Paleogene Planktonic Foraminiferal Biostratigraphy of the Sulaiman Range, Southern Indus Basin, Pakistan

Muhammad Yousaf WARRAICH

A Dissertation Submitted to the Doctoral Program in Geoscience, the University of Tsukuba in Partial Fulfilment of the Requirements for the Degree of Doctor of Philosophy in Science

January, 2000
ABSTRACT

The Paleogene marine sequences are well exposed in several sections throughout the Sulaiman Range, Southern Indus Basin, Pakistan. In order to study lithostratigraphic and biostratigraphic framework of these Paleogene successions, three representative land sections that exhibit excellent exposures and have undisturbed sequences, were selected. These sections include the Rakhi Nala, Zinda Pir eastern, and Zinda Pir western sections. All these sections are situated in the northeastern margin of the Sulaiman Range in Central Pakistan. These sequences consist of four lithostratigraphic units, the Dunghan, Shaheed Ghat, Baska, and the Kirthar Formations in ascending order. The exposures of the Dunghan Formation are restricted to the central part of anticline. This formation consists mainly of black-colored siltstone with some intercalation of sandstone in the base, and many interbeds of limestone in the upper part. The main lithology of the Shaheed Ghat, Baska and Kirthar Formations is mudstone that is green gray, pale-green gray; brown to chocolate color and is intercalated with thin-bedded limestone in parts.

After detailed route geological mapping and section measurements along all three sections, lithostratigraphic units are revised and new subdivision is given. The Pab Sandstone is renamed as the Pab Formation as it was an informal term for lithostratigraphic unit (Formation). The Shaheed Ghat Formation is revised which includes now the Drug Formation. Moreover, based on field and lab observations, two unconformities are introduced that are between the Dunghan.
Formation and the overlying Shaheed Ghat Formation and between the Baska Formation and the Kirhar Formation.

Late Paleocene to early late Eocene Tethyan planktonic foraminifera is studied from these three measured surface sections for taxonomy, biostratigraphy, faunal changes, Paleocene/Eocene boundary transition and for depositional environment.

This sequence has yielded abundant and well-preserved Paleocene-Eocene planktonic foraminifers. A total of 96 species and subspecies that belong to 17 genera were identified and recorded. A new species *Globanomalina rakhiensis* is described from the Rakhi Nala section. Zones P3 to P15 of the tropical zonal schemes were recognized based on identified planktonic fauna recovered from the Paleogene sequences of the Sulaiman Range. Moreover, Zones P3, P4 and P6 are each subdivided into two subzones (Subzones A and B), respectively.

Late Paleocene through early Eocene age is assigned to the Dunghan Formation based on Zones P3 to P8 recognized from it. Zones P6A to P10 are recognized from the Shaheed Ghat Formation and based on them an early Eocene to early-middle Eocene age is assigned to it. The Baska Formation does not yield any determinable planktonic foraminifera, therefore the age assignment remains in question, however, as it lies between the Shaheed Ghat and the Kirhar Formations, therefore from its stratigraphic position, it may have the age of early middle Eocene. Lower part of the Kirhar Formation (Pir Koh Limestone and Sirki
Members) does not produce any determinable planktonic foraminifera. However, the upper part (Pir Koh Limestone and Marl Member, and Drazinda Member) has produced well preserved planktonic foraminifera based on which P12 to P15 zones are established and therefore middle-middle Eocene to early-late Eocene age is assigned it.

The species relative abundance data indicates some faunal turnovers have occurred at the Zones P3A/B and P4B/P5 boundary or within Zone P5, close to the Paleocene/Eocene boundary.

Paleocene/Eocene transition boundary is placed within the Zone P5 based on the last appearance datums (LAD) of *Globanomalina pseudomenardii*, *Morozovella velascoensis* and first appearance datums (FAD) of the *M. subbotina*, *Pseudohastigerina wilcoensis*, *M. formosa gracilis*, *M. formosa formosa*, and *M. lensiformis*. This interpretation is further confirmed by the identification of Benthic Foraminiferal Extinction Event (BFEE) with the Zone P5.

The gray-black colored siltstone sequence of the Dunghan Formation with limestone intercalations were mainly deposited in relatively deep waters since it produced highly diversified planktonic foraminiferal assemblage with higher P-ratios. The Shaheed Ghat Formation is interpreted as deposited in deep to shallow Sea as it contains rich planktonic fauna, planktonic foraminiferal mudstone-wakestone, and platy limestone/mudstone-micrit-dismicrite microfacies in the basal part and contain restricted fauna microfacies in the upper part. The Baska Formation is devoid of pelagic fauna and mainly consists of restricted fauna microfacies with anhydrite facies in the upper part clearly indicate signatures of
regression related very shallow waters environment. Deep to open marine environment of deposition is interpreted for the Kirthar Formation as it has micrite-domicrite microfacies and pelagic wakestone microfacies in the base followed by restricted fauna to again pelagic wakestone microfacies in the upper part.

