REFERENCES

 "Immunocytochemical Studies on the Localization of Plasma and of Cellular Retinol-binding
 Proteins and of Transthyretin (Prealbumin) in Rat Liver and Kidney"
 Journal of Cell Biology, 98, 1696-1704

2) Friedman S.L. (1993)
 "The Cellular Basis of Hepatic Fibrosis"
 New England Journal of Medicine, 328, 1828-1835

3) L.J.Gudas, M.B.Sporn, and A.B.Roberts (1994)
 "Cellular Biology and Biochemistry of the Retinoids"
 In: M.B.Sporn, A.B.Roberts, and D.S.Goodman, eds. The Retinoids. Biology, Chemistry, and

4) C.Hofman and G.Eichele (1994)
 "Retinoids in Development"
 In: M.B.Sporn, A.B.Roberts, and D.S.Goodman, eds. The Retinoids. Biology, Chemistry, and

 "Synthetic Retinoids in Dermatology"
 In: M.B.Sporn, A.B.Roberts, and D.S.Goodman, eds. The Retinoids. Biology, Chemistry, and

6) P.Chambon (1996)
 "A Decade of Molecular Biology of Retinoic Acid Receptors"
 FASEB Journal, 10, 940-954

7) D.J.Mangelsdorf and R.M.Evans (1995)
 "The RXR Heterodimers and Orphan Receptors"
 Cell, 83, 841-850

 "Characterization of an Autoregulated Response Element in the Mouse Retinoic Acid Receptor
 Type β Gene"
 Proceedings of National Academy of Sciences of the USA, 87, 5392-5396

 "Molecular Basis of Sun-induced Premature Skin Ageing and Retinoid Antagonism"
Nature, 379,335-339
“A CBP Integrator Complex Mediates Transcriptional Activation and AP-1 Inhibition by Nuclear Receptors”
Cell, 85,403-414

11) T.Muramatsu (1994)
“The Midkine Family of Growth/Differentiation Factors”
Developmental Growth & Differentiation, 36,1-8

“Dimerization of Midkine by Tissue Transglutaminase and Its Functional Implication”
Journal of Biological Chemistry, 272,9410-9416

“Midkine Enhances Fibrinolytic Activity of Bovine Endothelial Cells”
Journal of Biological Chemistry, 270,9590-9596

“Sonic Hedgehog Mediates the Polarizing Activity of the ZPA”
Cell, 75,1401-1416

“Requirement for Transglutaminase in the Activation of Latent Transforming Growth Factor-β in Bovine Endothelial Cells”
Journal of Cell Biology, 121,439-448

16) F.Bachmann (1994)
“The Plasminogen-plasmin Enzyme System”

“Type 1 Plasminogen Activator Inhibitor”
In: B.S.Coller, ed. Progress in Hemostasis and Trombosis (9). W. B. Saunders, Philadelphia, PA, p87-115

"Absence of Host Plasminogen Activator Inhibitor 1 Prevents Cancer Invasion and Vascularization"
Nature Medicine, 4,923-928

"Effect of Steroid Hormones and Retinoids on the Formation of Capillary-like Tubular Structures of Human Microvascular Endothelial Cells in Fibrin Matrices is Related to Urokinase Expression"
Blood, 92,927-938

20) R.S.Beach and M.C.Kenny (1983)
"Vitamin A Augments Collagen Production by Corneal Endothelial Cells"
Biochemical and Biophysical Research Communications, 114,395-402

"Bovine Urokinase-type Plasminogen Activator and Its Receptor: Cloning and Induction by Retinoic Acid"
Gene, 125,177-183

"Retinol-induced Morphological Changes of Cultured Bovine Endothelial Cells are Accompanied by a Marked Increase in Transglutaminase"
Journal of Biological Chemistry, 264,19308-19312

"Mechanism of Retinoid-induced Activation of Latent Transforming Growth Factor-β in Bovine Endothelial Cells"
Journal of Cellular Physiology, 155,323-332

"Retinoids Potentiate Transforming Growth Factor-β Activity in Bovine Endothelial Cells through Up-regulation the Expression of Transforming Growth Factor-β Receptors"
Journal of Cellular Physiology, 176,565-573

25) S.J.Braunhut and M.Palomares (1991)
"Modulation of Endothelial Cell shape and Growth by Retinoids"
Microvascular Research, 41,47-52

