Crystal Bases, Path Models, and a Twining Character Formula for Demazure Modules

Daisuke SAGAKI

A dissertation submitted to the Doctoral Program in Mathematics, the University of Tsukuba in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Science

January 2002
0 Introduction.

In [FRS] and [FSS], they introduced new character-like quantities corresponding to a graph automorphism of a Dynkin diagram, called twining characters, for certain Verma modules and integrable highest weight modules over a symmetrizable Kac-Moody algebra, and gave twining character formulas for them. Recently, the notion of twining characters has naturally been extended to various modules, and formulas for them has been given ([KN], [KK], [N1]-[N4]).

The purpose of this paper is to give a twining character formula for Demazure modules over a symmetrizable Kac-Moody algebra. Our formula is an extension of one of the main results in [KN], which describes the twining characters of Demazure modules over a finite-dimensional semi-simple Lie algebra. While their proof is an algebro-geometric one, we give a combinatorial proof by using the theories of path models and crystal bases.

Let us explain our formula more precisely. Let \(g = g(A) = n_\pm \oplus h \oplus n_+ \) be a symmetrizable Kac-Moody algebra over \(\mathbb{Q} \) associated to a generalized Cartan matrix \(A = (a_{ij})_{i,j \in I} \) of finite size, where \(h \) is the Cartan subalgebra, \(n_+ \) the sum of positive root spaces, and \(n_- \) the sum of negative root spaces, and let \(\omega : I \to I \) be a (Dynkin) diagram automorphism, that is, a bijection \(\omega : I \to I \) satisfying \(a_{\omega(i),\omega(j)} = a_{ij} \) for all \(i, j \in I \). It is known that a diagram automorphism induces a Lie algebra automorphism \(\omega \in Aut(g) \) that preserves the triangular decomposition of \(g \). Then we define a linear automorphism \(\omega^* \in GL(h^*) \) by \((\omega^*(\lambda))(h) = \lambda(\omega(h)) \) for \(\lambda \in h^*, h \in h \). We set \((h^*)^0 = \{ \lambda \in h^* \mid \omega^*(\lambda) = \lambda \} \), and call its elements symmetric weights. We also set \(\tilde{W} := \{ w \in W \mid w \omega^* = \omega^* w \} \).

Further we define a "folded" matrix \(\tilde{A} \) associated to \(\omega \), which is again a symmetrizable GCM if \(\omega \) satisfies a certain condition, called the linking condition (we assume it throughout this paper). The Kac-Moody algebra \(\tilde{g} = \tilde{g}(\tilde{A}) \) associated to \(\tilde{A} \) is called the orbit Lie algebra. We denote by \(\tilde{h} \) the Cartan subalgebra of \(\tilde{g} \) and by \(\tilde{W} \) the Weyl group of \(\tilde{g} \). Then there exist a linear isomorphism \(P_{\omega}^* : \tilde{h}^* \to (h^*)^0 \) and a group isomorphism \(\Theta : \tilde{W} \to \tilde{W} \) such that \(\Theta(\tilde{w}) = P_{\omega}^* \circ \tilde{w} \circ (P_{\omega}^*)^{-1} \) for all \(\tilde{w} \in \tilde{W} \).

Let \(\lambda \) be a dominant integral weight. Denote by \(L(\lambda) = \bigoplus_{\chi \in \mathfrak{t}^*} L(\lambda)_{\chi} \) the irreducible highest weight \(g \)-module of highest weight \(\lambda \). Then, for \(w \in W \), we define the Demazure module \(L_w(\lambda) \) of lowest weight \(w(\lambda) \) in \(L(\lambda) \) by \(L_w(\lambda) := U(\mathfrak{b})L(\lambda)_{w(\lambda)} \), where \(U(\mathfrak{b}) \) is the universal enveloping algebra of the Borel subalgebra \(\mathfrak{b} := \mathfrak{h} \oplus n_+ \) of \(g \). If \(\lambda \) is symmetric, then we have a (unique) linear automorphism \(\tau_\omega : L(\lambda) \to L(\lambda) \) such that

\[\tau_\omega(xv) = \omega^{-1}(x)\tau_\omega(v) \quad \text{for all } x \in g, v \in L(\lambda) \]

and \(\tau_\omega(u_\lambda) = u_\lambda \) with \(u_\lambda \) a (nonzero) highest weight vector of \(L(\lambda) \). Then it is easily seen that the Demazure module \(L_w(\lambda) \) with \(w \in \tilde{W} \) is \(\tau_\omega \)-stable. Here we define the twining
character \(\text{ch}^\omega(L_w(\lambda)) \) of \(L_w(\lambda) \) by:

\[
\text{ch}^\omega(L_w(\lambda)) := \sum_{\chi \in (\mathfrak{h}^*)^0} \text{tr}(\tau_\omega|_{L_w(\lambda)_\chi})e(\chi).
\]

Our main theorem is the following:

Theorem. Let \(\lambda \) be a symmetric dominant integral weight and \(w \in \widehat{W} \). Set \(\widehat{\lambda} := (P^w)^{-1}(\lambda) \) and \(\widehat{\omega} := \Theta^{-1}(w) \). Then we have

\[
\text{ch}^\omega(L_w(\lambda)) = P^\omega(\text{ch}L_{\widehat{\omega}}(\widehat{\lambda})),
\]

where \(L_{\widehat{\omega}}(\widehat{\lambda}) \) is the Demazure module of lowest weight \(\widehat{\omega}(\widehat{\lambda}) \) in the irreducible highest weight module \(L(\widehat{\lambda}) \) of highest weight \(\widehat{\lambda} \) over the orbit Lie algebra \(\widehat{\mathfrak{g}} \).

The starting point of this work is the main result in [NS1]. Denote by \(\mathbb{B}(\lambda) \) the set of Lakshmibai-Seshadri paths (L-S paths for short) of class \(\lambda \), where L-S paths of class \(\lambda \) are, by definition, piecewise linear, continuous maps \(\pi : [0,1] \to \mathfrak{h}^* \) parametrized by sequences of elements in \(\mathcal{W}(\lambda) \) and rational numbers with a certain condition, called the chain condition. In [Li1], Littelmann showed that there exists a subset \(\mathbb{B}_w(\lambda) \) of \(\mathbb{B}(\lambda) \) such that

\[
\sum_{\pi \in \mathbb{B}_w(\lambda)} e(\pi(1)) = \text{ch}L_w(\lambda).
\]

For \(\pi \in \mathbb{B}(\lambda) \), we define a path \(\omega^*(\pi) : [0,1] \to \mathfrak{h}^* \) by \((\omega^*(\pi))(t) := \omega^*(\pi(t)) \). If \(\lambda \) is symmetric and \(w \in \widehat{W} \), then \(\mathbb{B}_w(\lambda) \) is \(\omega^*-\)stable. We denote by \(\mathbb{B}^0_w(\lambda) \) the set of all elements of \(\mathbb{B}_w(\lambda) \) fixed by \(\omega^* \). Then we see from the main result of [NS1] that

\[
\sum_{\pi \in \mathbb{B}^0_w(\lambda)} e(\pi(1)) = P^\omega(\text{ch}L_{\widehat{\omega}}(\widehat{\lambda})).
\]

In this paper, we prove that the left-hand side is, in fact, equal to \(\text{ch}^\omega(L_w(\lambda)) \).

In order to prove the equality \(\text{ch}^\omega(L_w(\lambda)) = \sum_{\pi \in \mathbb{B}^0_w(\lambda)} e(\pi(1)) \), we introduce a “quantum version” of twining characters, called \(q \)-twining characters. Let \(U_q(\mathfrak{g}) \) be the quantum group associated to the Kac-Moody algebra \(\mathfrak{g} \) over the field \(\mathbb{Q}(q) \) of rational functions in \(q \), and \(V(\lambda) = \bigoplus_{\chi \in \mathfrak{h}^*} V(\lambda)_\chi \) the irreducible highest weight \(U_q(\mathfrak{g}) \)-module of highest weight \(\lambda \). For \(w \in W \), the quantum Demazure module \(V_w(\lambda) \) is defined by \(V_w(\lambda) := U_q^+(\mathfrak{g})V(\lambda)|_{\mathfrak{h}(w)} \), where \(U_q^+(\mathfrak{g}) \) is the “positive part” of \(U_q(\mathfrak{g}) \). A diagram automorphism \(\omega \) induces a \(\mathbb{Q}(q) \)-algebra automorphism \(\omega_q \) of \(U_q(\mathfrak{g}) \). Assume that \(\lambda \) is symmetric. Then we get a \(\mathbb{Q}(q) \)-linear automorphism \(\tau_{\omega_q} \) of \(V(\lambda) \) that has the same properties as \(\tau_\omega \) in the Lie algebra case. Since \(V_w(\lambda) \) is stable under \(\tau_{\omega_q} \) if \(w \in \widehat{W} \), we can define the \(q \)-twining character \(\text{ch}^q_q(V_w(\lambda)) \) of \(V_w(\lambda) \) by

\[
\text{ch}^q_q(V_w(\lambda)) := \sum_{\chi \in (\mathfrak{h}^*)^0} \text{tr}(\tau_{\omega_q}|_{V_w(\lambda)_\chi})e(\chi),
\]
where the traces are naively elements of $\mathbb{Q}(q)$ (in fact, they are elements of $\mathbb{Q}[q, q^{-1}]$). We show that the specialization of the q-twining character $\text{ch}_q^\omega(V_w(\lambda))$ by $q = 1$ is equal to the (ordinary) twining character $\text{ch}^\omega(L_w(\lambda))$, that is,

$$\text{ch}_q^\omega(V_w(\lambda))\big|_{q=1} = \text{ch}^\omega(L_w(\lambda)).$$

