ヒトの全身持久性を測定する簡易テストの開発 と
自覚的運動強度によって速度を調節する歩・走テストの確立

<table>
<thead>
<tr>
<th>著者</th>
<th>中垣内 真樹</th>
</tr>
</thead>
<tbody>
<tr>
<td>著者別名</td>
<td>筑波大学博士（体育科学）学位論文・平成11年10月</td>
</tr>
<tr>
<td>内容記述</td>
<td>筑波大学博士（体育科学）学位論文・平成11年10月</td>
</tr>
<tr>
<td>発行年</td>
<td>1999</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2241/6531</td>
</tr>
</tbody>
</table>
第6章 研究課題3-2
最大下12分間トレンディル歩行テストの有用性について
一異なる測定現場でも
妥当に測定できるか（cross-site validation）—

第1節 緒言

本テストについて、未検討の課題であった（1）全身持久性の個人内変化を妥当に測定できるか（症断的検討）については第5章で報告した。中高年肥満女性を対象とした場合、運動トレーニングによる個々の全身持久性の改善を、本テストから妥当に測定できることが明らかになった。研究課題3-2では、もうひとつの課題である（2）検者が被検者が異なっても全身持久性を妥当に測定できるか（Cross-site validation）について検討することとした。

本テストはRPEのみによって速度を調節することから、RPEの説明や本テストを実施するにあたっての注意事項の説明など検者が変わることや測定環境が変化することによって、本テストから得られる結果が変わる可能性が考えられる。また、被検者のRPEの捉え方や年齢の違いなどが本テストの成績に影響を及ぼすかもしれない。したがって、本章ではテストの客観性をも含めたテストの妥当性を検討した。本研究の主旨を理解いただけた4つの研究機関（ミズノ株式会社、名古屋市立大学、大阪教育大学、Seoul National Polytechnic University）で得られたデータについて解析した。今後、日本ののみならず国際的に本テストを普及させることを意図して、まず第一段階としてアジア系の異なる民族である韓国（ソウル）のデータをも解析した。テストの実施方法については、検者が異なっても同一方法でテストが実施できるよ
うに文書（和文、英文）でのテスト実施マニュアル（付録３）とビデオによるテスト実施マニュアルを作成し配布した。これは今後、本テストを普及させる場合にも意義深ないことであろう。
第2節 方法

1）対象者
対象者は、大阪市周辺、名古屋市周辺、ソウル市周辺に在住する30～84歳（50.9±16.5歳）の中高年男性76名と30～84歳（58.4±14.6歳）の中高年女性55名であった。対象者一人ひとりに研究の目的および測定内容を説明し、研究参加への承諾を得た。

2）VO2peakとVO2ATの直接測定
VO2peakおよびVO2ATは、1分ごとに速度あるいは斜度を高めるトレッドミル歩行による多段階増負荷テストにて直接測定した（付録1）。対象者が高齢であった名古屋市立大学での測定については、トレッドミル歩行によって最大努力まで負荷を漸増するのは転倒などの危険性が否めないことから、1分ごとに負荷を0.25 kp（50 rpm一定）ずつ高める自転車駆動で測定した。
VO2peakの判定基準は付録1に示した通りである。また、VO2ATについて、名古屋市立大学を除いては血中乳酸濃度の測定をおこなわず、VEおよび呼気ガス諸量からATを決定した（付録1）。各機関で使用した呼気ガス分析装置は、ミズノ株式会社：Sensor Medics社製 MMC4400tc、大阪教育大学：Sensor Medics社製 2900、名古屋市立大学：アニマ社製 AT-1000であった。

3）最大下12分間トレッドミル歩行テスト
研究課題2の方法に従って、RPE13によって速度を調節する12分間トレッドミル歩行テストを実施した。12分間トレッドミル歩行テストのテストプロトコールは付録3に示した。各機関には、付録3に示したテスト実施マニュ
アルとビデオによるテスト実施マニュアルを配布した。各機関で使用したトレッドミルエルゴメータは、ミズノ株式会社：日本光電社製 Aeromill STM-1500、大阪教育大学：西川鉄工社製トレッドミル、名古屋市立大学：日本光電社製 Aeromill STM-1500であった。

