APPENDIX 3

CHF CALCULATION PROCEDURE

If not specified, all properties are got at saturation condition.

Input G, P, D, L, T_{in}

Calculate friction factor \(f \) from

\[
\frac{1}{\sqrt{f}} = 1.14 - 2.0 \times \log \left(0.75 \times 0.015 \times \sqrt{\frac{8G \rho_f}{fG^2D}} + \frac{9.35}{\text{Re} \sqrt{f}} \right)
\]

Calculate \(\tau_w \), \(U_t \) and \(D_b \) by:

\[
\tau_w = \frac{fG^2}{8 \rho_f} \quad U_t = \frac{\tau_w}{\rho_f} \quad D_b = 0.015 \times \sqrt{\frac{\partial D}{\tau_w}}
\]

Assume a \(q_{im} \)

1. Calculate NVG point

a. Generally, calculate \(\Delta T_d \) from the Ahmad model as:

\[
\Delta T_d = \frac{q_m}{h_{l-A}}
\]

where \(h_{l-A} \) is subcooled liquid-phase heat transfer coefficient in the Ahmad model and is calculated by:

\[
h_{l-A} = 2.44 \frac{K_f}{D} \left(\frac{GD}{\mu_f} \left(\frac{C_{pl} \mu_f}{K_f} \right)^{1/3} (\frac{H_{in}^*}{H_f}) (\frac{H_{fg}}{H_f}) \right)^{1/3}
\]

where \(H_{in} \) is inlet liquid enthalpy, \(C_{pl} \) should be the specific heat at the net vapor generation point. To simplify the calculation, this \(C_{pl} \) is approximately got at inlet temperature.

b. With the discussions in the Chapter 6-1, if \(T_{in}<30^\circ C \) or \(G \geq 40000 \text{ kg/m}^2\text{s} \), calculate \(\Delta T_d \) from the Levy model:

\[
\Delta T_d = q_m \left(\frac{1}{h_l} - \frac{T^*_g}{C_{pl} \rho_f U_t} \right)
\]

where \(h_l = 0.023 \frac{k_f}{D} \left(\frac{GD}{\mu_f} \right)^{0.8} \left(\frac{C_{pl} \mu_f}{k} \right)^{0.4} \)
\[
\begin{align*}
T_b^* &= Pr_f Y_b^* \quad 0 \leq Y_b^* \leq 5 \\
T_b^* &= 5 \left[Pr_f + \ln \left(1 + Pr_f \left(\frac{Y_b^*}{5} - 1 \right) \right) \right] \quad 5 \leq Y_b^* \leq 30 \\
T_b^* &= 5 \left[Pr_f + \ln \left(1 + 5 Pr_f \right) + 0.5 \ln \left(\frac{Y_b^*}{30} \right) \right] \quad Y_b^* > 30
\end{align*}
\]

where \(Y_b^* = \frac{Y_b U_r \rho_f}{\mu_f}, \quad Y_b = 0.015 \left(\frac{OD}{\tau_w} \right)^{1/2} \)

c. Compare \(\Delta T_d \) with \(\Delta T_{in} \). If \(\Delta T_d > \Delta T_{in} \), which means the physics valid net vapor generation is tube inlet, replace \(\Delta T_d \) by \(\Delta T_{in} \).
d. Calculate \(Z_0 \) (the distance from the tube inlet to the NVG point) by:
\[
Z_0 = GDC_{pt} (\Delta T_{in} - \Delta T_d) / (4 q_m)
\]
\(C_{pt} \) here is specific heat at the NVG point.
If \(Z_0 \geq L \), which means the NVG point can not be reached in the tube, increase \(q_m \) and repeat the above procedures. Otherwise, significant boiling length \(Z_{sh} \) is calculated by:
\[
Z_{sh} = L - Z_0
\]

