CHAPTER 1

Introduction

Over the last two decades, several applications of the theory of algebraic
curves over finite fields have been developed: for example, algebraic-
geometric codes introduced by Goppa [Gop81], elliptic curve cryptog-
raphy by Koblitz {Kob87] and Miller [M1il86], factorizations of large
numbers by Lenstra Jr. [LJ87], generating pseudorandom sequences
by Xing and Lam [XL99], and so on. In this thesis, we present new
applications of algebraic curves to the constructions of combinatorial
designs and combinatorial arrays, which in furn are useful in statistical
experiments.

In this chapter, an introduction to algebraic curves will be given,
and their precedent applications will be described. Definitions of bal-
anced arrays and balanced n-ary designs will be also presented together
with the sketches of our new constructions of them. Several practical
usages of these arrays and designs will be discussed briefly at the end
of this chapter.

1.1. Algebraic curves

An algebraic curve is the set of zeroes (roots) of a polynomial in two

variables. Each element of a curve is called a poinf on the curve. For

example, the polynomial F(z,y) = y? — 2° — 2 — 1 defines a curve, and

(1,4/3) is a point on the curve. The points at infinity, that is, those with

at least one of the coordinates being +o0 or —co, are often considered as
1
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Figure 1. ¢ =28 +z +1

points on an algebraic curve defined by F' = 0 together with the points
(zo, 7o) satisfying F{zg,3) = 0. However, in this chapter, a curve will
mean the set of zeroes of a polynomial unless otherwise specified. We
will show in Chapter 2 how the points at infinity can be included in
the set of points on a curve,

A polynomial is said to be defined over a field K if all of its coeffi-
cients are from K. The set of polynomials with two variables = and y
defined over K is denoted by K[z,y]. The polynomial F' in the above
example can be regarded as a polynomial defined over the real number
field R. On the curve ¢ defined by this polynomial &, the points with
z-coordinate being —1 have no value on y-coordinate in R. However,
if we consider the imaginary unit 4 such that * = —1, then the point
(—1,1%) is on the curve C. From these observations, it is useful if we
congider the points on curves over the complex number field C rather
than the real number field R or the rational number field @, even if
the curves are defined over R, @, and so on, In general, a curve is
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considered over an algebraic closure K of a field X, that is, the coor-
dinates of the points on the curve are in K when the curve is defined
by a polynomial over K. An algebraic closure X of a field K is a field
in which the roots of any polynomial with one variable defined over K
always lie. Similarly, an elgebraically closed field is a field in which any
root of any polynomial with one variable defined over the field always
lie. For example, the complex number field C is algebraically closed,
while the real number field R is not.

An intersection point is a common root of two polynomials, and the
multiplicity of the point is defined as the multiplicity of the root. By
considering an algebraically closed field, we have a number of important
results on algebraic curves, such as the following on the number of
intersection points of two curves defined by polynomials of degree d,
and ds respectively: the two curves intersect at d,ds points, counting
multiplicities. Consider the system of equations ¥ = 2 and ¥ = 2z — 1.
Since 2% — 2z + 1 = 0 has a multiple root = = 1, the zero (1,1) is
a solution of the system with multiplicity 2, and there is no other
intersection point. '

-3

Figure 2. y =z and y =2z — 1
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- A finite field F, is a field with g elements, ¢ being a prime power.
The number ¢ of elements is called the order of F,. When the or-
der of a finite field is a prime number p, the field can be regarded
as {0,1,...,p — 1 (mod p)}. Let us consider the curve C : F =
y* — 23 — 2 — 1 = 0 over Fs, The points on C with coordinates in [Fy
are (0,=£1), (2,%1), (3,%1) and (4,:£2). When y = 0 there is no zero
of F whose z-coordinate is in Fy. This means that the line y = 0 does
not meet the curve C. Let o be an element satisfying a® +a+ 1 =0,
but not in F5. If the points on C are considered over a field which
includes o and the elements of Fs, then the point (e, 0) also becomes
a point on the curve C. From these observations, we can say that any
line intersects with any curve over a finite field F, at some points by
considering the points over an extension Ky of F,. Two finite fields
K, and Ko are isomorphic if they have the same number of elements.
Hence the union If, = F, UF,2 U Fgs U -+ of its all finite dimensional
extensions of a field IF, is a closed field containing F.