6) 統計解析
測定項目ごとの値は平均値±標準偏差で表示した。\(\dot{V}O_2\text{peak} \)や\(\dot{V}O_2\text{AT} \)と12分間にトレッドミル歩行テストにおける歩行距離との相関関係は、ピアソンの積率相関係数から検討した。
第3節 結果

各機関で得られた対象者の身体的特徴と測定結果については表15に示した。滋賀県立工芸高等学校：30～61歳（43.2±8.6歳）の男性、大阪教育大学：31～55歳（44.3±8.0歳）の女性、名古屋市立大学：67～84歳（74.8±5.3歳）の男性、60～84歳（69.8±4.7歳）の女性、韓国：31～56歳（40.1±6.5歳）の男性、30～48歳（40.9±5.0歳）の女性であり、対象者の年齢構成は各機関で異なっていた。特に名古屋市立大学での対象者は活動水準の高い高齢者であった。

表16には、各機関で得られたデータについて、12分間トレッドミル歩行テストの歩行距離を独立変数、\(\dot{V}O_2 \text{peak} \)および\(\dot{V}O_2 \text{AT} \)を従属変数とした場合の回帰分析の結果と相関係数を示した。相関係数は、男性では名古屋市立大学での\(\dot{V}O_2 \text{peak} \)の結果を除いては統計的に有意であった。女性では、大阪教育大学での\(\dot{V}O_2 \text{peak} \)の結果を除いては統計的に有意でなかった。全体を統合したデータについては、\(\dot{V}O_2 \text{peak} \)でr = 0.79（男性）、r = 0.62（女性）、\(\dot{V}O_2 \text{AT} \)でr = 0.81（男性）、r = 0.59（女性）と統計的に有意であった。SEEについてはいずれの機関も良好で5.2%～22.5%であった。男性と女性を比較すると、男性の方が本テストの推定精度が高い傾向にあった。
<table>
<thead>
<tr>
<th></th>
<th>All subjects</th>
<th>Osaka¹</th>
<th>Nagoya</th>
<th>Korea</th>
<th>All subjects</th>
<th>Osaka²</th>
<th>Nagoya</th>
<th>Korea</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (yr)</td>
<td>50.9 ± 16.5</td>
<td>43.2 ± 8.6</td>
<td>74.8 ± 5.3</td>
<td>40.1 ± 6.5</td>
<td>58.4 ± 14.6</td>
<td>44.3 ± 8.0</td>
<td>69.8 ± 4.7</td>
<td>40.9 ± 5.0</td>
</tr>
<tr>
<td>Height (cm)</td>
<td>167.3 ± 7.3</td>
<td>171.0 ± 5.5</td>
<td>160.1 ± 5.6</td>
<td>168.9 ± 6.1</td>
<td>154.0 ± 5.0</td>
<td>155.2 ± 4.2</td>
<td>152.5 ± 5.3</td>
<td>157.2 ± 3.3</td>
</tr>
<tr>
<td>Weight (kg)</td>
<td>65.2 ± 8.5</td>
<td>66.0 ± 7.5</td>
<td>60.1 ± 6.1</td>
<td>68.0 ± 9.6</td>
<td>53.2 ± 7.3</td>
<td>51.1 ± 3.7</td>
<td>51.6 ± 7.5</td>
<td>59.7 ± 5.7</td>
</tr>
<tr>
<td>VO2peak (ml/kg/min)</td>
<td>35.4 ± 8.7</td>
<td>37.9 ± 4.8</td>
<td>24.0 ± 3.6</td>
<td>42.0 ± 5.6</td>
<td>24.2 ± 6.2</td>
<td>27.3 ± 3.1</td>
<td>20.4 ± 4.7</td>
<td>32.1 ± 2.7</td>
</tr>
<tr>
<td>VO2AT (ml/kg/min)</td>
<td>22.0 ± 5.5</td>
<td>23.1 ± 3.1</td>
<td>14.9 ± 1.9</td>
<td>26.7 ± 3.8</td>
<td>15.9 ± 3.9</td>
<td>18.1 ± 1.1</td>
<td>13.4 ± 2.7</td>
<td>21.0 ± 1.3</td>
</tr>
<tr>
<td>12-min walk test (km)</td>
<td>1.04 ± 0.13</td>
<td>1.08 ± 0.09</td>
<td>0.90 ± 0.90</td>
<td>1.13 ± 0.85</td>
<td>0.91 ± 0.12</td>
<td>1.00 ± 0.05</td>
<td>0.85 ± 0.11</td>
<td>0.99 ± 0.07</td>
</tr>
</tbody>
</table>

