序章

研究の背景

人間は道具を作り、記号（文字）を生みだした。身体能力・知能を拡張しようとする人間の活動は、とどまる事知らず、現実をも変化を繰り返している。それに伴い、デザインの領域とその役割に対する考え方は時代とともに変化している。従来のデザインの主だった役割は以下である。

- 人工物としての道具を生産する
- 製造（衣食住）を豊かにする
- 視覚的・情報の伝達する

デザインはこれらの役割を依存として担っているが、そのウェイトや意味合いは変化している。その原因として、人工物としての道具が電子技術や情報技術の発展によって変化し、それに伴い暮らし（衣食住）に情報（知識）が加わるようになったことや、視覚的・情報の伝達する媒体も、従来の紙媒体ばかりではなく電子的なものへと変化したことなどがあげられる。つまり、道具の機能が電子化されブロックボックス化した、という変化や、暮らしの情報（知識）への拡張が、機能や情報（知識）を電子的に表示しようという現象を引き起こし、道具自体の変化をもたらすことになったのである。そして現在、デザインは、内部に潜む機能（すなわちテクノロジー）や知識を視覚的・情報の形態に変換して使えるようにするという役割を担っている。つまり、物理的なモーメンタムやスタイルへの関与から、情報や知識といった不可視なものを含む人間の認知やコンテクストなどへの関与へと、人間と道具をつなぐデザインの役割が変わってきているのである。このような背景の中で、インタフェース・デザインや情報デザインといった新たなデザイン領域が生まれ、それが人間の活動の支えとなっているのである。

さて、先に述べたような電子技術・IT技術の発展に伴い、モノと人間との距離は次第に離れてしまった。デザインがインタラクションそのものを創る時代が到来しているが、情報や知識のデザインは従来の機能主義や営利評価に基づいた手法では具体的な客観化ができない。形のない情報を人間のためになるように、どのようにデザインすべきか、については試行錯誤の段階である。そのために、インタフェース・デザインの領域では、見ただけでは機能がわからず使えない。情報が膨大になり必要な情報にアクセスできない、などという解決の難しい問題が山積している。そして、様々な専門的視点から多角的な研究が行われているにもかかわらず、問題が解決されないまま、コンピュータが新たな日常生活機器、公共機器、専用機器などに活用されるということが続いている。モノや技術の普及がますます進み、ユーザーニュースがいっそう多様化する時代を迎え、新たなる次の問題が生まれているのである。高齢者・障害者など誰もが使いやすい、わかりやすいインタフェースの開発はいまや社会的急務となっている。

電子技術・IT技術の発展が、人間にとって使いにくい分かりにくいモノを作成することになってはいたという問題を解決するために、人間工学・情報工学の視点から人間の操作に対する研究が行われ、それ以前
の、マン・マシン・インタフェースという概念に代表される機械中心のインタフェースを，使う人の立場に立った内容にと発展させた。使う人の立場に立ったインタフェースは，ユーザ・インタフェースという概念として構築され，人間と機械のインタラクションをデザインするときのスタンスは大きく変化した。しかし，それだけでは問題の解決には至らず，認知科学・心理学・情報科学などの視点から人間の認知的特性に関する研究が盛んに行われるようにになった。これら学問領域における研究の成果は，人間中心のヒューマン・インタフェースという概念を構築した。

ヒューマン・インタフェースという概念に基づき，人間を中心としたインタフェースが研究されデザインされているにもかかわらず，なぜ誰もが使いやすい，わかりやすいインタフェースはなかなか现实化しないのであろうか。一つはインタフェースデザインの研究開発よりも速いスピードで，技術が進捗しているためである。そしてもう一つは，インタフェース・デザインにおける，これまでの認知的視点からの研究が，学習・記憶・推論・思考など，人間の知的な認識に対する能力を活用することに重点が置かれていたからである。人間は，文字や記号という知的な伝達手段を用いる以外から，ジェスチャーやアイコンタクトなど，言葉や記号ではないコミュニケーションを行っている。この能力の活用がこれまでに十分に行われてこなかったが，この能力は感性的認識能力と解釈することができる。感性的認識能力は知的な認識能力の下部領域と解釈され，人間が本来持っている基本的な能力である感性的側面に働きかけるようなインタフェースをデザインすることによ

り，人間とモノの距離を縮めることができると期待される。

しかし，感性は多義的・主観的・状況依存的な特徴を持ち，把握することが難しいため，人間の感性的認識能力が研究として取り上げられるようになったのは，知的な認識能力に対する研究の後である。感性的認識能力に働きかけるようにするインタフェース・デザインの研究では，人間の感性的認識能力を一般化できるような形で把握することが基本である。そこで，人間の感性的側面を数量的・情報に置き換え，定量的に計測・分析しようという研究が，横断的かつ多角的に盛んに行われ，成果をあげている。しかしながら，感性的認識能力に働きかけるインタフェースをデザインするためには，これらの研究だけではなく，感性的認識能力にどのように働きかけていくべきかという「方法」についても参考して研究を行う必要がある。感性的能力に働きかけるために，何をどのようにすればいいのかというものを明確にすることが，デザインの専門領域が必要で，もっとも重要なテーマである。

以上のような背景をふまえると，人間の感性的認識能力に働きかけるインタフェースを実現するためには，ヒューマン・インタフェースに続く，新しい概念とそれを実現するインタラクションスタイルが必要になる。そこで，本論文では新しいインタフェースの考え方として，「共感し分かり合う」という人間の基本的感性能力に働きかけるようなインタラクションを想定する。共感し分かり合う人間の感性的認識能力は，イメージ活動を基盤としたものであるため，イメージを積極的に働きかけることによって共感を呼び起こすようなデザインを，イメージ・センタード・デザイン（ICD）と称し，その概念をデザインの分野で具体化し，共感し分かり合う感性的インタフェースを実現的にデザインすることによる。