"Retinol-induced Modification of the Extracellular Matrix of Endothelial Cells: Its Role in Growth Control"
27) R.Blomhoff and K.Wake (1991)
"Perisinusoidal Stellate Cells of the Liver: Important Roles in Retinol Metabolism and Fibrosis"
FASEB Journal, 5,271-277

28) R.Blomhoff (1997)
"Retinoids may Increase Fibrotic Potential of TGF-β: Crosstalk between Two Multi-functional Effectors"
Hepatology, 26,1067-10678

"Retinoic Acid-stimulated Liver Stellate Cells Suppress the Production of Albumin from Parenchymal Cells via TGF-β"
Biochemical and Biophysical Research Communications, 221,565-569

30) J.D.Chen and R.M.Evans (1995)
"A Transcriptional Co-repressor that Interacts with Nuclear Hormone Receptors"
Nature, 377,454-457

"Role of the Histone Deacetylase Complex in Acute Promyelocytic Leukemia"
Nature, 391,811-814

"Sequence and Characterization of a Coactivator for the Steroid Hormone Receptor Superfamily"
Science, 270,1354-1357

"The Transcriptional Co-activator p/CIP Binds CBP and Mediates Nuclear-receptor Function"
Nature, 387,677-684

"The human endothelial cell plasmin-generating system"

"Retinobenzoic Acids. 1. Structure-activity Relationships of Aromatic Amides with Retinoidal Activity"
Journal of Medicinal Chemistry, 31,2182-2192
"Retinobenzoic Acids. 3. Structure-activity Relationships of Retinoidal Azobenzene-4-carboxylic Acids and Stilbene-4-carboxylic Acids"
Journal of Medicinal Chemistry, 32,1098-1108

"Retinobenzoic acids. 6. Retinoid Antagonists with a Heterocyclic Ring"
Journal of Medicinal Chemistry, 37,1508-1517

"Effects of Synthetic Retinoids and Retinoic Acid Isomers on the Expression of Alkaline Phosphatase in F9 Teratocarcinoma Cells"
Biochemical and Biophysical Research Communications, 196,252-259

"Identification of Synthetic Retinoids with Selectivity for Human Nuclear Retinoic Acid Receptor γ"
Biochemical and Biophysical Research Communications, 186,977-983

"The RAR-RXR as well as the RXR-RXR Pathway is Involved in Signaling Growth Inhibition of Human CD34+ Erythroid Progenitor Cells"
Blood, 87,1728-1736

"Differanisole A, a Novel Antitumor Antibiotic, Enhances Growth Inhibition and Differentiation of Human Myeloid Leukemia Cells Induced by 9-cis Retinoic Acid"
Biochimica et Biophysica Acta, 1359,71-79

"A Retinoic Acid Receptor α Antagonist Selectively Counteracts Retinoic Acid Effects"
Proceedings of National Academy of Sciences of the USA, 89,7129-7133

43) D.Benbrook, E.Lernhardt, and MPfähl (1988)
"A New Retinoic Acid Receptor Identified from a Hepatocellular Carcinoma"
Nature, 333,669-672
 "Identification of a Second Human Retinoic Acid Receptor"
 Nature, 332,850-853

 "A Third Human Retinoic Acid Receptor, hRAR-γ"
 Proceedings of National Academy of Sciences of the USA, 86,5310-5314

 M.Garnier, S.Mader, and P.Chambon (1992)
 "Purification, Cloning, and RXR Identity of the Hela Cell Factor with which RAR or TR
 Heterodimerizes to Bind Target Sequences Efficiently"
 Cell, 68,377-395

47) P.Chomczynski and N.Sacchi (1987)
 "Single-step Method of RNA Isolation by Acid Guanidinium Thiocyanate-phenol-chloroform
 Extraction"
 Analytical Biochemistry, 162,156-159

 Molecular Cloning: A Laboratory Manual, 2 Ed., Cold Spring Harbor Laboratory, Cold Spring
 Harbor, NY

49) P.Verde, S.Boast, A.Franzè, F.Robbiati, and F.Blasi (1988)
 "An Upstream Enhancer and a Negative Element in the 5' flanking Region of the Human
 Urokinase Plasminogen Activator Gene"
 Nucleic Acids Research, 16,10699-10716

 "Widely Spaced, Directly Repeated PuGGTCA Elements Act as Promiscuous Enhancers for
 Different Classes of Nuclear Receptors"
 Molecular and Cellular Biology, 15,5858-5867

