CHAPTER 3

Balanced Arrays

3.1. Introduction

For the convenience of the reader, we restate the definition of a balanced array. Let S be a set $\{0, 1, \cdots, s-1\}$ of s elements and let S^t be the set of all t-dimensional column vectors with elements from S. A balanced array of strength t, denoted by $BA(v, b, s, t)$, is an $v \times b$ matrix A with entries from S satisfying the following conditions:

(A1): in any two-rowed submatrix A_0 of A, any t-vector $x \in S^t$ occurs exactly $\mu(x)$ times as columns in A_0, and

(A2): for any permutation σ of order t and for any $x \in S^t$, $\mu(x) = \mu(\sigma(x))$.

The $\mu(x)$'s are called the indices, and v the number of constraints.

As mentioned in Section 1.3, many people have contributed to the development of the theory of balanced arrays. Research in this field are classified into two branches: one is to find the existence conditions and the other is to find actual methods of construction.

It is known that balanced arrays of v constraints cannot exist for all set of values of parameters. Necessary and sufficient conditions for the existence of 2-symbol balanced arrays of strength t were obtained for $v = t + 1$ and $t + 2$ by Srivastava [Sri72] and for $v = t + 3$ by Shirakura [Shi77]. Srivastava [Sri72] also gave some necessary conditions in terms of systems of Diophantine equations, and Srivastava and Chopra [SC73] investigated these necessary conditions extensively. For
3.1. Introduction

3-symbol balanced arrays, Srivastava and Wijetunga [SW81] established a necessary and sufficient condition for the existence of balanced arrays with $t+1$ constraints. Their results, however, involved several errors to be corrected. Necessary and sufficient conditions for the existence of an s-symbol balanced array have been obtained for $v = t + 1$ by Yamamoto, Kuriki and Yuan [YKY83], who also corrected Lemma 7.1 of Srivastava and Wijetunga [SW81], and for $v \geq t + 2$ by Kuriki [Kur84a, Kur84b, Kur88]. For upper bounds on the maximum number of constraints for balanced arrays, the interested reader is referred to Chopra [Cho82, Cho83], Rafter and Seiden [RS74], Saha, Mukerjee and Kageyama [SMK88], and Yamamoto, Kuwada and Yuan [YKY85].

Many balanced arrays have been constructed from other combinatorial structures. In fact, block designs are closely related to balanced arrays. The incidence matrices of a BIBD and an (r, λ)-design are balanced arrays with appropriate parameters. Chakravarti [Cha61], Rafter and Seiden [RS74], Chakravarti and Dey [CD76], and Dey, Kulshreshtha and Saha [DKS72] gave a method of constructing 3-symbol balanced arrays of strength two or three from BIBDs. Kageyama [Kag75] constructed s-symbol balanced arrays of strength t by generalizing the methods of Dey, Kulshreshtha and Saha [DKS72]. Kuriki and Fuji-Hara [KFH94] showed a connection between certain (r, λ)-designs having a nested structure and balanced arrays with strength two. Fuji-Hara, Jimbo and Yuan [FHJY89] presented a recursive construction for balanced arrays. A cyclic construction by means of cyclic codes was given by Fuji-Hara, Kuriki and Miyake [FKHM96]. Fuji-Hara et al. [FHKK+1] generalized the concept of a nested design introduced in [KFH94] and [PHK91], and described some construction methods for the generalized nested designs, which in turn can be used to construct balanced arrays.

In the master's thesis [Shi96] of the present author, an equivalence relation was established between a balanced array of strength t and
3.2. Symmetric sets of curves

A set of algebraic curves which have some properties on intersection points with a 'base' curve. When the genus of the base curve is greater than 0, the relationship holds under the assumption that there exists a set of curves satisfying certain conditions. The existence of such a set of curves was not discussed in that thesis. Fuji-Hara and Shinohara [FHS99] defined and constructed a set of curves whose existence is equivalent to that of a balanced array of strength 2. Such a set of curves is called a symmetric set of curves, whose construction will be described in the next two sections.

