Acknowledgments

The author is most grateful to Dr. Penmetcha K. R. Kumar and Professor Kazunari Taira for their many advises and support.

The author thanks Ms. Shiori Koseki and Dr. Jun Ohkawa for construction of pU6 vectors and the stable cell line, HeLa cells carrying the chimeric HIV-1 LTR-Luc and Mr. Satoshi Fujita for helpful suggestions on kinetics. I would like to thank Mr. Shin-ichiro Kobayashi and Prof. Masato Katahira for NMR studies with free RNATat and RNATat-CQ complex. I would also like to thank Dr. Masahiro Iwakura and Dr. Yoshiyuki Tanaka for suggestions on CD measurements and analyses and Dr. Naruhsa Ota for useful discussions on the assay with fluorescence.

The author wishes to thank Professor Kazuo Murakami, Professor Tadashi Baba, and Dr. Satoshi Nishikawa for their support.

The author thanks the present and former members of Taira's laboratory and Nishikawa's laboratory for their kindness.

This research was supported by various grants from the Ministry of International Trade and Industry (MITI) of Japan and by Grants-in-Aid for Scientific Research from the Ministry of Education, Science, Sports and Culture, Japan. The author is a recipient of research fellowships for young scientists of Japan Society for the Promotion of Science.

Finally, the author is thankful to her family and her friends for their great support and encouragement.
References

protein requires amino acid residues flanking the basic domain and base pairs in the RNA stem. J. Mol. Biol., 230, 90-110.

chimeric human immunodeficiency virus type 1 minimal rev
responsive element-ribozyme molecules exhibit dual antiviral
function and inhibits cell-cell transmission. J. Virol., 70, 1596-
1601.

Yamamoto, R., Koseki, S., Ohkawa, J., Murakami, K., Nishikawa, S.,
Taira, K. and Kumar, P.K.R. (1997) Inhibition of transcription by
the TAR RNA of HIV-1 in a nuclear extract of HeLa cells. Nucleic

Isolation and characterization of an RNA that binds with high
affinity to Tat protein of HIV-1 from a completely random pool

multifunctional expression vector for an anti-HIV-1 ribozyme that
produces a 5'- and 3'-trimmed trans-acting ribozyme, targeted
against HIV-1 RNA, and cis-acting ribozymes that are designed to
bind to and thereby sequester trans-activator proteins such as Tat

transcriptional elongation by HIV-1 Tat. Science, 274, 605-610.

molecule. Science, 244, 48-52.