 "A Glutamine-rich Hydrophobic Patch in Transcription Factor Sp1 Contacts the dTAF110
 Component of the Drosophila TFIIID Complex and Mediates Transcriptional Activation"
 Proceedings of National Academy of Sciences of the USA, 91,192-196

 "Oxidized LDL Regulates Macrophage Gene Expression through Ligand Activation of PPARγ"
Cell, 93,229-240

53) A.Moustakas and D.Kardassis (1998)
 "Regulation of the Human p21/WAF1/Cip1 Promoter in Hepatic Cells by Functional
 Interactions between Sp1 and Smad Family Members"
 Proceedings of National Academy of Sciences of the USA, 95:6733-6738

54) S.Vallian, K.-V.Chin, and K.-S.Chang (1998)
 "The Promyelocytic Leukemia Protein Interacts with Sp1 and Inhibits Its Transactivation of the
 Epidermal Growth Factor Receptor Promoter"
 Molecular and Cellular Biology, 18,7147-7156

 "Distinct Regions of Sp1 Modulate DNA Binding and Transcriptional Activation"
 Science, 242,1566-1570

 "Analysis of Sp1 in Vivo Reveals Multiple Transcriptional Domains, Including a Novel
 Glutamine-rich Activation Motif"
 Cell, 55,887-898

57) A.Dey, S.Minucci, and K.Ozato (1994)
 "Ligand-dependent Occupancy of the Retinoic Acid Receptor β2 Promoter in Vivo"
 Molecular and Cellular Biology, 14,8191-8201

 "Estrogen-induced c-Fos Protooncogene Expression in MCF-7 Human Breast Cancer Cells:
 Role of Estrogen Receptor Sp1 Complex Formation"
 Endocrinology, 139,1981-1990

 "Estrogen-induced Retinoic Acid Receptor α1 Gene Expression: Role of Estrogen Receptor-
 Sp1 Complex"
 Molecular Endocrinology, 12,882-890

 "A Conserved TATA-less Proximal Promoter Drives Basal Transcription from the Urokinase-
 type Plasminogen Activator Receptor Gene"
 Blood, 86,624-635

 "Isolation and Characterization of the Human Tissue Transglutaminase Gene Promoter"
Journal of Biological Chemistry, 270,9748-9756
“Isolation of Transcription Factors That Discriminate between Different Promoters Recognized by RNA Polymerase II”
Cell, 32,669-680
“Sp1 is Required for the Early Response of α2(I) Collagen to Transforming Growth Factor-β1”
Journal of Biological Chemistry, 272,19738-19745
“DNA-sequence Binding Preference of the GC-selective Ligand Mitramycin.
Deoxyribonuclease-I/Deoxyribonuclease-II and Hydroxy-radical Footprinting at CCCG, CCGC, CGGC, GCCC and GGGG Flanked by (AT)n and An-Tn”
European Journal of Biochemistry, 215,561-566
“Mitramycin Selectively Inhibits Collagen-α 1(I) Gene Expression in Human Fibroblast”
Journal of Clinical Investigation, 92,2916-2921
66) F.Rastinejad, T.Perlmann, R.M.Evans, and P.B.Sigler (1995)
“Structural Determinants of Nuclear Receptor Assembly on DNA Direct Repeats”
Nature, 375,203-211
“Crystal Structure of the RAR-γ Ligand-binding Domain Bound to all-trans Retinoic Acid”
Nature, 378,681-689
“Retinoic Acid Receptors and Cellular Retinoid Binding Proteins. I. A systematic Study of Their Differential Pattern of Transcription during Mouse Organogenesis”
Development 110,1133-1151
“Retinoic Acid Receptors and Cellular Retinoid Binding Proteins. II. Their Differential Pattern of Transcription during Early Morphogenesis in Mouse Embryos”
Development, 111,45-60
“Retinoic Acid Receptors and Cellular Retinoid Binding Proteins. III. Their Differential Transcript Distribution during Mouse Nervous System Development”
Development, 118,267-282

71) F.J.Piedrafita and M.Pfaal (1997)

"Retinoid-induced Apoptosis and Sp1 Cleavage Occur Independently of Transcription and Require Caspase Activation"
Molecular and Cellular Biology, 17,6348-6358

72) L.Panariello, L.Quadro, S.Trematerra, and V.Colantuoni (1996)