3.2. Symmetric sets of curves

Let K be a field and C_0 be a curve defined by an equation $F(x) = 0$. If $F \in K[x]$, then C_0 is said to be defined over K and denoted by C_0/K.

Let $I_P(C, C_0)$ be the intersection multiplicity of C_0 with a curve C at a point P. Also let V be a finite set of points on C_0 and C a finite set of curves.

Definition 3.2.1. A symmetric set of curves is a triple (C_0, V, C) which satisfies the following two conditions:

- for any point $P \in V$, the number of curves C of C having intersection multiplicity $I_P(C, C_0) = \alpha$ is exactly λ_α, and

- for any ordered pair (P, Q) of distinct points of V, the number of curves $C \in C$ satisfying $I_P(C, C_0) = \alpha$ and $I_Q(C, C_0) = \beta$ is equal to $\lambda_{\alpha, \beta}$.

Note that $\lambda_{\alpha, \beta} = \lambda_{\beta, \alpha}$ from the definition. We call C_0 the base curve of the symmetric set of curves (C_0, V, C).

By comparing the definitions of a balanced array with a symmetric set of curves, it is easily seen that the following theorem holds.

Theorem 3.2.2. Let C_0 be a curve defined over a finite field. Let $V = \{P_1, \cdots, P_s\}$ and $C = \{C_1, \cdots, C_s\}$. If (C_0, V, C) is a symmetric
set of curves, then the \(v \times b \) array \((n_{ij})\) is a balanced array of strength 2, where \(n_{ij} = I_{P_j}(C_0, C_i) \).

In this section, we show a general construction of symmetric sets of curves by using Riemann-Roch Theorem. Throughout this section we suppose that \(C_0 \) is defined over \(\mathbb{F}_q \) and \(D \) is an \(\mathbb{F}_q \)-rational divisor. Let \(L^*(D) = L(D) \setminus \{0\} \).

Theorem 3.2.3. Let \(C_0 \) be a non-singular curve with genus \(g = 0 \). Let \(D \) be an effective divisor on \(C_0 \) and \(F \) be a curve such that \(\text{div}(F) \geq D \). Let \(C = \{ f \cdot F : f \in L^*(D) \} \). If \(V = \bigcup \text{(Supp (div(f)) \setminus \text{Supp (div(F))}) \text{for any} f \in L^*(D) \), then \((C_0, V, C)\) is a symmetric set of curves.

Proof. For any \(f \in L(D) \), \(f \cdot F \) is a curve since

\[
\text{div}(f \cdot F) = \text{div}(f) + \text{div}(F) = \text{div}(f) + D + \text{div}(F) - D \geq 0.
\]

Suppose \(\text{div}(f) = \alpha P + \beta Q + E \) for any two distinct points \(P, Q \in V \) such that \(P, Q \notin \text{Supp } E \). Then we have

\[
\text{div}(f \cdot F) = \text{div}(f) + \text{div}(F) = \alpha P + \beta Q + E', \quad P, Q \notin \text{Supp } E',
\]

since \(P, Q \notin \text{Supp (div(F))} \). Therefore the intersection multiplicity \(I_P(f \cdot F) \) is equal to the order \(\text{ord}_P(f) \). Moreover we have

\[
|\{ f \cdot F : I_P(f \cdot F, C_0) = \alpha, f \in L^*(D) \}| = |\{ f \in L^*(D) : \text{ord}_P(f) = \alpha \}|
\]

and

\[
|\{ f \cdot F : I_P(f \cdot F, C_0) = \alpha, I_Q(f \cdot F, C_0) = \beta, f \in L^*(D) \}| = |\{ f \in L^*(D) : \text{ord}_P(f) = \alpha, \text{ord}_Q(f) = \beta \}|.
\]

