h; g(N2) is eo-dense in M3 (indeed hyg(N2)\ 6 M, is eo-dense in My N\ §M3)
because By U g(N1) U g(N3) C hyg(N2).

Similarly choosing a finite e3-dense set in My \ (6 M2 U h1g(N2)), we can
h1g(N2)U (M~ Ms) = id,
ho is 2~ 2-close to id and hoh; g(NN3) is e3-dense in M3 (indeed haohyg(N3) N 6 M3

construct a homeomorphism hs: M — M so that ho

is e3-dense in M3 \ 6M3).
Inductively homeomorphisms h;: M- M (z € N) can be constructed so
that
hilhi— -+ hag(N:) U (M ~ M;) = id,

h; is 2 %-close to id and h;h;—1---h1g(N;41) is €;41-dense in M, ;. Then
(hi---h1)ien converges to a map h: M — M such that h|E(M) = id and
hlg(N;) = hi_1---h1|g(IN;) for each i € N, whence it follows that hg|N ~\ Ny
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is an embedding into M. Since each h(g(N;)) = h;—1--- h1g(V;) is ;-dense in
M;, it follows that h(g(N)) is dense in M.

It is easy to verify that ¢ = hgf: u™+1 — M is the desired map. O

Remarks. In the above Step 1, we can take a different approach as follows: First
choose n-clean pairs (M;,6M;) in M so that M; C M,4; and M = UieN M;.
As remarked before Lemma 3.1.1, there is an embedding fo: u™*t! — M; such
that fo(u™*t*\pgt?') is openin M. Let p"t'\pugt" = U,y Wi, where each W;
is compact and contained in int W;4,. Similarly as Step 3, we have homeomor-
phisms f;: M — M such that f;--- fo(u™*') C Miyq, fi--- fo(Wiz1) meets

every component of M;,; \ M; and
fil(M N M) )UM; U fiq - fo(W;) =id.

In fact, connecting a point of each component of M;;; \ M; and a point of
fic1-+ foWig1 ~ W3) N\ M; by a connected open set in M;;; ~ M;_; and
applying Lemma 3.1.2, we can inductively construct f;. Then as the limit of
fi-+- fifo, we can obtain an embedding f: p"*t! — M such that Flpt s i)
is open in M, E = f~1(£(M)) C u*! and f(E) = E(M). Let N = f(u™),
N = f(u"' N\ E), No = f(ug*'), No = f(ug*' ~ E) and N; = f(W;) =
fie1--- fo(W5).

By using [BE, Lemma 5] (cf. [Br, Lemma 1]) instead of Lemma 3.1.2, the
above arguments, Steps 2 and 3 are valid for an n-manifold M, where §M; is
replaced by the boundary OM; of an n-manifold M; which is bicollared in M.
This approach simplifies the Berlanga’s proof in [Ber].

The proof of Theorem 3.1.1 is also valid for Q-manifolds. (In Step 1, Mx =

X x Q and fx: Mx — X is the projection.)
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IV. HOMEOMORPHISM GROUPS

By H(X), we denote the group of homeomorphisms of X onto itself. In [Mc]
and [Wol, it is proved that the group H(X) is simple in the algebraic sense in
case X is a normed linear space E which is homeomorphic to the countable
infinite product E“ of E and in case X is the Hilbert cube Q. Let Hy(X) be
the subgroup of H(X) consisting of all homeomorphisms which are isotopic to
the identity. In case X is a (finite-dimensional) manifold without the boundary,
Hy(X) is the smallest normal subgroup of H(X) and is simple by [EC] and [Fi].
In this chapter, we prove this result in the case X is the (n + 1)-dimensional

universal Menger compactum p™*?1.
§4.1. ALGEBRAIC SIMPLICITY OF HOMEOMORPHISM GROUPS
Theorem 4.1.1. The group H(u™*') is simple.

As a corollary of this theorem, we have the following:

Corollary 4.1.1. Let k > 1 be a natural number. Every homeomorphism
h € H(u™*') is can be written as a finite composition h = hy - -- hy of homeo-

morphisms h; € H(u™*') of period k.

A subset A of X is said to be deformable in X if for each nonempty open

set U in X there is a homeomorphism h € H(X) such that h(A) C U. A
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homeomorphism h € H(X) is said to be supported by A C X if h|X \ A = id.
Let U be an open set in X, By, By,--- pairwise disjoint open sets in U and
¢ € H(X). Following [Wo] (cf. [Nu]), we call (B;,¢)icz, a dilation system in
U if By, By, converges to a point p € U, | X \ U =1id (i.e., ¢ is supported
by U) and r(B;) = B;_; for each : € N. To prove Theorem 3.1.1, we apply the
following theorem [Wo, Theorem 6] (cf. [Fi]).

Theorem (Fisher-Wong). Suppose that X is a metrizable space in which every
open set contains a dilation syatem. Let G be the normal subgroup of H(X)
generated by all homeomorphisms which are supported by deformable subsets

of X. Then G is simple.
In [Ch6], the following was shown.

Theorem (Chigogidze). Every homeomorphism h € H(u™*!) is stable, that
is, there are homeomorphisms h; € H(p"*'), ¢ = 1,---,n, such that h =

hn -+ hy and each h; is the identity on some nonempty open set in p™+t,

Thus we can reduce the Main Theorem to the following two lemmas:

1

Lemma 4.1.1. Every open set in ™! contains a dilation system.

Lemma 4.1.2. Every proper subset of u™*! is deformable in p™*1.

To prove the above lemmas, we recall the definition of n-clean pairs in a
p™+tl-manifold M introduced by Chigogidze [Ch5]. A pair (V,6N) of closed
sets in M is said to be n-clean if the following conditions are satisfied

(1) N, 6N and (M \ N)U 6N are pu"*'-manifolds;

(2) 6N is a Z-set in both N and (M \ N)U46N;

(3) N\ 48N is openin M (ie., bdy N C 6N).

Now we shall prove Lemma 4.1.1.
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Proof of Lemma 4.1.1. By [IS, Lemma 1], every open set in u™*! contains an
n-clean pair (W,6W) in M such that W = §W = p™*t!. It suffices to show
that W contains a dilation system. Choose disjoint open sets U;, i € Z, in
W N 6W so that both Uy, Us,--- and U_;,U_s,--- converge to the same point
p € W N\ 6W. Again by [IS, Lemma 1], each U; contains an n-clean pair
(B;,8B;) such that B; = §B; = ut!. Let

V=W-x{p})~ U(Bi \ 6B;).
1€EZ
Each (U;\ B;)U6B; is a p™+!-manifold open set in V and (W \{p})\U, ¢z Bi is
also a p#™*t!'-manifold open set in V. Then it follows that V is a x"*'-manifold.
Since | J,;cz 6B; is closed in V and a countable union of Z-sets, it is a Z-set in
V (cf. [vM, 6.2.2]). Since éW is a Z-set in (W \ {p}) \ U,z Bs, it is also a
Z-set in V. By using the Z-set Unknotting Theorem [Be], we can construct a
homeomorphism r’: V' — V such that r'|§W = id and r'(B;) = B;_; for each
i € Z. Since W is the one-point compactification of W \ {p} and r'|6W = id,
we can extend 7’ to a homeomorphism 7 € H(u™*!) by r|p"t! < W = id and

r(p) = p. Then it is clear that (B;,7)icz, is a dilation system in W. O
To prove Lemma 4.1.2, we need the following

Lemma 4.1.3. Let (W,8W) be an n-clean pair in a p™*'-manifold M such
that W =2 §W = pu™t, Then (M N~ W)U W = M.

Proof. First note that the inclusion j: (M ~ W) U éW C M induces a home-
omorphism between the spaces of ends, whence j induces an isomorphism of
homotopy groups of ends. By [Be, §6, Theorem], it suffices to show that j
induces an isomorphism of homotopy groups of dimension < n.

Epi: Let f: S — M (i < n) be a map of the i-sphere, A = cl f~1(W \ §W)
and B = bd A. By [Hu, Ch.V, Theorem 10.1], f|B: B — §W extends to a
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map g': A — §W and we have a homotopy h': A xI — W such that k) = f|A,

1 = ¢’ and h{|B = f|B for each t € I. We can extend ¢’ and k' to a map
g: S = (M\W)USW and a homotopy h: S'xI — M by g|S'\ A = hy|S'\A =
fIS*N A. Then hg = f and h; = g. This means that j induces an epimorphism
of homotopy groups of dimension < n.