誰もが使いやすい，わかりやすいインタフェースの開発はいまや社会的急務となっていると述べた。このような状況に対処するために，インタフェース・デザインの専門領域には，すぐにでも社会に顕現できるような実現的な研究を開始することが求められている。インタフェース・デザインの分野の中でも，コンピュータ関与するデジタル・メディアは発展の速度が速く，その中でも，特にWebベースのコンテンツのデザインにおいては表現の自由度が急速に高くなってきた。そのために，誰もが使いやすい，わかりやすいデザインを実現する為の表現法が確立せず，混乱をきたしている。本論文では，「共感し分かり合う」インタフェースが最も求められている領域としてWebベースのコンテンツをとりあげ，ICDを用いて，誰もが使いやすい，
わかりやすい感性インタフェースをデザインし、ICDの有効性を検証することを試みる。実践的なデザイン研究をへと発展させていきたい行くことを目指す。

研究の目的

本論文は、人間が基本的には感性的認識能力を活用し、「共感」によって、多様なユーザーや多様な要求に応えることができる。誰もが使いやすい、わかりやすいインタフェースを実現することを目指している。

感覚的、直感的あるいは意欲的「共感し分かり合う」という感覚的認識能力に働きかけるようなインタラクションにおいて、イメージが担う役割は重要である。感覚的、直感的、機能性に働きかけるためにはイメージを活用する以外に方法はない、ところが、感覚的インタフェースの研究に関しては、感覚的計画手法や感覚的配置手法に重点がおかれている傾向にある。このことは感覚そのものがまだ未解明の状況下にあるため当然のことである。とはいえものの、現在インタフェース・デザインが抱えている問題は深刻である。一刻も早く、より実践的な研究の展開を行わなければならない。

そこで、本論文では、マシンセンタード→ユーティーセンタード→ピューマンセンタードというインタフェース・デザインにおけるインタラクション概念の発展の延長線上にイメージ・センタードという概念を立て、実践的に研究を進めることにする。イメージ・センタード・デザイン（ICD）とは、文字通り「イメージを中心にしてデザイン」と定義することとする。そして、ICDを行うための方法を明確にして、実践することで、ICDが「共感し分かり合う」という感覚的インタラクションを生み出し、誰もが使いやすい、わかりやすいインタフェースを実現することを明らかにする。

第1部では、共感し分かりあえるようなICDを行うための方法を明確にするための観点を明らかにする。具体的には、感性に働きかける感性情報を利用し、共感的なイメージの形成を促すことでICDを実現することを目指している。このようなICDを行うための方法を明確にするために、既存の研究者・案件を具例例・発展に向けてという、三つの観点から段階的な事例展開を行う。

第2部は、第1部で明らかにしたイメージ・センタード・デザイン（ICD）の方法に基づき、Webベースのコンテンツに限定して、インタフェース・デザインにおける、誰もが使いやすい、わかりやすいイメージ・センタードなGUIをデザインすることを目標とする。ICDを実践し、ICDが誰もが使いやすい、わかりやすいインタフェースの要件を満たすことを示すことを目的とする。

研究の方法と進め方

本論文は、インタフェース・デザインの設計概念にイメージ・センタードという新たな切り口を導入し、誰もが使いやすい、わかりやすいインタフェースを実現することを目的としている。そのために本論文は、ICDを行うための方法を明確にするための基礎研究の部と、ICDを実践し、ICDが誰もが使いやすい、わかりやすいインタフェースの要件を満たすことを示すことを目的とした、実践的実験研究の部という二つで構成する。図1にこのような研究の流れを示す。

本論文独自の立脚点は、インタフェース・デザインの設計概念にイメージ・センタードという新たな概念を導入し、物理的なインタフェースおよび知的なインタフェースに代わるものとして、期待をもっている感覚的インタフェースについて、実践的に考察している点である。感覚的インタフェースを設計するために何をどのようにすればいいのかというものを明らかにすることを目指しており、感覚および感覚的能力について探索する研究の枠組みからの転換を試みている。
序章

研究方法としての第一の独自性は、感性情報を活用し、感性に感性的に働きかけ共感的なイメージの形成を促すことで ICD を実現しようとしていることである。ICD によるインタフェース・デザイン法は、ICD を支援するイメージデータベース、ICD の要件と具体例、インタフェース・デザインのためのイメージデータベースの発展の方向というように段階的に展開されるが、この全過程において、事例を通じてイメージの形成がどのようにして促されるかを考察し、ICD の方法を明らかにする。

第二の独自性は、実装の事例研究のアプローチである。Web ベースのインタフェース・デザインに限定することで、表現の自由度が上がり、様々な感性的インタフェース・デザインを試みることができるの、ICD の効果を容易に確認できる。同時に、実際のニーズにこたえるインタフェースのデザインを行えるので、ICD の成果確認をプロトタイプではなく実地で検証することができる。

第三の独自性は、インタフェース・デザインに求められている、誰もが使いやすい、わかりやすいインタフェースについて、障害者を対象に含んでいることである。「誰もが」ということを考える場合、当然のことであるが高齢者・障害者など、社会的弱者などが人々を忘れてはならない。特に聴覚障害者に対する情報のアクセスバリティに対する問題は、音声情報を文字情報に変換すれば解決すると思われているところに着点がある。聴覚障害者を対象としたユーザビリティ評価実験を実施することにより、今まで見過ごされていた問題を見出すことができる。

