Pion decay constant in quenched QCD with Kogut-Susskind quarks

JLQCD Collaboration: S. Aokia, M. Fukugitab, S. Hashimotoc, K-I. Ishikawac, N. Ishizukaa,d, Y. Iwasakia,d, K. Kanayaa,d, T. Kanedaa, S. Kayac, Y. Kuramashic, M. Okawac, T. Onogie, S. Tominagac, N. Tsutsuie, A. Ukawaa,d, N. Yamadae, and T. Yoshiea,d

aInstitute of Physics, University of Tsukuba, Tsukuba, Ibaraki 305-8571, Japan
bInstitute for Cosmic Ray Research, University of Tokyo, Tanashi, Tokyo 188-8502, Japan
cHigh Energy Accelerator Research Organization (KEK), Tsukuba, Ibaraki 305-0801, Japan
dCenter for Computational Physics, University of Tsukuba, Tsukuba, Ibaraki 305-8577, Japan
eDepartment of Physics, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8526, Japan

We report results on the flavor breaking effect in the pion decay constant \(f_\pi\) calculated with the Kogut-Susskind quark action. Numerical simulations are carried out at \(\beta = 6.0\) and 6.2. We find that the use of non-perturbative renormalization factor leads to results in the continuum limit well convergent among various KS flavors. As the best value for \(f_\pi\) we obtain \(f_\pi = 89(6)\) MeV from the conserved axial vector current.

1. Introduction

The Kogut-Susskind (KS) quark action has the well-known feature that SU(4) flavor symmetry is broken down to U(1) subgroup at finite lattice spacing. The restoration of full flavor symmetry toward the continuum limit has been previously examined for pion mass[1,2]. Here we extend the examination to the pion decay constant by comparing results for various KS flavors to that in the U(1) channel for which the renormalization constant equals unity.

This comparison is made both for perturbative[3] and non-perturbative renormalization factors, the latter evaluated[4] with the method of Ref. [5]. Numerical simulations are carried out in quenched QCD at \(\beta = 6.0\) and 6.2 employing \(32^3 \times 64\) and \(48^3 \times 64\) lattices. Other lattice parameters are summarized in Table 1.

2. Formalism and simulation

In the hypercubic notation for the KS fermion fields, the axial vector current in the KS flavor channel \(F\) has the form
\[
A^F_\mu = \bar{\phi} (\gamma_\mu \gamma_5 \otimes \xi_F) \phi.
\]

The fields \(\bar{\phi}\) and \(\phi\) in (1) are generally separated over a 4-dimensional hypercube. We use both gauge-invariant and non-invariant operators, inserting the product of link variables between \(\bar{\phi}\) and \(\phi\) for the former, and employing the Landau gauge fixing to deal with the latter.

The one-loop perturbative results for the renormalization constants \(Z_A^F\) have been worked out in Ref. [3]. We use tadpole-improved values employing the tadpole-improved \(\overline{\text{MS}}\) coupling with \(q^* = 1/a\); they will be denoted as \(Z_A^{(P)}\). For non-perturbative renormalization constants \(Z_A^{(N)F}\), we take results of Ref. [4] at \((ap)^2 = 1.0024\).

Quark propagators are calculated for 16 wall sources, each corresponding to a corner of a hypercube. These propagators are combined to form the correlator \(\langle A^F_\mu(t) \pi^{(F)}_\nu(0) \rangle\) for each flavor.

\begin{table}[h]
\centering
\caption{Lattice parameters of simulation.}
\begin{tabular}{cccccc}
\hline
\(\beta\) & \(L^3\times T\) & \(m_q a\) & \#conf. & \(a^{-1}(\text{GeV})\) & \(m_\pi/m_\rho\) \\
\hline
6.0 & \(32^3 \times 64\) & .010 – .030 & 100 & 1.93(2) & .53 – .72 \\
6.2 & \(48^3 \times 64\) & .008 – .023 & 60 & 2.70(5) & .55 – .75 \\
\hline
\end{tabular}
\end{table}
Figure 1. Continuum limit of pion masses.

We find the quark mass dependence of $(m_F^n)^2$, f^n_F and vector meson masses to be well described by a linear function. Hence a linear fit is employed for the chiral extrapolation in the quark mass m_q. The scale is set by the ρ meson mass in the spin-flavor channel $\gamma_k \otimes \xi_k$. Errors are estimated by the single elimination jackknife procedure.

3. Pion masses

We show in Fig. 1 values of $(m_F^n)^2$ at $m_q = 0$ as a function of a^2. The 16 KS flavors are grouped into 8 irreducible representations (irreps) given by ξ_5, $\xi_k \xi_5$, $\xi_4 \xi_5$, $\xi_k \xi_4$, $\xi_\ell \xi_m$, $\xi_k I$ at finite lattice spacing. This feature was initially observed numerically in Ref. [6], and recently theoretically explained in Ref. [8]. We also see that non-zero values of $(m_F^n)^2$ for the channels other than ξ_5 vanish quadratically in a toward the continuum limit as expected.

4. Pion decay constants

In Fig. 2 we illustrate how the bare values of f_F^n change under renormalization, taking results for gauge invariant current at $\beta = 6.2$. The bare values for the 8 irreps again form a degeneracy pattern. The pattern reflects the distance of ϕ and ϕ in (1), and is different from that of m_F^n.

The perturbative renormalization constants (middle frame in Fig. 2) help to reduce the discrepancy among the bare values of f_F^n. It is clear, however, that the discrepancy is much more reduced with the non-perturbative renormalization constants (bottom frame).

In Fig. 3 we plot the continuum extrapolation of the pion decay constants obtained with gauge-invariant currents. The top figure shows results with perturbative renormalization factors, and the bottom figure with non-perturbative factors. Lines are quadratic fits in a^2 following the $O(a^2)$ scaling violation expected for the KS quark action. Similar figures for the decay constants ob-
Figure 3. Continuum limit of f_π^F with perturbative (top) and non-perturbative (bottom) renormalization factor obtained with gauge-invariant axial vector current.

The gauge-invariant current for the flavor ξ_5 does not require renormalization, from which we obtain $f_\pi = 89(6)$ MeV in the continuum limit. This result is consistent with the experimental value of 92.4(3) MeV\cite{9}; possible deviations due to quenching is not visible within our 7% error.

We observe in Figs. 3 and 4 that the perturbative renormalization factors at one-loop order are not sufficient to ensure restoration of flavor symmetry in the continuum limit. In contrast, the decay constants evaluated with the non-perturbative renormalization factors agree much better already at finite lattice spacings, and their continuum limits are well convergent, the central values coinciding with each other well within the errors.

This work is supported by the Supercomputer Project No.45 (FY1999) of High Energy Accelerator Research Organization (KEK), and also in part by the Grants-in-Aid of the Ministry of Education (Nos. 09304029, 10640246, 10640248, 10740107, 10740125, 11640294, 11740162). K-I.I is supported by the JSPS Research Fellowship.

REFERENCES