Momno: Suppose that a map g: ' — (M ~ W)U W (i < n) extends to a
map f: B**! — M of the (i+1)-ball. Let C =cl f~*(W ~\éW) and D = bdC.
Similarly as the above, f|D: D — §éW extends to a map g’': C — §W by [Hu,
Ch.V, Theorem 10.1]. We can extend g’ to a map g: Bt — (M~ W)USW by
g|B**t! N\ C = f|B*t! \ C. Since S C B*t! \ C, g|S* = f|S! = g. This implies

that j induces a monomorphism of homotopy groups of dimension < n. 0O

Proof of Lemma 4.1.2. Let A be a proper subset of x"*! and U an open set in
p™*t1. Choose an open set V in ™! with ANV = . By [IS, Lemma 1], we have
n-clean pairs (W;, §W;) in p™*! (i = 1,2) such that W, & 6W, = "1 W, C U
and Wy C V. Then (p™*t! \ Wi) U W, 2 pmt & W, and (p™t \ Wa) U
Wy = pu™1 = W, by Lemma 4.1.3. Using the Z-set Unknotting Theorem
[Be], we can obtain a homeomorphism h € H(p"t') such that h(6Ws) = §Wy,
h(Wa) = (™1 \ Wi) U 6W; and h((p™t! N Wa) U §W3) = Wi. Then

h(A) C h(p™t N V) C h(p™t N\ Wy) =W, C U.

Hence A is deformable in . O

Proof of Corollary 4.1.1. Let Gi be the subgroup of H(u™*!) generated by
homeomorphisms of period k. We show that G, = H(u™*'). Since G} is
clearly a normal subgroup of H(u™*!), it suffices to show that Gy is nontrivial,
i.e., there exists a nontrivial homeomorphism hy € H(u"*') of period k. By
using Garity-Henderson-Wright’s model of x"*! in [GHW], such an hj can be

easily constructed as follows:
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Let Py = Ule(vo, v;) be the one-point union of k¥ many one-simplexes. We

define a homeomorphism h € H(P;) of period k by
h((l == t)’U(] =t tv,-) = (1 == t)'U() r t'UH—ly

where vp41 = v;. Note that h is simplicial with respect to the natural triangu-

lation K¢ of Py. For each i € N, we denote I, = [0,27] and Q41 = [[,;1

j>ig
We inductively define polyedra P; in Py x I; x --- x I, as follows: Triangu-
late P,_; x I; by K; so that meshK; < 27 and h x id is simplicial. Let
2% |Kz-("+l)| be the polyhedron of the (n+1)-skeleton of K;. Then by [GHW,
Theorem 2], X = ();,cn Pi X Qi1 (C Py x Q1) is homeomorphic to p"+!. Ob-
serve h xid|X € H(X), which induces the required homeomorphim hy € H(X)

of period k. O
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V. PRODUCT STRUCTURE

It is known that there are many similarities between p”-manifolds and Q-
manifolds (Hilbert cube manifolds). But it should be observed that the Carte-
sian product of p™-manifolds, for example u™ x u™, is neither a u™-manifold nor
a u*"-manifold. To avoid this phenomenon, Dranishnikov [Dr2] has constructed
a universal map g, : u™ — u™ which has the following property: () for any
p"-manifold X embedded in p™, g;'(X) & X and there is an n-dimensional
polyhedron K C p™ such that g;'(K) 2 X. The map g, corresponds to the
projection 7 : @ X Q — @ in the Q-manifolds theory and the polyhedron K
above is called the triangulation of a x-manifold X. Recall that the triangula-
tion of a Q-manifold Y is a polyhedron L such that 77'(L) = Lx Q =Y. One
of the differences between the triangulations of @-manifolds and p™-manifolds
above is that, using the triangulations, every Q-manifolds can be represented
as a space with infinite coordinates though any p"-manifolds cannot be so
represented.

The first part of this chapter is devoted to defining the infinite coordinate
systems for pu™-manifolds, called p"-coordinate systems. And we prove the
triangulation theorem by means of "-coordinate systems. Moreover, using u™-

coordinate systems, we can characterize Z-sets in terms of infinite deficiency.
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In the second part, we discuss how to define a kind of the Cartesian product
in the category of p™-manifolds. To do this, we use u"-coordinate systems
and define the A,-product which plays the role of the Cartesian product in
the category of p"-manifolds. Concerning the A,-product, we prove the sta-
bility theorem, that is, the A,-products of a p”-manifold M with u™ (resp.
[0,1)) is homeomorphic to M (resp. the (n — 1)-homotopy kernel of M) (no-
tation: MA,u™ = M (resp. MA,[0,1) = Ker(M))). One should note that
the formulation MA,[0,1) = Ker(M) is quite natural since (n — 1)-homotopy
kernels were introduced by Chigogidze [Ch3| as the corresponding notion of
“[0,1)-stable” @-manifolds, where a [0, 1)-stable Q-manifold is a Q-manifold X

homeomorphic to X x [0,1).

§5.1. INFINITE DEFICIENCY

Let K and L be simplicial complexes. By K x L, we mean the simplicial
complex defined by the barycentric subdivision of the cell complex {o x 7|0 €
K, € L}. We denote the n-skeleton of the simplicial complex K x L by
K x, L (i.e. K x, L= (K x L)™).

Let {K;}$°, be a sequence of (locally finite) simplicial complexes. Then we

n
define the V-product of simplicial complexes as follows:
n
v11':()1(1' — KO Xn Kl,
and inductively for [ > 1,
Sl ol—1
Vizofls = (Vi:OKi) Xn Ki.
We define %i'ioKi as the limit (space) of the following inverse sequence:

¥ 3 n p2 n 3 N, 4
| Kol 2|V Ki| — |ViLoKi| 2 VoKl LE TP
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: n. n
where pit! |V;§BKJ-| — |V5_o K| is the restriction of the canonical projection

|€/;:0Kj' X |Kiy1| = |%;:0Kj!, i > 0. If n = oo, we denote %}:OKJ' by
*_oKj. Note that %;’_‘i_ol(,- = cl(UjiO(%i:OKk)) by [vM, 6.7.2]. If we set
P = |%;:0Kj|, i > 0, then the inverse sequence {P;,pi*'}$2, is called the
defining sequence with respective to {K;}2,.
Let {T;}{2, be a sequence of simplicial complexes. We say {T;}2, a u"-
coordinate system provided that each T; is a non-degenerate locally finite sim-

plicial complex with dimension< n such that the underlying polyhedron |Tj| is

a C"!-compactum for 7 > 1.

Lemma 5.1.1. Let {P;, pi*'}2, be the defining sequence with respective to
a p"-coor-dinate system {T;}2,. Then for each i > 0, each k < n — 1, each
map f : B¥*! — P, and each map g : S* — P,y, with pi*! o g = f|S*, there
exists an extension h : B**1 — P,., of g such that pf' o h and p}, o f are

Sd(i+1-m)( ™ oT;)-close for each m < i.

Proof. Let my : P; X |Ti41| — P; and 79 : P; X |Ti41| — |Tiy1| be the canonical
projections. Since |Tj;1| € C™1, there is an extension « : B¥*! — |Tj,,| of
79 0 g. Then the map f' : B¥*! — P; x |Ti41| defined by f'(z) = (f(z), a(z)),
z € B¥t! is an extension of g with m o f’ = f. For each simplex o € (n;:OTj) X
Tiy1, we can take a map ho : (f')7'(lo]) — |6"| so that he|(f')"!(|e™|) =
F'1(F) 1 (Jo™|) since k+1 < n [HW]. Define h : B*+! — P, 1, by &|(f')"!(|o]) =
h, for each simplex o € (n;ZOTj) X T;y1. Then the definition of defining
sequences implies that pif! o h and p, o f are S+ —™)(V™ T;)-close for
eachm <i. 0O

Proposition 5.1.1. For each p"-coordinate system {T;}{2, %fioT,- is a p"-
manifold. In particular, 6;’207} & u" if |Ty| is a C™~'-compactum.

Proof. Let X = V2,T; and let W pi“ 2o be the defining sequence with
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respect to a u™-coordinate system {7;}22,. First note that X is locally compact
since each |T;|is compact for 7 > 1. Thus all we have to do is to check the
conditions of Bestvina’s characterization. Let £ € X be a point and let U C X
be a neighborhood of z. Then there is an open neighborhood Uyn of zny =
pn(zN) in Py such that py'(Unx) C U for some N € N. Take a > N and a

neighborhood V of z, so that
St (p(V),8d M (VYL,Ty)) € Un.