Let \(D_P(\alpha) = D - \alpha P \) and \(D_{Q,R}(\alpha, \beta) = D - (\alpha Q + \beta R) \), where \(P, Q, R \in V \). We can easily see that

\[
|\{ f \in L^*(D) : \text{ord}_P(f) = \alpha \}| = |L(D_P(\alpha))| - |L(D_P(\alpha + 1))| \quad (3.2.1)
\]
3.2. Symmetric sets of curves

and

\[
|\{f \in L^*(D) : \text{ord}_P(f) = \alpha, \text{ord}_Q(f) = \beta\}| \quad (3.2.2)
\]

\[
= |L(D_{P,Q}(\alpha, \beta))| - |L(D_{P,Q}(\alpha + 1, \beta))| - |L(D_{P,Q}(\alpha, \beta + 1))|
+ |L(D_{P,Q}(\alpha + 1, \beta + 1))|.
\]

When the genus \(g = 0 \), we can evaluate the dimension of \(L(D_{P,Q}(\alpha, \beta)) \) from Riemann-Roch Theorem for any pair \((P, Q)\) of distinct points and any pair \((\alpha, \beta)\) of integers. Since the cardinalities (3.2.1) and (3.2.2) are independent of points \(P, Q\) chosen, \((C_0, V, \mathcal{C})\) is a symmetric set of curves.

Next we consider the case when the genus \(g \geq 1 \). For a divisor \(D \) with \(0 \leq \deg D \leq 2g - 2 \), the dimension of \(L(D) \) cannot be obtained from Riemann-Roch Theorem.

Let \(M(P, Q; \alpha, \beta) = \{f \in L(D) : \text{ord}_P(f) = \alpha, \text{ord}_Q(f) = \beta\} \).

In the same way as the proof of Theorem 3.2.3, we can say that if \(M(P, Q; \alpha, \beta) = M(P', Q'; \alpha, \beta) \) for any distinct pairs \((P, Q)\) and \((P', Q')\) then \((C_0, V, \mathcal{C})\) is a symmetric set of curves. \(M(P, Q; \alpha, \beta) \) is said to be independent of points if the cardinality of \(M(P, Q; \alpha, \beta) \) is a constant value \(\lambda_{\alpha, \beta} \) for any pair \((P, Q)\) of distinct points of \(V \).

Theorem 3.2.4. Let \(C_0 \) be a non-singular curve with genus \(g \geq 1 \), let \(D \) be an effective divisor on \(C_0 \) and \(F \) a curve such that \(\text{div}(F) \geq D \). Let \(\mathcal{C} = \{f \cdot F : f \in L^*(D)\} \). Suppose \(V = \bigcup(\text{Supp}(\text{div}(f)) \setminus \text{Supp}(\text{div}(F))) \) for any \(f \in L^*(D) \). If \(M(P, Q; \alpha, \beta) \) is independent of points for any pair \((\alpha, \beta) \), then \((C_0, V, \mathcal{C})\) is a symmetric set of curves.

In order to apply Theorem 3.2.4, we need to check whether the set \(M(P, Q; \alpha, \beta) \) is independent of points for any pair \((\alpha, \beta) \). In fact, this process can be simplified as the following corollary shows.
3.2. Symmetric sets of curves

Corollary 3.2.5. If \(M(P, Q; \alpha, \beta) \) is independent of points for \((\alpha, \beta)\) satisfying \(\deg D - 2g + 2 \leq \alpha + \beta \leq \deg D \), then \((C_0, V, C)\) is a symmetric set of curves.