In the theory of algebraic curves, the complex number field C is
often used as the ground field of curves. However, in its application
to information sciences, an algebraically closed field containing a finite
field is more preferable.

A point is said to be K-rationael if the coordinates of the point lie
in the field K. Suppose here that polynomials F and G are over a
field K. A divisor on a curve is a formal sum ) ,, mpP of points on
the curve with integral coefficients. A rational function is a fractional
expression f = F/G of two polynomials F and G. It is well known
(see for example, [Mor91]) that a certain set of rational functions
determined by a divisor forms a linear space over K. The interested
reader is referred to Chapter 2 for details.

Let IF, be a finite field in which the order ¢ is not a power of 2 or.
3. An elliptic curve E is an algebraic curve defined by an equation

y2 = ma T G4Z + Gg,
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where a4,a6 € F, and (a4, ag) satisfies 4af + 27a2 # 0 in F,. Recall
that an IF,-rational point is a point (z,y) such that both z and y lie
in IF,. Any elliptic curve passes through exactly one point at infinity
(see page 23). Let E(F,;) be the set of Fy-rational points together
with the point at infinity. It is well known (see for example, [ST'92])
that E(IF,) forms a group under the following addition. For P, and
P, € E(IF,), we consider the line pasgsing through the two points. The
line always intersects the elliptic curve at a third point, say . Consider
the vertical line through the point @; this line passes through the point
at infinity. The addition P, + P, is defined as the third intersection
point of the vertical line with the elliptic curve. These steps for defining

Py

P32P1+P2

Figure 3. Addition on an elliptic curve

addition on points are illustrated in Figure 3.

In Chapter 2, the theory of algebraic curves will be described more
precisely in connection with our new applications. The next section is
devoted to some precedent applications of algebraic curves,
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1.2. Precedent applications of algebraic curves

The theory of algebraic curves over finite fields has been applied to the
theory of information sciences over the last two decades. In this section
we mention some of such applications: algebraic-geometric codes, ellip-
tic curve cryptography, factorizations of large numbers, and generating
pseudorandom sequences for stream ciphers.

1.2.1. Algebraic-geometric codes

In communication through a digital channel, a sender transmits en-
coded data to a receiver, and then the receiver decodes the data for
restoring the original message. FError-correcting codes are systems
which can detect and correct errors caused by noises in transmission
channels. An algebraic-geometric code is one of error-correcting codes
introduced by Goppa [Gop81] as a possible generalization of Reed-
Solomon codes, BCH-codes and “classical” Goppa codes.

Let C be a subset of an n-dimensional vector space. C is called
a code of length n and its elements are codewords. An encoding is
a transformation of the set of original messages, called source, to a
code C. When a sender transmits codewords to a receiver, some errors
may occur, so that the receiver receives data different from the original
codewords. The detection and correction of errors are made by the
maximum likelihood principle, that is, the receiver picks the codeword
nearest to the received data in terms of some distance. The most com-
monly used is the Hamming distance d(x,y) which is defined to be the
number of coordinates in which & = (2y,... , %) and ¥ = (y1,... ,¥n)
differ, that is, d(z,y) = [{¢ : =i # wi}|. A linear code C, which is one
of the most popular error-correcting codes, is a k-dimensional subspace
of an n-dimensional linear space. Algebraic-geometric codes are linear
codes generated from linear spaces of rational functions. Recall that
a rational function over a finite field [y is a fractional expression of
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two polynomials over IF,. If a rational function over F, has a repre-
sentation f = F'/G with G(P) # 0 for a F,-rational point P, then the
function f has a value f(P) = F(P)/G(P) in F,. We can therefore
define a map from a set of n F,-rational points Py,... , F, to n-tuples
(F(£1),. .., f(Fn)) in F}. It is well known (see for example, [Mor91])
that a certain set of rational functions is a linear space, which leads
to a linear code C' consisting of n-tuples (f(£1)},..., f{P,)) for all ra-
tional functions of the aforementioned subset. This is fundamental in
constructing algebraic-geometric codes.