Since P, is ANR, there is a neighborhood W C Vof z, such that any map
from S* (k < n — 1) into W can be extended to a map from B**! to V. Let
f:S* — X be a map such that imf C p;!(W). Then there is an extension
go : B¥*! — V of p,o f. Fori < a, we put g; = p?o g, : B¥s*1 — P,
Using Lemma 5.1.1, we can inductively construct an extension g, : B*+! — P
(i > a) of p; o f such that p?, o g; and pif! o g;41 are Sd(”l_m)(vg‘:OTj)-
close. Since the sequence {p%, o gi}i>m of maps is uniformly convergence, the
map h; = limy,_ 0o p™ © gm : B¥*! — X, is continuous and clearly satisfies
pit! o hiy1 = hi and h;|S¥ = p; o f. Consider the map h = lim h; : BFL X,
Then k is an extension of f. Since h, and g, are St(Q)(Sd(a_N)(fo:OTj))-close
and img, C p%(V), we have imh, C Uy. Thus imh C py' (Unx) C U. Hence X

is an LC™ '-space. The other parts are the same as [GHW, Theorem 1]. O

Let {T;}$°, be a p™-coordinate system and let Z = (z;,3,...) be a point
such that z; € T{” for each i > 1. Let jg, : |€7;;th| — |6;:0Tj| x {z;} C
I%}=0Tj| be the inclusion. Then the inclusion jz : |Ty| — |€7§°;0Tj| is defined
by pi © jz = jz; ©Jzii1 @ O Jays 1 2 0.

Proposition 5.1.2. Let {T;}{2, be a u™-coordinate system such that |T,| is
connected and let £ = (z1,Z2,...) be a point such that z; € Tz.(o) for each

i > 1. Then both the inclusion jz : |To| — |[V$2,T;| and the projection pq :
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n
|V$24T;| — |To| induce isomorphisms of homotopy groups of dimension< n —1

and of ends of dimension< n — 1.

Proof. Note that both jz and pg are proper maps. First we shall show that pg
induces monomorphism of homotopy group of ends of dimension < n — 1. Let
C be a compactum in |Ty| and let K = [St(?)(C, Tp)|. Let o : S¥ — %;?’;OTJ»\
Py (K), k < n—1be a map with pgoa ~ * in |Ty|\ K and let 8 : B¥t! — |Ty|\ K
be the contraction. By Lemma 5.1.1, we can construct extensions j3; : B¥+1 —
!%3‘:0le of p; o a such that p?, o §; and pit! o By are StU+H1—™)(Ty)-close
for each ¢, where p; : |%?‘;0Tj| - |6;:0Tj| and p:, : |%;:0Tj| o |€7;-":0le are

canonical projections. Since {p{* o A, }m>: is uniformly Cauchy,
. k41 n.‘
a; = lim po B, : B** — |Vi_ Ty
m—00 4

is continuous for each 7 > 1 and clearly an extension of p; o with p;“ oait1 =
a;. Thus the map @ = liLnai : B %;";OTJ» is an extension of . Since
po © & = ag and B are St(2)(Ty)-close, &(B*+t') Npy'(C) = @. Thus po induce
the monomorphisms of homotopy groups of dimension < n — 1.

For epimorphism, let a € %;"ioTj \ p5 ' (K) be a point and let v : (S¥,*) —
(|To] \ K,po(a)) be a map. We may assume that a; = g;(a) € Ti(o) for each
i > 1, where g; : %ﬁoTj — |T;| is the canonical projection. Then the map
¥=jzgo07: (S %) — (nﬁOTj,y) satisfies pg o 4 = 7.

Next we shall show that jz induces epimorphism of homotopy groups of
ends of dimension < n — 1. Let C' C eﬁOTj be a compactum and let K’ =
p5 (St (po(C"), Tp)). Let y € |To| \ po(K') be a point and let £ : (S*, %) —
(6;‘;0Tj \ K',jz(y)) be a map. Then the map € = pgo € : (8, %) — (|To|, ) is
such that £(S*) C |To|\jz " (K’). Put y; = p;ojz(y),i > 1and & = j,, 0+ -0jz, 0
§~. Then, as in the proof of Lemma 5.1.1, we can take a sequence of homotopies

{h}: (S*,%) = (|V5_oTjl|,%:)} such that A is a homotopy from &; to p; of rel. y;
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with hf = pgo&, t € [0,1], and pit! o hi*! and pi, o ki are St(+1=™) (V™ Ty)-
close for each m < i. Then we define H} : (S*,%) — (|Vi_oTj|,¥:) by the

uniform limit map lim;_,, p! o hl. Then H} is a homotopy from &; to p; o ¢

i

rel. y; with p**! o H;*! = H}. Thus the map H; = lim H} is a homotopy from
jz 0 € to € rel. jz(y) and the image is contained in V$2,T; \ C'. The rest is

trivial since pg 0o jz =id. O

Corollary 5.1.1. Let {T;}$2, and {T}}{2, be u"-coordinate systems. If there

exists a proper map h : |Ty| — |T}| which induces isomorphisms of homotopy
n

groups of dimension < n — 1 and of ends of dimension < n — 1 then V{2 T; =

C /
(o o]
i=als-

Proof. We may assume without loss of generality that both |Ty| and |Tj| are
connected. Let Z = (z1,z2,...) be a point such that z; € Ti(o). Let jz : |To| —
Yn?;-";OTj be the inclusion map and let pj : nj‘;OT]’- — |T§| be the projection.
Then the map jzohopy : n;‘;OTJ’- — %;.;OTJ induces isomorphisms of homotopy
groups of dimension < n — 1 and of ends of dimension < n — 1 by Proposition

n n
5.1.2. Since V72,7 and V;-";OT; are p"-manifolds, by Theorem 1.2.5, we have

VR T 2 VR T O

It is known that for each p™-manifold M, there is a locally finite polyhe-
dron K with dim K < n and a proper UV™ -surjection f : M — K [Dr2].
Since proper UV ™ l-surjections induce isomorphisms of homotopy groups of
dimension < n — 1 and of ends of dimension < n — 1, by Theorem 1.2.5, we

obtain the following.

Theorem 5.1.1 (Triangulation). For each pu™-manifold M, there exists a

n
p"-coordinate system {T;}3°, such that M = V2 T;.

A subset A of a p"-manifold M is said to have infinite deficiency (cf. [An3],

[Cu]) provided that there exist a u™-coordinate system {S;}°, of M, a cofinal

40




subset N C N and a homeomorphism h : M — V2,5, such that ¢; o h|A is

n
constant for each ¢ € N, where ¢; : V2,S; — |S;| is the canonical projection.

Theorem 5.1.2. A closed subset A of a u™-manifold M is a Z-set if and only

if A has infinite deficiency.

Proof. Suppose that A has infinite deficiency. Then there must exists a p"-
coordinate system {S;}°, of M, a cofinal subset NV of N and a homeomorphism
h: M — %;’;051» such that g; o h|A is constant for each ¢ € N, where g¢; :
%{2052' — |S;| is the canonical projection. Assume that ¢; o h(A) = {z;} for
each i € N. Choose a point y = (y1,¥2,...) so that y; € S’fo) and z; # y; if
t€ N. Let f:I" — {17;’2051- be a map and let € > 0 be given. Let £ > 0 be
an integer such that} >, 27" < e. Let s : |%;-":OSJ~| — |S¢| be the projection
m > t. We define g, : |%;-”:05j| — l%;”:OSﬂ by si" 0 gm = si" if t < k and
s ogm =y ift > k. Let Y |%}‘=05’j| — |%}*:05j| be the projection. Since
B+ 0 gpmi1 = gm, we can define the limit map g = lim gm0 By o f : I" —
n;??;OSj. Then g is a map with d(f,g) < € such that img N h(A) = (. Hence
h(A) is a Z-set in 6;‘;053», so A is a Z-set in M. Thus infinite deficient closed

subsets of p™-manifolds are Z-sets.

Now we shall show that each Z-set has infinite deficiency. Let {D;}$2, be
a p"-coordinate system of M such that D; = [0,1] for each 7 > 1. Then let
{D}}2, be a sequence of simplicial complexes such that

/

{D,- j=2k k>0
{0} otherwise.