The advantage of considering a quantum version is the existence of a basis of $V_w(\lambda)$ compatible with τ_{ω_q}. Let $(\mathcal{L}(\lambda), \mathcal{B}(\lambda))$ be the (lower) crystal base of $V(\lambda)$. In [Kas3], Kashiwara showed that, for each $w \in W$, there exists a subset $\mathcal{B}_w(\lambda)$ of $\mathcal{B}(\lambda)$ such that

$$V_w(\lambda) = \bigoplus_{b \in \mathcal{B}_w(\lambda)} \mathbb{Q}(q)G_\lambda(b),$$

where $G_\lambda(b)$ denotes the (lower) global base introduced in [Kas2]. We prove that τ_{ω_q} stabilizes the basis $\{G_\lambda(b) \mid b \in \mathcal{B}_w(\lambda)\}$ of $V_w(\lambda)$.

By combining these facts and the equivalence theorem between path models $\mathbb{B}(\lambda)$ and crystal bases $\mathcal{B}(\lambda)$, which was proved by Kashiwara [Kas5] et al., we can obtain the desired equality above, and hence the our main theorem.

This paper is organized as follows. In §1 we review some facts about Kac-Moody algebras, diagram automorphisms, orbit Lie algebras, quantum groups, crystal bases, and path models. There we also define an algebra automorphism of the quantum group $U_q(\mathfrak{g})$ induced from a diagram automorphism. In §2, we recall the definition of the twining characters of $L(\lambda)$ and $L_w(\lambda)$, and then introduce the q-twining characters of $V(\lambda)$ and $V_w(\lambda)$. Furthermore, we show that the q-twining characters of $V(\lambda)$ and $V_w(\lambda)$ are q-analogues of the twining characters of $L(\lambda)$ and $L_w(\lambda)$, respectively. In §3 we give a proof of our main theorem by calculating the q-twining character of $V_w(\lambda)$.

Acknowledgements. I express my sincere thanks to Professor Satoshi Naito, who lead me to the theories of path models and twining characters. This paper could not be written without his guidance.

1 Preliminaries.

1.1 Kac-Moody Algebras and Diagram Automorphisms. In this subsection, we review some basic facts about Kac-Moody algebras from [Kac] and [MP], and about diagram automorphisms from [FRS] and [FSS].

Let $A = (a_{ij})_{i,j \in I}$ be a symmetrizable generalized Cartan matrix (GCM for short) indexed by a finite set I. Then there exists a diagonal matrix $D = \text{diag}(\varepsilon_i)_{i \in I}$ with $\varepsilon_i \in \mathbb{Q}_{>0}$ such that $D^{-1}A$ is a symmetric matrix. Let $\omega : I \to I$ be a diagram automorphism of order N, that is, a bijection $\omega : I \to I$ of order N such that $a_{\omega(i), \omega(j)} = a_{ij}$ for all $i, j \in I$.
Remark 1. Set
\[D' = \text{diag}(\varepsilon'_i)_{i \in I} := \text{diag} \left(\frac{1}{\sum_{k=0}^{N-1} \varepsilon_{\omega^k(i)}} \right) \quad (i \in I). \]

Then we see that \(\varepsilon'_{\omega(i)} = \varepsilon'_i \) and \((D')^{-1} A \) is a symmetric matrix. Hence, by replacing \(D \) with \(D' \) above if necessary, we may (and will henceforth) assume that \(\varepsilon_{\omega(i)} = \varepsilon_i \) (see also [N1, §3.1]).

We take a realization \((\mathfrak{h}, \Pi, \Pi^\vee)\) of the GCM \(A = (a_{ij})_{i,j \in I} \) over \(\mathbb{Q} \) and linear automorphisms \(\omega : \mathfrak{h} \to \mathfrak{h} \) and \(\omega^* : \mathfrak{h}^* \to \mathfrak{h}^* \) as follows (cf. [Kac, Exercises 1.15 and 1.16]).

Let \(\mathfrak{h}' \) be an \(n \)-dimensional vector space over \(\mathbb{Q} \) with \(\Pi^\vee := \{ \alpha^\vee_i \}_{i \in I} \) a basis. We define a \(\mathbb{Q} \)-linear automorphism \(\omega' : \mathfrak{h}' \to \mathfrak{h}' \) by \(\omega'(\alpha^\vee_i) = \alpha^\vee_{\omega(i)} \), and \(\omega'' : (\mathfrak{h}^*)' \to (\mathfrak{h}')^* \) by \((\omega''(\lambda))(h) := \lambda((\omega')^{-1}(h)) \) for \(\lambda \in (\mathfrak{h}')^* \) and \(h \in \mathfrak{h}' \). We also define \(\varphi : \mathfrak{h}' \to (\mathfrak{h}')^* \) by \(\varphi(\alpha^\vee_i)(\alpha^\vee_j) = a_{ij} \). It can be readily seen that \(\omega'' \circ \varphi = \varphi \circ \omega' \). This means that \(\text{Im} \varphi \) is \(\omega'' \)-stable, and hence we can take a complementary subspace \(\mathfrak{h}'' \) of \(\text{Im} \varphi \) in \((\mathfrak{h}')^* \) that is also \(\omega'' \)-stable. Now set \(\mathfrak{h} := \mathfrak{h}' \oplus \mathfrak{h}'' \), and \(\Pi := \{ \alpha_i \}_{i \in I} \), where \(\alpha_i \in \mathfrak{h}^* \) is defined by

\[
\alpha_i \left(\sum_{j \in I} c_j \alpha^\vee_j + h'' \right) := \sum_{j \in I} c_j (\varphi(\alpha^\vee_j))(\alpha^\vee_i) + h''(\alpha^\vee_i) \quad \text{for} \quad h'' \in \mathfrak{h}''. \quad (1.1)
\]

Then we see that \(\Pi \) is a linearly independent subset of \(\mathfrak{h}^* \). Furthermore, since \(\dim \mathfrak{h}'' = \#I - \dim \mathfrak{h} \), we have \(\dim \mathfrak{h} = 2\#I - \text{rank} A \). Hence \((\mathfrak{h}, \Pi, \Pi^\vee)\) is a (minimal) realization of the GCM \(A \). We define a \(\mathbb{Q} \)-linear automorphism \(\omega : \mathfrak{h} \to \mathfrak{h} \) by \(\omega(h' + h'') := \omega'(h') + \omega''(h'') \) for \(h' \in \mathfrak{h}' \) and \(h'' \in \mathfrak{h}'' \), and the transposed map \(\omega^* : \mathfrak{h}^* \to \mathfrak{h}^* \) by \((\omega^*(\lambda))(h) = \lambda(\omega(h)) \) for \(\lambda \in \mathfrak{h}^* \) and \(h \in \mathfrak{h} \). Then we can check, by using (1.1), that \(\omega^*(\alpha_i) = \omega_{\omega^{-1}(i)} \) for each \(i \in I \).

Here, as in [Kac, §2.1], we define the (standard) nondegenerate symmetric bilinear form \((\cdot, \cdot)\) on \(\mathfrak{h} \) associated to the decomposition \(\mathfrak{h} = \mathfrak{h}' \oplus \mathfrak{h}'' \) above. We set

\[
\begin{align*}
(\alpha^\vee_i, h) &:= \alpha_i(h) \varepsilon_i \quad \text{for} \quad i \in I, \ h \in \mathfrak{h}, \\
(h, h') &:= 0 \quad \text{for} \quad h, h' \in \mathfrak{h}''.
\end{align*}
\]

Then it follows from the construction above and Remark 1 that \((\omega(h), \omega(h')) = (h, h') \) for all \(h, h' \in \mathfrak{h} \). We denote also by \((\cdot, \cdot)\) the nondegenerate symmetric bilinear form on \(\mathfrak{h}^* \) induced from the bilinear form on \(\mathfrak{h} \). Then \((\omega^*(\lambda), \omega^*(\lambda')) = (\lambda, \lambda') \) for all \(\lambda, \lambda' \in \mathfrak{h}^* \).

