気道系におけるエンケファリナーゼの意義に関する生理学的、生化学的、薬理学的研究

<table>
<thead>
<tr>
<th>著者</th>
<th>大瀬 寛高</th>
</tr>
</thead>
<tbody>
<tr>
<td>著者別名</td>
<td>おおせ ひろたか</td>
</tr>
<tr>
<td>内容記述</td>
<td>筑波大学博士（医学）学位論文・平成12年3月25日授与（甲第1402号）付参考論文</td>
</tr>
<tr>
<td>発行年</td>
<td>1993</td>
</tr>
<tr>
<td>関連</td>
<td></td>
</tr>
</tbody>
</table>
序章
1. 研究の背景

慢性閉塞性肺疾患とは、慢性気管支炎、肺気腫、気管支喘息を総称した疾患概念である。慢性気管支炎、肺気腫、気管支喘息は、各々独立した疾患としてとらえられているが、その定義に一定の基準はないと。即ち、慢性気管支炎では慢性の咳嗽、痰という臨床的な側面が強調され、肺気腫では末梢気道の線維化を伴わない破壊という病理学的所見が重視され、気管支喘息では可逆性の気道狭窄という肺機能的要素が重視されている。臨床的にも肺機能的にもこれらの疾患は、互いに重複する症例が少なかった存在すると考えられ、これらの疾患を包括して取るという考えが提唱され、現在では慢性閉塞性肺疾患という名称が一般化されている（Ciba Guest Symposium, 1959: American Thoracic Society, 1965）。

近年、我が国では気管支喘息の患者が増加しているといわれている。1950年から1960年代にかけて、ほぼ1〜1.2%だった有症率が1987年の調査では3.14%と増加している。つまり、過去30年間で約3倍に増加していることになる。気管支喘息増加の原因として、診断技術の向上により、より多くの患者を気管支喘息と診断できるようになったことなどは別にしても、1. 大気汚染の影響 2. 生活環境の変化 3. 食生活の変化 4. 精神環境の変化などが挙げられ、今後も増加していく可能性が高いと考えられ、その病態の解明が急がれる所以である。

気管支喘息の発症のメカニズムは、複雑で多岐におよぶと考えられる。気管支喘息は典型的なアトピー性疾患のひとつであり、喘息患者は吸入、食物アレルゲンに対してIgE抗体を持っており、特異アレルゲンへの暴露は喘息発作を誘発し、また、アレルギー反応は気道粘膜の炎症を惹起し、気道反応性の亢進を起こす。しかし、その一方で、喘息の症状は同一であっても、アトピー素因が認められないものまである。このため、気管支喘息を単一疾患とするよりも種々の病因、機序によって起こる症候群とする考え方もある。

最近、強力な血管平滑筋収縮作用を持つペプチドとして報告されたエンドセリン（ET）（Yanagisawa, 1988）が、やはり強力な気道平滑筋収縮作用を持つことが明らかになり（Uchida, 1988）、気管支喘息とETとの関係
が注目されている（Nomura, 1989; Watanabe, 1991）。

生体においてE Tは、気道組織内のエンケファリナーゼ活性が低下した特殊な条件下でその気道平滑筋収縮作用が発現されることが考えられる。エンケファリナーゼは、気道収縮作用を有するペプチドであるタキジミン類をも効率よく水解する酵素として知られていた（Hooper, 1985; Stimler-Gerard, 1987; Fine, 1989; Dusser, 1989a）、エンケファリナーゼ活性が低下するような条件下で、これらの気道収縮作用を持つペプチドの作用が顕著化するような状態が、気管支喘息、あるいは気道過敏性の獲得と何らかの関係があるか否かについて検討する必要がある。

気管支喘息症例の抗原暴露後の気道反応は、即時型喘息反応（immediate asthmatic response, I A R）と遲発型喘息反応（late asthmatic response, L A R）に大別されるが、抗原吸入暴露後の気道反応とエンケファリナーゼ活性の動態に何らかの関係があるかは今まだ明かにされていない。特に、L A Rは、難治性喘息や気道過敏性の亢進したモデルとしても非常に注目されているものであり、エンケファリナーゼ活性がL A Rの複雑な病態を修飾する要素の1つである可能性は十分に予想される。

以下、本論文の研究の主要なテーマになったエンドセリン、エンケファリナーゼ、および即時型、遅発型喘息反応の病態について、簡単にこれまでの知見をまとめ序章としたい。
2. エンドセリンについて