Observe that |V2:,D| C |V35,Dj| since D; = D; = [0,1] for i,j > 1. We
define a map Iy : [V5_,D,| — |V, D}| by

lk(z(]amla"'vmk) = (:EOaO):ElaOv'"' ,CEk).
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Then [} is an embedding. Since pgt” olg4+1 = lx, we obtain a sliding map
l=limlg : V2 ,D; - V¥,D,;. Since each [; is a closed embedding, [ is also

TR =03 9=0="2
a closed embedding and clearly im [ has infinite deficiency. Thus [ is actually a
Z-embedding.

Next we shall show that the sliding map [ is properly (n — 1)-homotopic to

n
the identity map. Let o : P — V$2,D; be a proper map from an (n —1)-
n

dimensional space P. Since V32,D; is LC™ !, we may assume that P is an
(n — 1)-dimensional polyhedron. We construct a homotopy H* : P x [0,1] —
n
Vf:ODj such that

(1) Hf =¢®oa, H* = ¢ oloa and

(2) g5 o HE+! and gk, o H* are St-+1=™)(V™ ( D;)-close for m < k,

n n
where gy : |Vi_¢D;| — |Vj_oD;| is the projection. To this end, we put
HY =g oa fort € [0,1] since g° oloa = lyogf® oa = ¢f° o a. Suppose
that H* has been constructed. Since Dy, is C"!-compactum, we can take a
n
proper homotopy h**! : Px[0,1] — |(V5_(D;) X Dj41| so that proh**+! = H*,
n

Rptt = qp3, © @ and hi+l = qeq1 © l o a, where pr : |(V§:0Dj) X Dgy1] —
n
|V§:0Dj| is the projection. As in the proof of Lemma 5.1.1, we can take a
proper homotopy H**! : P x [0,1] — |V§iéDjl such that Hit! = 0% © @,
HE = g, oloa, and gkt o H*+! and ¢ o H are St(k“_m)(V;-"zoDj)-close
for m < k (recall the definition of the product of simplicial complexes).

Then we define
G* ZjEr&qi oH’: P x[0,1] - |V*_oDj|.

Since {q,’c o H’} is uniformly Cauchy, G* is continuous and clearly satisfies
Gk = qPoa, G¥ = g oloa and gft! o GF+t! = G*. Moreover, since
each H* satisfies the condition (2), G* is a proper homotopy. Then the map

n
G = Lilr_le : P x[0,1] — V22oD; is a proper homotopy between « and {0 a.
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Thus the sliding map [ is properly (n — 1)-homotopic to the identity.

Let Abea Z-setin M and let f : M — einDj be a homeomorphism. Since
the restriction of the sliding map I|f(A) : f(A) — I(f(A)) is a homeomorphism
between Z-sets f(A) and I(f(A)) with I|f(A) ~2~" idg(4), using the Z-set
unknotting theorem, we have a homeomorphism g : %;-";ODJ- — %?’;ODJ- such

that g(f(A)) = I(f(A)). This means that A has infinite deficiency since I(f(A))

has infinite deficiency. [

§5.2. PRODUCT STRUCTURE

Let {S:}{2, and {T;}{°, be sequences of simplicial complexes. We define
the A,-product of V$2,S; and V52,T} as the limit of the following inverse

sequence
|So X n To| & (V;‘:OSJ’) Xn (V;:OTJ')I - (V?=OSJ) Xn (VﬁonjN e )

where a; ¢ [(V'215;) Xn (VIZAT)| = [(Vi_S;) Xn (Vi_oTy)| is the canonical
projection. We denote the limit space by (%?’;OSJ)A,I(%?‘;OTj). For a simpli-
cial complex K, we define (%fiosi)A,II( by (6$§OS¢)A,1(%$§OK,~), where the
sequence { K}, is such that Ky = K and Kj is a point for each ¢ > 1.

As in the proof of Proposition 5.1.1, we obtain the following.
Proposition 5.2.1. Let {S;}2, and {T;}°, be u™-coordinate systems and
K a simplicial complex. Then both (V2,S;)An(V2,T:) and (V2,Si)AnK
are u"-manifolds.
Lemma 5.2.1. Let M and N be p™-manifolds and let {S;}32, and {T;}2, be

pu™-coordinate systems of M and N respectively. Then the topological type of
the p™-manifold (V2,8:)An(V2,T:) depends only on M and N.

Proof. As is stated in the proof of Proposition 5.1.2, both the projection pr :
n n
( 2051)An(V20T1) — |S0 XnT()l and the inclusion 7 : |S0 x'nTOI — |SO! X |T0|
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induce isomorphism of homotopy groups of dimension < n — 1 and of ends
of dimension < n — 1. By [Dr2], there exists an proper n-invertible UV ™~1-
surjection h : V. — M x N of some p"-manifold V. Note that V is unique
up to homeomorphism [Ch3]. Let f : M — |Sy|, g : N — |Ty| be proper
n-invertible UV ™~ !-surjections (cf. [Dr2]). Then the composition (f x g) o h:
V — |So| x |Tp| is also a proper n-invertible UV ™~ !-surjection. Using the n-
invertibility of (f x g) o h there is a proper map « : (%fioS,-)An(%fioTi) -V
such that ao (f x g)oh = 10 pr. Now it is easy to see that « is a proper
map between p™-manifolds which induces isomorphism of homotopy groups of
dimension < n — 1 and of end of dimension < n — 1. Thus V is homeomorphic

t0 (V20 S:)An(VRT). O

We denote the topological type of the p™-manifold (%;‘iOSi)An(%;‘ioTi) by
MA, N. For a simplicial complex K, the topological type of the x™-manifold
(%fioS,-)AnK is unique and we denoted the topological type by MA, K.

Recall that an (n — 1)-homotopy kernel of a p™-manifold M is defined to
be the complement M \ f(M) of the image of an arbitrary Z-embedding f :
M — M with f :;“1 idar. Using the Z-set unknotting theorem, two (n — 1)-
homotopy kernels of a x™-manifold are homeomorphic. By Ker(M), we denote

a representative of (n — 1)-homotopy kernels of M.

Theorem 5.2.1 (Stability). Let M be a p™-manifold. Then we have the
following:

(1) MA ™ 2 M =2 MA,[0,1];

(2) MA,L[0,1) 2 Ker(M).

Proof. Let {S;}2, and {T;}$2, be p"-coordinate systems of M and u™ re-
spectively. Take a proper m-invertible UV™ !-surjection f : M — |Sy|. Let
pr: (V2S:)An(VR,Ti) — |So xn To| and ¢ : |So Xxn To| — |So| be the pro-

44




jections. Note that ¢ induces isomorphisms of homotopy groups of dimension
< n—1 and of ends of dimension < n—1 since |Tp| is a C™~*-compactum. Using
the m-invertibility of f, there is a proper map g : (%;’iosi)An(%ﬁoTi) — M
with gopr = fog. Since f and gopr induce isomorphisms of homotopy groups
of dimension < n — 1 and of ends of dimension < n — 1, also g does. So we
have MA,u™ = M. Similarly we have M = M A,[0,1].

By [Ch3] (cf. [Iwl, Proposition 1.4]), there is a proper n-invertible UV ™~1-
surjection h : Ker(M) — M x [0,1). Let £k : M — |Sg| be a proper n-
invertible UV ™ !-surjection (cf. [Dr2]). Then the composition (k X id 1)) o h :
Ker(M) — |So| x [0,1) is also a proper n-invertible UV ™ !-surjection. Let p :
(V248:)An(VRT:) — |So%x[0,1)] and i : |So %[0, 1)] < |SoxTh| be the pro-
jection and the inclusion respectively. Note that top: (%f;oSi)An( n;’ioTi) —
|So % [0,1)| induces the isomorphisms of homotopy groups of dimension < n—1
and of ends of dimension < n — 1. The n-invertibility of (k x id[g 1)) o h allows
us to take a proper map k : (%ﬁoSi)An(nfioTi) — Ker(M) which induces
the isomorphisms of homotopy groups of dimension < n — 1 and of ends of

dimension < n — 1. Thus MA,[0,1) is homeomorphic to Ker(M). O

A space X is called properly k-contractible to oo provided that for any com-
pactum K in X, there is a proper map jx : X — X \ K which is properly
k-homotopic to idx. We say X is properly locally k-contractible at oo if for
any compactum K C X, there is a compactum L C X with K C L such
that for each compactum L' C X with L C L', there exists a proper map
Jrr : X\ L — X\ L' which is properly k-homotopic to idx\ in X \ K.