Osaka¹: Mizuno Corporation, Osaka²: Osaka Kyokai University, Nagoya: Nagoya City University, Korea: Seoul National Polytechnic University.
Table 16 Correlation coefficients between 12-min walk and aerobic capacity

<table>
<thead>
<tr>
<th></th>
<th>All subjects</th>
<th>Osaka¹</th>
<th>Nagoya</th>
<th>Korea</th>
<th>All subjects</th>
<th>Osaka²</th>
<th>Nagoya</th>
<th>Korea</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>n = 76</td>
<td>n = 31</td>
<td>n = 21</td>
<td>n = 24</td>
<td>n = 55</td>
<td>n = 12</td>
<td>n = 32</td>
<td>n = 11</td>
</tr>
<tr>
<td>VO2peak</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>r</td>
<td>0.79*</td>
<td>0.42*</td>
<td>0.30</td>
<td>0.65*</td>
<td>0.62*</td>
<td>0.61*</td>
<td>0.30</td>
<td>0.56</td>
</tr>
<tr>
<td>SEE (ml/kg/min)</td>
<td>5.35</td>
<td>4.44</td>
<td>3.51</td>
<td>4.35</td>
<td>4.99</td>
<td>2.57</td>
<td>4.60</td>
<td>2.39</td>
</tr>
<tr>
<td>%SEE</td>
<td>15.1</td>
<td>11.7</td>
<td>14.6</td>
<td>10.4</td>
<td>20.6</td>
<td>9.4</td>
<td>22.5</td>
<td>7.4</td>
</tr>
<tr>
<td>VO2AT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>r</td>
<td>0.81*</td>
<td>0.43*</td>
<td>0.70*</td>
<td>0.59*</td>
<td>0.59*</td>
<td>0.51</td>
<td>0.20</td>
<td>0.42</td>
</tr>
<tr>
<td>SEE (ml/kg/min)</td>
<td>3.30</td>
<td>2.81</td>
<td>1.40</td>
<td>3.09</td>
<td>3.15</td>
<td>0.95</td>
<td>2.70</td>
<td>1.23</td>
</tr>
<tr>
<td>%SEE</td>
<td>15.0</td>
<td>12.2</td>
<td>9.4</td>
<td>11.6</td>
<td>19.8</td>
<td>5.2</td>
<td>20.1</td>
<td>5.9</td>
</tr>
</tbody>
</table>

Osaka¹: Mizuno Corporation, Osaka²: Osaka Kyoiku University, Nagoya: Nagoya City University, Korea: Seoul National Polytechnic University.
*P < 0.05
第4節 考察

各機関で得られた12分間トレッドミル歩行テストの歩行距離とVO2peakおよびVO2ATの相関係数は男性についての多くが統計的に有意であったが、女性についてはその多くが統計的に有意でなかった。相関係数は$r=0.20$～0.70と幅が広かった。しかし、SEEについては、男性で10～15%、女性で10～20%と良好であった。相関の程度が低かったのは、各機関でのデータ数が少ないことと年齢や体力水準が同一の集団であったことが影響しているものと考えられる。個人の能力差が著しい集団であればフィールドパフォーマンスによる全身持久性の評価が有効となることをTanaka（1985）は報告している。しかし、能力差が小さい集団の場合は全身持久性の優劣を妥当に測定するのが困難となる。これは容易に予想できることであり、相関の程度が低いけれどの対象者は能力差が小さい集団だったとも考えられる。男性に比べて女性の妥当性が低い傾向にあるのもこのことが原因であろう。全体のデータを統合すると、$r=0.59$～0.81、SEE=15.0%～20.6%と研究課題2で得られた結果と同等の相関係数およびSEEが得られた。つまり、このテストもこれまでのフィールドパフォーマンステストと同様に能力差の著しい集団であれば、全身持久性を妥当に測定できることが示唆された。また、各機関で得られたデータを統合しても本テストの妥当性は良好であったことから、被検者、検者、測定機器および測定地域が異なっても個々の全身持久性を本テストから妥当に測定できるといえよう。