We set

\[
(\mathfrak{h}^*)^0 := \{ \lambda \in \mathfrak{h}^* \mid \omega^*(\lambda) = \lambda \}, \quad \mathfrak{h}^0 := \{ h \in \mathfrak{h} \mid \omega(h) = h \}. \quad (1.2)
\]

Elements of \((\mathfrak{h}^*)^0\) are called symmetric weights. Note that \((\mathfrak{h}^*)^0\) can be identified with \((\mathfrak{h}^0)^*\) in a natural way.
Remark 2. Let p be a Weyl vector, i.e., an element of \mathfrak{h}^* such that $p(\alpha_i^\vee) = 1$ for all $i \in I$. Then, by replacing p with $(1/N) \sum_{k=0}^{N-1} (\omega^*)^k(p)$ if necessary, we may (and will henceforth) assume that a Weyl vector p is a symmetric weight.

Let $g = g(A)$ be the Kac-Moody algebra over \mathbb{Q} associated to the GCM A with \mathfrak{h} the Cartan subalgebra, $\Pi = \{\alpha_i\}_{i \in I}$ the set of simple roots, and $\Pi^\vee = \{\alpha_i^\vee\}_{i \in I}$ the set of simple coroots. Denote by $\{x_i, y_i \mid i \in I\}$ the Chevalley generators, where x_i (resp. y_i) spans the root space of g corresponding to α_i (resp. $-\alpha_i$). The Weyl group W of g is defined by $W := \langle r_i \mid i \in I \rangle$, where r_i is the simple reflection with respect to α_i. The following lemma is obvious from the definitions of Kac-Moody algebras and the linear map $\omega : \mathfrak{h} \to \mathfrak{h}$ above (see also [FSS, §3.2]).

Lemma 1.1. The \mathbb{Q}-linear map $\omega : \mathfrak{h} \to \mathfrak{h}$ above can be extended to a Lie algebra automorphism $\omega \in \text{Aut}(g)$ of order N such that $\omega(x_i) = x_{\omega(i)}$ and $\omega(y_i) = y_{\omega(i)}$.

Let λ be a dominant integral weight. Denote by $L(\lambda) = \bigoplus_{\chi \in \mathfrak{h}^*} L(\lambda)_\chi$ the irreducible highest weight g-module of highest weight λ, where $L(\lambda)_\chi$ is the χ-weight space of $L(\lambda)$. We set $b := \mathfrak{h} \oplus \mathfrak{n}_+$, where \mathfrak{n}_+ is the sum of positive root spaces of g. For $w \in W$, the Demazure module $L_w(\lambda) \subset L(\lambda)$ of lowest weight $w(\lambda)$ is defined by $L_w(\lambda) := U(b)L(\lambda)_{w(\lambda)}$, where $U(b)$ is the universal enveloping algebra of b. In addition, for each $i \in I$, we define the Demazure operator D_i by

$$D_i(e(\lambda)) := \frac{e(\lambda + \rho) - e(r_i(\lambda + \rho))e(-\rho)}{1 - e(-\alpha_i)}$$

for $\lambda \in \mathfrak{h}^*$. (1.3)

By [Kas3], [Ku], and [M], we know the following character formula for Demazure modules.

Theorem 1.2. Let λ be a dominant integral weight and $w \in W$. Assume that $w = r_{i_1}r_{i_2}\cdots r_{i_k}$ is a reduced expression of w. Then we have

$$\text{ch} L_w(\lambda) = D_{i_1} \circ D_{i_2} \circ \cdots \circ D_{i_k}(e(\lambda)).$$

(1.4)

Remark 3. The Demazure operators $\{D_i\}_{i \in I}$ satisfy the braid relations (see [D]). Hence the right-hand side of (1.4) above does not depend on the choice of a reduced expression of w.

1.2 Orbit Lie Algebras.

In this subsection, we review the notion of orbit Lie algebras. For details, see [FRS] and [FSS].

We set

$$c_{ij} := \sum_{k=0}^{N_i-1} a_{i,\omega^k(j)} \quad \text{for} \quad i, j \in I \quad \text{and} \quad c_i := c_{ii} \quad \text{for} \quad i \in I,$$

(1.5)

where N_i is the number of elements of the ω-orbit of $i \in I$ in I. From now on, we assume that a diagram automorphism ω satisfies

$$c_i = 1 \text{ or } 2 \quad \text{for each} \quad i \in I.$$
This condition is called the linking condition. Here we choose a complete set \(\hat{I} \) of representatives of the \(\omega \)-orbits in \(I \), and define a matrix \(\hat{A} = (\hat{a}_{ij})_{i,j \in \hat{I}} \) by
\[
\hat{A} = (\hat{a}_{ij})_{i,j \in \hat{I}} := \left(\frac{2c_{ij} / c_j}{c_i} \right)_{i,j \in \hat{I}}.
\] (1.7)

Proposition 1.3 ([FSS, §2.2]). The matrix \(\hat{A} \) is a symmetrizable GCM.

The Kac-Moody algebra \(\hat{\mathfrak{g}} := g(\hat{A}) \) over \(\mathbb{Q} \) associated to the GCM \(\hat{A} \) is called the orbit Lie algebra (associated to the diagram automorphism \(\omega \)). Denote by \(\hat{\mathfrak{h}} \) the Cartan subalgebra of \(\hat{\mathfrak{g}} \), and by \(\hat{\Pi} = \{ \hat{\alpha}_i \}_{i \in \hat{I}} \) and \(\hat{\Pi}^\vee = \{ \hat{\alpha}_i^\vee \}_{i \in \hat{I}} \) the set of simple roots and simple coroots of \(\hat{\mathfrak{g}} \), respectively.

As in [FRS, §2], we have a \(\mathbb{Q} \)-linear isomorphism \(P_\omega : \mathfrak{h}^0 \rightarrow \hat{\mathfrak{h}} \) such that
\[
\left\{ \begin{array}{l}
P_\omega \left(\frac{1}{N_i} \sum_{k=0}^{N_i-1} \alpha_{\omega^k(i)}^\vee \right) = \hat{\alpha}_i^\vee \quad \text{for each } i \in \hat{I}, \\
(P_\omega(h), P_\omega(h')) = (h, h') \quad \text{for all } h, h' \in \mathfrak{h}^0,
\end{array} \right.
\]
where we denote also by \((\cdot, \cdot) \) the (standard) nondegenerate symmetric bilinear form on \(\hat{\mathfrak{h}} \). Let \(P_\omega^* : \hat{\mathfrak{h}}^* \rightarrow \mathfrak{h}^0 \) be the transposed map of \(P_\omega \) defined by
\[
(P_\omega^*(\lambda))(h) := \hat{\lambda}(P_\omega(h)) \quad \text{for } \lambda \in \hat{\mathfrak{h}}^*, h \in \mathfrak{h}^0.
\] (1.8)

Proposition 1.4 ([FRS, Proposition 3.3]). Set \(\tilde{W} := \{ w \in W \mid w^* = \omega^* w \} \). Then there exists a group isomorphism \(\Theta : \tilde{W} \rightarrow \tilde{W} \) such that \(\Theta(\hat{w}) = P_\omega^* \circ \hat{w} \circ (P_\omega^*)^{-1} \) for each \(\hat{w} \in \tilde{W} \).