Proof. Let \(D_{P, Q}(\alpha, \beta) = D - (\alpha P + \beta Q) \). If \(\deg D - 2g + 2 \leq \alpha + \beta \leq \deg D \), then \(0 \leq \deg D_{P, Q}(\alpha, \beta) \leq 2g - 2 \) and the dimension of \(L(D_{P, Q}(\alpha, \beta)) \) cannot be obtained from Riemann-Roch Theorem. Let \(N(\alpha, \beta) = \{(\alpha', \beta') : \alpha' \geq \alpha, \beta' \geq \beta, \alpha' + \beta' < \deg D\} \). The cardinality of \(L(D_{P, Q}(\alpha, \beta)) \) is

\[
|L(D_{P, Q}(\alpha, \beta))| = 1 + \sum_{(\alpha', \beta') \in N(\alpha, \beta)} |M(P, Q; \alpha', \beta')|.
\]

If \(M(P, Q; \alpha', \beta') \) is independent of points for any \((\alpha', \beta')\) such that \(\deg D - 2g + 2 \leq \alpha' + \beta' \leq \deg D \), then \(|L(D_{P, Q}(\alpha, \beta))| \) is also independent of points \(P \) and \(Q \) chosen. Hence, from (3.2.2) in the proof of Theorem 3.2.3, we can conclude that \(M(P, Q; \alpha, \beta) \) is independent of points for any pair \((\alpha, \beta)\).

Let \(C_0 \) be a curve defined by an equation \(f(x, y) = 0 \), and let \(P = (x_0, y_0) \) be a non-singular point on \(C_0 \) such that \(\frac{\partial f}{\partial y}(P) \neq 0 \). Suppose that the following power series

\[
\begin{align*}
\begin{cases}
x = x_0 + t, \\
y = y_0 + h(t),
\end{cases}
\end{align*}
\]

(3.2.3)

where

\[
h(t) = \sum_{i=1}^{\infty} y_i t^i,
\]

satisfy the equation \(f(x, y) = 0 \). Let \(C \) be a curve defined by an equation \(c(x, y) = 0 \). The intersection multiplicity \(I_P(C, C_0) \) at \(P \) of curves \(C_0 \) with \(C \) is the integer \(l \) such that

\[
c(x_0 + t, y_0 + h(t)) = \alpha t^l + \sum_{i \geq l+1} \alpha_i t^i, \quad \alpha \neq 0.
\]
3.3. A construction on an elliptic curve

In general, when the genus \(g \geq 1 \), it is not easy to find a point set \(V \) and a curve set \(C \) satisfying the necessary condition of Theorem 3.2.4 or Corollary 3.2.5. We next consider the case \(g = 1 \), say \(C_0 \) is an elliptic curve.

\[3.3. \quad \text{A construction on an elliptic curve} \]

Let \(q \) be a power of prime \(p \neq 2 \). Suppose, in this section, that \(\mathbb{F}_q \) is a finite field of order \(q \) and \(F_{q^m} \) is an extension of \(\mathbb{F}_q \). Let \(E \) be a non-singular elliptic curve defined over \(\mathbb{F}_q \) given by the polynomial

\[F(x, y) = x^3 + a_2x^2 + a_4x + a_6 - y^2. \quad (3.3.1) \]

We denote an elliptic curve defined over \(\mathbb{F}_q \) by \(E/\mathbb{F}_q \) and its point at infinity by \(O \).

Theorem 3.3.1. Let \(C \) be the set of all curves defined by quadratic equations over \(\mathbb{F}_{q^m} \). Let \(V \) be the set of all \(\mathbb{F}_{q^m} \)-rational intersection points of \(E \) with a curve \(E' \) which excludes the point \(O \) and \(P \) such that \(\frac{dy}{dx}(P) = 0 \). If \(E' \) is a curve defined by the equation

\[9x^4 + 12a_2x^3 + (4a_2^2 + 6a_4)x^2 + 4a_2a_4x + a_4^2 - 4(a_2 + 3x)y^2 = 0, \quad (3.3.2) \]

where \(a_2, a_4 \) and \(a_6 \) are coefficients of the polynomial (3.3.1), then \((E, V, C) \) is a symmetric set of curves.