名古屋市立大学で得られたデータの対象者は、60～84歳の高齢男女であった。男性のデータについて、歩行距離とVO2ATとの間には$r=0.70$と有意に高い相関が認められた。ここで、男性の歩行距離に対するVO2peakとVO2ATの結
果に顕著な差があるが、これは高齢者の\(V\!O_2\)peakを測定する限界によるものであると考えられる。この集団の\(V\!O_2\)peakと\(V\!O_2\)ATの相関は\(r = 0.47 \)であり、竹島（1990）による高齢者の\(V\!O_2\)peakと\(V\!O_2\)ATの報告（\(r = 0.89 \)）より低い。筋力の低下した高齢者の場合、自転車エルゴメータの負荷が増加すると呼吸循環器系よりも筋力が運動を中断する制限要因となり、有酸素性能力の最大値として\(V\!O_2\)peakを定義することが困難となる場合がある。本章における\(V\!O_2\)peakの結果には、このような影響が及んだものと推察される。したがって、本章では\(V\!O_2\)ATの結果を優先して考察した。さらに、推定の妥当性を検討する場合、相関係数のみならずSEEを考慮することが望まれる。竹島ら（1992）は、これまでに考察されてきた全身持久性の間接テストから高齢者の\(V\!O_2\)peakを推定したところ、7.2%～45.5%もの推定誤差が生じたことを報告している。本テストでのSEEは男性14.6%、女性22.5%であり、推定誤差に関しては従来の方法よりも小さいといえよう。以上のことから、高齢者にも本テストを適用できる可能性が示唆された。能力差がパフォーマンスに現れやすい高齢男性にはとくに有用であろう。

異なる民族での検討として韓国で得られたデータについて解析したところ、\(r = 0.42 \)～0.65の相関が得られた。本結果は、日本人のみならず異なる民族であっても本テストから全身持久性を測定できる可能性を示唆するものである。ただ、データ数が少ないことから、この結果を一般化できるかは明らかでない。今後、韓国人のデータはもちろんのこと、国際的にデータを収集・解析し、本テストの適用範囲を検討したい。本テストが異なる民族にも適用できることが確認できれば、全身持久性を簡易に測定するテストとして国際的に普及できることから、その意義は大きい。
第4節 まとめ

異なる研究機関で得られたデータから、12分間トレッドミル歩行テストの妥当性を検討した。各機関で得られた本テストの歩行距離とVO2peakおよびVO2ATとの相関は、r = 0.20〜0.70と幅が広かった。SEEについては、いずれも15%前後で良好であった。男性と女性を比較すると、パフォーマンス差のでにくい女性では妥当性の劣ることが示唆された。しかし、各機関のデータを統合したところ、男性でr = 0.79（VO2peak）および0.81（VO2AT）、SEE = 15.1%（VO2peak）および15.0%（VO2AT）、女性でr = 0.62（VO2peak）および0.59、SEE = 20.6%（VO2peak）および19.8%（VO2AT）であった。このように測定現場が異なっても本テストから個々の全身持久性を妥当に測定できるといえよう。また、名古屋市立大学で得られた対象者は60〜84歳の高齢者であったが、活動水準の高い高齢者にも（とくに男性では）本テストを適用できることが示唆された。さらに、韓国で得られた結果から、異なる民族間にも適用できることが示唆された。本テストは、被検者、検者、測定機器および測定機関が異なっても、個々の全身持久性を妥当に測定でき、全身持久性の簡易テストとして有用であるといえよう。