1.3 Quantum Groups

From now on, we take the bilinear form \((\cdot, \cdot) \) in such a way that \((\alpha_i, \alpha_i) \in \mathbb{Z}_{>0} \) for all \(i \in I \). Let \(P \subset \mathfrak{h}^* \) be an \(\omega^* \)-stable integral weight lattice such that \(\alpha_i \in P \) for all \(i \in I \), and set \(P_+ := \{ \lambda \in P \mid \lambda(\alpha_i^\vee) \in \mathbb{Z}_{\geq 0} \text{ for all } i \in I \} \). Notice that the dual lattice \(P^\vee := \text{Hom}_\mathbb{Z}(P, \mathbb{Z}) \) is stable under \(\omega \). The quantum group (or quantized universal enveloping algebra) \(U_q(\mathfrak{g}) \) associated to \(\mathfrak{g} \) is, by definition, the algebra generated by the symbols \(X_i, Y_i \) and \(q^h \) (\(h \in P^\vee \)) over the field \(\mathbb{Q}(q) \) of rational functions in \(q \) with the following defining relations:
\[
\begin{align*}
q^0 &= 1,
q^h q^{h'} &= q^{h + h'} \quad \text{for } h_1, h_2 \in P^\vee,
q^h X_i q^{-h} &= q^{\alpha_i(h)} X_i,
q^h Y_i q^{-h} &= q^{-\alpha_i(h)} Y_i \quad \text{for } i \in I, h \in P^\vee,
[X_i, Y_i] &= \delta_{ij} \frac{t_i - t_i^{-1}}{q_i - q_i^{-1}} \quad \text{for } i \in I,
\sum_{k=0}^{1-\alpha_{ij}} (-1)^k X_i^{(k)} X_j X_i^{(1-\alpha_{ij} - k)} &= 0 \quad \text{for } i, j \in I \text{ with } i \neq j,
\sum_{k=0}^{1-\alpha_{ij}} (-1)^k Y_i^{(k)} Y_j Y_i^{(1-\alpha_{ij} - k)} &= 0 \quad \text{for } i, j \in I \text{ with } i \neq j.
\end{align*}
\] (1.9)
Here we have used the following notation:

\[q_i = q^{(\alpha_i, \alpha_i)} , \quad t_i = q^{(\alpha_i, \alpha_i)\gamma} , \]

\[[n]_i = \frac{q_i^n - q_i^{-n}}{q_i - q_i^{-1}}, \quad [n]_i! = \prod_{k=1}^{n} [k]_i, \quad \text{and} \quad X_i^{(n)} = \frac{X_i^n}{[n]_i!} , \quad Y_i^{(n)} = \frac{Y_i^n}{[n]_i!} . \]

Lemma 1.5. There exists a unique \(\mathbb{Q}(q) \)-algebra automorphism \(\omega_q \) of \(U_q(g) \) such that

\[\omega_q(X_i) = X_{\omega(i)} , \quad \omega_q(Y_i) = Y_{\omega(i)} , \quad \text{and} \quad \omega_q(q_h) = q^{\omega(h)} . \]

Proof. We need only show that the images of the generators by \(\omega_q \) also satisfy the defining relations (1.9). However it can be easily checked by using the equalities \(q_{\omega(i)} = q_i , \quad [n]_{\omega(i)} = [n]_i , \quad \text{and} \quad t_{\omega(i)} = t_i . \)

Let \(\lambda \in \mathcal{P}_+ \). Denote by \(V(\lambda) = \bigoplus_{\chi \in \mathcal{P}^+} V(\lambda)_\chi \) the irreducible highest weight \(U_q(g) \)-module of highest weight \(\lambda \), where \(V(\lambda)_\chi \) is the \(\chi \)-weight space of \(V(\lambda) \). It is known (cf. [Kas1, (1.2.7)]) that

\[V(\lambda) \cong U_q^- (g) / \left(\sum_{i \in I} U_q^- (g) Y_i^{1+\lambda(\alpha_i^\vee)} \right) , \tag{1.10} \]

where \(U_q^- (g) \) is the \(\mathbb{Q}(q) \)-subalgebra of \(U_q(g) \) generated by \(\{Y_i\}_{i \in I} \). For each \(w \in W \), we define the quantum Demazure module \(V_w(\lambda) \) by \(V_w(\lambda) := U_q^+(g)V(\lambda)_{\omega(w)} \), where \(U_q^+(g) \) is the \(\mathbb{Q}(q) \)-subalgebra of \(U_q(g) \) generated by \(\{X_i\}_{i \in I} \).

1.4 Crystal Bases and Global Bases

In this subsection, we review the notions of (lower) crystal bases and (lower) global bases. For details, see [Ja] and [Kas1]–[Kas3].

First let us recall the definition of the Kashiwara operators \(E_i , F_i \) on \(V(\lambda) \). It is known that each element \(u \in V(\lambda)_\chi \) can be uniquely written as \(u = \sum_{k \geq 0} Y_i^{(k)} u_k \), where \(u_k \in (\ker X_i) \cap V(\lambda)_{\chi+k\alpha_i} \). We define the \(\mathbb{Q}(q) \)-linear operators \(E_i , F_i \) on \(V(\lambda) \) by

\[E_i u := \sum_{k \geq 0} Y_i^{(k-1)} u_k , \quad F_i u := \sum_{k \geq 0} Y_i^{(k+1)} u_k . \tag{1.11} \]

Denote by \(A_0 \) the subring of \(\mathbb{Q}(q) \) consisting of the rational functions in \(q \) regular at \(q = 0 \), and by \(\mathcal{L}_0(\lambda) \) the \(A_0 \)-submodule of \(V(\lambda) \) generated by all elements of the form \(F_{i_1} F_{i_2} \cdots F_{i_k} u_\lambda \), where \(u_\lambda \) is a (nonzero) highest weight vector of \(V(\lambda) \). Let \(\mathcal{B}(\lambda) \subset \mathcal{L}_0(\lambda)/q\mathcal{L}_0(\lambda) \) be the set of nonzero images of \(F_{i_1} F_{i_2} \cdots F_{i_k} u_\lambda \) by the canonical map \(- : \mathcal{L}_0(\lambda) \rightarrow \mathcal{L}_0(\lambda)/q\mathcal{L}_0(\lambda) \). Then it is known from [Kas1, Theorem 2] that \((\mathcal{L}_0(\lambda), \mathcal{B}(\lambda)) \) is a (lower) crystal base of \(V(\lambda) \), i.e.,

1. \(V(\lambda) = \mathbb{Q}(q) \otimes_{A_0} \mathcal{L}_0(\lambda) \),
2. \(\mathcal{L}_0(\lambda) = \bigoplus_{\chi \in \mathcal{P}^+} \mathcal{L}_0(\lambda)_\chi \), where \(\mathcal{L}_0(\lambda)_\chi = \mathcal{L}_0(\lambda) \cap V(\lambda)_\chi \),
3. \(E_i \mathcal{L}_0(\lambda) \subset \mathcal{L}_0(\lambda) \) and \(F_i \mathcal{L}_0(\lambda) \subset \mathcal{L}_0(\lambda) \),
4. for each \(w \in W \), \(\mathcal{L}_0(\lambda)_\chi \mathcal{L}_0(\lambda) \subset \mathcal{L}_0(\lambda)_\chi \).

...
(4) \(B(\lambda) \) is a basis of the \(\mathbb{Q} \)-vector space \(\mathcal{L}_0(\lambda)/q\mathcal{L}_0(\lambda) \),

(5) \(E_iB(\lambda) \subseteq B(\lambda) \cup \{0\} \) and \(F_iB(\lambda) \subseteq B(\lambda) \cup \{0\} \),

(6) \(B(\lambda) = \bigcup_{x \in \mathfrak{h}} B(\lambda)_x \) (disjoint union), where \(B(\lambda)_x = B(\lambda) \cap (\mathcal{L}_0(\lambda)_x/q\mathcal{L}_0(\lambda)_x) \),

(7) For \(b_1, b_2 \in B(\lambda) \), \(b_1 = F_ib_2 \) if and only if \(b_2 = E_ib_1 \).

Note that, by (3), we have the operators on \(\mathcal{L}_0(\lambda)/q\mathcal{L}_0(\lambda) \) induced from \(E_i, F_i \), which are also denoted by \(E_i, F_i \) (cf. (5), (7)).

Next we recall the notion of (lower) global bases. Set \(V_\mathbb{Q}(\lambda) := U_\mathbb{Q}(\mathfrak{g})u_\lambda \subset V(\lambda) \), where \(U_\mathbb{Q}(\mathfrak{g}) \) is the \(\mathbb{Q}[q, q^{-1}] \)-subalgebra of \(U_q(\mathfrak{g}) \) generated by all \(X_i^{(n)}, Y_i^{(n)}, q^h \), and

\[
\{q^h\} := \prod_{k=1}^{n} \frac{q^{1-k}q^{-h} - q^{k-1}q^{-h}}{q^k - q^{-k}}
\]

for \(i \in I, n \in \mathbb{Z}_{\geq 0}, h \in P^* \). We define a \(\mathbb{Q} \)-algebra automorphism \(\psi : U_q(\mathfrak{g}) \to U_q(\mathfrak{g}) \) by

\[
\begin{align*}
\psi(X_i) := X_i, & \quad \psi(Y_i) := Y_i & \text{for } i \in I, \\
\psi(q) := q^{-1}, & \quad \psi(q^h) := q^{-h} & \text{for } h \in P^*.
\end{align*}
\]

By virtue of (1.10), we have a \(\mathbb{Q} \)-linear automorphism \(\psi \) of \(V(\lambda) \) defined by \(\psi(xu_\lambda) := \psi(x)u_\lambda \) for \(x \in U_\mathbb{Q}(\mathfrak{g}) \). Let \(\mathcal{L}_\infty(\lambda) \) be the image of \(\mathcal{L}_0(\lambda) \) by \(\psi \). Then it is known (see, for example, [Kas2]) that the restriction of the canonical map \(\tau \) to \(E(\lambda) := V_\mathbb{Q}(\lambda) \cap \mathcal{L}_0(\lambda) \cap \mathcal{L}_\infty(\lambda) \) is an isomorphism from \(E(\lambda) \) to \(\mathcal{L}_0(\lambda)/q\mathcal{L}_0(\lambda) \) as \(\mathbb{Q} \)-vector spaces. We denote by \(G_\lambda \) the inverse of this isomorphism. Then we have

\[
V(\lambda) = \bigoplus_{b \in B(\lambda)} \mathbb{Q}(q)G_\lambda(b). \tag{1.13}
\]

Moreover we have the following.