The most important result on algebraic-geometric codes is that a
family of the codes asymptotically achieves the Varshamow-Gilbert
- bound, which is a lower bound of information rate k/n for the series of
optimal codes with the same relative minimum distance d/n {TVZ82].
Another important result is that all linear codes are algebraic-geometric
codes. There are several books on algebraic-geometric codes, see for
example, [Gop91], [vLvdG88| and [TVI1].

1.2.2. Elliptic curve cryptography

In communication through insecure open networks such as the Internet,
cryptosystem is indispensable to defend transmitted secret information
against impersonation and substitution by strangers.

Before we review how the cryptography works by using elliptic
curves, we redefine the notion of elliptic curves together with the for-
mulae of addition in the group of points on the curve. Let [, be a finite
fleld of order g # 2,3, and E the elliptic curve defined by

y? = 2% + ayx + ag,

where a4,as € F,. The addition of the group E(F,) is formulated as
follows: for P, = ($1,y1) and B, = (iﬂg,’yz) in E(]Fq), Pa=P 4+ By =



1.2. Precedent applications of algebraic curves 8

(23,ya) is defined as

J’”a'sz)\z—ml"iﬂz;
¥a = M@1 — 23) — ¥,

where

(v — 1)/ (z2 — m1) for z; # 2,
(322 + ag) /2y, for P, = P,

The inverse of P, = (z1,41) I8 —P1 = (&1, ~y1). Note that these
formulae represent the addition defined geometrically in Section 1.1
and illustrated in Figure 3.

Let us consider a situation that Alice wants to send a message
M € E(F,) to Bob through an insecure channel. Secure communication
is established by the following steps.

1. Bob opens P = a() and ¢) to the public, where & is an integer
randomly chosen, and holds « secret.

2. Alice sends (By, By) = (M + P, BQ), where 8 is an integer
randomly chosen, and holds & secret.

3. Bob decrypts the received message by calculating By —aBy = M.

The information P = a) and € opened by Bob are called public keys,
and the information « and § held secretly by each of Alice and Bob
are secret keys. The security of this system depends on the difficulty
of finding the secret keys @ and S from the public information Q, a@
and 8Q. The problem of finding an integer o from a€) over a finite
group is called the discrete logarithm problem. The elliptic curve cryp-
tography is a modification of a cryptography introduced by ElGamal
[E1G85] based on the discrete logarithm over a group of integers. This
modification can obtain the ability of defence against known attacks.
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1.2.3. Factorization of large numbers

There are a number of factoring algorithms. In this section we review
the method of factorization by means of the theory on elliptic curves,
which was introduced by Lenstra Jr. [LJ87] in 1987.

Suppose that we want to factor the composite number n which has
a prime factor p > 3. Let F be an elliptic curve defined by the equation
y> = 2% + ax + b, where a,b € Z and ged(4a® + 276%,n) = 1. In the
same way as that in the previous section, we consider the addition
of two points on E, that is, if P, = (z1,91) and P, = (z9,%2), then
Py -+ Py = (23,73) = (A* — 21 — @a, M(m1 — x3) — 93), where

(2 — 1)/ (22 — 1) if 21 # 2o,
(322 + 0) /2y if PL = Py,

A=

and the inverse of P, is =P, = (x1,—11). Let E(Q) be the set of
points on E whose coordinates lie in the set of rational numbers Q and
the point at infinity. By taking the point at infinity as the identity,
E(Q) forms a group under the above addition. Let Py = (z;,%;) and
Pg = (za,ys) # —P1 be two points on F whose coordinates have de-
nominators relatively prime to n. Consider the elliptic curve E as the
clliptic curve E’ defined over a finite fleld F, of order p, that is, B is
defined by the equation y* = 2® + o'z -+ I, where ¢ = o' (mod p) and
b= ¥ (mod p). The points P, and P, can be replaced by F,-rational
points P and P} by reducing their coordinates modulo p, since the
denominators of the coordinates are relatively prime to n, and since p
is a prime factor of n.

