Dynamic Behavior of a Hollowed, Cylindrical Soil Specimen under Cyclic Torsional Shear Loading

Division of Agricultural and Forest Engineering
Doctoral Degree Program in Agricultural Sciences
University of Tsukuba

Prathuang Usaborisut
Table of contents

Title page i
Table of contents ii
Notation vi
List of tables viii
List of figures ix

Chapter 1 Introduction 1
 1.1 Background of the study 1
 1.2 Objectives 2

Chapter 2 Literature review 4
 2.1 Soil compaction 4
 2.1.1 Definition and nature of soil compaction 4
 2.1.2 Causes of soil compaction 4
 2.1.3 Effects of soil compaction 5
 2.1.4 Researches needed on soil compaction 5
 2.2 Current situation of researches on soil compaction 6
 2.2.1 Behavior of traffic-induced soil compaction 6
 2.2.2 Methods to estimate soil compaction 8
 2.2.3 Other parameters affecting soil compaction 10
 2.2.4 Influences of soil compaction on growing plant 10
 2.2.5 Degree of compactness suitable for growing plant 11
 2.2.6 Reduction of soil compaction in a field 12
 2.2.7 Effects of soil compaction on the quality of the environment 13
 2.2.8 Chemical and biological effects of soil compaction 13
2.3 Stress on soil

2.3.1 The stress state on soil

2.3.1.1 Effective stress

2.3.1.2 State space

2.3.2 Stress induced by traffic wheel

2.3.2.1 Estimated stress distribution

2.3.2.2 Stress beneath traffic wheel

2.4 The cyclic loading test

2.5 Rationality of using cyclic torsional shear loading test

in simulating traffic-induced loading system

Chapter 3 Cyclic behavior of soil and interrelationships among parameters involved

3.1 Introduction

3.2 Methodology

3.2.1 Material

3.2.2 Preparation of specimen

3.2.3 Test procedure

3.2.4 Test apparatus

3.2.5 Theoretical description

3.2.6 Test combinations

3.3 Results and discussion

3.3.1 Soil behavior under cyclic torsional shear loading

3.3.2 Effect of cyclic torsional shear stress

3.3.3 Effect of loading frequency

3.3.4 Effect of bulk density
3.3.5 Effect of confining stress 45
3.3.6 Torsional shear strain and effective stress ratio 46
3.4 Summary 48

Chapter 4 Dynamic shear strength of soil under cyclic torsional shear loading 49

4.1 Introduction 49
4.2 Methodology 50
4.3 Results and discussion 54
4.3.1 Failure characteristics of soil 54
4.3.2 Dynamic shear strength behavior 57
4.3.3 Residual torsional shear strain 63
4.3.4 Critical state behavior 65
4.3.5 Nc at failure and some parameters involved 67
4.4 Summary 70

Chapter 5 Influence of loading and loading-free processes of cyclic torsional shear to soil compaction 72

5.1 Introduction 72
5.2 Methodology 73
5.3 Results and discussion 74
5.3.1 Dynamic soil responses 74
5.3.2 Comparison with cyclic torsional shear loading test 78
5.3.3 Effects of loading magnitude, Nc and bulk density 81
5.3.4 Stress path in state space 88
5.4 Summary 90

Chapter 6 Conclusions and recommendations 92

Acknowledgments 95
References

Appendix-A Test apparatus 98
Appendix-B Example of soil specimen after test 109
Appendix-C Selected results of torsional shear stress, strain and pore water pressure recorded 112

113