エンドセリン（E T）は、1988年ブラウ大動脈血管内皮細胞の培養上清中より顆粒状のアミノ酸よりなるポリペプチドである（Yanagisawa, 1988）。小分子にもかかわらず、分子内に2個のジスルフィド結合を持つという特異な構造を呈している。遺伝子解析により、2種類の類似体が発見され、最初に発見されたものはET－1、他の2種は各々ET－2、ET－3と命名された（Inoue, 1989）。それぞれに前駆体であるビックエンドセリン（big E T）が存在し、それらをあわせてエンドセリンファミリーと称している。

ET－1による平滑筋収縮作用は、まずET－1が平滑筋細胞膜のET受容体に結合し、それに続いて細胞内シグナルトランスダクションを引き起こすことからはじめると考えられる（Arai, 1990; Sakurai, 1990）が、受容体と係わりのない系の存在も考えられており、種々の細胞内情報伝達機構が複雑に関係している可能性がある。

[エンドセリンと気道系との関係]

エンドセリンファミリーのうち、肺に存在するのはET－1とET－3であるが、その他などがあるET－1である。肺はET－1の産生量の多い部位であることが報告されており（MacCumber, 1989）、また肺には多くの
E T－1 結合部位が存在することも確認されている（Koseki, 1989; Bolger, 1990; Henry, 1990）。E T－1 分泌細胞としては、肺血管内皮細胞と気道上皮細胞が知られているが、気道系においてはおもに神経内分泌細胞に局在していることが報告されている（Rozengurt, 1990）。

E T－1 は、薬理学的にきわめて強い気道収縮活性を有することが知られており（Uchida, 1988）、気管支喘息患者の気管支肺泡洗浄液中（Nomura, 1989）、あるいは血中（Watanabe, 1990）で増加していたとの報告もあるて、気管支喘息との関連は深さがみられる。更に、気管支喘息患者の気道を抗 E T抗体を用いて染色すると、E Tを含む気道上皮細胞が増加していることが報告されており（Springall, 1991）、E Tの産生を過剰が病的気道収縮を惹起している可能性を示唆するものである。

E Tの受容体として、その親和性がE T－1 > E T－3 の傾向を示すETAおよびE T－1、E T－2、E T－3 に同等の親和性を示すE T受容体が確認されており、いずれも肺に多量に存在することが報告されており（Sakurai, 1990）、気道系における受容体の分布についても研究が始まっている（Nakamichi, 1992）。現在、その拮抗薬も報告され（Ohlstein, 1992）、喘息動物モデルに対する効果などから、気管支喘息とE Tの関係が今後更に明らかにされてくるものと期待される。

また、E T－1 には、気道平滑筋に直接作用して収縮を惹起させる系の他にも、肥満細胞などの炎症細胞を介して間接的に作用が発見される可能性も想定されており（Ninomiya, 1992）、現在、気管支喘息の治療に用いられている抗アレルギー薬もE T－1 による気道平滑筋収縮を抑制することが観察されている（大瀬, 1992）。抗ヒスタミン作用を有する塩基性抗アレルギー薬の方、E T－1 による気道平滑筋収縮の抑制効果が概ね強いが、酸性抗アレルギー薬も、ロイコトリエンや血小板活性化因子の抑制作用などに応じた抑制効果を発現するものと考えられる（大瀬, 1993）。E T－1 は、直接的に気道平滑筋に作用して喘息の病態を惹起するのみならず、炎症細胞を介してヒスタミン、ロイコトリエンや血小板活性化因子などの作用を発現させることにより、間接的にも気道平滑筋に作用し、喘息の複雑で多岐にわたる病態の発現に関与している可能性を示すものである。
3. エンケファリンナーゼについて

エンケファリンナーゼ（enkephalinase, EC 3.4.24.11）は最初、腎臓から抽出された膜結合性の糖蛋白であることが報告されたが(Kerr, 1974a; 1974b)、その後、生化学的に種々のペプチドを加水分解することが知られていた。その作用は、エンケファリン(Matsas, 1984; Malfroy, 1985)、タキビジン(Hooper, 1985)、キニン(Ura, 1987)、プラディキニン(Matsas, 1984)、β－エンドルフィン(Graf, 1985)、ニューロテンシン(Checler, 1984)、VIP (Goetzl, 1989)、CGRP (Katayama, 1991)、アンギオテンシンI、II (Ainoenoff, 1983; Gafford, 1983) などおよびその分解にあたるが、タキビジン、エンケファリン、キニンに対しては低濃度で効率よく作用し、これらが現在までのところ主たる基質と考えられている (Matsas, 1984)。