第 1 章では、感性情報が共感的にイメージを伝えることができるのか、どのように活用すれば、共感的なイメージの形成を促すことができるのかなど、イメージ・センタード・デザイン（ICD）を行うための方法について、感性情報・感性情報の共存化・心のイメージの可視化という三つの視点から具体化する。具体的にはそれぞれの視点ごとに、ICD の素材のあり方（第 1 章）、ICD の要件と具体例（第 2 章）、ICD の発展に向けて（第 3 章）という三つの章を設ける。

第 1 章では ICD を行う場合の素材について、感性評価を行って明らかにすることが目的とする。まずは、イメージ情報・文字情報などの素材が、共感的なイメージの形成を促すことができる新たな感性情報を生み出すかについて知る必要がある。なぜならば、本論文で述べる ICD（＝イメージを中心としたデザイン）は、感性にダイレクトに働きかけ、共感的なイメージの形成を促すようなデザインを行うことを意味しているからである。

第 2 章では ICD の要件として、以下の六つを挙げ、ICD を行うための方法を提案する。具体的には、素材である感性情報を、感性情報に付加されている要素（感性評価結果）と共にデータベースにまとめることによって、イメージデータベースを作成し、イメージの共存化を図るという方法である。それにより、以下の要件に基づいたデザインが可能となる。

1. 認知フレーム間の共感性のある型を伝達することができる。
2. イメージ活動を積極的に促すことができる。
3. 不可視ものの関係や構造などを空間的に伝達することができる。
4. イメージ情報・文字情報など、様々な形式のデータからイメージ展開できる。
5. 不可視ものの・ことを感覚的に伝達することができる。
6. 再帰的に表象を直す能力（メタ表象を構築する能力）と、再現化への即時的な操作を与えることができる。

第 3 章では、ICD の実行を支援するためのイメージデータベースをインタフェース・デザインで活用できるようにするためにどのように発展させれば小さいのかを、デザインの創造過程において感性情報がどのように使われるのかを検討することにより考察する。
序章

続く第2部では、第1部で明らかにしたイメージ・センタード・デザイン（ICD）の方法に基づき、Webベースのコンテンツに限定して、イメージ・センタードなグラフィック・ユーザ・インタフェース（GUI）をデザインすることを目指す。ここでは、使いやすい、わかりやすいGUIの具体的な表現法則として、情報アーキテクチャの可視化・ダイレクト操作・ダイナミックな情報演出を取り上げ、そして、それぞれの表現法則に準じながらICDを行うことによって、「内容」「やり方」「事柄」に対する直感的で分かりやすいを提供することを実践的に試みる。さらに、「誰もが」使いやすい、わかりやすいGUIをデザインするために障害者対象に調査を行い、ICDにフィードバックできるような特性の抽出を試みる。

第1章では、Webサイトを題材にして、感性情報学活発なICDを行うことによって、情報アーキテクチャの可視化を行いながら「内容」に対するわかりやすさを提供できるGUIをデザインする。このような方法は理解を促すようなわかりやすさを提供することになると考える。

第2章では、指文字学習ソフトを題材に、二つの方法を試みた。一つはダイレクト操作のGUIによりICDを行う方法である。ダイレクト操作のGUIによって、知覚レベルの「やり方」に対するわかりやすさを提供できると考えられ、二つは「事柄」に対する直感的で分かりやすいを実現できるGUIをデザインするために、ダイナミックなGUIによって情報パッケージする方法である。これにより、通通によってコミュニケーションを促進的にしていく状況を可能にする手法であり、コミュニケーションのノンバーバルな表現を含むICDである。これらの方法は直感的にわかる感覚的なインタフェースの事例になると考える。

第3章では、視覚障害者に対する情報の平等化を推進する社会的要請に対応できるようなGUIの開発を目指す。イメージ・センタードなGUI（IC-CGUI）の基礎的な特性の検討を行うために、視覚障害者のインタラクション特性を調べる実験を行う。聴覚障害者は情報を視覚から取り入れることができるため、Webコンテンツの情報は聴覚者と同じように入手していると考えられている。そこで、 この実験では実際のWebサイトをいくつかビックアップして、探究活動を計測することによって、視覚情報に対するインタラクションの調査を行うことにする。次に視覚情報の認知特性を策るため、文字認識と空間認識に関する基礎的な実験を行う。

終章では、基礎研究の部である第1部と、実態的事例研究である第2部のまとめを行いながら、それらを踏まえ、イメージ・センタード・デザインは、インタフェース・デザインが抱えている問題を解消し、誰もが使える、わかりやすいインタラクションを実現して情報の平等化を推進する、有効な方法であることを論じる。
論文の構成

ICDを行うための方法を明確にし、実践し、ICDが誰でも使いやすい、わかりやすいインタフェースの要件を満たすことを目的として2部構成で考察する。

第1部
ICDを行うための方法の検討

第2章
ICDの素材

第3章
ICDの発展に向けて

第5章
ICDによるGUIデザインの実践

第4章
内容をわかりやすく伝える

第6章
協力に合わせて伝える

総説
各論のまとめ
総合的結論
先行研究と本研究の位置づけ

ここでは、イメージ・センタード・デザイン（ICD）で実現しようとしている感性のインクフェースに関する先行研究についての状況を示し、本論文の位置づけを明らかにする。まず、本論文に関連するインクフェースデザインの研究動向についてインタラクションスタイルという観点から述べ、次に、本論の基盤である感性に基づく研究の動向について述べる。そして最後にこれらの研究の中における本研究の位置づけを行う。