Theorem 1.2.1 ([Kob94]). The point P, + P, € E(Q) has coordi-
nates with denominator prime fo n tf and only if there is no prime
p dividing n such that the point P| + Py € E'(F,) is not the point at
infinity.
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~ This theorem plays an important role in Lenstra's algorithm to find
a factor of a composite number n. Suppose that, for a prime factor p of
n, an integer k is divisible by the number of points in 5'(F,). Then any
element of E'(IF,) has an order which is a factor of |E'(F,)|, and kP’
is the point at infinity, where P’ is the point in E'(F,) corresponding
to a point P € E(Q). From Theorem 1.2.1, the denominator d of
kP € E(Q) has common factors with n, that is, ged(d, n) is a nontrivial
factor of n if d is not divisible by n. From these observations, we have
a method of factorization called Lenstra’s algorithm.

Lenstra’s elliptic curve algorithm. Let n > 2 be a composite
integer for which we are to find a factor.

Step 0: Check that the greatest common divisor ged(n, 6) is 1 and
that n does not have the form m™ for any r > 2.

Step 1: Choose random integers x4, y1, ¢ between 1 and .

Step 2: Let b = 32 — 23 — a3, (mod n), let F be the cubic curve
E:y*=2"+az+0, and let P = (z,,1) € E.

Step 3: Check that ¢ = ged(4a® + 276%,n) = 1. If ¢ = n then go
back to Step 1. If 1 < ¢ < n then ¢ is a non-trivial factor of n,
50 we are done.

Step 4: Choose an integer k which is divisible by powers of small
primes, for example the least common multiple

k=1lem(1,2,...,M)

for an integer M,

Step 5: Compute

Ty Yk
kP = "'""a"_—)
AL

in the group E(Q). If ged(dy, n} is strictly between 1 and n, then
D is a non-trivial factor of n and we are done. If ged(dy,n) is
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equal to 1, then either go back to Step 4 and increase k, or go
back to Step 1 and choose a new elliptic curve, If ged(d, n) is
equal to n, then go back to Step 4 and decrease k.

Generally speaking (see for example, [Sti95]), Lenstra’s method is
faster than other factorization algorithms when the prime factors of n
are of differing size. However, when n is a composite of large primes,
this method is not so fast.

1.2.4. Sequences for stream ciphers

Generating long pseudorandom sequences from short seeds is very im-
portant for the theory of stream ciphers [Rue86, Rue92)].

Let @ = 2125 ... be a string of plaintext and y = 7. .. the string
of the encrypted ciphertext of @. The basic idea of stream ciphers is to
generate a keystream z = 2,2;..., and use it to encrypt the plaintext
string @ according to the rule

Y=wunla... =€y (.'131)6;2(1172) vy

where e,,’s are encryption functions. A pseudorandom sequence gen-
erated from a ‘seed’ key is used as the key stream z. A stream cipher
is often described in terms of binary alphabet. In this situation, the
encryption operation is the addition modulo 2, i.e.,

ey = T; + 2 (mod 2).

Decrypting the ciphertext string ¢ can be accomplished by computing
the key stream from the seed key shared by the sender and the receiver.
Hence, the corresponding decryption operation is

dy, = i + % (mod 2).

Clearly, we need long sequences with unpredictability and random-
ness generated from short seeds. A sequence (ai,ag,...,as) in Fy is
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called a k-th order linear feedback shift-register sequence if there exist
constants Ag,..., Ap € Fy with Ay # 0 such that Aga; + M@ + -+ +
Aroipr = 0 for all 1 < ¢ < n— k. The linear complezity of a sequence
of length n, which is a well-known measure of unpredictability and
randomness, is defined to be the least & such that the sequence is a
k-th order linear feedback shift-register sequence. An infinite sequence
(a1, 0z, ...) is called d-perfect if for any n > 1 the linear complexity
of the subsequence (ar,as,... ,an)' of length n is greater than or equal
to (n-+1—d)/2. Let P= (z,y) be an FF,-rational point on a curve
C defined over F,. The point P can be represented by a parameter £
asz =y .oaitt and y = Y ;" yit!, where z;, 3 € Fy. The expansion of
a rational function f(z,v) at P has the form f = 3;° a;#*. Consider
the sequence «(f) of the coefficients of the above expansion except
o, that is, a(f) = (o, ag,...). Xing and Lam [XL99] showed that
the sequence c(f) is d-perfect if P and f satisfy certain conditions.
This is one of the latest applications of algebraic curves to information
sciences.

