Study of Quench Propagation Properties in Rutherford-type Cables

Doctoral Program in Engineering University of Tsukuba

March 2000

Ken-ichi Sasaki
Abstract

Quench propagation velocity is one of the most important parameters for quench protection of superconducting magnets. A larger quench propagation velocity is preferable in order to prevent local temperature from being increased significantly.

In a multi-strand cable whose strands are individually insulated, it has been reported that the quench propagation velocity increases by a current redistribution between strands. However, influences of current redistribution on a quench velocity for a cable made of non-insulated strands have not been studied. We examined the relations between the current redistribution and the quench propagation velocity in a Rutherford cable made of non-insulated strands. Measurements were performed in the cables with three contact conditions between strands, and it was found that the quench propagation velocity and the current redistributions depended on the contact conditions between strands.

A measurement was also performed in the cable without polyimide tape for the cable insulation, and we found that the polyimide tape also influenced on the quench propagation velocity.

A numerical simulation of current redistribution using a simple model was performed. We made comparisons between the test and the numerical results, and there was good agreement each other. We analyzed the numerical results in detail, and we found that the current redistribution occurred around the quench front caused the increase of the quench propagation velocity.
Acknowledgments

This study has been carried out in collaboration with Amemiya laboratory, Yokohama National University. Experiments have been performed at the High Energy Accelerator Research Organization, KEK. I wish to thank the people who have supported me.

Especially, I express sincere appreciation to Dr. T. Ogitsu, Prof. K. Tsuchiya and Prof. T. Shintomi of KEK who gave me many kind guidance, useful discussions and various supports. This study would not have been successful without them.

I am deeply obliged to Prof. Y. Asano and Prof. S. Mori of University of Tsukuba for giving a chance of this study, various advice and encouragement.

I am grateful to Prof. R. Yoshizaki and Prof. Y. Takada of University of Tsukuba for giving me valuable discussion and advice.

I would like to thank Prof. N. Amemiya of Yokohama National University for useful discussions and suggestions.

I would like to thank Dr. T. Nakamoto of KEK who gave me great assistance in the experiments, advice and encouragement.

I would like to thank the staff of Cryogenics Science Center, KEK, for providing every possible convenience for the use of liquid helium.

I would like to acknowledge Dr. N. Ohuchi of KEK for supports in the experiments, useful advice and encouragement.

I am grateful to Mr. N. Kimura of KEK for the supports in the experiments and encouragement.

I would like to thank Mr. A. Terashima of KEK for guidance of drawing and advice of design of the sample holders used in the experiments.

I would like to acknowledge the measurement of the electrical contact conductance between strands by Mr. Y. Kaneda as well as the others of the members of Amemiya.
laboratory who helped with the experiments.

It is a pleasure to acknowledge the encouragement of the members of Asano-Mori laboratory of Tsukuba University.

Finally, I would like to thank Mr. H. Yonekawa of Amemiya laboratory who collaborated with me on the experiments and experienced the pleasures and pains together.
Nomenclature

I Transport current of the magnet [A]
A Area of conductor cross section [m²]
T Temperature [K]
T_{max} Peak temperature of the magnet [K]
T_0 Base temperature [K]
C_p Specific heat of the cable [J/m³K]
ρ Resistivity of the cable [Ωm]
L Inductance of the magnet [H]
R_0 Resistance of the external dump resistor [Ω]
R_q Resistance of the normal region of the magnet [Ω]
κ Thermal conductivity of the cable [W/mK]
g Joule heat generation in the cable [W/m³]
P Cooled perimeter [m]
q_h Heat transfer to a coolant [W/m³]
v_i Induced voltages of pickup coil i [V]
$m_{i,j}$ Mutual inductance between pickup coil i and strand j [H]
i_i Current of strand i [A]
V Matrix of pickup coil voltages
I Matrix of strand currents
M Matrix of mutual inductance between pickup coils and strand
I_{strand} Current of the strand in the cable [A]
B_{max} Maximum magnetic field on the cable [T]
B_{min} Minimum magnetic field on the cable [T]
l_{rer} Time when the first current redistribution occurs [sec]

J Current density of the strand [A/m2]

$R_{(1,i)}$ Resistance of section i of strand 1 [Ω]

$R_{(2,i)}$ Resistance of section i of strand 2 [Ω]

R_c Contact resistance [Ω]

$I_{(1,i)}$ Current of section i of strand 1 [A]

$I_{(2,i)}$ Current of section i of strand 2 [A]

I_{total} Total current of the cable [A]

$I_{c(i)}$ Current through the contact resistance at section i [A]

$M_{(1,i)(j,k)}$ Mutual inductance between section i of strand 1 and section j of strand k [H]

$M_{(2,i)(j,k)}$ Mutual inductance between section i of strand 2 and section j of strand k [H]

Δl Length of section [m]

σ_c Contact conductance [S/m]

T_c Critical temperature [K]

T_{c0} Critical temperature at 0 T [K]

B External magnetic field [T]

B_{c0} Critical magnetic field at 0 K and 0 A/m2 [T]

J_{NbTi} Current density in NbTi [A/m3]

$J_{c,NbTi}$ Critical current density of NbTi [A/m3]

$I_{c,Strand}$ Critical current of the strand [A]

α Cu/Sc ratio

$C_{p,Cu}$ Specific heat of copper [J/m3K]

$C_{p,NbTi}$ Specific heat of NbTi [J/m3K]

ρ_{cu} Resistivity of copper [Ωm]

ρ_{NbTi} Resistivity of NbTi [Ωm]

ρ_0 Resistivity to define the critical current density [Ωm]
n n-value of NbTi

κ_{Cu} Thermal conductivity of copper $[W/mK]$

L_0 Lorentz number ($= 2.44 \times 10^{-8}$) $[W\Omega/K^2]$

r Radius of wire $[m]$

l Length of wire $[m]$

h Distance between two wire elements in the axial direction $[m]$

d Distance between two wire elements in the horizontal direction $[m]$

ω Angular frequency $[rad/sec]$

$I_{sw}(x)$ Complex current in sinusoidal wave circuit $[A]$

Z_c External impedance of sinusoidal wave circuit $[\Omega]$

Z Distributed series impedance $[\Omega/m]$

Y Distributed parallel impedance $[S/m]$

A_{sw} Arbitrary constant

R_{sw} Series resistance per unit length $[\Omega/m]$

L_{sw} Distributed series inductance per unit length $[H/m]$

G_{sw} Parallel conductance per unit length $[S/m]$

C_{sw} Distributed parallel capacitance per unit length $[F/m]$

α_{sw} Attenuation constant

β_{sw} Phase constant

p_{cu} Heat conduction between strands $[W/m]$

h_{const} Constant thermal conductivity between strands $[W/mK]$