感性に関する研究の動向

感性に関する研究は、商品開発やマーケティングの分野で「感性工学（Kansei Engineering）」として立ち上がった。この分野では、感性工学に行き着く前段階として以下の様々なさまざまな開発理論があった。

- 5WH: いつ（When）どこで（Where）だれが（Who）なにを（What）どのように（How）・なぜ（Why）
- HAKUITS (Hakuhodo AI Advanced Recommended Trigger System): どんなターゲットが／どんな場所／どんな時に／どんな気分で／どんなペネフィットを提供する／どんなイメージの／どんな商品ジャンルである。
- マズロー(A.H.Maslow) の欲求の5段階：生理的欲求（Physiological Need）／安全の欲求（Safety Need）／帰属と愛情の欲求（Love Need）／尊敬の欲求（Esteem Need）／自己実現の欲求（Self-actualizing Need）
- HM 理論：必要条件 ＝ H 要因／満足・魅力をもたらす ＝ M 要因

しかし、上記のような理論では解決できないことが増加し、ユーザーの好みや価値観を総合的にとらえることには限界があった。そこで、それらを取り扱える手段が必要になり、人間の感性を製品設計にいかすための方法、または人間の感性を描く製品を作るための技術として、感性工学が誕生した（行場 2001）[1]。感性工学では、それを実現するために、人間がある刺激に対応した結果として生じる生理的・心理的反応を、工学的な手法を用いて計測・定量化し、製品設計に応用しようとする（長町 1989, 1993）[2, 3]。

このように感性にかかわる研究は、発展的なであろう性を持ち、横断的かつ多角的に取り組まれている、ところが感性の全貌はまだまだ明解されていない。感性は心の働きのようなものなので、そのものを計測することは難しい。しかし、感性は個人差があり、あいまいなものである。感性を容易にするためには、感性を計測し、定量化する技術を確立して感性を知ることが重要であることがいうまでもない。

インタフェースデザインに関する研究の動向

次に、インタラクションスタイルという視点からインタフェースデザインに関する研究の動向を述べるが、ここで示すインタラクションとは「人間とコンピュータの相互作用」のことであり、インタラクションスタイルとは、人間とコンピュータの間で情報をやり取りする場合の方法・手段を指している。

インタフェースには下にあげるような三つのアスベクトがあるが、本論文では、物理的インタフェースを除き、知的インタフェースと感性的インタフェースについて取り上げる。

• 物理的インタフェース：人間とモノとの物理的接面を扱う。人間工学と連携しながら、物理的特性を測定し「使いやすさ」をデザインする。

• 知的インタフェース：人間とシステムとの知的接面を扱う。認知科学と連携しながら、認知のメカニズムを解明し「わかるやすさ」をデザインする。

• 感性的インタフェース：人間と外界との感性的接面を扱う。感性工学・脳科学と連携しながら、高次脳機能である感性を解明し「ここちよさ」をデザインする。

ヒューマン・インタフェースという概念は大規模コンピュータの時代には既存のものであったが、1960年代にAlan Kayがパーソナルコンピュータの概念を提案し、その後1980年代にマッキントッシュコンピュータがGUIコンピュータを普及させることによって、ヒューマンフレンドリーなインタフェースという概念が普及した。この1980年代は認知工学・認知科学という学問領域が確立した時代でもある。

コンピュータは情報環境に効果した情報内容を、ユーザの選択的な求めるに応じて可視化・表示することで、ユーザと情報内容の対話可能したメディアである。われわれがより広く環境には多くの人工知能が織り込まれ、情報環境のためのメディアも多様化し、人間は情報に対して受動的な立場から能動的な立場を持つようになった。そして今まさに、ユーザ性時代を迎える。誰かがいつでもどこでもコンピュータを利用できる時代になりつつある。インタラクションスタイルは数々と変化し、さらに、インタフェース・デザインは、コンピュータを使いやすくするための機能を人間の間のインタフェースをデザインするという概念ではなく、人間の経験を重要なものにするためにどのようにコンピュータを役立つものに仕立てて行くかというスタンスに変化している。（図2参照）

このような変化はインタラクション・スタイルを表すキーワードにも現れている。コンピュータが登場した初期の時代、人間が意識の世界に合わせるようなインタラクションを行っていた。人間が機械に合わせる、マシン・センタードなインタラクションスタイルは、機械語であるコマンドベースのインタラクションであり、この時代のインタフェース概念は、マン・マシン・インタフェースと称されていた。

技術の発展に伴い、コンピュータは特定の人々が使う特別な機械ではなく、一般の人々が使用する道具の延長として捉えられるようになった。このような状況では、道具を使う人（ユーザ）が存在する、そこから生まれたインタフェースの概念はユーザ・インタフェースと称される。これは、コマンドベース・インタフェースが主流のマシン・センタードな時代から、アイコンやアクセプトメタファーなどの概念が導入されたインタラ
クションスタイルに変わる時代の概念である。ユーザーセンタードをキーワードにしたインタフェースデザインの概念化では、人間とシステムとのインタフェースを、人間の知的接面を基準にデザインすることに重点が置かれており、知的インタフェースをデザインしていた。

時代はさらに変化し、情報機器が実体を持つ道具から人間を取り巻く環境そのものへと拡張した。人間のためのコンピュータへとさらに発展させようとした概念下では、ヒューマン・センタードという言葉がキーワードになった。インタラクション・スタイルでは、実世界のモノを手がかりに、人間が生じる環境空間を拓張しようとすると志向のインタフェースが誕生する。透過型ヘッドマウントディスプレイやGPSなどのデバイスに依存した開発が目立つ。このキーワードは、エンターテイメントとしてのパルチャルリアリティという概念を超えて、人間の身体的機能の障害をコンピュータで補うとするアシスタティブ・テクノロジーへと発展している。