Proof. Let \(R \) be a point not in the set of intersections of \(E \) with \(E' \). Let \(D = 6r \) and \(F_0 \) be a curve with \(\text{div}(F_0) = D \). Then the set \(C \) of quadratic curves is \(C = \{ f \cdot F_0 : f \in L^*(D) \} \). We will show that \(M(P; Q; \alpha, \beta) \) is independent of points \(P, Q, \alpha, \beta \) satisfying \(\alpha + \beta = 6 \).

Let \(C \) be a quadratic curve defined by \(G(x, y) = g_1x^2 + g_2y^2 + g_3xy + g_4x + g_5y + g_6 = 0 \). By substituting (3.2.3) for \(x \) and \(y \) of \(G \), we
have

\[G(x_0 + t, y_0 + h(t)) = gAt, \]

(3.3.3)

where \(g = (g_1, g_2, g_3, g_4, g_5, g_6) \), \(t^T = (1, t, t^2, t^3, t^4, t^5) \) and

\[
A^T = \begin{pmatrix}
x_0^2 & y_0^2 & x_0y_0 & x_0 & y_0 & 1 \\
2x_0 & 2y_0y_1 & y_0 + x_0y_1 & 1 & y_1 & 0 \\
1 & y_1^2 + 2y_0y_2 & y_1 + x_0y_2 & 0 & y_2 & 0 \\
0 & 2y_1y_2 + 2y_0y_3 & y_2 + x_0y_3 & 0 & y_3 & 0 \\
0 & y_2^2 + 2y_1y_3 + 2y_0y_4 & y_3 + x_0y_4 & 0 & y_4 & 0 \\
0 & 2y_2y_3 + 2y_1y_4 + 2y_0y_5 & y_4 + x_0y_5 & 0 & y_5 & 0
\end{pmatrix}.
\]

\((B^T)\) is the transpose of the matrix \(B \). Let \(C(P, Q; \alpha, \beta) = \{ C \in \mathcal{C}: I_P(C, E) \geq \alpha, I_Q(C, E) \geq \beta \} \). Then \(C(P, Q; \alpha, \beta) \) is a linear space of curves. Let \(A(P; \alpha) \) be the submatrix of the first \(\alpha \) columns of \(A^T \) in (3.3.3). Then \(\dim C(P, Q; \alpha, \beta) \) is the dimension of the null space of \(g[A(P; \alpha), A(Q; \beta)] = 0 \). If \(\det A(P; 6) \) is equal to 0 then \(\dim C(P, Q; 6, 0) = 1 \) since the dimension is 0 or 1. Suppose now that the coefficients \(y_2 \) of (3.2.3) corresponding to both \(P \) and \(Q \) are 0. Then \(\dim C(P, Q; 6, 0) = \dim C(P, Q; 0, 6) = 1 \) since

\[
\det A(P; 6) = y_2(-2y_3^2 + 3y_2y_3y_4 - y_3^2y_5).
\]

Furthermore we have \(\dim C(P, Q; 3, 3) = 1 \) because the determinant of the matrix \([A(P; 3), A(Q; 3)]\) is 0. From Lemma 2.5.3, \(C(P, Q; \alpha, \beta) = \{0\} \) for any pair \((\alpha, \beta)\) satisfying \(\alpha + \beta \geq 7 \). From Theorem 2.6.4, \(\dim C(P, Q; \alpha, \beta) = 1 \) for \(\alpha + \beta = 5 \). Since \(\dim C(P, Q; \alpha, \beta) = \dim C(P, Q; \alpha + 1, \beta) + \dim C(P, Q; \alpha, \beta + 1) - \dim C(P, Q; \alpha + 1, \beta + 1) \), we have

\[
\dim C(P, Q; 6, 0) = \dim C(P, Q; 3, 3) = \dim C(P, Q; 0, 6) = 1
\]
and
\[
\dim C(P, Q; 5, 1) = \dim C(P, Q; 4, 2) = \dim C(P, Q; 2, 4) = \dim C(P, Q; 1, 5) = 0.
\]
Hence, \(M(P, Q; \alpha, \beta) \) is independent of points for any pair \((\alpha, \beta)\) satisfying \(\alpha + \beta = 6\).

