List of Figures

2.1 The phase diagram of 4He ... 9
2.2 The specific heat of liquid helium along the saturated vapor curve as a function of the temperature 10
2.3 The ratio of the normal fluid density ρ_n and the superfluid density ρ_s to the total density ρ as a function of temperature. 11
2.4 The dispersion curve for liquid helium at the saturated vapor and $T_0 = 1.0\, K$... 12
2.5 The propagation speeds of a first sound and a second sound as a function of temperature .. 18
2.6 The temperature dependence of steepening coefficient b at $P = 1$ bar ... 21

3.1 The x-t diagram of He II evaporation induced by a thermal pulse impingement ... 23
3.2 General view of whole experimental setup 25
3.3 Schematical drawing of a glass dewar and a evacuation system 25
3.4 The main assembly of experimental section to be set in the He II dewar. ... 26
3.5 The photos of the main assembly of experimental section in the He II dewar ... 27
3.6 The temperature distribution in vapor phase 28
3.7 The photo of a probe type pressure transducer 28
3.8 The photo of a wall mount type pressure transducer. 29
3.9 The photo of a miniature type pressure transducer. 29
3.10 The photo of a superconductive temperature sensor with the bent needle sports. .. 30
LIST OF FIGURES

3.11 The sensing element of a superconductive temperature sensor. ... 31
3.12 The photo of a double probe type superconductive temperature sensor. 32
3.13 The typical voltage-bias current characteristics of a superconductive temperature sensor. 33
3.14 The heating ratio of the electric resistance of sensing element of a superconductive temperature sensor as a function of the bias current .. 34
3.15 The block diagram of the temperature measurement .. 35
3.16 The block diagram of the pressure measurement .. 36
3.17 The arrangement of optical element for the laser holographic interferometer. 37
3.18 The photo of the cryostat with optical windows for the visualization .. 39
3.19 The cross-sectional view of the cryostat with optical windows for the visualization. 40
3.20 The frontal view of the experimental cell in the cryostat for the visualization. 41
3.21 The block diagram of the visualization .. 41

4.1 The schematic drawing of the temperature variation in the whole vapor flow region 44
4.2 The x-t diagram and the finite-fringe interferogram of the evaporation phenomena, I 45
4.3 The x-t diagram and the finite-fringe interferogram of the evaporation phenomena, II 46
4.4 The infinite-fringe interferograms showing the evaporation wave taken at three instances t_d measured from the thermal pulse incidence onto the He II free surface .. 47
4.5 The time variations of the temperature rise of impinging and reflected thermal pulses in He II for several values of q ... 48
LIST OF FIGURES

4.6 The time variation of the temperature rises resulting from the impinging and the reflected thermal pulses measured adjacent to the He II free surface .. 49
4.7 The temperature rises as a function of the heat flux q 50
4.8 The time variation of the pressure in the evaporation wave 51
4.9 The pressure rise in the evaporation wave as a function of the heat flux q ... 52
4.10 The time variation of the temperature rises in the evaporation wave ... 53
4.11 The comparison of the density rise in the evaporation wave measured with LHI used in the finite-fringe mode with that estimated from the pressure and the temperature measurement data .. 55
4.12 The shock Mach number of evaporation wave, M_s, as a function of P_e/P_0 ... 56
4.13 The temperature of evaporation wave, T_e/T_0 as a function of pressure, P_e/P_0 ... 57
4.14 The slip coefficients for the non-linear slip boundary condition, $h_1(M_{n\infty})$ and $h_2(M_{n\infty})$ as a function of $M_{n\infty}$ 61
4.15 The comparison of the experimental result with the kinetic analysis result with respect to the slip boundary condition 62
4.16 The comparison of the experimental result with the theoretical pressure rise in the evaporation wave 66
4.17 The numerical calculation results of the vapor flow region for He II evaporation solved by Onishi 68
4.18 The numerical calculation result of the vapor flow region calculated by solving the Navier-Stokes equation 69

5.1 The condensation coefficient α_c as a function of temperature. ... 75

6.1 The temperature amplitude reflection coefficient R_{22} of a thermal pulse at a He II free surface as a function of temperature ... 85
LIST OF FIGURES

6.2 The picture of the experimental cell for the reflection experiment of a second sound from a rigid wall 86
6.3 The x-t diagram and the finite-fringe interferogram of the reflection of a second sound thermal pulse from a rigid wall of the top plate 87
6.4 The temperature amplitude reflection coefficient $R_{22,rigid}$ of a thermal pulse from a rigid wall as a function of heat flux q 88

7.1 The x-t diagram of He II condensation experiment 92
7.2 The condensation processes onto a He II free surface 93
7.3 The comparison of the pressure behind the reflected evaporation wave from a rigid wall with that from a free surface as a function of the shock strength P_e/P_0 94
7.4 The temperature dependence of the pressure amplitude reflection coefficient R_{GG} on a free surface 95

B.1 The schematic drawing of He II evaporation phenomena induced by a thermal pulse impingement onto a He II-vapor interface with some angle θ 105
List of Author's Papers

5. H. Ohokubo, T. Furukawa and M. Murakami, *Development of Superconductive Hot-wire Anemometer for the Use Around 2K*, Advances in Cryogenic Engineering (To be published)
LIST OF AUTHOR'S PAPERS

List of Contributing Papers

1. T. Furukawa, M. Murakami and T. Iida, *Measurement of He II Evaporation Induced by Impingement of a Thermal Pulse on a He II-Vapor Interface*, Experiments in Fluids

2. T. Furukawa, M. Murakami and T. Iida, *Study of He II Evaporation in Continuum Region from He II-Vapor Interface Induced by a Thermal Pulse Impingement*, Journal of Low Temperature Physics