元来、腎臓から抽出されたが、その意義に関しては長らく不明であった。最近の研究により、腎においてはキニンを分解し、血流の調節にあたっているものと考えられる(Ura, 1987)。また、脳における存在も知られており、エンケファリンを代謝し、疼痛刺激に対する反応を調節しているものと考えられている(Malfroy, 1978)。その他にも腸管、副腎、甲状腺、唾液腺(Llorens, 1981)、リンパ節(Bowes, 1986)、脳下垂体(Llorens, 1981; Leblanc, 1984)など、ホルモンの組織に広く分布することが知られている。エンケファリンナーゼが、ゴナドトリヒチン放出ホルモンを分解することが報告されており、脳下垂体ホルモンの放出を調節している可能性があるが(Leblanc, 1984)、その他の組織におけるその役割に関しては不明の点が多い。

また、この酵素と未熟Bリンパ球のマーカーであるCALLA（common acute lymphoblastic leukemia antigen）との相関性も報告され、免疫系においても何らかの役割を担っているものと考えられる(Leart, 1988)。更に、最近ではヒト胎盤細胞から、742個のアミノ酸配列よりなるエンケファリンナーゼが合成され(Malfroy, 1988)、この合成エンケファリンナーゼを用いた研究も報告されており(Kohrogi, 1989)、今後エンケファリンナーゼに関する研究が進んでいくものと期待される。
エンケファリンナーゼの作用の研究に関して、その阻害剤であるホスホラミドンが用いられることが多い。エンケファリンナーゼは、中央に金属イオンとして亜鉛を有し、いくつかの配位子を持つ構造になっている。ホスホラミドンは、そのリン酸塩の部分でエンケファリンナーゼの亜鉛の部分に結合して、その作用を抑制すると考えられる（Almenoff, 1983）。ホスホラミドン10^{-9}M単位でエンケファリンナーゼ活性は50％程度まで抑制され、10^{-6}M単位では90～95％の抑制効果が認められ（Borson, 1991）、エンケファリンナーゼの強力な抑制物質である。

肺は腎に次いでエンケファリンナーゼの含有量が多く（Scicli, 1989）、気道系においても重要な役割を担っているものと考えられ、エンケファリンナーゼの研究が進めている臓器の1つであると考えられる。

[エンケファリンナーゼと気道系との関係]

気道系におけるエンケファリンナーゼの作用に関してはこれまで、気道収縮作用や、neurogenic airway inflammationを惹起するSP（substance P）、NK A（neurokinin A）などのタキキニン類との関連で研究が進められてきた。そこで、気道系におけるタキキニンの作用をまとめ、エンケファリンナーゼの役割を述べたい。
タキキニン類 (tachykinins) について

タキキニン類の中で最初に発見されたのは SP で、11 個のアミノ酸よりなるペプチドである (von Euler, 1931)。その後、C 末端の 4 個のアミノ酸配列 (Phe-X-Gly-Leu-Met) を共有する神経性ペプチドで、急速な平滑筋収縮作用を有するタキキニンが同定され、近年これらは NKA、NKB と称されるようになった。これらのタキキニン類は、類似した生理学的作
用として、平滑筋収縮、粘液分泌、血管透過性亢進作用などを持っている。

気道系における分布を見てみるとタキキニンは頭静脈神経節、および筋
状神経節内の神経細胞、迷走神経群索に沿って認められる (Lundberg, 1985; Martling, 1988)。また、タキキニン陽性ニューロンの末梢枝は、気管気
管支神経節周囲、血管周囲、気管気管支平滑筋層内、鼻粘膜から末梢気管
支に至る気道上皮下、時に肺胞にまで認められる (Lundberg, 1984; 1985; Martling, 1988; Shimosegawa, 1991)。高濃度のカプサイシンに暴露される
と (Jancso, 1977)、タキキニン (Lundberg, 1983a, 1984; Lundblad, 1983) 陽性神経がほとんど気道から消失することから、これらのペプチドの存在
部位は、無菌知覚神経 C 線維であろうと推定される。

