Development and Characterization of Microchannel Emulsification Devices for Monodisperse Emulsions

Division of Agricultural and Forest Engineering
Doctoral Degree Program in Agricultural Sciences
University of Tsukuba

Isao Kobayashi
Contents

Abbreviations

Symbols

Chapter 1 General Introduction 1
 1.1 Microfabrication Technology 2
 1.2 Emulsion 6
 1.3 Emulsification Devices 9
 1.4 The Objectives of This Thesis 17

Chapter 2 Preparation of Monodisperse Oil-in-Water Emulsions with Micron-Scale Droplets Using Microchannel Emulsification 18
 2.1 Introduction 19
 2.2 Materials and Methods 20
 2.3 Results and Discussion 26
 2.4 Conclusions 36

Chapter 3 Preparation of Lipid Microspheres on a Micron-Scale Using Microchannel Emulsification and Solvent Evaporation 38
 3.1 Introduction 39
 3.2 Materials and Methods 41
 3.3 Results and Discussion 44
 3.4 Conclusions 51

Chapter 4 Visualization and Characterization of Membrane Emulsification Using a Polycarbonate Membrane 52
 4.1 Introduction 53
 4.2 Materials and Methods 53
 4.3 Results and Discussion 58
 4.4 Conclusions 70
<table>
<thead>
<tr>
<th>Chapter 5</th>
<th>Development of a Novel Straight-Through Microchannel</th>
</tr>
</thead>
<tbody>
<tr>
<td>Emulsification</td>
<td>72</td>
</tr>
<tr>
<td>5.1</td>
<td>Introduction</td>
</tr>
<tr>
<td>5.2</td>
<td>Silicon Straight-Through Microchannel Plate</td>
</tr>
<tr>
<td>5.3</td>
<td>Materials and Methods</td>
</tr>
<tr>
<td>5.4</td>
<td>Results and Discussion</td>
</tr>
<tr>
<td>5.5</td>
<td>Conclusions</td>
</tr>
<tr>
<td>Chapter 6</td>
<td>Characterization of Straight-Through Microchannel</td>
</tr>
<tr>
<td>Emulsification</td>
<td>89</td>
</tr>
<tr>
<td>6.1</td>
<td>Effect of Elongation and Size of Oblong Straight-Through Microchannels on Droplet Formation</td>
</tr>
<tr>
<td>6.1.1</td>
<td>Introduction</td>
</tr>
<tr>
<td>6.1.2</td>
<td>Materials and Methods</td>
</tr>
<tr>
<td>6.1.3</td>
<td>Results and Discussion</td>
</tr>
<tr>
<td>6.1.4</td>
<td>Conclusions</td>
</tr>
<tr>
<td>6.2</td>
<td>Effect of Surfactant Type on Droplet Formation in Straight-Through Microchannel Emulsification</td>
</tr>
<tr>
<td>6.2.1</td>
<td>Introduction</td>
</tr>
<tr>
<td>6.2.2</td>
<td>Materials and Methods</td>
</tr>
<tr>
<td>6.2.3</td>
<td>Results and Discussion</td>
</tr>
<tr>
<td>6.2.4</td>
<td>Conclusions</td>
</tr>
<tr>
<td>6.3</td>
<td>Effect of Food-Grade Surfactants on Preparation of Soybean Oil-in-Water Emulsions in Straight-Through Microchannel Emulsification</td>
</tr>
<tr>
<td>6.3.1</td>
<td>Introduction</td>
</tr>
<tr>
<td>6.3.2</td>
<td>Materials and Methods</td>
</tr>
<tr>
<td>6.3.3</td>
<td>Results and Discussion</td>
</tr>
<tr>
<td>6.3.4</td>
<td>Conclusions</td>
</tr>
</tbody>
</table>
Abbreviations

2D Two-dimensional
3D Three-dimensional
CCD Charge coupled device
CFD Computational fluid dynamics
CMC Critical micelle concentration
CTAB Cetyltrimethylammonium bromide
DDS Drug delivery systems
DRIE Deep reactive ion etching
HLB Hydrophilic lipophilic balance
IC Integrated circuit
ICP Inductively coupled plasma
LIGA Lithographie galvanoformung abformung
MC Microchannel
MCT Medium-chain triacylglycerol
MEMS Microelectromechanical systems
MS Microspheres
O/W Oil-in-water
O/W/O Oil-in-water-in-oil
PDMS Polydimethylsiloxane
PGM Pentaglycerol monolaurate
RIE Reactive ion etching
SDS Sodium dodecyl sulfate
SE Sucrose monostearate
SEM Scanning electron microscopy
SMC Small-sized microchannel
SPG Shirasu porous glass
TMC Straight-through microchannel
TOMAC Tri-n-octyl-methylammonium chloride
Tween80 Polyoxyethylene (20) sorbitan monooleate
UV Ultraviolet
W/O Water-in-oil
W/O/W Water-in-oil-in-water

Symbols

A Channel area (m^2)
CV Coefficient of variation ($\%$)
d_{av} Average diameter (m)
$d_{av,calc}$ Calculated average diameter (m)
d_{eq} Channel equivalent diameter (m)
H Channel depth (m)
L Longer channel length (m)
L_T Terrace length (m)
L_W Wetted perimeter of channel (m)
S Shorter channel length (m)
W Channel width (m)
ΔP Laplace pressure (N/m^2)
γ Interfacial tension (N/m)