A p™-manifold M is called a u2 -manifold if M is properly (n — 1)-contracti-
ble to oo and properly locally (n — 1)-contractible at oo. pZ -manifolds were
characterized topologically in [Iwl] as follows: A u™-manifold M is a pl -

manifold if and only if M 2 Ker(M). Thus Theorem 5.2.1 characterizes p2 -

45




manifolds in terms of A, -product, that is:
Corollary 5.2.1. M is a u” -manifold if and only if M = M A,[0,1).

The formulation above is quite natural because the (n —1)-homotopy kernels
were defined as the corresponding notion of “[0,1)-stable” @Q-manifolds for p"-

manifolds [Ch3].
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VI. GROUP ACTIONS AND FIXED POINTS

Let G be a compact zero-dimensional topological group with the unit element
e. An action of G on a space X is called free (resp. semi-free) if, for each
xz € X, the isotropy group G, = {g €eqd | gz = :z:} is trivial (resp. either trivial
or is all of G). It is known that each n-dimensional Menger manifold (u"-
manifold) admits a free G-action [Dr3], [S2]. Also in his paper [S3]|, K. Sakai
has constructed a semi-free G-action on the n-dimensional universal Menger
compactum g™ and has obtained the following: For each Z-set X in u™, there
exists a semi-free G-action on pu™ such that X is the fixed point set of any
g € G\ {e}. In the same paper, he asked whether the result above is still true
for any closed subset X of u™.

On the other hand, it is known [M] that the Hilbert cube @ has the complete
invariance property with respect to homeomorphisms, where a space X has the
complete invariance property with respect to homeomorphisms (CIPH) if each
non-empty closed subset of X is the fixed point set of some autohomeomorphism
of X. Since p™ is recognized as a finite dimensional analogue of Q, the following
question naturally arose [CKT2, Problem 6.4.3]: Is it true that u™ has CIPH ?

In the present chapter, we construct semi-free GG-actions on p™-manifolds,

on their pseudo-interiors and on their pseudo-boundaries. The main purpose of
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this chapter is to give the affirmative answers to the questions above as follows:
For each closed subset X of a p™-manifold M, there exists a semi-free G-action
on M such that X is the fixed point set of any g € G\ {e} (Theorem 6.1.1).
Using the idea of infinite deficiency, we can construct G-invariant Z-skeletoids
in p™-manifolds, where a subspace A of a G-space X is called (G-)invariant
provided that A = {ga | g € G,a € A}. This allows us to obtain the pseudo-
interiors and the pseudo-boundaries versions of the theorem above as follows:
Let v(M) (resp. £(M)) be a pseudo-interior (resp. a pseudo-boundary) of a u™-
manifold M. Then for each closed subset X of v(M) (resp. £(M)), there exists
a semi-free G-action on v(M) (resp. ¥(M)) such that X is the fixed points set
of any g € G\ {e} (Corollary 6.2.2). As a consequence, every u™-manifold
admits a free G-action with a G-invariant pseudo-interior and a G-invariant

pseudo-boundary (Theorem 6.2.2).

§6.1. FIXED POINT SETS OF SEMI-FREE ACTIONS

In this section, we consider semi-free actions on Menger manifolds. Let X
be a space and let f : X — X be a map. A closed subset A of X is called
the fized point set of f if A = {:1; € X

f(z) = z}. The main purpose of this
section is to prove the following theorem which gives the affirmative answer to

the question of [S3].

Theorem 6.1.1. Let G be a compact separable zero-dimensional group with
the unit element e. For each closed subset X of a p™-manifold M, there exists

a semi-free G-action on M such that X is the fixed point set of any g € G\ {e}.

Proof. By Pontryagin’s theorem [Po, §46, C|, G can be represented as the

inverse limit of an inverse sequence

G i Sl AR RS s
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consisting of non-trivial finite groups.
Step 1. Construction of a u™-manifold.

Let Li be an (n— 1)-connected finite simplicial complex with free Gi-action
(cf. [S2]). Then Ly = Ly x [0,1] is also an (n — 1)-connected finite simplicial
complex with free G-action. We identify S(L) with Ly x {0}. Then the free
G-action on L induces the canonical semi-free G-action on the cone vi x Ly
so that the vertex vy is the one and only one fixed point. One should note that
B(Ly) (resp. v x B(Ly)) is an invariant subset for each free (resp. semi-free)
G-action on Ly (resp. vi * Lg).

By Theorem 1.2.4 and the triangulation theorem for x"-manifolds [Be], we
can take a PL-manifold |Mg| with the triangulation M, and an n-invertible
proper UV ™ !-surjection fp, : M \ X — | M| satisfying the following:

(1) f;l(lj(L) is a p™-manifold for each closed subpolyhedron L of |My| and

(ii) f;[t(Z) is a Z-set in f,]}t(L) for each closed subcomplex L of |My| and

for each Z-set Z in L.

Take a tower {Uj}22 , of finite subcomplexes of My so that
|Uk| C intjary(|Uk4al, | Mol = LJ |Uk|
k=0
and |Ug| is a compact P L-submanifold of |Mj| such that
[Wi| = cljago (1Mo \ [Us]) N |Uk|

is a Z-set in each of |Ug| \ int|ag||Uk—1| and |Ugya]| \ intjag|Us| (U-1 = 0).
Let Wy be the triangulation of |W}| induced by M. By K we denote the
triangulation of |Uy|\int|az,||Uk—1| induced by My. Put K7 = KJ(-") W) = WJ(")
and BY = W? for each j > 0, where KJ(-") denotes the n-skeleton of K;. We

define an n-dimensional simplicial complex Py as follows:

oy == Kg U38 K? Upo Kg Upy Kg UBg
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Assume that KJ’.“I, Wf_l and B;.“_l have been constructed for each j > 0.
Note that for each integer k£ > 0, there are non-negative integers 7 and [ such
that ij:o alk= Zgzoa +1< Zf::loa and that the integers 7 and [ are

uniquely defined by k. Hence we define functions X, 6 : ZZ° — Z20 so that
A(k)
k=Y a+6(k), 0<6(k)<AK).
a=0

Then we define KJ’»“, Wf and B;‘ as follows:

( s A\ (1) )
(51 x13) j < 8(k),
k—1 A(k)
((Ké(k) X L&(k))
K= ()
jok (k) L 1 A(k) 3e
U = (Wa(k)l * (Ué(k)) *Lé(k)))> Jj = 6(k),
W:(;)lxn‘a((k))
[ BKS™) j > 8(k),
3 feut NO R : 4
(Wj % Lé(k)) j < 6(k),
k_ P .
Wy = Wiy X {v;\((,f))} J = 6(k),
L8 j > 8(k),
k-1 NONER :
(WJ’ o ’B(Lé(k))) J < 6(k),
e ok Ak .
B; Wiad x{olint =Wk, j = 8(k),
BWF™) = Wk 3 > 6(k),

where L% (resp. L}) is a copy of L; (resp. L;) for each i. Note that Wf (resp.
Bf) is a subcomplex of KJ’-C (resp. WJ‘“). Then we define an n-dimensional

simplicial complex P as follows:
k k k k
P, = K, UBS K UB{“ K, UB%‘ K, UB:I;:
Let 7f_, : |Px| — |Px—1| be the map induced by the canonical projections
|KJ’°| - |K;°‘1|. Note that each projections rf_,|: |[KF| — |Kf‘1| and r¥_, || :

B*| — |B*~!| induce isomorphisms of homotopy groups of dim < n — 1.
j j y 8
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Put

. k
N = lim{|P|, 7k},
. . k (e’s)
N; = hm{IK;‘l, Tk+l| Hezos
> K
B; = llm{|BJl~°|,7‘k+l|| 1o

for each j. By the construction, we have
N - NQ UBO N] UB1 NQ UB2 N3 UB3

Claim 1.1.1. N; and B, are u™-manifolds for each j.

Sublemma. For each map f : B" — [Kf_1| and each map g : S"~! — |K}|
with r§_,g = f|S™!, there exist an extension § : B® — |K}| of g such that
rf_,§ and f are St(ﬁ(KJ'-"l),St(ﬁQ(Kf'l)))—close. In particular, we can take
h so that r% g and v f are St(B*—™(KT), St(B*~™"1(K]*)))-close, for m <
k—1.