1.3. A new application to balanced arrays

Unlike those mentioned in the preceding section, the applications in
this section and the next section use intersection multiplicities. In this
section, we first give the definition of balanced array.

Let S be a set {0,1,--+,s — 1} of 5 elements. A balanced array,
denoted by BA(v,b,s) or simply BA, is a v X b matrix A with entries
from S satisfying the following conditions:

(A1): for any 2-rowed submatrix Ag of A, any ordered pair (z,y)
of elements from S occurs exactly u(®,y) times as columns in
Ay, and

(A2): p(z,y) = p(y, =) for every pair of x and y.
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The u(z,y)’s are called the indices, and v the number of constraints.
When pu(z,y) = p for every pair (z,y), the balanced array becomes an
orthogonal array, which is denoted by OA(v, b, 5).

The notion of balanced array was first introduced by Chakravarti
[Cha56} in connection with statistical designs. L-ater on, many people
have contributed to the theory and construction of balanced arrays. A
historical note on balanced arrays will be mentioned in Chapter 3.

The fundamental idea of our new constructions in this thesis is
to consider the intersection multiplicities of curves as entries in some
array. Let Gy be a curve defined over Fy, V a set of points on the
curve Cp, and C a set of curves over If;, We assign the points of V' to
the rows, and the curves of C to the columns to construct a [V] x |C]
array. Bach entry of the array is the intersection multiplicity at the
corresponding point of the corresponding curve with the curve Cy. The
resultant array, however, is not always a balanced array. Therefore we

require the triple (Co, V, C) to satisfy the following conditions:

e for any point P € V, the number of curves of C having intersec-
tion multiplicity c is exactly A,, and

e for any ordered pair (P, Q) of distinct points of V', the number
of curves C' € C satisfying Ip(C,Cy) = o and Io(C,Cy) = 8 is
equal to A, g,
where Ip(C, ) is the intersection multiplicity at the point P of the
curves C and Cy. The triple (Cy, V,C) satisfying the above conditions
is called a symmetric set of curves, and it yields a balanced array. In
Chapter 3, we will discuss the construction methods of symmetric sets
of curves by using linear spaces of rational functions. When the degree
of the polynomial which defines the curve Cjp is greater than or equal
to 3, it is difficult to construct such symmetric sets of curves by this
method. For the case that Cp is an elliptic curve, i.e. the degree is 3,
one method to obtain the point set V and the curve set C satisfying the
conditions of symmetric sets of curves will be also proposed in Chapter
3.
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1.4. A new application to balanced n-ary designs

A balanced n-ary design is similar to the well-known balanced incom-
plete block design (BIBD) except that its blocks are mmltisets with
multiplicities 0,1, ... , and n—1. In this section, we give the definition
of balanced n-ary designs and describe how algebraic curves can be
applied to construct the désigns.

Let V be a set of v elements and B a collection of & multi-subsets
of V. The elements of V' and B are called treatments and blocks, re-
spectively, A block design (V, B) is an arrangement of v treatments of
V into b blocks of B. A bolanced n-ary design, denoted by BnD, is a
pair (V, B) satisfying

(B1): each block is of a constant size k,

(B2): each treatment occurs at most n — 1 times in any block
B € B, and

(B3): each unordered pair of distinct treatments occurs exactly A
times in the blocks of B,

Note that, for example, the block size of B = {z,z,z,y,y, 2} is 6 since
the treatments z, ¥ and 2 occur 3 times, twice and once, respectively,
and the pairs {z,y}, {y,2} and {z,z} are counted 6, 2 and 3 times,
respectively, in the block B.

Remark. To distinguish balanced n-ary designs from binary designs,
capital letters have been traditionally used for the parameters of n-ary
designs, In this thesis, however, the parameters are denoted by small
letters since we will mainly discuss designs of n-ary types.