Theorem 1.6 ([Kas3, Proposition 3.2.3]). Let \(\lambda \in P_+ \) and \(w \in W \). Then there exists a subset \(B_w(\lambda) \) of \(B(\lambda) \) such that

\[
V_w(\lambda) = \bigoplus_{b \in B_w(\lambda)} \mathbb{Q}(q)G_\lambda(b). \tag{1.14}
\]

1.5 *Path Models.* Let \(\lambda \in P_+ \). For \(\mu, \nu \in W\lambda \), we write \(\mu \geq \nu \) if there exist a sequence \(\mu = \lambda_0, \lambda_1, \ldots, \lambda_s = \nu \) of elements in \(W\lambda \) and a sequence \(\beta_1, \ldots, \beta_s \) of positive real roots such that \(\lambda_k = r_{\beta_k}(\lambda_{k-1}) \) and \(\lambda_{k-1}(\beta_k^\vee) < 0 \) for \(k = 1, 2, \ldots, s \), where for a positive real root \(\beta \), we denote by \(r_\beta \) the reflection with respect to \(\beta \), and by \(\beta^\vee \) the dual root of \(\beta \). Then we define \(\text{dist}(\mu, \nu) \) to be the maximal length \(s \) among all possible such sequences.

Remark 4. Assume that \(\lambda \in P_+ \cap (\mathfrak{h}^*)^0 \). It immediately follows that \(\mu \geq \nu \) if and only if \(\omega^*(\mu) \geq \omega^*(\nu) \). Moreover, we have \(\text{dist}(\omega^*(\mu), \omega^*(\nu)) = \text{dist}(\mu, \nu) \) when \(\mu \geq \nu \).
Let $\lambda \in P_+, \mu, \nu \in W\lambda$ with $\mu \geq \nu$, and $0 < a < 1$ a rational number. An a-chain for (μ, ν) is, by definition, a sequence $\mu = \lambda_0 > \lambda_1 > \cdots > \lambda_r = \nu$ of elements in $W\lambda$ such that $\text{dist}(\lambda_i, \lambda_{i-1}) = 1$ and $\lambda_i = r_{\beta_i}(\lambda_{i-1})$ for some positive real root β_i, and such that $a\lambda_{i-1}(\beta_i^\vee) \in \mathbb{Z}$ for all $i = 1, 2, \ldots, r$.

Here let us consider a pair $\pi = (\nu; a)$ of a sequence $\nu : \nu_1 > \nu_2 > \cdots > \nu_s$ of elements in $W\lambda$ and a sequence $a : 0 = a_0 < a_1 < \cdots < a_s = 1$ of rational numbers such that for each $i = 1, 2, \ldots, s - 1$, there exists an a_i-chain for (ν_i, ν_{i+1}). Then we associate to $\pi = (\nu; a)$ the following path $\pi : [0, 1] \to \mathfrak{h}^*$:

$$\pi(t) := \sum_{i=1}^{j-1} (a_i - a_{i-1}) \nu_i + (t - a_{j-1}) \nu_j \quad \text{for} \quad a_{j-1} \leq t \leq a_j.$$

Such a path is called a Lakshmibai-Seshadri path (L-S path for short) of class λ. Denote by $\mathcal{B}(\lambda)$ the set of L-S paths of class λ.

Let us recall the raising and lowering root operators (cf. [Li1]-[Li4]). For convenience, we introduce an extra element θ that is not a path. For $\pi \in \mathcal{B}(\lambda)$ and $i \in I$, we set

$$h_i^\pi(t) := (\pi(t))(\alpha_i^\vee), \quad m_i^\pi := \min \{h_i^\pi(t) \mid t \in [0, 1]\}. \quad (1.16)$$

First we define the raising root operator e_i with respect to the simple root α_i. We define $e_i\theta := \theta$, and $e_i\pi := \theta$ for $\pi \in \mathcal{B}(\lambda)$ with $m_i^\pi > -1$. If $m_i^\pi \leq -1$, then we can take the following points:

$$t_1 := \min \{t \in [0, 1] \mid h_i^\pi(t) = m_i^\pi\}, \quad t_0 := \max \{t' \in [0, t_1] \mid h_i^\pi(t) \geq m_i^\pi + 1 \text{ for all } t \in [0, t']\}. \quad (1.17)$$

We set

$$(e_i\pi)(t) := \begin{cases}
\pi(t) & \text{if } 0 \leq t \leq t_0, \\
\pi(t) - (h_i^\pi(t) - m_i^\pi - 1)\alpha_i & \text{if } t_0 \leq t \leq t_1, \\
\pi(t) + \alpha_i & \text{if } t_1 \leq t \leq 1.
\end{cases} \quad (1.18)$$

The lowering root operator f_i is defined in a similar fashion. We define $f_i\theta := \theta$, and $f_i\pi := \theta$ for $\pi \in \mathcal{B}(\lambda)$ with $h_i^\pi(1) - m_i^\pi < 1$. If $h_i^\pi(1) - m_i^\pi \geq 1$, then we can take the following points:

$$t_0 := \max \{t \in [0, 1] \mid h_i^\pi(t) = m_i^\pi\}, \quad t_1 := \min \{t' \in [t_0, 1] \mid h_i^\pi(t) \geq m_i^\pi + 1 \text{ for all } t \in [t', 1]\}. \quad (1.19)$$

We set

$$(f_i\pi)(t) := \begin{cases}
\pi(t) & \text{if } 0 \leq t \leq t_0, \\
\pi(t) - (h_i^\pi(t) - m_i^\pi)\alpha_i & \text{if } t_0 \leq t \leq t_1, \\
\pi(t) - \alpha_i & \text{if } t_1 \leq t \leq 1.
\end{cases} \quad (1.20)$$

Then we know the following.
Theorem 1.7 ([Li1] and [Li2]). Let \(\pi \in \mathbb{B}(\lambda) \). If \(e_i\pi \neq \theta \) (resp. \(f_i\pi \neq \theta \)), then \(e_i\pi \in \mathbb{B}(\lambda) \) (resp. \(f_i\pi \in \mathbb{B}(\lambda) \)). Hence the set \(\mathbb{B}(\lambda) \cup \{\theta\} \) is stable under the action of the root operators. Moreover, every element \(\pi \in \mathbb{B}(\lambda) \) is of the form \(\pi = f_{i_1}f_{i_2} \cdots f_{i_k}\pi_\lambda \) for some \(i_1, i_2, \ldots, i_k \in I \), where \(\pi_\lambda := (\lambda; 0, 1) = t\lambda \) is the only element of \(\mathbb{B}(\lambda) \) such that \(e_i\pi_\lambda = \theta \) for all \(i \in I \). Furthermore, we have

\[
\sum_{\pi \in \mathbb{B}(\lambda)} e(\pi(1)) = ch \, L(\lambda), \quad \sum_{\pi \in \mathbb{B}_w(\lambda)} e(\pi(1)) = ch \, L_w(\lambda),
\]

where \(\mathbb{B}_w(\lambda) := \{ (\nu_1, \ldots, \nu_s; a) \in \mathbb{B}(\lambda) | \nu_1 \leq w(\lambda) \} \) for each \(w \in W \).

It is known from [Kas5] et al. that \(\mathbb{B}(\lambda) \) has a natural crystal structure isomorphic to \(\mathcal{B}(\lambda) \). Namely, we have the following theorem (see [La2] for the second assertion).

Theorem 1.8. There exists a unique bijection \(\Phi : \mathcal{B}(\lambda) \xrightarrow{\sim} \mathbb{B}(\lambda) \) such that

\[
\Phi(F_{i_1}F_{i_2} \cdots F_{i_k}b_\lambda) = f_{i_1}f_{i_2} \cdots f_{i_k}\pi_\lambda.
\]

Moreover, \(\Phi(\mathbb{B}_w(\lambda)) = \mathbb{B}_w(\lambda) \) for each \(w \in W \).