Key words: Lithostratigraphy, taxonomy, biostratigraphy, Paleocene/Eocene, planktonic foraminifera, faunal turnover, paleoenvironment, Sulaiman Range, Indus Basin, Pakistan
CONTENTS

1. INTRODUCTION .. 1
 1.1 Previous Works .. 2
 1.2 Objectives .. 4
 1.3 Study Areas ... 5
 1.3.1 Rakhi Nala ... 5
 1.3.2 Zinda Pir Anticline ... 6

2. GEOLOGICAL AND TECTONIC SETTING OF THE
 SULAIMAN RANGE .. 10

3. LITHOSTRATIGRAPHY AND LITHOFACIES ... 15
 3.1 Pab Formation .. 15
 3.2 Dunghan Formation ... 19
 3.3 Ghazil Group .. 22
 3.3.1 Shaheed Ghat Formation .. 23
 3.3.2 Baska Formation ... 25
 3.4 Kirhar Formation ... 27
 3.4.1 Habib Rahi Limestone Member .. 29
 3.4.2 Sirki Member ... 29
 3.4.3 PirKoh Limestone and Marl Member ... 29
 3.4.4 Drasinda Member .. 30
 3.5 Chitarwata Formation .. 31

4. PLANKTONIC FORAMINIFERAL BIOSTRATIGRAPHY .. 32
4.1 A review of the existing Paleogene zonal schemes 32
4.2 Field study and sample collection 32
4.3 Laboratory methods 34
 4.3.1 Thin section studies 34
 4.3.2 Extraction of planktonic and benthic foraminifera 35
5. PLANKTONIC FORAMINIFERAL ZONATION 36
 5.1 Planktonic foraminifera from the Sulaiman Range 36
 5.2 Paleocene Zonation 45
 5.3 Eocene Zonation 52
6. CORRELATION AND AGE 65
 6.1 Correlation of the Paleogene biozones established herein this study with
 internationally recognised Paleogene schemes in low latitude regions 65
 6.2 Correlation of the Paleogene biozones established in this study with
 those of other established in other parts of the Southern Indus Basin 66
 6.3 Age assignment 69
 6.3.1 Dunghan Formation 69
 6.3.2.1 Shaheed Ghat Formation 70
 6.3.2.2 Baska Formation 70
 6.3.3 Kirthar Formation 70
7. SYSTEMATIC DESCRIPTIONS 72
 7.1 Family Chiloguembelina Reiss, 1963 72
 7.1.1 Genus Chiloguembelina Loeblich and Tappan, 1956 72
 7.2 Family Globigerinidae Carpenter, Parker, and Jones 77
7.2.1 Genus *Globigerinita* Bronnimann, 1951------------------------ 77

7.3 Family *Catapsydracididae* Bolli, Loeblich, and Tappan, 1957 ---------79

7.3.1 Genus *Catapsydrax* Bolli, Loeblich, and Tappan, 1957--------- 79

7.4 Family *Hantkeninidae* Cushman, 1925 --------------------------- 84

7.4.1 Genus *Hantkenina* Cushman, 1924 -------------------------- 84

7.5 Family *Hastigerinidae* Bolli, Loeblich, and Tappan, 1957 ---------- 88

7.5.1 Genus *Hastigerina* Thomson, 1876 -------------------------- 88

7.6 Family *Truncorotaloididae* Loeblich and Tappan 1961------------ 89

7.6.1 Genus *Acarinina* Subbotina, 1953----------------------------- 89

7.6.2 Genus *Igorina* Davidzon, 1976-------------------------------- 101

7.6.3 Genus *Morozovella* McGowran in Luterbacher, 1964---------- 105

7.6.4 Genus *Muricoglobigerina* Blow, 1979------------------------ 123

7.6.5 Genus *Truncorotaloides* Bronnimann and Bermudez, 1953-- 124

7.6.6 Genus *Turborotalia* Cushman and Bermudez, 1949--------- 127

7.7 Family *Hedbergellidae* Loeblich and Tappan 1961------------- 133

7.7.1 Genus *Globanomalina* Haque, 1956, emended --------------- 133

7.7.2 Genus *Pseudeastigerina* Banner and Blow, 1959----------- 142

7.8 Family *Globigerinidae* Carpenter, Parker and Jones, 1862------ 144

7.8.1 Genus *Parasubbotina* Olsson, Hemleben, Berggren and Liu, 199---------------------------------- 144

7.8.2 Genus *Subbotina* Brotzen and Pozaryska, 1961----------- 145

7.8.1 Subfamily *Porticulasphaeraeinae* Banner, 1982--------- 157

Genus *Globigerinatheka* Bronnimann, 1952------------------ 157
10.2.5 Microfacies E (restricted fauna-miliolid, nummulitid wakestone/packstone)------------------ 180

10.2.6 Microfacies F (glauconitic limestone-grainstone) ----------- 181

10.2.7 Microfacies G (gypsum/ anhydrite) --------------------------- 182

10.3 Paleoenvironment -- 182

10.3.1 Dunghan Formation --- 182

10.3.2 Shaheed Ghat Formation --- 183

10.3.3 Baska Formation --- 186

10.3.4 Kirthar Formation--- 187

11. CONCLUSIONS --- 189

ACKNOWLEDGMENTS-- 192

REFERENCES -- 195

PLATES, 1–12, Outcrop photographs

PLATES, 13–15, Microphotographs of planktonic foraminiferal surface-textures

PLATES, 16–26, Microphotographs of planktonic foraminiferal species

PLATES, 27–34, Thin-section microphotographs of different lithofacies