タキキニンの受容体は気管から細気管支にいたる気道平滑筋に認められ
(Castairs, 1986)、タキキニンが中枢気道のみならず末梢気道のトーヌス
維持にも関与しているものと考えられる。各種タキキニンの作用の比較か
ら少なくとも 3 種類のタキキニン受容体が存在すると考えられている。即
ち、SP に最も親和性の強い NK-1 受容体、NKA に親和性の強い NK-2
受容体、NKB に親和性の強い NK-3 受容体である (Lee, 1982; 1986; Regoli, 1987)。気道平滑筋には NK-2 受容体 (Martling, 1987; Advenier, 1987; Palmer, 1987)、血管平滑筋 (Rogers, 1988)、粘膜下腺 (Coles, 1984; Rogers, 1989)、気道上皮 (Frossard, 1989) および粘細胞 (Barnes, 1990) には NKA 受容体が存在する。

気道平滑筋に対する作用を比較してみると、SP はヒト (Finney, 1985; Lundberg, 1983b) を含む多くの動物の気管、気管支を収縮させるが
(Andersson, 1977; Lundberg, 1982a)、NKA の気道平滑筋収縮作用はこれ
より強力であると報告されている (Advenier, 1987; Martling, 1987; Palmer, 1987)。
タキキニンは後毛細血管静脈レベルで透過性亢進を生じさせ、蛋白漏出を惹起する（Lembeck, 1979; Lundberg, 1982b; 1983c）。この作用に関してはNK AやNK Bより、SPの作用が強く、後毛細血管静脈の内皮細胞上にはNK-1受容体があって作用を発現しているものと思われる（Rogers, 1988）。気道血管に対する作用としては、SP、NK Aともイヌの気管の血流量を増やし（Salonen, 1988）、気管支動脈を拡張させると報告されている（McCormack, 1989）。

また、SPは気道分泌作用を有し、ヒトや他の動物の気道において粘膜下腺（Coles, 1984; Rogers, 1989）、杯細胞（Barnes, 1990）からの分泌を刺激し、この作用はNK A、NK Bより強力である。

Neurogenic inflammation について

以上のタキキニン、CGRPなど、*neurogenic inflammation* を惹起す
るペプチドを喘息の病態と合わせて考えると、喘息発作により気道上皮に障害が起きると(Latinen, 1985)、上皮細胞間および基底膜に分布しているタキニン、CGRP陽性知覚神経が気道腔内に露出し、刺激を受けやすくなり、このような条件下で知覚神経末梢がヒスタミンやセロトニンなどのアレルギー性、炎症性メディエーターで刺激されることで中枢を介する迷走神経反射だけでなく、局所で軸索反射がトリガーされ、神経側枝からタキニンやCGRPが遊離される。その結果気道拡張（主にNKAによる）、充血、細動脈拡張（CGRPによる）、粘液分泌亢進、細静脈における血管透過性の亢進（SPによる）という喘息にみられる一連の反応が形成される。また、気道上皮の障害は同時にタキニンの主要な代謝酵素であるエンケファリンーゼを減少させる。すなわち、喘息の病態下では、タキニンやCGRPが放出されやすい条件となるのに加え、これらのペプチドを分解、代謝するエンケファリンーゼが減少して、neurogenic airway inflammationを惹起させる因子になると考えられる。
4. 即時型、速発型喘息反応の病態について

気管支喘息患者が特異抗原を吸入すると、その直後より発症する即時型喘息反応（IAR）と、その3〜8時間後より徐々に生じてくる持続の長い速発型喘息反応（LAR）が認められることが観察されて以来（Herxheimer, 1952）、LARは、自然発症の喘息の中で、その発症のメカニズム、慢性化、重症化のメカニズムの解明という点から研究対象とされるようになった。IARのメカニズムについては、神経性、細胞性機序を中心に研究されており、その気道閉塞の本態も、平滑筋収縮および可逆性の血管透過性亢進による気道粘膜浮腫を主体とするものであることが、徐々に明らかにされてきた。IAR後、LAR発症までに気道内でどの様な変化が起こり炎症像を惹起するかについても研究が進められており、その本態が解明されつつある。そこで、最近の知見も含め、IAR、LARの病態をまとめてみたい。