The elliptic curve \(E\) is given by
\[
F(x, y) = x^3 + a_2x^2 + a_4x + a_6 - y^2 = 0.
\]

From \(F(x_0 + t, y_0 + h(t)) = 0\), we have
\[
\begin{align*}
&(a_6 + a_4x_0 + a_2x_0^2 + x_0^3 - y_0^2) + (a_4 + 2a_2x_0 + 3x_0^2 - 2y_0y_1)t \\
&\quad + (a_2 + 3x_0 - y_1^2)t^2 + (1 - 2y_0y_3)t^3 + (-2y_1y_3 - 2y_0y_4)t^4 \\
&\quad + (-2y_1y_4 - 2y_0y_5)t^5 + (-y_3^2 - 2y_1y_5 - 2y_0y_6)t^6 + \cdots \\
&= 0.
\end{align*}
\]
Since all coefficients of powers of \(t\) must be equal to 0, we have
\[
\begin{align*}
\{a_4 + 2a_2x_0 + 3x_0^2 - 2y_0y_1 &= 0 \\
a_2 + 3x_0 - y_1^2 &= 0
\end{align*}
\]
which is equivalent to the equation (3.3.2). Therefore the point \((x_0, y_0)\) is on the curve \(E'\) defined by the equation (3.3.2).

Here we provide an example to illustrate Theorem 3.3.1. Let \(E\) be the elliptic curve defined over \(F_5\) given by
\[
y^2 = x^3 + x^2 + 2x + 1.
\]
3.3. A construction on an elliptic curve

Then points \((0, 1), (0, 4), (3, \omega)\) and \((3, 4\omega)\), where \(\omega\) is a root of \(x^2 + 2\) in \(F_{5^2}\), are the intersection points of \(E\) with the curve given by

\[
4x^4 + 2x^3 + x^2 + 3x + 4 + y + 3xy^2 = 0.
\]

Let \(V\) be the set of these four points and \(C\) be the set of quadratic curves defined over \(F_{5^2}\). The power series corresponding to each point of \(V\) are

\[
\begin{align*}
\begin{cases}
x &= t \\
y &= 1 + t + 3t^3 + 3t^4 + 3t^5 + \cdots,
\end{cases}
\end{align*}
\]

\[
\begin{align*}
\begin{cases}
x &= t \\
y &= 1 + t + 3t^3 + 3t^4 + 3t^5 + \cdots,
\end{cases}
\end{align*}
\]

\[
\begin{align*}
\begin{cases}
x &= 3 + t \\
y &= \omega + \omega t^3 + 3\omega t^5 + \cdots,
\end{cases}
\end{align*}
\]

\[
\begin{align*}
\begin{cases}
x &= 3 + t \\
y &= 4\omega + 4\omega t^3 + 2\omega t^5 + \cdots.
\end{cases}
\end{align*}
\]

Let \(C(P; Q; \alpha, \beta) = \{C \in C : I_P(C, E) \geq \alpha, I_Q(C, E) \geq \beta\}\). We see that

\[
\dim C(P; Q; 6, 0) = \dim C(P; Q; 3, 3) = \dim C(P; Q; 0, 6) = 1
\]

and

\[
\dim C(P; Q; 5, 1) = \dim C(P; Q; 4, 2) = \dim C(P; Q; 2, 4) = \dim C(P; Q; 1, 5) = 0
\]

for any pair \((P, Q)\) of points of \(V\). Hence \((C_0, V, C)\) is a symmetric set of curves with \(\lambda_{4,0} = \lambda_{3,3} = \lambda_{0,6} = 24\) and \(\lambda_{5,1} = \lambda_{4,2} = \lambda_{2,4} = \lambda_{1,5} = 0\), where \(|C| = (5^2)^6\).