Phase structure of lattice QCD at finite temperature for 2+1 flavors of Kogut-Susskind quarks

JLQCD Collaboration: S. Aokia, M. Fukugitab, S. Hashimotoc, K-I. Ishikawad, N. Ishizukaa,e, Y. Iwasakia,e, T. Kanedaa, S. Kayac, Y. Kuramashic, M. Okawac, T. Onogid, S. Tominagac, N. Tsutsuid, A. Ukawaa,e, N. Yamadad, T. Yoshia,e

aInstitute of Physics, University of Tsukuba, Ibaraki 305-8571, Japan
bInstitute for Cosmic Ray Research, University of Tokyo, Tanashi, Tokyo 188-8502, Japan
cHigh Energy Accelerator Research Organization (KEK), Tsukuba, Ibaraki 305-0801, Japan
dDepartment of Physics, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8526, Japan
eCenter for Computational Physics, University of Tsukuba, Tsukuba, Ibaraki 305-8577, Japan

We report on a study of the finite-temperature chiral transition on an $N_t=4$ lattice for 2+1 flavors of Kogut-Susskind quarks. We find the point of physical quark masses to lie in the region of crossover, in agreement with results of previous studies. Results of a detailed examination of the $m_{u,d}=m_s$ case indicate vanishing of the screening mass of the σ meson at the end point of the first-order transition.

1. Introduction

An important issue in finite-temperature lattice QCD is the determination of the nature of the chiral phase transition for a realistic spectrum of light up and down quarks and a heavier strange quark. Despite its importance, past studies of this “2+1” case have been few. For the Kogut-Susskind action, all of them have been made around 1990\cite{1,2,3}.

It was found in these studies that the chiral phase transition changes from a first-order transition to a crossover as the strange quark mass m_s increases beyond a critical value m^c_s for a fixed degenerate up and down quark mass $m_{u,d}$, in agreement with predictions of an effective σ model of QCD\cite{4,5}. Results were also obtained\cite{2,3} which indicate the physical point of quark masses to lie in the region of crossover on the $(m_{u,d},m_s)$ plane. However, these results were based on simulations made at only a few sets of quark masses. Clearly a more extensive study is called for to have a full understanding of the phase structure in the 2-parameter space of $(m_{u,d},m_s)$. Here we report first results from our recent effort toward this goal.

An interesting suggestion from a σ model analysis\cite{5} is that the second-order transition expected at the critical strange quark mass m^c_s is in the Ising universality class, with the massless mode provided by the σ meson. A novel feature of our work is a study of the screening mass of σ to examine this point.

Our simulations are performed for the temporal lattice size $N_t = 4$. An $8^3 \times 4$ lattice is employed to make a survey of the phase structure varying β, $m_{u,d}$ and m_s. A detailed investigation is then made along the flavor SU(3) symmetric line $m_{u,d}=m_s$ by another series of simulations on a $16 \times 8^3 \times 4$ and a $16^3 \times 4$ lattice. For each parameter set, $(1-2) \times 10^3$ trajectories of unit length are generated by the hybrid R algorithm.

2. Phase diagram on the $(m_{u,d},m_s)$ plane

We show the result of our phase diagram analysis on an $8^3 \times 4$ lattice in Fig.\cite{1}. At $m_{u,d} = m_s = 0.01$ a clear two-state signal is obtained by a comparison of runs with a hot and a cold start.
The value of the critical mass m^c is to extrapolate the gap of the chiral condensate $\Delta \langle \bar{\psi} \psi \rangle$ toward larger m where it vanishes. Employing the form $\Delta \langle \bar{\psi} \psi \rangle \propto (m^c - m)^{1/2}$ predicted by the mean-field analysis of the σ model, we find $m^c \approx 0.034$. If we use a naive linear extrapolation, we obtain $m^c \approx 0.049$. A similar value $m^c \approx 0.045$ was previously reported by a linear extrapolation applied to old results.

In the region of crossover $m > m^c$, we expect the peak height of the chiral susceptibility χ_m to develop a singular behavior $\chi_m \propto (m - m^c)^{-z}$ as $m \to m^c$. We calculate χ_m for $m \geq 0.04$ with the histogram reweighting method. Assuming $m^c = 0.034$, we fit the peak height to the form above. A reasonable fit with $\chi^2/df = 1.05$ is obtained with the value of the exponent $z = 0.67(3)$, which is comparable to the Ising value $z \approx 0.79$ and the mean-field value $2/3$.

In order to examine the screening mass M_σ of the σ meson, we employ $U(1)$ random source and no gauge fixing to evaluate the two quark loop contribution of the σ propagator. Good results are obtained for the full σ propagator with this method as illustrated in Fig. 3. The quark mass dependence of π and σ screening masses for $m \leq 0.03$, where we find a first-order transition, is plotted in Fig. 3(a). We observe that M^2_σ decreases toward zero as m increases toward the critical value, both on the confined and the deconfined side of the transition, in contrast to M^2_π which increases.

3. Results along the $m_{u,d} = m_s$ line

We now discuss results along the line $m_{u,d} = m_s \equiv m$. Given our observation of a two-state signal at $m = 0.01, 0.025$, one way to estimate...
Figure 3. π and σ propagators for $m = 0.1$ at the transition point $\beta=5.25$.

Assuming a linear quark mass dependence, $M_2^2 \propto m^c - m$, predicted by the mean-field analysis of the σ model, we obtain $m^c = 0.034(3)$ in the confining phase and $m^c = 0.031(3)$ in the deconfining phase. These values are consistent with each other, and are also in agreement with the estimate from a square root extrapolation of the gap of $\langle \bar{\psi}\psi \rangle$ discussed above. These results indicate vanishing of the σ mass at the critical quark mass as suggested by the σ model\cite{5}.

Results for larger quark masses ($m \geq 0.04$), where a crossover behavior is seen, is shown in Fig. 3(b). While M_2^2 decreases toward smaller values of m, the variation is too mild to attempt an independent estimate of m_c. An interesting point which requires clarification is that M_2^2 stays considerably small compared to M_2^π even for large quark masses.

4. Conclusions and future work

Our study with the Kogut-Susskind action supports the previous conclusion with this action that there is no finite-temperature phase transition for three flavors of quarks with physical masses. This means that a discrepancy with the conclusion from the Wilson action\cite{7} still remains.

We also find a strong indication that the screening mass of σ vanishes at the end point of the first-order transition along the line $m_{u,d} = m_s$.

We plan to extend analyses carried out here to the $m_{u,d} \neq m_s$ case to further explore the real-world QCD chiral transition.

This work is supported by the Supercomputer Project No.32 (FY1998) of High Energy Accelerator Research Organization (KEK), and also in part by the Grants-in-Aid of the Ministry of Education (Nos. 08640404, 09304029, 10640246, 10640248, 10740107, 10740125). S.K. and S.T. are supported by the JSPS Research Fellowship.

REFERENCES