傾斜面におけるリバウンドジャンプの負荷特性に関する研究

<table>
<thead>
<tr>
<th>著者</th>
<th>尹 聖鎮</th>
</tr>
</thead>
<tbody>
<tr>
<td>内容記述</td>
<td>筑波大学博士(体育科学)学位論文・平成30年3月発表授与・甲第130号</td>
</tr>
<tr>
<td>発行年</td>
<td>平成30年</td>
</tr>
<tr>
<td>URL</td>
<td><a href="http://hdl.handle.net/2241/6532">http://hdl.handle.net/2241/6532</a></td>
</tr>
</tbody>
</table>
Table 1. Jumping height, contact time, achilles tendon force at midpoint (ATFMD), length change (LMTC) and mean stretch velocity (VMTC) of muscle-tendon complex during eccentric phase in RDJ30 and RDJ50.

Table 2. Statistical data for the results of jumping height, contact time, achilles tendon force at midpoint (ATFMD), length change (LMTC) and mean stretch velocity (VMTC) of muscle-tendon complex during eccentric phase in RDJ30 and RDJ50.

Table 3. Relative work about the hip, knee and ankle joints during eccentric phase in RDJ30 and RDJ50.

Table 4. Statistical data for the results of relative work about the hip, knee and ankle joints during eccentric phase in RDJ30 and RDJ50.
Table 5. Jumping height, contact time, achilles tendon force at midpoint (ATFₘᵢₙ), length change (LMTC) and mean stretch velocity (VMtc) of muscle-tendon complex during eccentric phase, ATFₘᵢₙ/LMTC, and ratio of achilles tendon length change to m. gastrocnemius length change (LAT/LGAS) during eccentric phase in RDJ30 and 5RJ.

Table 6. Statistical data for the results of jumping height, contact time, achilles tendon force at midpoint (ATFₘᵢₙ), length change (LMTC) and mean stretch velocity (VMtc) of muscle-tendon complex during eccentric phase, ATFₘᵢₙ/LMTC, and ratio of achilles tendon length change to m. gastrocnemius length change (LAT/LGAS) during eccentric phase in RDJ30 and 5RJ.

Table 7. Jumping height, contact time, achilles tendon force at midpoint (ATFₘᵢₙ), length change (LMTC) and mean stretch velocity (VMtc) of muscle-tendon complex during eccentric phase, ATFₘᵢₙ/LMTC, and ratio of achilles tendon length change to m. gastrocnemius length change (LAT/LGAS) during eccentric phase in RDJ30 and 5RJ for athletes and in RDJ30 for active males.

Table 8. Statistical data for the results of jumping height, contact time, achilles
tendon force at midpoint (ATFₘᵡ₋ₚₒ), length change (Lₘᵡ₋ₚₒ) and mean stretch velocity (Vₘᵡ₋ₚₒ) of muscle-tendon complex during eccentric phase, ATFₘᵡ₋ₚₒ /Lₘᵡ₋ₚₒ, and ratio of achilles tendon length change to m. gastrocnemius length change (LAT/LGₚₒ) during eccentric phase in RDJ30 for athletes (A) and active males (AM).

Table 9. Statistical data for the results of jumping height, total contact time, achilles tendon force at midpoint (ATFₘᵡ₋ₚₒ), length change (Lₘᵡ₋ₚₒ) and mean stretch velocity (Vₘᵡ₋ₚₒ) of muscle-tendon complex during eccentric phase, ATFₘᵡ₋ₚₒ /Lₘᵡ₋ₚₒ, and ratio of achilles tendon length change to m. gastrocnemius length change (LAT/LGₚₒ) during eccentric phase in RDJ30 and 5RJ for athletes.

1章　傾斜面でのリバウンドジャンプにおける腓腹筋のstiffnessがアキレス腱張力を及ぼす影響（研究課題2）

Table 10. Jumping height, contact time, achilles tendon force at midpoint (ATFₘᵡ₋ₚₒ), muscle-tendon complex length change (Lₘᵡ₋ₚₒ) and ratio of achilles tendon length change to m. gastrocnemius length change (LAT/LGₚₒ) during eccentric phase in 5RJ.

Table 11. Ankle joint angle at toe-on, midpoint and displacement during eccentric phase in 5RJ.
図のタイトル一覧

Figure 1 Experimental setup.

Figure 2 Rebound drop jump under uphill type condition.

Figure 3 Definition of joint angles.

Figure 4 Digitized body landmarks.