Proof of Sublemma. We show the case 7 = §(k). Put

K={K 1)) | (W< @),

] 2 ) 5 3
Wh=1 5 )
J J

g R AT
W1 x{0}

and

TRl s L1

Note that K is a finite simplicial complex such that K(") = KJ’-C. Since | K|\
|W;“"1 X {fu;(k)}| ~ T x Lj(k), we identify these spaces. Let g| = (g1,92) : 8" —

T x IIL;(k)| be the restriction of g, where S’ = §"~1 \g“l(VV;‘_l X {v;(k)}). Let
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¢ o |]L;(k)| — T be the projection. Then p| can be extended to the map
7 : K — T so that

m||T % L;(k)l = p} and p; (z,v;(k)) = (z,0) for ¢ € lVJk_l.
Let pa : r |KJ'-°_1] be the canonical map such that
p2||K;_1| = id and py(z,t) = z for (z,t) € |1'V;°_1 x [0, 1]].

One should note that pop;||K}| = r_,.

Let v be a vertex of ]L;\-(k). We identify ]Kf—ll with |KJ"°‘1 x {v}| C |K¥|.
Note that |L;\-(k)| is AE(n) since it is (n — 1)-connected ANR. Hence there
exists a homotopy A' : §’ x [0,1] — ]]L;(k)l such that h{ = go and hl =v. We
define h? : §" x [0,1] — T x [L}*| by h?(z,t) = (9(x), h* (z,t)). Then k2 is a

homotopy such that
hg = gl, b = p1g| and p1h} = pyg| for any t € [0,1].
Let H' : S"~! x [0,1] — | K| be the extension of A% such that
H'(z,t) =g(z) forz € g_l(IV]’-‘_l X {v;(k)}), t €[0,1].

Since r{_,9 = f and pap1g = rf_,9 = fIS"71, using the [0, 1]-factor, we
obtain the canonical homotopy H? : S x [0,1] — T such that H} = mg,
H? = f|S™! and p,H? = f|S™! for t € [0,1]. Define a homotopy H :
S"~1 x [0,1] = K by

H'(z,2t) O § N,
H(zd) = 2

H%(z,2t—1) 1/2<t<1.
Then H is a homotopy such that Hy = g, H; = f|S™! and pyp, H; = f|S"1
for t € [0,1]. By the essentiality of maps [HW] (cf. [GHW]), there is a homotopy

h: 8" 1! x[0,1] — |K]"| such that hg = g, hy = f|S™! and h; and H; are
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Kf—close for t € [0,1]. Then rf_,h; and f|S™! are ﬂ(KJl»“_l)—close by our
definition for ¢ € [0, 1].

Choose 1 > 0 so that f(z) and f(y) are St(ﬁQ(Kf_l))—close whenever ||z —
yl| < n, z,y € B™. Take t > 0 so that 1 —¢ < 7 and let € = (1 — t)/2. Define
f’:]B"—»KandQ:]B"—»|Kf| by

( f(z) 0< ||zl ¢,
fl(z)={ fU=lelett=tys) ¢ <jaf| <t +e,
| (g i2l) t+e<|lzf <1.
( f(z) 0< Izl <£¢,
j(o) = { F(Umlelbettr—ty) < jgf| <t e,
| S t+e<|af <1.

Then f’ and § are well-defined maps and are extensions of g. Observe that

Tlls—lf’ and Tlls—1§ are ﬁ(Kf_l )-close and

f(z) 0 < |lz]| <,
rhaf'(ey=q FBEER =) <ol S t4e,
f (&) t+e<|z|| <1.

(—t—e)|j|+(+t)*~t
e(t+e)

fort+e<|z|| <1, rf_,f" and f are St(ﬂz(Kf_l))—close, ie.

Since ||z — ( )z|| < pfort < ||z|| <t + ¢ and ||z — ]I%ﬂ” <n

g ~BKFTYH o, SHBM(KTTY)
5T i T s

F 8

Thus rf_,§ and f are St(ﬂ(K;“_l),St(ﬁ2(lﬂ'f_l)))--close. The rest parts are

now obvious from our definitions. O

Proof of Claim 1.1.1. Note that N; and B; are locally compact. Thus all
we have to do is to check the conditions of Bestvina’s characterization. The
proofs of the n-dimensionality and the DD™P of N; are the same with [GHW,
Theorem 1] and we left to the reader. We only show that N, is LC™™! because

the proof for B; is essentially the same.
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Let z € N, be a point and let U C N, be a neighborhood of z. Then there is
an open neighborhood Uy of zx = r{(z) in |KJNI such that (r$)~'(Un) C U

for some N € N. Take a > N and a neighborhood V of z, so that
St*(r&(V), " NK}) C Un.

Since |K§| is ANR, there is a neighborhood W C V' of z, such that any map
from S"~! to W can be extended to a map from B™ to V. Let f : S*™! — N;
be a map such that f(S™™') C (r$*)~'(W) C U. Then there is an extension
go :B® > Vofr°f. Fori < a, let g; =rlg, : B® — |K;| Using Sublemma,
we can inductively construct extensions g; : B* — |K}| of 7{°f so that r},g;
and 7' 1g,,_, are St(ﬂ“"%K}”), St(B =" (KJ")))-close for m <i—1, i > a.
Since the sequence {r’ g;}°, is uniformly convergence, the limit map h, =
W ringi : B — X,, is continuous and clearly satisfies the conditions
i b = B and B i8S = r2f, Then b= lim b, : B® — Nj is an

extension of f. Since h, and g, is St*(3*~N K¢)-close,
ro hn (B™) = ha(B™) C St*(r§(V), 8N K$) C Un.
Thus we have h(B") C U. Hence N; is LC™™'. O

Claim 1.1.2. B; is a Z-set in each of Nj and N;4; for each j.

Proof of Claim 1.1.2. Roughly speaking, the claim follows from the fact that
B; is infinite deficient® in each of N; and Njy;. We only show that B; is a
Z-set in N;. Let f : I" — N, be a map and let € > 0 be given. Choose iy so
that Z[’Zio 2-! < ¢ and 8(ip), 6(i0 +1) > j+ 1. For each k < ig, let g = r°f :

I* — |KJ’°| Let v be a vertex of L;((:))j:ll)) Since |K;°| x {(v,1)} C |K;-°+l|, we

1The notion infinite deficiency in p™-manifolds was introduced in [Iw2] to characterize
Z-sets in p™-manifolds in terms of infinite-deficiency (cf. [An3])
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define a map g¢;,41 : I" — |K;°+l| as follows:

1 A1 ph 1 Alig+1
gio11(2) = (g3, (2),,1) € || x |L)E0] x [0,1] (= 1K1 x ILzie i)

Using the fact that rf*' : |KJ’?’+1| — |KJ’°| is a retraction for each k, we can
choose a map gx : I" — |K¥| (k > ig + 1) so that gx = ¥t gks1. Then
g = lilngk : I" — N; is a map e-close to f. By our construction of Bj, it is

easy to see that g(I") N B; = (. This finishes the proof of Claim 1.1.2. [

Step 2. Construction of a homeomorphism between N and M \ X.

Let Nj = fA_/!(l)(lKJD and BJ' - f;{t(lel) = Nj N Nj+1. Then NJ‘ and Bj
are compact p"-manifolds by (i) and Ej is a Z-set in each of Nj and Iij
by (ii). Since fu, is n-invertible, there is a map p; : |Kj| — ]Vj such that
fumyp; = id|go;. Observe that p; induces isomorphisms of homotopy groups of
dim < n — 1. Then r; = p,;75°| : N; — N, and ;= pirec| : Bj — B; are maps
between compact pu™-manifolds that induce isomorphisms of homotopy groups
ofdim<n-1.

By the classification theorem for x™-manifolds [Be, 2.8.6], there exist home-
omorphisms hg : Ny — No and sg : By — Bg such that hg ~"! ry and

so ~™1 rl. Then we have

—1 aumn=—1

=1 on—=i =1 i
hosg "7 rosy =TpSy = idg, -

Using the Z-set unknotting theorem [Be, 3.1.4], there is a homeomorphism
f1+ Ny — Ny such that f3|By = hosg'. Then (£3)~|ho(Bo) = sohg|ho(Bo).
In fact, for each = € ho(By), we can represent = as hgsy ' (y) for some y € By

since fé(éo) = hoSO—l(éo) = ho(Bg). So we have

(fo) 7' (@) = (fo) " hosa ' () = (fo0) ' fo(y) =y = sohq " (2).
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Thus fo = (f}) *ho : Ng — N, is a homeomorphism such that folBo =
PO

Assume that f;_; : Nj_; — Nj_l has been constructed so that f;_;|Bj_2 =
fi—2|Bj—2 and f;_1|Bj_y ~™"! ri_y (B-1 = 0). As before, there exist home-
omorphisms h; : N; — N, and s; : B; — B, such that h; ~™ 1 r; and
8; ™! r. Then the map §; = f;_1Us;: Bj1UB; — Bj_; U Ej is such

that 3; ~"~! r’ since r|B;_; = r_,. Hence we have

,.
R

hj(gj)—l pul Tj(g‘/j)ﬁl oyl idﬁj_luﬁj'

By the Z-set unknotting theorem, there is a homeomorphism f]’ 3 ]\~/j —
N; such that f/|B;_, U B; = h;(3;)". Note that (f!)~!|h;(B;_1 U B;) =
(Ej)_lhj|hj(§j_1 U B;). Then f; = (f)thy: Nj — N, is a homeomorphism
such that f;|B;_1 = 5;(h;) " hj|Bj_1 = §;|Bj—1 = fj—1 and f;|B; = 5;|B; =
TR gt

Thus the map f : N — M \ X defined by f|N; = f; is a well-defined

homeomorphism.
Step 3. Construction of a semi-free G-action.