IARの病態

気管支喘息患者にアレルゲンを吸入させると、吸入後10分以内に発症し、15〜30分でピークに達する即時型の気道収縮反応であるIARが観察される。その機序は完全に解明されたわけではないが、I型アレルギー反応によって発症すると考えられる。吸入された抗原が肥満細胞、好塩基球の表面上に結合した2分子の特異的IgE抗体と反応して架橋が起こる。これがトリガーとなって、カルシウムの細胞内への流入が起こり、細胞内の酵素系が作動して、細胞内に貯蔵されているヒスタミン、血小板活性化因子、好中球走化性因子、好酸球走化性因子を遊離し、更に新たにロイコトリエンB4、C4、D4、E4、トロンポキサンA2、プロスタグランジンD2などが合成される。これらの作用により、気管支平滑筋の収縮、血管透過性の亢進、粘液分泌の亢進が起こり、IARの病態を形成するのではないかと考えられている。

実際、血小板活性化因子、ロイコトリエンC4、ヒスタミンなどの吸入負荷で一過性の気道収縮が生じるし、抗原吸入誘発試験においてIAR時
に一致して血中ヒスタミンやロイコトリエンの代謝産物であるロイコトリエンE₄などが増加することが報告されている（Manning, 1990）。また、喘息患者のbronchoalveolar lavage fluid（BALF）中の肥満細胞数は健康人に比較して増加しており、同患者的気管粘膜の肥満細胞は脱顆粒現象を起こしていることも観察されている（松田, 1987）。即ち、IARの病態は、主として肥満細胞より遊離された化学伝達物質による気管支平滑筋収縮と軽度の粘膜浮腫としてとらえられる。

しかし、肥満細胞、好酸球以外にも大食細胞、リンパ球、血小板、好酸球がIgE-Fc受容体を持ち、特に大食細胞は血小板活性化因子産生能、ヒスタミン含有量、ロイコトリエン産生能、種々の細胞遊走因子遊離能などから、IARの病態に少なからず関与していることが考えられる（Martin, 1984）。

IARの病態

IAR出現後、数時間経過して再び出現してくる気道閉塞反応であるIARは、その本態は依然不明な点が多い。IARの機能的病態から、IARの炎症像に至る過程は、臨床症状、持続時間、薬剤に対する反応性、気道炎症の存在などの点から、日常の喘息患者の慢性化のメカニズムにも通じると考えられ、きわめて興味のある問題である。

a) IARの発症頻度

抗原の種類により発症頻度にかなりの差がみられるが、一般的にはダニ抗原や真菌類では高く、50～75％程度、花粉類、雑毛、皮屑で40～60％程度という報告が多い。近年、抗原の吸入量も発症頻度に関与するとの報告もある。吸入抗原の量を多くすると、IARにみしか示さなかった者でもIARを認めるようになり、IARは本来必ず出現するものであるという報告があるが（Lai, 1989）、その一方で低濃度の抗原吸入のほうがIARのみを起こす割合が高くなり、高濃度ではIARのみ、あるいはIAR、IARの二相性反応が起こりやすくなるとの報告もある（Crimi, 1986）。この様に、IARの発症頻度がIARの程度に比例するのか、IARの程度
に関係なく炎症細胞を気道局所に走化させ、活性化に必要な抗原量があればLARが惹起されるのかについては結論が得られていない。

また、患者側の因子としては吸入前の呼吸機能が低下しており、メサコリン吸入試験で気道過敏性が高い患者ほどLARが起こりやすいといわれ、実際、例えば運動誘発性喘息発作後に生じるLARも、メサコリン吸入試験で気道過敏性が高い患者に多く認められる傾向があり、気道の脆弱性とLARの関連も示唆されている（Crimi, 1992）。

b）LARに関与する抗体

現在のところ、LAR発症のメカニズムにはIgE抗体とIgG1抗体の両者が関与する可能性が考えられており、IgG1抗体の高い患者にLARが出現しやすいとの報告がなされている（Ito, 1986）。その一方で、多くの吸入抗原でLARが認められるが、抗原特異的IgGは認められないこと（Robertson, 1974）も知られており、LARはIgE抗体のみに依存すると考えもある。