Bquivalently to the above definition, balanced n-ary designs could
be defined by a matrix. Let IN = (n;;) be a v X b matrix such that ny;
is the number of occurrences of the i-th treatment in the j-th block.
The matrix IV is called the incidence matriz of a balanced n-ary de-
sign, Using the incidence matrix, the conditions in the definition of a
balanced n-ary design is rewritten as follows:
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(B1'): 3, ny =k for any 7,
(B2): 0 < ny; £ n—1 for any i, §, and
(B3'): 22, mijng; = A for any unordered pair {i,4'}, 4 # ¢

There is a close connection between finite geometries and block
designs. For example, in an affine plane over a finite field, the point set
V and the line set B form a balanced incomplete block design (V, B).
In traditional methods of constructions using finite geometries, we have
regarded geometric objects as treatments and sets of objects as blocks
of designs. Since the resultant blocks are not multisets, designs with
repeated elements in blocks cannot be directly produced in traditional
ways. The fundamental idea in this thesis for constructing balanced
n-ary designs is that the intersection multiplicities of algebraic curves
are considered as the multiplicities of treatments in blocks. This can
be thought of as a generalization of the traditional correspondence
between binary designs and finite geometries, since the intersection
multiplicities can be regarded as the multiplicities of points on algebraic
varieties, which are sets of points defined as common roots of some
equations. In Chapter 4, we will present some construction methods of
balanced n-ary designs by applying the theory of algebraic curves.

Similarly to the construction methods of balanced arrays in Chapter
3, the incidence matrix of a balanced n-ary design can be abtained from
a linear space of rational functions. One of the differences between
a balanced n-ary design and a balanced array is that the incidence
matrix of a balanced n-ary design must have constant column sum so
that the design have a constant block size, while a balanced array does
not. For a curve Cy, we can define the divisor of a curve ¢ on Cy as
>_pmpP, where mp is the intersection multiplicity at the point P of
the curves Cy and C. This means that a curve can be represented by
its unique divisor, If two divisors on a curve Cy are linearly equivalent
(see Chapter 4 for its formal definition), then the corresponding curves
have the same number of intersection points with Cy. By applying this
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equivalence, we can obtain designs with constant block size from sets
of curves.

1.5. Practical usages of balanced n-ary designs and
balanced arrays

Balanced n-ary designs and balanced arrays have applications in the
design of experiments. In this section, we briefly mention some statis-
tical designs based on the balanced n-ary designs and balanced arrays,
such as block designs, balanced fractional factorial designs and weigh-
ing designs.

1.5.1. Block designs

Block designs were originally used in agrienltural experiments with the
aim of allowing all treatments to be compared within similar condi-
tions, First, we introduce some terminologies used in the theory of
experimental designs and review elementary properties of block de-
signs.

A block is a set of experimental units, and treatments are assigned
to the units. For example, in an experiment to compare three varieties
of wheat in five different farms, the blocks are the five farms which are
divided into several plots. A design is an allocation of v treatments to
N plots grouped in b blocks. A balanced n-ary design can be used as
a design whose blocks may have some experimental units receiving the
same treatments.

A vxbmatrix N = (ny;) is called the éncidence mairiz of a balanced
n-ary design if each entry ny; is the number of units in the j-th block
that receive the i-th treatment. Let DD be a bx N matrix with elements
0 and 1, the (4, 1)-entry being 1 if the j-th unit is in the i-th block, and
0 otherwise. The transposed matrix DT is called the design mairiz for
blocks. Similarly, let A be a v x N matrix in which the (%, j)-entry
is 1 if the j-th unit receives the i-th treatment, and 0 otherwise. The
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transposed matrix A is called the design mairiz for treatments. It can
be easily seen that the relation ADT = IN holds.

Now we consider an experiment using a balanced n-ary design. Let
1 be the yleld of the I-th plot in the 7-th block sown with the i-th
variety, 7; the effect of the i-th variety, and f; the effect of the j-th
bleck. Then we have the linear statistical model

w=T7+p0;+e,
where ¢ is a random error. We can write this in vector notation as
y=ATT+ D78 +¢,

where y = (y1,...,y0)m = (1., )", B = (Bi,... , B)T, and
€= (e1,...,ex)T. By putting X = (ATDT) and v = (r78%)7, we
have

y=Xv+e

Suppose that the expected value of the error term ¢ is zero and that
the variance is 0. When we choose b satisfying the normal equation
XTXb = XTy, we have a least squares estimator 4 of v from X4 =
Xb. (See, for example, [SS87)).