First we shall define a free G-action on V. Let

st Oy

Since f|N; = f; : N; — ]Vj is a homeomorphism between compacta, we can
inductively obtain an increasing sequence 1 < 7(0) < (1) < #(2) < #(3) < ---

of natural numbers satisfying the following:
(A) if z,y € N; and d(z,y) < 27%0) then d(f(z), f(y)) < 277.

In case Zgi)o a+j<EL Zﬁfiﬁ” a+ 7, |Pe| has L:“)(or v:“) *]Lf([))—factor for

each [ < j and does not have L:,(I"I)(or vim) *Li,gm))-factor for any m > j + 1.
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We define a G'-action using the only G-actions of Lf([) and 'uli(l) *L;(‘), l <j.
Let ( = Eifi)o a+ j. Then A(¢) = i(j) and 6(¢) = j. Observe that G’ acts
freely on

|K§| U|35| Sx U|Bf__1, 'Kﬂ \ (Tg)“l(ch)

and acts trivially on

(’I‘g)—l(ch) U (|K§+1[ st 4 |K§+2| Uist,,| 50l

2
In particular
(B) G acts freely on |K§| Uisg = Yipe_,| |K§_1| and acts trivially on
3 3
[KG 1l Yppe, ) K2l Ype

Considering G as the diagonal subgroup of I1{2,G;, we define a G-action on

N as follows:

(90,911927- . ')(‘Tﬂvzlaz?a oo ) = (96550’ 9’{331,9-31'2’ > ')1

where z¢ € |P¢| and g; = (g0,91,92,--.,9;) for each Ef)(i)oa o M
Zi(j+1)a+j. For ] < 57 —1 and Z;(lz)oa-i-l A Z;(l:(-]l)a‘*‘la G} acts

a=0

trivially on

& 3 £ 13
| K741 Use, | |K o] Mgk S |K; | Y B¢ |K; 44l Vs,

1l

by (B). Hence if z = (g, z1,Z2,---) € N; and g € G then

g = (QGIO,QQII,QQH, P ')

and g zx = xy for each k < fo(i)o a+j —1. Since Zgi)o a+j—12i(F)+1,
we have

(C) d(gz,z) < 27*9) whenever z € N;, g € G.
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Now it is easy to see that the G-action on N is free.

We define a function © : G x M — M by

fof7'(z) zeM\X,
T z € X.

0(s,2) = {

Then © is continuous. In fact, let {(gi, i)},

,—, be a sequence such that

z; € M\ X and lim;—,o(gi,z:) = (go,%0) € X. For a given € > 0, take
J1 > 0 so that 27" < ¢/2 and d(zg,z;) < €/2 for ¢ > j;. Let jo > j; be
such that z; ¢ UjleNj for 1 > js. Since f(N;) = fi(N;) = ]\~/j, we have
fYzi) ¢ Ug;ONj for i > jo. By (C), d(f~Y(z:), g:f (z:)) < 270V for
i > j2. By (A), we have

d(@(gi, s), 171') = d(fgl-f_l(xi), ;)
= d(fgef o), £ )
< 9—n

<ef2
for > j5. Then for each 7 > js,

d(0(gi,zi), ©(g0,20)) = d(O(gi, z:), z0)
< d(O(gi, z:), zi) + d(zs, 7o)
<ef/2+¢€/2

R
Moreover, for g,g' € G,z € M \ X,

O(¢',0(g9,z) = fg'f ' (fgf ' (2))
= fg'gf ' (z)

=0(g'g, z).
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Thus © defines a G-action on M. Clearly, the action © is semi-free and satisfies

our required condition. The proof is finished. O

Recall that a space X has the complete invariance property with respect to
homeomorphisms (CIPH) if each non-empty closed subset of X is the fixed point
set of some autohomeomorphism of X. As a direct consequence of Theorem
2.1, we obtain the affirmative answer to the questions [CKT2, Problems 6.4.3,

6.4.4].

Corollary 6.1.1. Every pu™-manifold has CIPH.

§6.2. PSEUDO-INTERIORS AND PSEUDO-BOUNDARIES

Let M be a p"-manifold. By Zjs (resp. Z§;), we denote the collection
of all Z-sets (resp. all compact Z-sets) in M. A Zpr-absorber A of M is
called a pseudo-boundary of M and the complement M \ A is called a pseudo-
interior of M (cf. [Ch2], [CKT1]). In case M is compact, every Zs-skeletoid
is a Zp-absorber, therefore a pseudo-boundary of M since Zp (= 2Z§;) is a
perfect collection. The uniqueness of topological types of pseudo-boundaries
(pseudo-interiors) follows from [BP, Chap. IV, Theorem 2.1]. According to
[CKT1], the topological type of a pseudo-interior v(u™) of u™ is equal to the
n-dimensional Nobeling space v™. The following criterion is a modification of

[CKT1, Proposition 3.3.11].

Proposition 6.2.1. Let M be a compact p™-manifold and let {A;}°, be a

tower of Z-sets in M with the following properties:
(1) Ye > 0, 3m > 0 such that A,, is e-dense in M,
(2) A; is a Z-set in each of A, and M,
(3) {A;}2, is equi-LC™ ! and
(

4) A; is a p"-manifold.
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Then {A;}{2, is a Zp-skeleton of M, ie., the union U2, A; is a pseudo-

boundary of M.

Proof. Let € > 0 be a positive number and let Z be a Z-set in M. We fix a
member A of {A4;}32,. Since {4;}, is equi-LC™ !, there exists a positive
number § < £/2 such that for any §-close two maps f,g: ZN Ap — A; with an
extension f : Z — A, of f, there exists an extension § : Z — A; of g such that
§ and f are e/2-close for any 7 € N. As in the proof of [Drl, Lemma 2.1], we
can take a map v : Z — A; so that d(v,idz) < 6 for some j > k by (1) and (3).
Note that ZN Ay is a Z-set in A; by (2). Since d(y|ZNAg,idzn4,) < 6, there is
amap ' : Z — Aj such that v/|ZN A, = idzna, and d(v/, ) < €/2. By (4), we
may assume that 7’ is a Z-embedding using the Z-embedding approximation
theorem [Be]. Then d(v/,idz) < d(v/,v) 4+ d(7,idz) < 6§ + /2 < . Thus the

proposition follows from Proposition 1.1. O

The next proposition follows from the standard arguments using the fact

that every p™-manifold is locally compact, so we omit the proof.

Proposition 6.2.2. Every Z§,-absorber in M is also a Zpr-absorber in M,

i.e., a pseudo-boundary of M.

Theorem 6.2.1. Let X be a closed subset of a p™-manifold M and let G be a
compact separable zero-dimensional group with the unit element e. Then there
exist a semi-free G-action of M and a G-invariant pseudo-boundary (M) of

M such that X is the fixed point set of any g € G\ {e}.

Proof. As in the proof of Theorem 6.1.1, we represent the group G as the

inverse limit of an inverse sequence
®o ¥1 ¥2 ¥3
Gy~ # Gy v g =+

consisting of non-trivial finite groups.
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Let Ly be an (n—1)-connected finite simplicial complex with free G-action.
Put Ly = Ly x [0,1] and Ly = Li x [0,1]. Note that Li, Ly and Lj are
all (n — 1)-connected finite simplicial complex with free Gj-action and that
B(L;) = L; x {0} (resp. B*(L;) = B(L;) x {0}) is an invariant subset of L;
(resp. B(LL;)) for each j.

The G-action on M we used here is essentially the same with the one con-
structed in the proof of Theorem 6.1.1. So, in what follows, we use the notation
given in the proof of Theorem 6.1.1. The only difference is that we use L; (resp.