図2 インタラクションスタイルの変化

図2は以上のようなインタラクションスタイルの変化をまとめたものである。マシン・センタード、ユーザー・センタード、ヒューマン・センタードに続く流れは、知性や論理を中心とした活動から、感性や直感を含む活動の支援へと向かっていることがわかる。人間とコンピュータをつなぐインタフェースは、人間にとってより使いやすくわかりやすいものへと発展しているのである。この流れの延長には、ノンパーサルコミュニケーション、ダイナミックなGUI、アニメーションを利用したGUIなど、よりユーザーエクスペリエン
スを重視したインタフェースが続くと考えられる。それを、ここでは、イメージ・センタード・デザインと呼ぶ、インタフェース・デザインの発展には感性的インタフェースという概念はもはや欠かせないものとなっていと考えられる。

本研究の位置づけ

ここでは、さらに述べたインタラクションスタイルが、それぞれどのような要求仕様を持っているのかについて整理し、本論文で目指した感性的インタフェースの位置づけを明らかにする。

マシン・センタードは人間が実行したいことを機械語でマシンに伝えることによって、マシンを制御するものである。ここではマシンにどのような機能を持たせることができるか、マシンが理解しやすく人間が覚えることができる、ユーザーセンタードは機械語を知らなくても人間がマシンを制御できること、マシンが持つ機能を人間にとっての目的クスクという立場からわかりやすく表示すること、マシンにコマンドを送っていることを意識させないことなどが要求仕様である。ヒューマン・センタードは人間とマシンの関係をモニタという2次元から現実空間である3次元へと拡張すること、操作が実空間で直接的な感覚で行われること、その結果人間の身体機能が拡張されることなどが要求仕様となる。

「イメージ・センタード」は、ヒューマン・センタードなインタラクションスタイルの今後の鍵をなすものとして、著者が準備した新しいキーワードである。ここでの要求仕様は、言葉を介さずに内容を伝えること、情報を動的に伝えることで現実感を取り入れること、人間の働きかけに対して積極的にイベントを起こしコンテクストを印象付けること、などを想定した。

本論文は、Webページのコンテンツに限定しているため、物理的インタフェースとの境界的関係は一線を画している。また、基本的なWebコンテンツのGUIを題材としているため、特別なシステムやヴァーチャルリアリティなどの技術開発を含まない、「共感し分かち合う」という視点から既存のインタラクションスタイルを感性的インタフェースへと近づけることを試みる基礎的な研究である。

本論文で述べる感性的インタフェース研究とは、上述のような技術開発を主体とした研究を持たないものとする。
イメージ・センタード・デザイン (ICD) の定義

本論文では、人間が基本的に持っているイメージ活動に焦点を当てて、言葉にならない世界における情報のやり取りを促すことなどにより、感覚的・直感的にあるとは抽象的共感しきり合うという感性の認識能力に働きかける方法として、イメージ・センタード・デザイン (ICD) を定義する。共感しきり合う人間の感性的認識能力は、イメージ活動を基盤としたものであるため、イメージ活動に積極的に働きかけることが重要である。従って、イメージによって共感を呼び起こすようなデザインはイメージを中心にしたデザインであり、それを文字通り、イメージ・センタード・デザイン (ICD) と称する。

イメージ・センタード・デザイン (ICD) は、言葉や数値など論理的な伝達方法に対するウエイトを下げ、感覚や感情を呼び起こすような感性情報や表現の工夫によって、我々が日常的に行っている言葉にならない情報のやり取りを可能にするという、新しいデザイン概念であり、デザインにその役割を果たさせるアプローチである（図3）。ICD は、不可視な情報を可視化すること、技術と芸術をつなぐこと、言葉ではない情報のやり取りを可能にすること、というデザインの本質的な役割に対しても大きく寄与できる。

図 3 ICD のしくみ

本論文では、そのようなイメージ・センタード・デザイン (ICD) の要件として、下記のように6項目を設定した。

1. 認知フレーム間に共感性のある型を伝達することができる。
2. イメージ活動を積極的に促すことができる。
3. 不可視なもの関係や構造を空間的に伝達することができる。
4. イメージ情報・文字情報など、様々な形式のデータからイメージ展開できる。
5. 不可視なもの・ことを感覚的に伝達することができる。
6. 再構的に表現し直す能力（メタ表現を構築する能力）と、再表象化への内部動機づけを与えることができる。
イメージ・センタード・デザインの必要性

しかし、現在のインタフェース研究、感性研究および、二つを融合した感性的インタフェース研究には、大きな問題点がある。アーティファクトを人間に適合させるための研究として忘れてはならないのは、適切性の原則である。それは、「アーティファクトが用いる表現は、タスクにどのように見合った情報を与えなければならない」(ノーマン1996)[22]というものである。現在のインタフェース研究、感性研究は表現に関する部分が欠けており、そのため、感性的インタフェースという概念がすでに明確になっているにも関わらず、我々は具体的にどのような表現が最適なのかということを導き出すルールを持っていない。本論文が対象としている情報のアーティファクトにおける情報そのもので、人間の形で宿す不可視なものであるが、情報そのもので興味ある表現を行うことに真剣に凝視していかなければならないのであるが、適切性の原則を具現化するための要件、つまり情報を可視化する場合の最適解を得るためにのインタフェース研究は行われていない。

人間のイメージ活動を中心にしたイメージ・センタード・デザインを行う方法を考察し、実践することによって、表現の適切性につながるデザインの要件を見つけて、感性的インタフェースを具現化すためのデザインを行うことは必要かつ重要である。