At the end of this subsection, we recall the main result of [NS1]. Let \(\lambda \in P_+ \cap (\mathfrak{h}^*)^0 \). For \(\pi \in \mathbb{B}(\lambda) \), we define a path \(\omega^*(\pi) : [0, 1] \rightarrow \mathfrak{h}^* \) by \((\omega^*(\pi))(t) := \omega^*(\pi(t)) \). Then we deduce that \(\mathbb{B}(\lambda) \) and \(\mathbb{B}_w(\lambda) \) with \(w \in \tilde{W} \) are \(\omega^* \)-stable (cf. Remark 4 and [NS1, Lemma 3.1.1]). Denote by \(\mathbb{B}_0(\lambda) \) the set of L-S paths that are fixed by \(\omega^* \), and set \(\mathbb{B}_0^w(\lambda) := \mathbb{B}_w(\lambda) \cap \mathbb{B}_0(\lambda) \) for each \(w \in \tilde{W} \).

Theorem 1.9 ([NS1, Theorem 3.2.4]). Let \(\lambda \in P_+ \cap (\mathfrak{h}^*)^0 \), and \(w \in \tilde{W} \). Set \(\hat{\lambda} := (P^*_w)^{-1}(\lambda) \) and \(\hat{\omega} := \Theta^{-1}(w) \). Then we have

\[
\mathbb{B}_0^w(\lambda) = P^*_w(\mathbb{B}(\hat{\lambda})), \quad \mathbb{B}_w^0(\lambda) = P^*_w(\mathbb{B}(\hat{\lambda})),
\]

where we denote by \(\mathbb{B}(\hat{\lambda}) \) the set of all L-S paths of class \(\hat{\lambda} \) for the orbit Lie algebra \(\hat{\mathfrak{g}} \), and set \(\mathbb{B}(\hat{\lambda}) := \{ (\hat{\nu}_1, \ldots, \hat{\nu}_s; a) \in \mathbb{B}(\lambda) | \hat{\nu}_1 \leq \hat{\omega}(\hat{\lambda}) \} \) with \(\leq \) the relative Bruhat order on \(\tilde{W} \hat{\lambda} \). Here, for \(\hat{\pi} \in \mathbb{B}(\hat{\lambda}) \), we define a path \(P^*_w(\hat{\pi}) : [0, 1] \rightarrow (\mathfrak{h}^*)^0 \) by \((P^*_w(\hat{\pi}))(t) := P^*_w(\hat{\pi}(t)) \).

2 Twining Characters and q-twining Characters.

2.1 The Twining Characters. From now on, we always assume that \(\lambda \in P_+ \cap (\mathfrak{h}^*)^0 \) and \(\hat{\omega} \in \tilde{W} \). First we consider the linear automorphism \(\omega^{-1} \otimes id \) of the Verma module \(M(\lambda) := U(\mathfrak{g}) \otimes_{U(\mathfrak{h})} Q(\lambda) \) of highest weight \(\lambda \) over \(\mathfrak{g} \), where \(Q(\lambda) \) is the one-dimensional \(\mathfrak{b} \)-module on which \(h \in \mathfrak{h} \) acts by the scalar \(\lambda(h) \) and \(n_+ \) acts trivially. Since this map stabilizes the (unique) maximal proper \(\mathfrak{g} \)-submodule \(N(\lambda) \) of \(M(\lambda) \), we obtain an induced
\(\mathbb{Q}\)-linear automorphism \(\tau_\omega : L(\lambda) \to L(\lambda)\), where \(L(\lambda) = M(\lambda)/N(\lambda)\). It is easily seen that \(\tau_\omega\) has the following properties:

\[
\tau_\omega(xv) = \omega^{-1}(x)\tau_\omega(v) \quad \text{for} \quad x \in \mathfrak{g}, v \in L(\lambda)
\]

and \(\tau_\omega(u_\lambda) = u_\lambda\), where \(u_\lambda\) is a (nonzero) highest weight vector of \(L(\lambda)\).

Remark 5. From [N1, Lemma 4.1] (or [NS2, Lemma 2.2.3]), we know that \(\tau_\omega\) is a unique endomorphism of \(L(\lambda)\) with the properties above.

The twining character \(\text{ch}_\omega(L(\lambda))\) of \(L(\lambda)\) is defined to be the formal sum

\[
\text{ch}_\omega(L(\lambda)) := \sum_{\chi \in \mathfrak{h}^*} \text{tr}(\tau_\omega|_{L(\lambda)_\chi}) e(\chi).
\]

Since \(\tau_\omega(L(\lambda)_\chi) = L(\lambda)_{\omega^*(\chi)}\) for all \(\chi \in \mathfrak{h}^*\) and \(\dim L(\lambda)_{w(\lambda)} = 1\) for all \(w \in W\), we see that the Demazure module \(L_w(\lambda)\) is \(\tau_\omega\)-stable for all \(w \in \widetilde{W}\). Hence we can define the twining character \(\text{ch}_\omega(L_w(\lambda))\) of \(L_w(\lambda)\) by

\[
\text{ch}_\omega(L_w(\lambda)) := \sum_{\chi \in \mathfrak{h}^*} \text{tr}(\tau_\omega|_{L_w(\lambda)_\chi}) e(\chi).
\]

2.2 The q-twining Characters

In this subsection, we introduce the \(q\)-twining characters of \(V(\lambda)\) and \(V_w(\lambda)\), which are, in fact, \(q\)-analogues of \(\text{ch}_\omega(L(\lambda))\) and \(\text{ch}_\omega(L_w(\lambda))\), respectively (see Proposition 2.1 below).

By \((1.10)\), we have a \(\mathbb{Q}(q)\)-linear automorphism \(\tau_{\omega_q} : V(\lambda) \to V(\lambda)\) induced from \(\omega_q^{-1} : U_q^{-}(\mathfrak{g}) \to U_q^{-}(\mathfrak{g})\). As in the usual Lie algebra case in \(\S 2.1\), \(\tau_{\omega_q}\) has the following properties:

\[
\tau_{\omega_q}(xv) = \omega_q^{-1}(x)\tau_{\omega_q}(v) \quad \text{for} \quad x \in U_q(\mathfrak{g}), v \in V(\lambda)
\]

and \(\tau_{\omega_q}(u_\lambda) = u_\lambda\), where \(u_\lambda\) is a (nonzero) highest weight vector of \(V(\lambda)\).

Remark 6. In a similar way to the proof of [N1, Lemma 4.1], we can show that \(\tau_{\omega_q}\) is a unique endomorphism of \(V(\lambda)\) with the properties above.

The \(q\)-twining character \(\text{ch}_q^\omega(V(\lambda))\) of \(V(\lambda)\) is defined to be the formal sum

\[
\text{ch}_q^\omega(V(\lambda)) := \sum_{\chi \in \mathfrak{h}^*} \text{tr}(\tau_{\omega_q}|_{V(\lambda)_\chi}) e(\chi).
\]

We easily see that the quantum Demazure module \(V_w(\lambda)\) is \(\tau_{\omega_q}\)-stable for every \(w \in \widetilde{W}\). Hence we can define the \(q\)-twining character \(\text{ch}_q^\omega(V_w(\lambda))\) of \(V_w(\lambda)\) by

\[
\text{ch}_q^\omega(V_w(\lambda)) := \sum_{\chi \in \mathfrak{h}^*} \text{tr}(\tau_{\omega_q}|_{V_w(\lambda)_\chi}) e(\chi).
\]
It is clear that all $V(\lambda)_{X,Q}$ are finitely generated, torsion free $Q[q,q^{-1}]$-modules. Therefore they are free $Q[q,q^{-1}]$-modules of finite rank because $Q[q,q^{-1}]$ is a principal ideal domain. We also know that the natural map $Q(q) \otimes_{Q[q,q^{-1}]} V(\lambda)_Q \to V(\lambda)$ (given by $a \otimes v \to av$) is a $Q(q)$-linear isomorphism.

Now we consider Q as a $Q[q,q^{-1}]$-module by the evaluation at $q = 1$. Set $V := Q \otimes_{Q[q,q^{-1}]} V(\lambda)_Q$ and $V_x := Q \otimes_{Q[q,q^{-1}]} V(\lambda)_x,Q$. It follows from [Ja, Lemma 5.12] that $V(\lambda)_Q$ is stable under the actions of X_i, Y_i, and $(q^h - q^{-h})/(q - q^{-1})$ for $i \in I, h \in P^\vee$. Thus we obtain endomorphisms x_i, y_i, h of V defined by

$$x_i := 1 \otimes X_i, \quad y_i := 1 \otimes Y_i, \quad h := 1 \otimes (q^h - q^{-h})/(q - q^{-1}),$$

respectively. From [Ja, Lemmas 5.13 and 5.14], we know that the endomorphisms x_i, y_i, h of V satisfy the Serre relations, and hence that these endomorphisms make V into a g-module. Moreover, $V \cong L(\lambda)$ as g-modules, and the image of V_x by this g-module isomorphism is $L(\lambda)_X$ for all $\chi \in \mathfrak{h}^*$. Taking these facts into account, we show the following proposition.