"Identification of a Novel Retinoic Acid Response Element in the Promoter Region of the Retinol-binding Protein Gene"
Journal of Biological Chemistry, 271,25524-25532

"Progesterone Regulates Transcription of the p21WAF1 Cyclin-dependent Kinase Inhibitor Gene through Sp1 and CBP/p300"
Journal of Biological Chemistry, 273,10696-10701

74) O.Rohr, D.Aunis, and E.Schaeffer (1997)

"COUP-TF and Sp1 Interact and Cooperate in the Transcriptional Activation of the Human Immunodeficiency Virus Type 1 Long Terminal Repeat in Human Microglial Cells"
Journal of Biological Chemistry, 272,31149-31155

"Retinoid Antagonism of NF-IL6: Insight into the Mechanism of Antiproliferative Effects of Retinoids in Kaposi's sarcoma"
Molecular and Cellular Biology, 17,4159-4168

"Physical Interaction between Retinoic Acid Receptor and the Oncoprotein Myb Inhibits Retinoic Acid-dependent Transactivation"
Proceedings of National Academy of Sciences of the USA, 95,5539-5544

77) L.M.Khachigian, V.Lindner, A.J.Williams, and T.Collins (1996)

"Egr-1-induced Endothelial Gene Expression: A Common Theme in Vascular Injury"
Science, 271,1427-1431

78) J.Berthelsen, J.Vandekerkhove, and F.Blasi (1996)

"Purification and Characterization of UER3, a Novel Factor Involved in the Regulation of the Urokinase and Other AP-1 Controlled Promoters"
Journal of Biological Chemistry, 271,3822-3830
79) D.De Cesare, M.Palazzolo, and F.Blasi (1996)
 "Functional Characterization of COM, a DNA Region Required for Cooperation between AP-1 Sites in Urokinase Gene Transcription"
 Oncogene, 13, 2551-2562

80) D.De Cesare, M.Palazzolo, J.Berthelsen, F.Blasi (1997)
 "Characterization of UBF-4, a DNA-binding Protein Required for Transcriptional Synergism between Two AP-1 Sites in the Human Urokinase Enhancer"
 Journal of Biological Chemistry, 272, 23921-23929

 "Transcriptional Activation of Urokinase by the Krüppel-like Factor Zf9/COPEB Activates Latent TGF-β1 in Vascular Endothelial Cells"
 Blood (in press)

82) J.Folkman (1995)
 "Angiogenesis in Cancer, Vascular, Rheumatoid and Other Disease"
 Nature Medicine, 1, 27-31

83) J.Folkman and P.D'Amore (1996)
 "Blood Vessel Formation: What is Its Molecular Basis?"
 Cell, 87, 1153-1155

 "A Highly Potent Antiangiogenic Activity of Retinoids"
 Cancer Letters, 48, 157-162

 "Three Novel Synthetic Retinoids, Re 80, Am 580 and Am 80, All Exhibit Anti-angiogenic Activity in Vivo"
 European Journal of Pharmacology, 249, 113-116

86) C.Mendelson, D.Lohnes, D.Decimo, T.Lufkin, M.LeMeur, P.Chambon, and M.Mark (1994)
 "Function of the Retinoic Acid Receptors (RARs) during Development (II). Multiple Abnormalities at Various Stages of Organogenesis in RAR Double Mutants"
 Development, 120, 2749-2771

87) A.M.Gressner (1991)
 "Liver Fibrosis: Perspectives in Pathobiochemical Research and Clinical Outlook"
 European Journal of Clinical Chemistry and Clinical Biochemistry, 29, 293-311
88) W.A.Border and N.A.Noble (1994)
 "Transforming Growth Factor β in Tissue Fibrosis"
 New England Journal of Medicine, 331,1286-1292

 "Hepatic Expression of Mature Transforming Growth Factor β1 in Transgenic Mice Results in
 Multiple Tissue Lesions"
 Proceedings of National Academy of Sciences of the USA, 92,2572-2576

 "Differential Expression of Matrix Metalloproteinase-1 and -2 Genes in Normal and Fibrotic
 Human Liver"
 American Journal of Pathology, 144,528-537

 "Antitumor activity of vitamin A and its derivatives"
 Journal of National Cancer Institute, 73,1389-1393