イメージ・センタード・デザインの社会背景における役割

イメージ・センタード・デザインを行うことによって、言語によらないコミュニケーション活動を活性化することができる。その結果、下記に挙げるような人間活動にも積極的に働きかけ、人間の暮らしや社会全体を豊かなものにすることが可能になる。

人間は、動物分類上「ホモ・ナビセス」といわれる。これは、ラテン語のHomo：「人」とsapiens：「知恵のある」からなる言葉で、「知恵のある人」を意味している。人間の定義についてはこのほかに、思想家ベル・グランによる「ものを作る人」(Homo·faber、Homo＝人、faber＝巧みに物を作る)や、歴史家ホイジンガーによる「遊ぶ人」(Homo·laudes、Homi＝人、laudes＝遊びをする)、哲学家アリストテレスによる「政治的動物」(＝ゾーマン＝ポリテイヨン、Zoon politikon)などがある。

つまり、人間は、便利な道具をつくり、知恵を使って生活を維持することだけに全精力を注ぐ生き物（ホモ・ナビセス + ホモ・ナビセス）ではなく、四季を楽しんだり美しいものを愛する心を持っている生き物（ホモ・ナビセス + ホモ・ルーデンス）なのである。そのためにデザインは技術と芸術をつなぐ役割を持ち、常に言語で表現することのできない世界を対象にしている。
また、人間は、言語や文字を借りた、詳細で正確な情報を取り扱い、コミュニケーション能力も展げた生きて（ホモ・サピエンス＋ソーオン・ポリティコン）である。言語は共通性をもって、社会的な定義づけがなされているため、意味の理解ももとづいた情報の共有化が可能である。しかし、人間が行っている情報の取り扱いはこれだけではない、同感や共感のような情報の取り扱いを行うことができるのである。このようなコミュニケーション能力は、ネッティングベースの意味の共有化ではなく、イメージベースの主観的共感性に基づくものである。

イメージについて

イメージ（mental imagery, imagery）という言葉は多義的に使われているので、本論文で対象としているイメージの概念を明確にする。同時にイメージに関する先行研究があらかじめにしたことをまとめ、イメージ・センタード・デザイン（ICD）において活用する特性を整理する。

イメージという言葉は、映像や画像などビジュアルな感性情報をそのものを意味する場合もあれば、ブランドイメージなどに全体の印象評価を指す場合もある。心理学では概念と表現される場合もある。認知心理学的な研究対象としてのイメージは心的イメージと表現される。心的イメージは内部表現（表現representation）の一つの形態であり、心象あるいは単にイメージともよばれる。日常生活のなかでもっとも一般的に経験されるイメージは、記憶の想起として浮かび上がる記憶イメージ、新たに創出された内容を含む想像イメージのようにさらに分類される場合もある。（吉田2001）[1]

その他、視覚イメージ・聴覚イメージ・触覚イメージというようにパラ соседイオンを持つ場合もある。これらは直接的な感覚印象ではなく、記憶を介して再現された心的表象を意味する記憶イメージに属する。

視覚イメージに関する研究は以下のようなステップを経て発展している。これらの研究成果はイメージ・センタード・デザイン（ICD）において活用できる特性を明らかにしている。

言語とイメージの二重コード化（Paivio, A.）

記憶や学習という視点からの研究であり、記憶する際のコード化には言語的コード化とイメージ的コード化の二重構造があり、二重コード化される文章のほうが単語よりも記憶には有利という研究優位性効果はである。例えば、単語は言語的コード化のみであるのに対し、文章などの視覚情報はイメージ的コード化に加えて、"赤い屋根の家"というように言語的コード化もなされるというものである。（山崎）[23]

ICDで使用する視覚情報は、イメージの再構築が容易に行えるように、記憶に残りやすい情報であることが求められる。言語的コードを付加した状態で使用することによって、ICDで活用できる素材となる。

視覚イメージのアナログ的性質

心の回転：Mental Rotation（Shepard, R. N.）や心の走査：Image Scanning（Kosslyn, S. M.）などの実験心理学的研究に代表される研究である（木島1986）[24]。

心のイメージは、知覚しているときの感覚モダリティに対応する感覚印象をもとなものであるという内容である。

例えば、図形イメージを回転させる場合は視覚的固いに応じて時間をかかることのように、視覚イメージの場合は、頭の中に映像を浮かべそれを見ているようなアナログ的な内在表現を行うものである。
このような特性は、短時間で情報を伝達するためには、視覚情報の提示に心の回転がないことや心の走査の距離が短いことが求められることを意味しており、ICD なインタフェースをデザインする場合に GUI に反映させることができる。

視覚イメージのスクリーンの特性：(Kosslyn, S. M.)

イメージと視覚は同一の神経学の基盤を持つという説。視覚イメージは後頭葉視覚野にある「心のスクリーン」に投影された映像であり、イメージ機能はパソコンの画面のようなものであるという Kosslyn の CRT 理論に代表される。

例えば、駅から自宅までの地図を描く場合、記憶が活動し、次に視覚が活動するという。思い出したことを見ているように再現するというこの結果は、長期記憶の型、視覚的短期記憶の視覚バッファに呼び出され視覚イメージを作り出すことを意味している。

ICD を行うためには、視覚バッファに呼び出しやすく、視覚イメージにしやすい。できるだけ多くの命題情報を短期記憶にとめるような工夫が必要である。

ここに挙げた、視覚イメージに関する研究は、記憶の想起として浮かび上がる記憶イメージに関する研究である。イメージすることと覚えることは似ているということについては様々な議論がなされている。Pylshyn は、イメージは、一般的な思考プロセスを用いて、物理的ないしは知覚的な出来事を、暗然の知識に対してもシュレーションしていることである（佐伯） [25] と述べている。さらに、Neisser によれば、イメージが視覚的である必要はなく、対象に向かう意識体験の一つのあり方と考えている。これらのイメージ論争は、現在も進行中である。