When a design satisfies the conditions (B1) and (B3), we can easily
obtain an unbiased estimator. This is one of the reasons why balanced
n-ary designs are suitable for the experiments discussed above. For
more details on statistical analysis, the interested reader is referred to
[CK96].

1.5.2. Balanced fractional factorial designs

A factor in an experiment is an attribute of the experimental units
which may affect the response observed in the experiment. Any factor
may take one of several values which are called the levels of the factor.
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For example, in an experiment to compare three varieties of wheat
in five different farms, a factor is ‘wheat’ with three levels. Block
designs can be used for experiments which have two factors, one is the
treatment factor and the other is the blocking factor. In an experiment
with more factors, balanced fractional factorial designs are very useful.
Such designs can be constructed from balanced arrays.

Let us consider the linear model

y=XT+E¢,

where ¥ is an N x 1 vector of observations, X7 a v x N design matrix,
T a v X 1 vector of treatments, and € an N x 1 vector of errors. Each
treatment is assigned to a factor with s levels, that is, the design matrix
X is s-ary. ‘The aim of this experiment is to estimate the treatment
effects which have up to I factors, A design based on this model is
a balanced fractional factorial design, More precisely, if the effects
involving up to ! factors are estimable under a design, then the design
is called a fractional factorial design of resolution 21 + 1; if, moreover,
the matrix (X7X)~! is invariant with respect to any permutation of
factors, then the design is called a balanced fractional factorial design
of resolution 20 + 1.

The design matrix X of a balanced fractional factorial design can be
obtained from a balanced array. Many people have studied the connec-
tions between balanced fractional factorial designs and balanced arrays:
Srivastava [Sri70], Srivastava and Anderson {[SA70], Yamamoto, Shi-
rakura and Kuwada [Y'SK'75], Shirakura and Kuwada [SK75, SK 78],
Shirakura [Shi75, Shi76, Shi77], Kuwada [Kuw79], Kuwada and
Nishii [KN79], and Hyodo [Fyo92]. In particular, Kuwada and Nishii
[KIN'79] established a connection between balanced fractional factorial
designs of resolution 2! + 1 with m factors of s levels and balanced
arrays with s symbols.
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1.5.3. Weighing designs

A weighing design is another applicatioh of balanced n-ary designs to
the theory of experimental designs. Let us consider the problem of
weighing v objects with a balance which has no bias. An easy way of
weighing is to put objects in one pan, and then known weights in the
other pan. Hotelling's [Hot44} improvement of this method is to put
certain objects in one pan (left hand), next the remaining objects in
the other (right hand), and then balance these pans on the scale by
adding known weights. Let z,; = 1 or —1 if the {-th object is included
in the u-th weighing by being placed in the left or right hand pan, and
let z,; = 0 if the 4-th object is not included in the u-th weighing, where
i=1,2,...,vand u=1,2,...,N. Let ¢, be the result recorded for
the u-th weighing, that is, v, is the total weight of the known weights
placed in the right hand pan, and let ¢, be the error in y,. If 7; is the
true weight of the ¢-th object, we have

Yy = AT+ €,

where

7 =(11, 72, ... ,Ty), and

&' =(€1, €,... ,en) the vector of errors.
Then we know that the least squares estimator of v is obtained from
# = (ATA)ATY,

and the variance-covariance matrix is given by o2(ATA)™!, o? being
the variance of the experimental error. The weighing problem therefore
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reduces to the investigation of the matrix AT A so that the true weights
can be estimated with minimum variance.

Balanced n-ary designs were applied by Murty and Das [MD67]
and Saha and Dey [SD73] to produce the design matrices A of weigh-
ing designs by replacing the entries {0,1,...,n — 1} of the incidence
matrices with {—i, 0,1}.