Figure 5 Calculation method of the center of pressure.

Figure 6 Definition of joint angles in Grieve's model.

Figure 7 Typical examples of angular displacement at the knee and ankle joints, length change of muscle-tendon complex (ΔLMTC), vertical ground reaction force (GRF), achilles tendon force (ATF), and torques at the knee and ankle joints in RDJ30 for one subject.
Figure 8  Typical examples of rectified EMG of medial head of m. gastrocnemius (EMG$_{GAS}$) and m. tibialis anterior (EMG$_{TA}$) in RDJ30 for one subject.

Figure 9  Integrated EMG of medial head of m. gastrocnemius (IEMG$_{GAS}$) and m. tibialis anterior (IEMG$_{TA}$) during pre-activation and eccentric phase in RDJ30 and RDJ50.

Figure 10  Relationships between muscle-tendon complex (MTC) length change and achilles tendon force (ATF) in RDJ30 and RDJ50 for two subjects. - Comparison for the dropping height-

Figure 11  Relationships between muscle-tendon complex (MTC) length change and achilles tendon force (ATF) in RDJ30 and RDJ50 for two subjects. - Comparison for the inclination-

第4章 健常者における傾斜面でのリバウンドジャンプの負荷特性－跳躍方法の相違に着目して－（研究課題1－2）

Figure 12  Integrated EMG of medial head of m. gastrocnemius (IEMG$_{GAS}$) and m. tibialis anterior (IEMG$_{TA}$) during pre-activation and eccentric phase in RDJ30 and SRJ.

Figure 13  Relationships between ratio of achilles tendon force at midpoint to length
change of muscle-tendon complex during eccentric phase (ATFMID/LMTC) and ratio of achilles tendon length change to m. gastrocnemius length change during eccentric phase (LAT/LGAS) in RDJ30 and 5RJ.

Figure 14 Relationships of muscle-tendon complex (MTC) length change and contraction velocity with achilles tendon force (ATF) in RDJ30 and 5RJ for subject A. - Comparison for the jump type-

Figure 15 Relationships of muscle-tendon complex (MTC) length change and contraction velocity with achilles tendon force (ATF) in RDJ30 and 5RJ for subject A. - Comparison for the inclination-

Figure 16 Relationships of muscle-tendon complex (MTC) length change and contraction velocity with achilles tendon force (ATF) in RDJ30 and 5RJ for subject B. - Comparison for the jump type-

Figure 17 Relationships of muscle-tendon complex (MTC) length change and contraction velocity with achilles tendon force (ATF) in RDJ30 and 5RJ for subject B. - Comparison for the inclination-

Ⅴ章 競技者における傾斜面でのリバウンドジャンプの負荷特性－跳躍トレーニング経験および跳躍方法の相違に着目して－（研究課題1－3）
Figure 18 Integrated EMG of medial head of m. gastrocnemius (IEMG\textsubscript{GAS}) and m. tibialis anterior (IEMG\textsubscript{T A}) during pre-activation and eccentric phase in RDJ30 for athletes and active males.

Figure 19 Relationships of muscle-tendon complex (MTC) length change and contraction velocity with achilles tendon force (ATF) in RDJ30 for one athlete and two active males. -Comparison for the group-

Figure 20 Relationships of muscle-tendon complex (MTC) length change and contraction velocity with achilles tendon force (ATF) in RDJ30 for one athlete and two active males. -Comparison for the inclination-

VI章 傾斜面でのリバウンドジャンプにおける腓腹筋のstiffnessがアキレス腱張力に及ぼす影響（研究課題2）

Figure 21 Typical examples of length change of muscle-tendon complex (ΔLMTC), m. gastrocnemius (ΔLGAS), and achilles tendon (ΔLAT) in 5RJ.

Figure 22 Relationship of ground reaction force at midpoint (GRFMID) with jumping height and with contact time in 5RJ.

Figure 23 Relationships of achilles tendon force at midpoint (ATFMID) with jumping height and with contact time in 5RJ.
Figure 24  Relationships between ground reaction force at midpoint (GRF,mid) and achilles tendon force at midpoint (ATF,mid) in 5RJ.

Figure 25  Relationships of muscle-tendon complex length change (LMTC) and ratio of achilles tendon length change to m. gastrocnemius length change (LAT/LGAS) during eccentric phase with achilles tendon force at midpoint (ATF,mid) in 5RJ.

Figure 26  Typical examples of angular displacement at the hip, knee and ankle joints in 5RJ.