さて、デザイン行為は新しい何かを創造する行為であるので、デザインで対象とするイメージは、記憶イメージに限らず、新たに創出した内容を含む想像イメージまで広げる必要がある。そこで、本論文で対象とするイメージは、記憶イメージと想像イメージを区別せず、内の表現（表象 representation）の一つの形態である心のイメージ全般を指すものとして、視覚的であるかどうかについてはこだわらないものとする。内の表現（表象 representation）は、印象・思惟・想像としてのイメージを含む。印象とは「見たり聞いたときまたは対象物が心に与える感じ・心に残っていること」、思惟とは「ある観念について、それに関連のある他の観念が頭に浮かぶこと。また、その観念」、想像とは「頭の中に思い描くこと。既知の事柄をもとにして膨らませたり、現実にはありえないことを頭の中だけで思い描きたいこと」である。（大塚林） [26] つまり、これらは、いずれも、われわれの内部に蓄積された過去の知識経験をある「型」に作り上げたものであると解釈できる。

イメージ化すことは有意味な特徴をある型に沿って導き出して自分なりの知覚フレームとして把握する脳内情報処理活動であると考えることができる。

過去の知識経験を背景に自分のなりの知覚フレームとして把握することは、個人差がある主体的な活動であるが、オリジナルな特徴を瞬時につかうことができる人間のこの能力は、あるレベルにおいては「共感性のある型」を作り上げることができる。実際に、ある個人の脳内に生まったイメージが、類似したイメージを他人の脳内に作り出すことができる（スヘルベル 2001） [27]。イメージ活動が「共感性のある型」を作り出すということについて、現在、われわれは社会的に行われている疑問にとどまっているが、日々身をされている社会文化的環境が成り立っていることを考えたとき、イメージ活動が「共感性のある型」を作り出す
ことについて、否定の余地はない。
以上を鑑み、本論文では、イメージという言葉は心的イメージ全体を指すものとし、ICDにおけるイメージについては、「共感性のある型」として定義し、使用することとする。

感性と感性情報と感性計測の方法

イメージ・センタード・デザインを行うためには、従来の論理や方法論からデザインを行うのではなく、ここにあるのいずれに「共感性のある型」を構築することから始めるべきであると考える。そのためにはまず、イメージ活動が積極的に行われるような、感性を刺激する働きかけを行うことが必要である。感性に働きかけるための方法について考える基礎として、ここでは、感性と本論文で扱う感性情報について整理し、現在一般化している感性の計測方法について整理しながら、イメージ・センタード・デザインを行うための準備とする。

感性について

感性はその定義についてもいろいろな表現がなされているが、筑波大学感性評価構想モデル構想特別プロジェクトが実施したアンケートに基づく定義は、従来の多くの分野・専門の研究者の回答に基づいているため、感性的多面的な展開を集約したものであるという。また、松田（筑波大学）によれば、この「感性という諸義の定義」は、論理的見解を主なもの、客観的見解を主なもの2軸で構成された空間上で解釈可能な五つのキーワードで定義付けることができるという[28]。以下に感性の五つのキーワードを挙げる。

- 主観的で説明不可能な要素：感性とは、外界からの刺激に対する表現であり、主観的であり、論理的に説明しにくい生成プロセスである。
- 先天的な性質に加えて知識や経験による認知的表現：感性とは、知識や経験に基づいて後天的に学習される認知的表現能力であることである。
- 直観的で知的活動の相互作用：感性とは、直感的な創造と知的活動としての記述の相互作用を行う心の働きである。
- 特徴を直感的に反応し評価する能力：感性とは、美や快などの価値に対して直感的に反応し評価する能力である。
- イメージを創造する心の機能：感性とは、生成されたイメージを情報として再生産し、創造する心の働きである。

これらをまとめると、主観的で個人差があり、直感的で実在なものであり、人間の内部活動において論理的に説明することがでていない部分を感性と解釈することができる。そのためには、感性は知識的としばしば対比されるが、感性は知識的知識ではない[27][28]。感性も同様に人間の知的情報処理活動を支える能力と捉えることができる。つまり、感性は知識よりも基本的なものであり、複雑変化する環境に適応し生きるために進化の過程で作り出された能力であると捉えることもできる。実際、情報は環境そのものであり、われわれは外界を感じずにはいられない。

人間の知的情報処理活動における、論理的処理は一貫性、完全性、厳密さ、非個性化等によって導かれる。それとは対照的に、感性的処理はある合理的な程度までの非一貫性、部分性およびその他の合理的原則からの逸脱を許容しているという。人間の情報処理という観点から述べると、論理的処理は言語による理解力の発達
によるものであり、感性的処理はイメージによる創造力の発達によるものであるといえる。

感性情報について

「感性情報とは、人間によって認識される情報で、一般的な知性によって認識される情報以外の情報のうち、感情の世界に入らない部分である。」[長尾（京大）(1987)[12] あるいは、「情報の送り手と受け手との間で取り扱われる情報のうち、論理的に分析可能な情報には客観性を獲得していない情報を感性情報、そのような情報を生成したり、受け取ったりする能力を、感性と定義する（内田（東工大）)」[1997][12] というように定義づけられている。そして、以下のように内容が、感性情報の表現形式の種類として、挙げられている。