Proposition 2.1. Let $\chi \in (\mathfrak{h}^*)^0$ and $w \in \widetilde{W}$. Then $\tr(\tau_{\omega_q}|V(\lambda)_\chi)$ and $\tr(\tau_{\omega_q}|V_{w(\lambda)}_\chi)$ are elements of $Q[q,q^{-1}]$. Moreover, we have

$$\tr(\tau_{\omega_q}|V(\lambda)_\chi)|_{q=1} = \tr(\tau_{\omega_q}|L(\lambda)_\chi),$$

and hence

$$\chi^\omega_q(V(\lambda))|_{q=1} = \chi^\omega(L(\lambda)), \quad \chi^\omega_q(V_w(\lambda))|_{q=1} = \chi^\omega(L_w(\lambda)).$$

Proof. It can be easily checked that $V(\lambda)_Q$ is τ_{ω_q}-stable, and the following diagram commutes:

$$\begin{array}{ccc}
Q(q) \otimes_{Q[q,q^{-1}]} V(\lambda)_Q & \xrightarrow{\sim} & V(\lambda) \\
\downarrow_{1 \otimes (\tau_{\omega_q}|V(\lambda)_Q)} & & \downarrow_{\tau_{\omega_q}} \\
Q(q) \otimes_{Q[q,q^{-1}]} V(\lambda)_Q & \xrightarrow{\sim} & V(\lambda).
\end{array}$$

Since $V(\lambda)_X,Q$ is a free $Q[q,q^{-1}]$-module, we can define the trace of $\tau_{\omega_q}|V(\lambda)_X,Q$ for each $\chi \in (\mathfrak{h}^*)^0$. Note that a basis of $V(\lambda)_X,Q$ over $Q[q,q^{-1}]$ is also a basis of $V(\lambda)_X$ over $Q(q)$. We obtain from the commutative diagram above that

$$\tr(\tau_{\omega_q}|V(\lambda)_\chi) = \tr(\tau_{\omega_q}|V(\lambda)_{X,Q}) \in Q[q,q^{-1}] \quad \text{for all } \chi \in (\mathfrak{h}^*)^0.$$

Now let $w \in \widetilde{W}$, and take $u_{w(\lambda)} \in V(\lambda)_{w(\lambda),Q} \setminus \{0\}$. Here we remark that the rank of the free $Q[q,q^{-1}]$-module $V(\lambda)_{w(\lambda),Q}$ is one. We define $V_w(\lambda)_Q$ to be the $Q[q,q^{-1}]$-submodule of $V(\lambda)$ generated by the elements of the form $X_{i_1}X_{i_2} \cdots X_{i_k} u_{w(\lambda)}$. It is clear that $V_w(\lambda)_Q$ is
\(\tau_{\omega q}\)-stable. Since \(V(\lambda)_{Q}\) is stable under the action of \(X_{i}\), we see that \(V_{w}(\lambda)_{Q}\) is a \(\mathbb{Q}[q, q^{-1}]\)-submodule of \(V(\lambda)_{Q}\). We set \(V_{w}(\lambda)_{x, Q} := V_{w}(\lambda)_{Q} \cap V(\lambda)_{x, Q}\). Then we immediately obtain the following commutative diagram:

\[
\begin{array}{c}
\mathbb{Q}(q) \otimes_{\mathbb{Q}[q, q^{-1}]} V_{w}(\lambda)_{Q} \xrightarrow{\sim} V_{w}(\lambda) \\
\downarrow_{\tau_{\omega q}} \\
\mathbb{Q}(q) \otimes_{\mathbb{Q}[q, q^{-1}]} V(\lambda)_{Q} \xrightarrow{\sim} V(\lambda).
\end{array}
\]

Hence, in the same way as above, we have

\[
\text{tr}(\tau_{\omega q}|_{V_{w}(\lambda)_{x}}) = \text{tr}(\tau_{\omega q}|_{V_{w}(\lambda)_{x, Q}}) \in \mathbb{Q}[q, q^{-1}] \quad \text{for all} \quad \chi \in (\mathfrak{h}^*)^0,
\]

thereby completing the proof of the first assertion.

Next we show the equalities (2.5). Note that the \(\mathbb{Q}\)-linear automorphism \(\tau'_{\omega} := 1 \otimes (\tau_{\omega q})_{V(\lambda)_{Q}}\) of \(V := \mathbb{Q} \otimes_{\mathbb{Q}[q, q^{-1}]} V(\lambda)_{Q}\) satisfies \(\tau'_{\omega}(xv) = \omega^{-1}(x)\tau'_{\omega}(v)\) for \(x \in \mathfrak{g}, v \in V\), and \(\tau'_{\omega}(1 \otimes u_{\lambda}) = 1 \otimes u_{\lambda}\). Hence it follows from Remark 5 that the following diagram commutes:

\[
\begin{array}{c}
\mathbb{Q} \otimes_{\mathbb{Q}[q, q^{-1}]} V(\lambda)_{Q} \xrightarrow{\sim} L(\lambda) \\
\downarrow_{\tau'_{\omega}} \\
\mathbb{Q} \otimes_{\mathbb{Q}[q, q^{-1}]} V_{w}(\lambda)_{Q} \xrightarrow{\sim} L(\lambda).
\end{array}
\]

Remark that, for all \(\chi \in (\mathfrak{h}^*)^0\),

\[
\text{tr}(\tau_{\omega}|_{L(\lambda)_{x}}) = \text{tr}(\tau'_{\omega}|_{V(\lambda)_{x, Q}}) = 1 \otimes \text{tr}(\tau_{\omega q}|_{V(\lambda)_{x, Q}}) = \text{tr}(\tau_{\omega q}|_{V(\lambda)_{x, Q}})|_{q=1},
\]

since we regard \(\mathbb{Q}\) as a \(\mathbb{Q}[q, q^{-1}]\)-module by the evaluation at \(q = 1\). Combining (2.8) with (2.7), we obtain

\[
\text{tr}(\tau_{\omega}|_{L(\lambda)_{x}}) \equiv (2.8) \quad \text{tr}(\tau_{\omega q}|_{V(\lambda)_{x, Q}})|_{q=1} = (2.7) \quad \text{tr}(\tau_{\omega q}|_{V(\lambda)_{x}})|_{q=1} \quad \text{for all} \quad \chi \in (\mathfrak{h}^*)^0,
\]

which proves the first equality of (2.5). By considering \(V_{w} := \mathbb{Q} \otimes_{\mathbb{Q}[q, q^{-1}]} V_{w}(\lambda)_{Q}\) for \(w \in \widehat{W}\), we also obtain

\[
\text{tr}(\tau_{\omega q}|_{V_{w}(\lambda)_{x}})|_{q=1} = \text{tr}(\tau_{\omega}|_{L_{w}(\lambda)_{x}}) \quad \text{for all} \quad \chi \in (\mathfrak{h}^*)^0
\]

in the same way. This completes the proof of Proposition 2.1. \(\Box\)

3 Twining Character Formula for Demazure Modules.

The main result of this paper is the following.

Theorem 3.1. Let \(\lambda \in P_{+} \cap (\mathfrak{h}^*)^0\) and \(w \in \widehat{W}\). Set \(\hat{\lambda} := (P_{\omega}^*)^{-1}(\lambda)\) and \(\hat{w} := \Theta^{-1}(w)\). Then we have

\[
\text{ch}^\omega(L_{w}(\lambda)) = P_{\omega}^*(\text{ch} \hat{L}_{\hat{\omega}}(\hat{\lambda})),
\]

where \(\hat{L}_{\hat{\omega}}(\hat{\lambda})\) is the Demazure module of lowest weight \(\hat{w}(\hat{\lambda})\) in the irreducible highest weight module \(\hat{L}(\hat{\lambda})\) of highest weight \(\hat{\lambda}\) over the orbit Lie algebra \(\hat{\mathfrak{g}}\).
We need some lemmas in order to prove this theorem.

Lemma 3.2. For each \(i \in I \), we have \(\tau_{\omega_q} \circ E_i = E_{\omega^{-1}(i)} \circ \tau_{\omega_q} \) and \(\tau_{\omega_q} \circ F_i = F_{\omega^{-1}(i)} \circ \tau_{\omega_q} \).