92) Y.Yamada, Y.Shidoji, Y.Fukutomi, T.Ishikawa, T.Kaneko, H.Nakagama, M.Imawari,
 H.Moriwaki, and Y.Muto (1994)
 "Positive and Negative Regulations of Albumin Gene Expression by Retinoids in Human
 Hepatoma Cell Lines"
 Molecular Carcinogenesis, 10,151-158

 K.Takeyama, and H.Mano (1994)
 "In Vivo Isomerization of Retinoic Acids. Rapid Isomer Exchange and Gene Expression"
 Journal of Biological Chemistry, 269,32700-32707

 "13-cis-Retinoic Acid is an Endogenous Compound in Human Serum"
 Journal of Lipid Research, 31,175-182

95) C.Thaller and G.Eichele (1990)
 "Isolation of 3,4-Didehydroretinoic Acid, a Novel Morphogenetic Signal in the Chick Wing
 Bud"
 Nature, 345,815-819

96) N.Khalil, O.Bereznyay, M.Sporn, and A.H.Greenberg (1989)
 "Macrophage Production of Transforming Growth Factor β and Fibroblast Collagen Synthesis in
 Chronic Pulmonary Inflammation"
Journal of Experimental Medicine, 170,727-737

 “Establishment of a New Human Cell Line, LI90, Exhibiting Characteristics of Hepatic Ito (fat-
 storing) Cells”
 Laboratory Investigation, 72,731-739

 “The Contraction of Hepatic Stellate (Ito) Cells Stimulated with Vasoactive Substances: Possible
 Involvement of Endothelin 1 and Nitric Oxide in the Regulation of the Sinusoidal Tonus”
 European Journal of Biochemistry, 213,815-823

 “Modulation of Collagen Synthesis and Degradation by Retinoids and Cytokines in 3T3L1
 Preadipocytes”
 International Medicine, 33,309-316

 “Inhibitory Effect of Acyclic Retinoid (Polypreneoic Acid) on Hepatic Fibrosis in CCl₄-treated
 Rats”
 Journal of Gastroenterology, 25,223-229

 (1981)
 “Formulation and Application of a Numerical Scoring System for Assessing Histological
 Activity in Asymptomatic Chronic Active Hepatitis”
 Hepatology, 1,431-435

 “Identification of 9,13-di-cis-Retinoic Acid as a Major Plasma Metabolite of 9-cis-Retinoic Acid
 and Limited Transfer of 9-cis-Retinoic Acid and 9,13-di-cis-Retinoic Acid to the Mouse and Rat
 Embryos”
 Drug Metabolism and Disposition, 22,928-936

 (1995)
 “Identification of 9-cis, 13-cis-Retinoic Acid as a Major Circulating Retinoid in Plasma”
 Biochemistry, 34,1203-1209

“9,13-di-cis-retinoic acid as an isomerization product of 9-cis-retinoic acid”
Drug Metabolism and Disposition, 25,1447-1448

“9,13-di-cis-Retinoic Acid is the Major Circulating Geometric Isomer of Retinoic Acid in the Periparturient Period”
Archives of Biochemistry and Biophysics, 322,235-239

“Differences in Metabolism and Isomerization of all-trans-Retinoic Acid and 9-cis-Retinoic Acid between Human Endothelial Cells and Hepatocytes”
European Journal of Biochemistry, 247,596-604

“Diminished Retinoic Acid Signaling in Hepatic Stellate Cells in Cholestatic Liver Fibrosis”
American Journal of Physiology, 272,G589-596

“Retinoids and Liver Fibrosis”

“Suppressive Effects of all-trans-Retinoic Acid on the Lipopolysaccharide-stimulated Release of Tumor Necrosis Factor-α and Nitric Oxide by Rat Kupffer Cells in Vitro”
Internal Hepatology Communications, 5,177-183

110) B.H.Davis, B.M.Pratt, and J.A.Madri (1987)
“Retinol and Extracellular Collagen Matrices Modulate Hepatic Ito Cell Collagen Phenotype and Cellular Retinol Binding Protein Levels”
Journal of Biological Chemistry, 262,10280-10286

“Retinoic Acid Modulates Rat Ito Cell Proliferation, Collagen and Transforming Growth Factor β Production”
Journal of Clinical Investigation, 86,2062-2070

112) B.H.Davis (1988)
“Transforming Growth Factor β Responsiveness is Modulated by the Extracellular Collagen Matrix during Hepatic Ito Cell Culture”
Journal of Cellular Physiology, 136,547-553