- イメージ情報：画像、アニメーション、絵画
- 音楽情報：音楽、音楽、環境音
- 文字情報：文字、文章、詩
- 身体情報：表情、身振り、舞踊
- 造形情報：デザイン
- 空間情報：空間知覚、仮想現実感
- 感覚情報：嗅覚、触覚、味覚：香り、手触り

しかし、本論文においては、外界にある情報を、人間が知的情報処理した結果、新たな情報が生まれてくると考え、知性を使って論理的処理をすると論理情報となり、感性を使って感性的処理をすると感性情報になると考える。「感性情報とは、人間が感性的処理した結果生まれる新しい情報であり、人間を介してしか作り得ない情報である」と定義付ける（図4参照）。そのため感性情報は感性、多義性、あいまい性、状況依存性といった属性を持っている。」(梅井 1981)[29] と特徴づけることができる。

図 4 論文における感性情報

さて、イメージ・センタード・デザイン (ICD) を行うためには、イメージ活動が積極的に行われるような、感性を刺激する働きかけを行うことが必要である。さらに、共感覚を呼び起こすような感性情報を活用し、共感覚のある型を伝達しなければならないと考える。感性に働きかけ、共感を呼び起こすような ICD に利用できる感性情報の得るためには、人間に感性評価などの知的処理を行ってもらい、その結果としての感性情報の抽出が必要がある。
感性の計測方法について

感性の計測方法は感性研究の発達によってある程度一般的化しているので、以下に主だったものをまとめ、ICDで活用する感性情報抽出するときに利用する計測方法について検証を行った。感性的処理活動を計測し、感性を計る指標を得ようとする方法は、心理的指標の計測によるもの、認知行動的指標の計測によるもの、生理的指標の計測によるものという三つの計測方法がある。

心理的指標の計測方法

感性情報を受け取った人間が心情を、感性語・感性キーワード（主として形容詞）を基準にして表現する方法を基本にしている。官能検査（sensory test）に代表される、人間の評価判定に基づく計測方法もある。つまり、人間の感覚器官を測定器として測定対象の特性を測定する方法ともいえる。デザイン開発では、多くの主観的判断を客観的尺度にすることの困難さがまずである。

代表的な方法は、心理学的測定法に基づくSD法（semantic differential method）（これは、イリノイ大学の心理学者J.E. Osgoodが言語の意味の研究を目的に考察した手法であり、意味論分野で重要である）である。この方法は、刺激に対する意味尺度の評定結果から、意味尺度間の相関係数を算出するものであり、データ収集後に、主成分分析、因子分析などの多変量解析手法を適用して、意味尺度を手がかりに機能的なグループ（因子）を解釈しようというものである。その他の、イメージ分類と理由などを組み合わせ概念の構築をはかる、評価グリッド法などもある。これらは、イメージを言葉に置き換えて評価する方法である。

最近の感性研究の分野では、SD法を基本としながらも、感性情報を受け取ったときの心理状態を、感性的に表現してもらえるように調査方法に工夫を凝らしている研究も見受けられる。

いずれにしても、解析結果から感性情報空間や概念構造を得ることができる。この場合の解析方法は、心理学的解析手法にもとづくのが一般的である。多数の分析方法があるが、たとえば、システム工学のアプローチによるDEMETELL法などを使い、要素を決定し要素間の関係を定める構造同定を行う方法や、コンジョイント分析などの多変量解析手法を用いてパラメータを同定する方法などが有名である。そのほかにも一致比較法やクラスター分析など目的と内容に合わせて多くの方法が利用されている。

認知行動的指標の計測方法

感性情報を受け取った人間が情報をどのように受容しているかをその行動から計測するもので、眼球運動追跡や呼吸・顔認知技術を利用した顔の動き追跡などに代表される計測方法である。

同様に、対話的な認知活動を即時に得ようとする分析方法には、プロトコル分析があるが、発話と観察から思考を分析しようとしているのではないという点で異なっている。

具体的な行動の計測はインタラクションにおける問題点の発見には最適であるが、行動（運動）と情報処理活動を関連付けることが難しいため、課題を達成するために必要な行動や手続きを分析する方法と合わせて解

析することが必要である。解析する際に合わせて用いられる代表的な分析方法には、手続き的な知識の形成と実行を定量化することができるタスク分析やロギングデータの分析などがある。近年では、次のような指標を得る方法も併用されることもある。
生理的指標の計測方法

心拍・皮膚電気活動など自律反応を計測する方法と、脳波・脳内血流などの脳内活動を計測する方法の二つがある。

自律神経系の活動を計測する方法は、無意識下の反応を計測しているというだけでなく、心理的な活動によって起こる身体の生理的な反応（宮田 1985）を計測しているという点において、思考の影響を受けていないデータを入手することができるという特徴を有する。脳内活動を計測する方法は脳内情報処理システムが科学的に解明されに伴い、感性活動を直接的に計測できる方法として有望である。

さて、ICDを行うために、まずは共感性のある場面を伝達することができる素材としての感性情報を見極めることが必要である。ここでは、心理的指標の計測方法を活用することが有効といえる。言葉にならない世界を伝達できるようなイメージに関する感性情報と心理的指標を得ることができるからである。

このように本論文で取り上げている、イメージセンタードの概念は、人間が感性的処理した結果生まされる感性情報を用いることによって、各人の心的世界に「共感性のある型」を作り上げることを可能にするものであり、積極的に感性に働きかけ感性的情報処理を促すという点で、ナレッジベースの論理的情報処理とは根本的に異なっている。誰もがわかりやすい使いやすい感性的インタフェースを可能にするために、このようなイメージセンタードという概念を立て、続く第1節において、ICDを行うための方法としてより具体化することを目指す。