Study of Fast Ion Transport using
Neutron Emission Profile Measurement on JT-60U

Masao ISHIKAWA

A dissertation submitted to the Doctoral Program
in Physics, the University of Tsukuba
in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Science

January 2003
Abstract

This thesis describes an investigation of fast ion transport using neutron emission profile measurement on JT-60U Tokamak to provide a detailed understanding of the behavior of fast ions by instabilities. This work has been performed at Naka Fusion Research Establishment of Japan Atomic Energy Research Institute in Japan.

In the burning plasma with a high alpha particle pressure gradient, Alfvén eigenmode (AE) can be destabilized by alpha-particles. This destabilized AE can induce the enhanced transport of alpha-particles from the core region and can cause the degradation of the performance of a fusion reactor. Loss of alpha-particles may also damage the first wall. Therefore the understanding of the alpha particle transport when AEs are destabilized is important.

In JT-60U, AE experiments using Negative-ion-based Neutral Beam (N-NB) with energy of $E_{\text{beam}} > 360$ keV have been performed. So far, bursting modes with large amplitude called ALEs (Abrupt Large-amplitude Events) in the range of TAE (Toroidicity-induced Alfvén eigenmode) gap frequency and drop of total neutron emission rate by bursting modes have been observed. Although this suggests transport of fast ion due to bursting mode induced by N-NB injection, it is not clearly understood yet whether this transport is due to loss or redistribution of energetic ions, or both processes are important.

In this thesis, in order to investigate fast ion transport by bursting modes, the development of neutron emission profile measurement has been carried out. Stilbene neutron detector developed by TRINITI laboratory in Russia has been installed on the neutron emission profile monitor in the JT-60U Tokamak to measure the neutron emission profile for the first time. Stilbene neutron detector is a detector which combines Stilbene crystal scintillator with a neutron-gamma pulse shape discrimination circuit, with a very compact size. For the application of this detector to JT-60U experiments, the calibration using neutron and gamma sources and the performance test on Fusion
Neutron Source (FNS) in JAERI Tokai were conducted. In these tests, good gamma-ray suppression of Stilbene neutron detector was verified, and in range of $10^2 \sim 10^5$ cps., the operation of the Stilbene neutron detector was demonstrated under existence of background gamma-rays. Also by using Monte Carlo Code for Neutron and Photon Transport (MCNP), the effect of shielding and scattering of neutrons for vacuum vessel and neutron emission profile monitor was estimated. Though the neutron emission profile obtained by Stilbene neutron detectors has error of 30 % in innermost channel with calculation using measured plasma parameters, there is an agreement within 10% error in the other channels.

Then in AE experiments using N-NB, measurements of neutron emission profile were performed for the study of fast ion transport by bursting modes for the first time. The changes of the measured neutron emission profile measurement suggest to the redistribution of fast ions by ALEs. Then fast ion transport from these changes is estimated. The result of the estimation indicates that a large fraction of fast ion population in the center region ($r/a < 0.4$) is expelled to the outer region, that is a radial redistribution, by ALEs, with a part of the expelled fast ions lost to the wall.
CONTENTS

1 Introduction .. 1

 Reference .. 8

2 JT-60U Tokamak .. 10

 2.1 Tokamak .. 10
 2.1.1 Fundamental principle 12
 2.1.2 Present tokamak configuration 15

 2.2 JT-60U Device .. 16

 2.3 Additional Heating System of JT-60U 17
 2.3.1 Neutral beam system 17
 2.3.2 Radio frequency heating system 19
 2.3.3 Electron cyclotron heating system 20

 2.4 Achievement of JT-60U 20

 2.5 Diagnostics ... 22
 2.5.1 Thomson scattering 22
 2.5.2 Charge exchange recombination spectroscopy 23
 2.5.3 Bremsstrahung 25

 Reference ... 26

3 Neutron Emission Profile Measurement 28

 3.1 Introduction ... 28

 3.2 Theoretical background of the fusion neutron emission 29
 3.2.1 Fusion reaction and their cross section 30
 3.2.2 Fusion reactivity 32
3.3 Diagnostics system of neutron emission profile measurement of JT-60U

3.3.1 Neutron emission profile monitor 35
3.3.2 Neutron detector 38
 3.3.2.1 The principle of measurement 38
 3.3.2.2 Measurement by using NE213 scintillator 40
 3.3.2.3 Stilbene neutron detector 43
 3.3.2.3.1 Structure of Stilbene neutron detector 43
 3.3.2.3.2 Calibration of Stilbene Neutron Detector using Neutron and Gamma-ray Source 47
 3.3.2.3.3 Performance test on DD neutron field in Fusion Neutronics Source 50
 3.3.2.3.4 Neutron detection efficiency 51
3.3.3 Calculation of neutron attenuation and scattering 52
3.3.4 Data acquisition system 55

3.4 First result of neutron emission profile measurement 56

3.4.1 Linearity of count rate 56
3.4.2 Collimator effect 58
3.4.3 First measurement of neutron emission profile 59

3.5 Summary 63

Reference 65

4 Study of Fast Ion Transport by TAE 67

4.1 Introduction 67

4.1.1 Recent result of Alfvén eigenmode experiments using NNB in JT-60U 67
4.1.2 Instability with slow frequency sweeping 68
4.1.3 Burst modes in the range of TAE frequency 69
4.1.4 Reversed–shear-induced Alfvén Eigenmode (RSAE) 69
4.1.5 Enhanced transport of energetic ions 70
4.1.6 Application of neutron emission profile measurement to AE experiments using N-NB 72

4.2 Basic theory of Alfvén eigenmode 73

4.2.1 Alfvén wave in uniform plasma 73
4.2.2 Shear Alfvén waves in non-uniform cylindrical plasma 75
4.2.3 Toroidricity-induced Alfvén eigenmodes (TAE) 76
4.2.4 Excitation of TAE and damping mechanism by fast ions 78

4.3 AE experiment using N-NB 79
4.3.1 Experimental condition 79
4.3.2 Observation the bursting mode in the range of TAE gap frequency 81
4.3.3 The change of neutron emission rate by bursting modes 82
4.3.4 Estimation of transport of fast Ion by bursting modes 86
4.3.5 Enhancement of neutral particle flux by ALE 88

4.4 Discussion 90

References 94

5 Conclusion 96

Appendix Pulse Shape Discrimination (PSD) 99

References 101

Acknowledgments 102