c）LARに関与する化学伝達物質

LARに関与する化学伝達物質はまだ確定されていない。血中ヒスタミンが、LARのみならずLAR時にも再上昇するととの報告（Metzger, 1986）は、LAR時の好塩基球の関与を示唆するものである。血小板活性化因子は、抗原吸入暴露後に、IgEを介して肥満細胞、および好酸球を主とした種々の炎症細胞から産生され、気道平滑筋収縮作用（Vargaftig, 1981）、好酸球、好中球遊走、およびロイコトリエンC4産生促進などの活性化作用、血管透過性亢進作用など多彩な生理活性を持ち、気道過敏性を惹起する。また、ロイコトリエンB4は、大食細胞、好中球などから産生され、血小板活性化因子とともに好酸球、好中球の遊走因子であり（O'Byrne, 1985）、補体受容体の発現促進や好中球からのスーパーオキサイドの放出も促進する。それ自体の吸入でも気道過敏性は惹起し得るが、LARの成因にどの程度関与するのかは不明である。ロイコトリエンC4、D4は、LAR時には肥満細胞より、LAR時には主に好酸球から産生されると考えられている。選択的ロイコトリエンC4、D4受容体遮断薬を
LAR後に用いるとLARは減弱するととの報告（Yamai, 1989）、またロイコトリエンC₄が抗原吸収後（Diaz, 1989）、あるいは抗原滴下後（州之内、1991）の6時間後のBALF中で有意に増加していたことが示されており、LARの重要なメディエーターのひとつと考えられる。この他にも、ブロスタグランジンD₂、トロンボポキサンA₂も気道収縮を惹起し、喘息患者に抗原チャレンジすると、末梢血ブロスタグランジンD₂やBALF中のトロンボキサンB₂量が増加すること、トロンボキサンA₂の受容体拮抗剤のAAP-2414を投与することで喘息患者の気道過敏性が改善すること（Fujimura, 1991）などから、何らかの関与がある可能性が示唆される。

d）LAR時の組織学的所見とBALF所見

LAR時の組織学的特徴は、気管支平滑筋の挙縮、炎症細胞浸潤を伴う気道粘膜の浮腫、気道分泌物の貯留、気道上皮の剥離などである。気道上皮剥離の原因として、局所に浸潤した好酸球からのMBP（major basic protein）、ECP（eosinophil cationic protein）、EPO（eosinophil peroxidase）などの細胞傷害性の物質が放出され上皮障害を起こすためと考えられている。気道上皮が剥離すると迷走神経のirritant受容体およびC－線維末梢が露出して軸索反射を介して知覚神経末梢からタキキニン類などの神経ペプチドが分泌される。このペプチドが平滑筋、粘液腺、毛細血管に作用して気道反応を促進し、気管支喘息を悪化させると考えられる。このような状態では気道過敏性が亢進し、アレルゲンのみならず、非特異的な刺激によっても喘息発作が誘発される可能性がある。

LARのBALF所見に関しては、ダニ抗原吸入誘発試験を行い、LAR陽性者はLARのみの患者に比べ好酸球が有意に増加し、更に好酸球出来と考えられるcationic proteinも有意に増加しているとの報告がなされている（De Monchy, 1985）。また、LAR陽性者では抗原暴露後48〜96時間でBALF中にヘルパーT細胞が増えること（Metzger, 1987）逆に陰性者のBALF中のCD₄陽性細胞の比率が低下し、CD₈。陽性細胞数の相対値が増加することが報告されている。
5. 本論文の構成について

本論文は2章よりなる。

第1章では、in vitroで強力な気道平滑筋収縮作用を持つと報告されるET-1が、実際に生体において、どの様な条件下で、その収縮活性が発現されるかに関して検討を行った。その結果、気道組織中のエンケファリナーゼ活性が低下した状態を準備しておくとET-1による気道収縮作用が発現されるという知見が得られた。エンケファリナーゼ活性の低下は、タキシン類の作用も増強させることができが知られており、エンケファリナーゼ活性の低下が、喘息症状の発現、あるいは喘息の複雑な病態の修飾に関与している可能性が考えられた。

第2章では、呼吸器疾患を悪化させる要因として知られる、感染や喫煙によって低下することが報告されているエンケファリナーゼ活性を、実際に喘息モデルを用いて検討した。

そこで先ず、IAR、LARの両者を呈する二相性のモルモット喘息モデルを作成した。このモデルは、ヒトの気管支喘息、あるいは気道過敏性のメカニズムを解明する上でも非常に有用と考えられる。そして、IAR、LAR時におけるエンケファリナーゼ活性を測定し、また、各々の時点において、タキシンに対する気道平滑筋の収縮反応を測定することで、喘息とエンケファリナーゼ活性の関連について検討を行った。