Proof. We show only \(\tau_{\omega_q} \circ E_i = E_{\omega^{-1}(i)} \circ \tau_{\omega_q} \) since the proof of \(\tau_{\omega_q} \circ F_i = F_{\omega^{-1}(i)} \circ \tau_{\omega_q} \) is similar. Let \(u = \sum_{k \geq 0} Y_{\omega^{-1}(i)}^{(k)} u_k \in V(\lambda) \), where \(u_k \in (\ker X_i) \cap V(\lambda)_{x+k\alpha_i} \). Since \(\omega_q^{-1}(Y_{\omega^{-1}(i)}^{(k)}) = Y_{\omega^{-1}(i)}^{(k)} \), we have

\[
\tau_{\omega_q} \circ E_i(u) = \sum_{k \geq 0} Y_{\omega^{-1}(i)}^{(k)} \tau_{\omega_q}(u_k).
\]

On the other hand, \(\tau_{\omega_q}(u) = \sum_{k \geq 0} Y_{\omega^{-1}(i)}^{(k)} \tau_{\omega_q}(u_k) \in V(\lambda)_{x+k\alpha_i} \). Here we note that \(\tau_{\omega_q}(u_k) \in (\ker X_{\omega^{-1}(i)}) \cap V(\lambda)_{x+k\alpha_{\omega^{-1}(i)}} \). Hence, by the uniqueness of the expression of \(\tau_{\omega_q}(u) \), we have

\[
E_{\omega^{-1}(i)} \circ \tau_{\omega_q}(u) = \sum_{k \geq 0} Y_{\omega^{-1}(i)}^{(k)} \tau_{\omega_q}(u_k).
\]

Therefore we obtain \(\tau_{\omega_q} \circ E_i(u) = E_{\omega^{-1}(i)} \circ \tau_{\omega_q}(u) \) for all \(u \in V(\lambda) \), thereby completing the proof. \(\square \)

This lemma implies that \(L_0(\lambda) \) is \(\tau_{\omega_q} \)-stable. Hence we have the \(\mathbb{Q} \)-linear automorphism \(\overline{\tau}_{\omega_q} \) of \(L_0(\lambda)/qL_0(\lambda) \) induced from \(\tau_{\omega_q} \). Then, by the definition of \(\overline{\tau}_{\omega_q} \) and Lemma 3.2, we can easily check that the set \(B(\lambda) \) is \(\overline{\tau}_{\omega_q} \)-stable. Moreover, by Theorem 1.8, we have the following commutative diagram:

\[
\begin{array}{ccc}
B(\lambda) & \xrightarrow{\Phi} & B(\lambda) \\
\overline{\tau}_{\omega_q} \downarrow & & \downarrow \omega^* \\
B(\lambda) & \xrightarrow{\Phi} & B(\lambda).
\end{array}
\] \hspace{1cm} (3.2)

Here we have used the fact that \(\omega^* \circ e_i = e_{\omega^{-1}(i)} \circ \omega^* \) and \(\omega^* \circ f_i = f_{\omega^{-1}(i)} \circ \omega^* \) (see [NS1, Lemma 3.1.1]). The next lemma immediately follows from the commutative diagram (3.2) and Theorem 1.8, since \(B_w(\lambda) \) is \(\omega^* \)-stable for all \(w \in \overline{W} \).

Lemma 3.3. Let \(w \in \overline{W} \). Then \(B_w(\lambda) \) is stable under \(\overline{\tau}_{\omega_q} \). Hence we obtain the following commutative diagram:

\[
\begin{array}{ccc}
B_w(\lambda) & \xrightarrow{\Phi} & B_w(\lambda) \\
\overline{\tau}_{\omega_q} \downarrow & & \downarrow \omega^* \\
B_w(\lambda) & \xrightarrow{\Phi} & B_w(\lambda).
\end{array}
\] \hspace{1cm} (3.3)

Because \(\psi \circ \tau_{\omega_q} = \tau_{\omega_q} \circ \psi \), we see that \(L_{\omega_q}(\lambda) \) is also \(\tau_{\omega_q} \)-stable. Since \(V_0(\lambda) \) is obviously \(\tau_{\omega_q} \)-stable, we deduce that \(E(\lambda) \) is \(\tau_{\omega_q} \)-stable.

Lemma 3.4. \(\tau_{\omega_q} \circ G^*_\lambda = G^*_\lambda \circ \overline{\tau}_{\omega_q} \).
Proof. Remark that \(\{G_a(b) \mid b \in B(\lambda)\} \) is a basis of the \(\mathbb{Q} \)-vector space \(E(\lambda) \). Hence, for \(b \in B(\lambda) \), we have \(\tau_{\omega_q}(G_a(b)) = \sum b' \in B(\lambda) c_{b'} G_a(b') \) for some \(c_{b'} \in \mathbb{Q} \) since \(E(\lambda) \) is \(\tau_{\omega_q} \)-stable. Then we obtain \(\tau_{\omega_q}(b) = \sum b' \in B(\lambda) c_{b'} b' \) in \(\mathcal{L}_0(\lambda) / q \mathcal{L}_0(\lambda) \). Put \(b'' := \tau_{\omega_q}(b) \in B(\lambda) \). Because \(B(\lambda) \) is a basis of the \(\mathbb{Q} \)-vector space \(\mathcal{L}_0(\lambda) / q \mathcal{L}_0(\lambda) \), we see that \(c_{b''} = 1 \) and \(c_{b'} = 0 \) for all \(b' \in B(\lambda) \), \(b' \neq b'' \). Hence we obtain \(\tau_{\omega_q}(G_a(b)) = G_a(b'') = G_a(\tau_{\omega_q}(b)) \), as desired.

Proof of Theorem 3.1. By combining Lemmas 3.3 and 3.4, we see that the set \(\{G_a(b) \mid b \in B_w(\lambda) \cap B(\lambda)_x\} \) is \(\tau_{\omega_q} \)-stable. Because \(\{G_a(b) \mid b \in B_w(\lambda)\} \) is a basis of \(V_w(\lambda)_x \) over \(\mathbb{Q} (q) \) (see (1.14)), we obtain

\[
\text{tr}(\tau_{\omega_q} | V_w(\lambda)_x) = \# \{G_a(b) \mid \tau_{\omega_q}(G_a(b)) = G_a(b), b \in B_w(\lambda) \cap B(\lambda)_x\}
\]

for \(\chi \in (\mathfrak{h})^0 \) (note that if an endomorphism \(f \) on a finite-dimensional vector space \(V \) stabilizes a basis of \(V \), then the trace of \(f \) on \(V \) is equal to the number of basis elements fixed by \(f \)). By Lemma 3.4 again, we get

\[
\text{tr}(\tau_{\omega_q} | V_w(\lambda)_x) = \# \{b \in B_w(\lambda) \cap B(\lambda)_x \mid \tau_{\omega_q}(b) = b\},
\]

and hence

\[
\text{ch}^\omega_q(V_w(\lambda)) = \sum_{b \in B_w^0(\lambda)} e(\text{wt}(b)), \tag{3.4}
\]

where \(\text{wt}(b) := \chi \) if \(b \in B(\lambda)_x \), and \(B_w^0(\lambda) \) is the set of elements of \(B_w(\lambda) \) fixed by \(\tau_{\omega_q} \). The commutative diagram (3.3) implies that

\[
\text{ch}^\omega_q(V_w(\lambda)) \overset{(3.4)}{=} \sum_{b \in B_w^0(\chi)} e(\text{wt}(b)) \overset{(3.3)}{=} \sum_{\pi \in \mathfrak{B}_w^0(\chi)} e(\pi(1)).
\]

We see from Theorems 1.7 and 1.9 that the right-hand side of the above equality coincides with \(P_w^\ast(\text{ch} \tilde{L}_\theta(\lambda)) \), where \(\tilde{\lambda} := (P_w^\ast)^{-1}(\lambda) \) and \(\tilde{\omega} := \Theta^{-1}(w) \). Therefore we obtain

\[
\text{ch}^\omega_q(V_w(\lambda)) = P_w^\ast(\text{ch} \tilde{L}_\theta(\lambda)).
\]

Notice that the right-hand side is independent of \(q \). Hence we find that \(\text{ch}^\omega_q(V_w(\lambda)) \bigg|_{q=1} = P_w^\ast(\text{ch} \tilde{L}_\theta(\lambda)) \). Combining this with (2.6), we finally arrive at the conclusion that

\[
\text{ch}^\omega(L_w(\lambda)) = P_w^\ast(\text{ch} \tilde{L}_\theta(\lambda)).
\]

Thus we have proved Theorem 3.1. \(\square \)

Remark 7. By replacing \(V_w(\lambda) \) by \(V(\lambda) \) and \(L_w(\lambda) \) by \(L(\lambda) \) in the arguments above, we can give another proof of the twining character formula for the integrable highest weight module \(L(\lambda) \), which is the main result of [FSS] ([FRS]).
References.