L;) in place of L; (resp. L;), i.e.,

( - Ak (n) y
(K}c Ly Lé((k))) j < 6(k),
o Ak
J ((Ké(k; # Lé(k)))
KJl'c T B SERY Lo S0RY YO,
’ U i (Wé(k) & (’”m) *Lé(k)))) J = 6(k),
W&(:; XLA(E))
{ B(K;™) j > é(k),
( k—1 NN -
(Wj % La(k)) Jj < 6(k),
B o : Mk 4
W) Wék(k)l ot {”5((1:))} J = 06(k),
[ BW; ™) j > é(k),
k-1 Ak (M .
(Wj X ﬁ(Lﬁ(k))) Jj < &(k),
o s A(k .
B; Weel x (v} = wk j = 68(k),
W) =w} j > 6(k),

where Lg- (resp. IL;) is a copy of L; (resp. ;) for each . And the G-action is
induced by the Gj-action of L:(l), (S0,

Let V; = NoUp, N1 Up, ---Up,_, N;. First we shall constructed a tower
{A;(@)}2, of Z-sets of V; satisfying the following:

(a) Ve >0, 3m > 0 such that A;(m) is e-dense in Vj,
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(b) A;(7) is a Z-set in each of A;(i + 1) and V},
(c¢) {A;(2)}2, is equi-LC™ ! and
(d) A;(7) is a p™-manifold.

Let R}(i) = K7, S9(i) = W) and C?(i) = BY for each i > 1, j > 0. Assume

that R;(i), Sj(i) and CJ‘(z) have been constructed for l < k —1, ¥k > 1. Then
we define Rf(z'), Sf(z) and C'Jk(z) as follows:

R:(i

J

Sk

J

where

2 LA(k)
o { 7

( (R51(0) x ::;v(z'))(")

((R’g(‘k;a) x £5 ()

J < 6(k),

< (n)
U Sk = (3 * Sé}k,(z‘)))) j=6(k),

sj;(-k;(i)x):f;(k)(i)

| BRE(0)) j > 8(k),
( (s56) x £§(i))(") j < 8(k),
1 St 6 {ug) § = 8(k),

[ B(S;71(i)) j > 6(k),

(5420 x 50) j < 8(k),
1 826k () =85 j=6(k),
| B(8571()) = Sk(3) i > 6(k),

(Am € Z) [k =m- 27,

2((:)) otherwise,

£4(i) = { )
(3m e Z) [k =m- 2",

5} (Lj((l’:))) otherwise.

We define a simplicial complex Af () as follows:

A¥(i) = R§(2) Uck(i) RY(d) Ucky = Yek_ ) RY(i).
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Note that for each ¢ > 1, Rf(i), S¥(i) and Cj (i) are subcomplex of KJ'F, W
and Bj respectively and R¥(i) N W} = C¥(i). Hence A%(i) is a subcomplex of
Kk Upgg ---Upk_| K;“, ie., |Af(z)| C Pi. Moreover, since |Rf(z)| C |RE(i+1)|
and R¥(:)NWF = CF(i), |A%(i)| is a subset of |A%¥ (i +1)|. It is easy to see that
r’,s_l(|A§(z)|) 3 ]Af_l(z)| Thus we can define A;(¢) as the inverse limit of the

following inverse sequence

s s PR O s W T
|AJ()| == |45()] —— |A3(3)] = |AF(3)| = ---

Since |A%(i)| = |K}| for each k < 2 — 1 and r;_,| : |A%(3)| — IAf_l(i)l is
a retraction, {A;(i)}2, satisfies the condition (a). Since |A%(i)| C |K§ Upk
~~Upk K7, A;(i) is a subset of V. Also, A;(i) is a subset of A;(i + 1) since
|A¥(@)| c |[A%(i +1)|. As in the proofs of Claim 1.1.1 and Claim 1.1.2, one
can see that the tower {4;(7)}{2, satisfies the conditions (), (c¢) and (d). The
reason that we use Lj instead of L; is to construct {A4;(7)}$2; satisfying the
condition (b). Thus {A4,(i)}{2, is a Zy;-skeleton of V; by Proposition 6.2.1.
We remark that each A;(¢) is an invariant subspace of V;.

Next we shall construct an invariant pseudo-boundary of M. Put A; =

U2, 4; (7).
Claim 2.1.1. A" =UJ2(A; isa 2§, x-skeletoid (= Zjp\ x-absorber) in M\ X.

Proof of Claim 2.1.1. We note that {V;}$2, is a compact tower of x™-manifolds
such that U72,V; = M\ X and V; C intpn\x Vj41. Let B € 2§/, y and let U be
an open collection of M \ X. Then there is jo > 0 such that B C intpn x V.
Note that B is a Z-set in Vj,. Since A,  is a Z-skeletoid of V},, there is a
homeomorphism h : Vj, — Vj, such that h|V;, N (clan x (M \ X) \ V},) = id,
h|(UU) NV, is U|Vj,-close to id and h(B N (UU)) C Aj,. In particular, we may
assume that h can be extended to a homeomorphism h : M \X - M\ X so

that iLlClM\X((M \ X)\Vj,) = id. Then the homeomorphism % is such that
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hl(M \ X)\ (UU) = id, h| UU is U-close to id and A(B N (UU)) C A’. Thus A’
is a Zjy x-absorber in M\ X. O

Let A be a Zj,-skeletoid in M. (The existence of a Z§,-skeletoid (= Z§,-
absorber) in M is assured. In fact, one can easily construct such a Z§,-skeletoid
as in Claim 2.1.1.) Since Z3,|M \ X = 23, x and Zj,, y is a perfect collection,
AN(M\X)is a Z3\ x-skeletoid in M \ X by Theorem 1.1. By Theorem
1.3.2, there is a homeomorphism v : M — M such that y(4") = AN (M \ X)
and y|x = id. Let ¥(M) = A’ U (X N A). Then v(3(M)) = A and (M)
is an invariant subspace of M since A’ is invariant and X is the fixed points
set of any g € G'\ {e}. Thus 3(M) is an invariant Z§,-skeletoid of M. By
Proposition 6.2.2, £(M) is an invariant pseudo-boundary of M. The proof is
finished. 0O
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The proof of Theorem 6.2.1 gives the following.

Corollary 6.2.1 (cf. [CKT1]). Every p"-manifold has a pseudo-interior and

a pseudo-boundary.

Corollary 6.2.2. Let v(M) (resp. £(M)) be a pseudo-interior (resp. a pseudo-
boundary) of a u™-manifold M. Let G be a compact separable zero-dimensional
group with the unit element e. Then for each closed subset X of v(M) (resp.
Y(M)), there exists a semi-free G-action on v(M) (resp. 3(M)) such that X
is the fixed point set of any g € G\ {e}.

Proof. We shall give the proof only for ¥(M) because the proof for ¥ (M)
is similar. Let X be a closed subset of ¥(M) and put X = clyyX and B =
M\v(M). By Theorem 6.1.1, there exists a semi-free G-action© : GxM — M
with a G-invariant pseudo-boundary A of M such that X is the fixed point
set of any g € G\ {e}. Since AN (M \ X) and BN (M \ X) are Zyn %"
absorbers, there exists a homeomorphism h : M — M such that hl)? =idg
and (BN (M \ X)) = AN (M\ X). Then the map © : G x M — M defined
by ©'(g,z) = h=1©(g, h(z)) redefines a semi-free G-action on M. In fact, for

z€ M and g,¢’ € G,

&'(¢,'(g,2)) = &' (¢, k709, (=)
& h,'lG)(g', hh=0(g, h(:c)))
= 1710(g',0(s, h(=)))
=h™'0(g'g, h(=))

= 8'(g'g, 2).

Since {©(g, z) | geEG, z e M\ A} =M\ A and M\ A = h(v(M)), it follows
that ©(G x a(M)) = o(M). It is easy to see that X = {zeM | ©'(g9,z) =z}
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for any g € G\ {e}. Thus ©, = ©'|G x v(M) is the required semi-free G-action
on v(M). O

If we take X = () in Theorem 3.1, the proof gives the following:

Theorem 6.2.2. Every u™-manifold admits a free G-action with a G-invariant

pseudo-boundary for any compact zero-dimensional group G.

Corollary 6.2.3. Every pseudo-interior v(M) (resp. pseudo-boundary ¥(M))
of a u™-manifold M admits a free G-action for any compact zero-dimensional

group G.
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