2. Calculate \(\chi_{out} \) and \(\alpha_{out} \)
\[
A = (q_m \times Z_{sh}) / (GDC_{pt} \Delta T_d / 4)
\]
\[
B = H_{ft} / (C_{pt} \Delta T_d)
\]
The \(C_{pt} \) in the above two equations are specific heat at the NVG point.
\[
\chi_{equat} = (A - 1) / B,
\]
\[
\chi_d = - \left(1 / B \right)
\]
\[
\chi_{equat} = \chi_d \exp \left(\frac{\chi_{equat}}{\chi_d} \right)
\]
\[
\chi_{equat} = \frac{1 - \chi_d \exp \left(\frac{\chi_{equat}}{\chi_d} \right) - 1}{\chi_d}
\]
If \(\chi_{equat} \geq 1 \), decrease \(q_m \) and repeat the above procedures. Otherwise,
Appendix 3

\[
S = \left(\frac{\rho_f}{\rho_g} \right)^{0.205} \left(\frac{GD}{\mu_f} \right)^{-0.036}
\]

\[
\alpha_{out} = \frac{\chi_{out}}{\chi_{out} + \left(\frac{\rho_g}{\rho_f} \right) S (1 - \chi_{out})}
\]

3. Calculate \(T_{out} \)

\[
T_{out} = T_{sat} - \Delta T_a e^{(\alpha_a)}
\]

If \(T_{out} \geq T_{SAT} \), decrease \(q_{in} \) and repeat the above procedures.

4. Calculate \(V_e \) and \(U_B \)

Core region two-phase average density \(\rho_a \) is calculated from:

\[
\rho_a = (1 - \alpha_{out}) \times \rho_{out} + \alpha_{out} \times \rho_g
\]

where \(\rho_{out} \) is liquid density at exit temperature.

\(V_e \) is calculated as:

\[
V_e = G / \rho_a
\]

Then \(U_B \) is calculated as:

\[
U_B = \frac{V_e}{1 + \sqrt{\frac{\rho_e + \rho_g}{\rho_e}}}
\]

5. Calculate \(L_B \)

\[
L_B = 2\pi \sigma f \left(\rho_g U_B^2 \right)
\]

6. Calculate \(U_{Bl} \)

At low pressure (P<1MPa):

\[
U_{Bl} = U_B - \sqrt{\frac{2L_B f (\rho_f - \rho_g)}{\rho_f C_D}}
\]

where \(C_D \) is got by:

\[
C_D = \frac{2}{3} \frac{D_B}{\left(\frac{\sigma}{g(\rho_f - \rho_g)} \right)^{0.2}}
\]
Otherwise:
\[U_{re} = U_{b} - 2g(\rho_f - \rho_g)D_bL_b / (48\mu_f) \]

If \(U_{re} \leq 0 \), increase \(q_m \) and repeat the above procedures.

6. Calculate distance \(y^* \)
\[
\begin{align*}
U_{re}^+ &= y^* & 0 \leq y^* \leq 5 \\
U_{re}^+ &= 5.0 \ln y^* - 3.05 & 5 \leq y^* < 30 \\
U_{re}^+ &= 2.5 \ln y^* + 5.5 & y^* \geq 30
\end{align*}
\]

where \(U_{re}^+ = \frac{U_{re}}{U_{e}}, \ y^* = y \frac{\rho_f}{\mu_f} \)

7. Calculate \(\delta \)
\[\delta = y - D_b / 2 \]

If \(\delta < 0 \), increase \(q_m \) and repeat the above procedures.

8. Calculate critical heat flux
\[q = \rho_f \delta H_f U_{b} / L_b \]

Critical heat flux, CHF, is reached when \(q_m = q \).

It has been mentioned (chapter 4.1) that under some extreme condition, such as at high Pressure (\(P \geq 17.5 \) MPa) or high mass flux (\(G \geq 50000 \) kg/m\(^2\)s, with CHF up to 100 MW/m\(^2\)), with the proposed model, sometimes the final calculated \(q \) doesn't equal to the assumed \(q_m \) even after the assumed \(q_m \) has converged to a point. The reason is analyzed as the change of the CHF triggering mechanism. The CHF under such circumstance can be approximately calculated by doing a little modification to Levy \(D_B \) (by increasing \(D_B \) step by step). That is to say, if we cannot calculate CHF with the original Levy \(D_B \), we increase \(D_B \) as \(D_B = 1.01D_B \) and repeat the calculation procedure. If CHF still cannot be got, increase \(D_B \) as \(DB = 1.02D_B \) ... until the CHF is calculated. Generally, the CHF can be got within \(D_B < 1.5D_{B, Levy} \). Because the calculated CHF by doing the modification to the vapor blanket equivalent diameter is actually the lowest possible CHF value (\(q_{mvo} \)) and is occasionally just the same as the analyzed CHF value for the data group, the CHF is therefore predicted successfully.