List of Tables

1. Introduction of some measurement sensors and their field array 17

2. Daily mean integrated values of the energy budget components, partitioning of the available energy, and Bowen ratios ... 58

3. Diurnal characteristics of the net canopy CO₂ flux .. 68

4. Daily-integrated net canopy CO₂ flux and water use efficiency 72

5. Midday mean values of omega factor, Priestley-Taylor coefficient, aerodynamic conductances, and canopy surface conductances ... 86

6. Characteristics of the rectangular hyperbolic responses of hourly net canopy CO₂ flux to incident hourly photosynthetic photon flux density 102

7. Summary of nighttime net canopy CO₂ flux in response to temperature 106

8. Relationship between net leaf CO₂ flux and incident photosynthetic photon flux density .. 119

9. The linear model coefficients for the relationship between net canopy CO₂ flux and incident hourly photosynthetic photon flux density 120
List of Figures

1. Location of the experiment field ... 12
2. Photographs of the ERC grassland in different seasons 13
3. A schematic representation of the micrometeorological observation mast 18
4. A flow chart shows CO₂ concentration measurements 19
5. A schematic representation of temporal and spatial patterns of fluxes 24
6. Recipient solar radiation and albedo .. 35
7. Air temperature and soil temperature .. 36
8. Wind speed and wind direction .. 37
9. Precipitation, soil water content and vapor pressure deficit 38
10. Canopy height and leaf area index ... 40
11. The relationship between leaf area index and canopy height 41
12. Typical time traces of turbulent fluctuations .. 44
13. Energy budget closure check ... 45
14. Daily performance of the eddy flux measurement system 46
15. Comparison between the latent heat flux densities estimated by the EC technique and those measured by a lysimeter 47
16. A comparison of the diurnal sequences between evapotranspiration rate estimated by the EC and that measured directly by a lysimeter 48
17. Daily variations in energy flux densities and some microenvironmental variables during the period prior to canopy closure 52
18. Daily variations in energy flux densities and some microenvironmental variables in the early part of the closed canopy period 53
19. Daily variations in energy flux densities and some microenvironmental variables in the later part of the closed canopy period 54
20. Daily variations in energy flux densities and some microenvironmental variables in the flowering period ... 55
21. Daily variations in energy flux densities and some microenvironmental variables in the senescence period .. 56
22. Daily courses of the net canopy CO₂ flux and photosynthetic photon flux density for selected clear days in the period prior to canopy closure 60
23. Daily courses of the net canopy CO₂ flux and photosynthetic photon flux density for selected clear days in the early part of the closed canopy period 61
24. Daily courses of the net canopy CO₂ flux and photosynthetic photon flux density for selected clear days in the later part of the closed canopy period 62
25. Daily courses of the net canopy CO₂ flux and photosynthetic photon flux density for selected clear days in the flowering period 63
26. Daily courses of the net canopy CO₂ flux and photosynthetic photon flux density
for selected clear days in the senescence period ..64
27. Diurnal variations in water use efficiency ..74
28. Relationship between energy balance closure and fetch-to-height ratio and relationship between energy balance closure and wind direction ..78
29. Daily variations in omega factor, Priestley-Taylor coefficient, Bowen ratio, and dryness index (DOY 151 to 159) ...84
30. Daily variations in omega factor, Priestley-Taylor coefficient, Bowen ratio, and dryness index (DOY 204 to 216) ...85
31. The relationship between net canopy CO₂ flux and canopy evapotranspiration in daytime ..88
32. Diurnal trends in aerodynamic conductance, canopy surface conductance and stomatal conductance ...92
33. The relationship between canopy surface conductance and photosynthetic photon flux density with respect to vapor pressure deficit93
34. The relationship between the canopy CO₂ flux and the canopy surface conductance at various air temperature ranges ... 94
35. The relationship between the canopy CO₂ flux and the canopy surface conductance at various vapor pressure deficit ranges .. 95
36. The relationships between net canopy CO₂ flux and photosynthetic photon flux density for the entire measurement period ... 97
37. The relationships between net canopy CO₂ flux and photosynthetic photon flux density for various growth stages ... 99
38. The relationships between net canopy CO₂ flux and photosynthetic photon flux density under different air temperatures ... 100
39. The relationships between net canopy CO₂ flux and photosynthetic photon flux density under different vapor pressure deficits 101
40. The relationships between nighttime net canopy CO₂ flux and air temperature .. 105
41. The relationship between nighttime net canopy CO₂ flux and the sensible heat flux density .. 107
42. The relationship between water use efficiency and photosynthetic photon flux density .. 109
43. Comparison of the canopy-scale and leaf-level CO₂ fluxes 113
44. Comparison of stomatal conductance and H₂O flux between the canopy and individual leaves ... 114
45. Comparison of the canopy-scale and leaf-level water use efficiency 115
46. Some microenvironmental variables during the canopy-level and leave-level flux measurements .. 116
47. CO₂ concentration above and within the canopy ... 117
48. Relationships between net leaf CO₂ flux density and incident photosynthetic photon flux density .. 118
List of Symbols

ROMAN ALPHABET

A_c the rate of net photosynthesis of the canopy
c atmospheric CO$_2$ concentration
c' fluctuation in CO$_2$ concentration
Ca atmospheric CO$_2$ concentration
Ca_{hi} atmospheric CO$_2$ concentration at 2 m
Ca_{lo} atmospheric CO$_2$ concentration at 0.25 m
Ci intercellular CO$_2$ concentration
C_p the specific heat capacity of air at constant pressure
DI the dryness index
E the rate of evaporation
EF evaporative fraction in the available energy
ET evapotranspiration rate
f the conversion factor for CO$_2$ from ppm to g m$^{-3}$
F_c the integrated net CO$_2$ flux over the canopy
F_{c2000} the integrated net CO$_2$ flux over the canopy at PPFD = 2000 µmol m$^{-2}$ s$^{-1}$
F_s the vertical flux density of any scalar above the canopy
G the heat flux density into and out of the soil
g_a aerodynamic conductance
g_c canopy surface conductance
g_s stomatal conductance
g_l stomatal conductance of leaf
H sensible heat flux density
h_c mean canopy height
k von Karman's constant
L the latent heat of vaporization
LE latent heat flux density
LE_{EQ} the equilibrium evapotranspiration rate
LE_{IM} the imposed evapotranspiration rate
P the energy consumption by photosynthesis
P_n net photosynthesis rate
q the specific humidity of air
\(q' \) fluctuation in the specific humidity
\(Q_{10} \) the temperature coefficient
\(Q_a \) available energy
\(R_d \) the hypothetical mean dark canopy respiration (soil plus plant)
\(R_D \) the canopy respiration (soil plus plant) in the daytime
\(R_N \) the canopy respiration (soil plus plant) at night
\(R_{N0} \) the canopy respiration (soil plus plant) at night for a reference temperature \(T_0 \)
\(R_n \) net radiative flux density
\(S' \) fluctuation in scalar concentration
\(T \) temperature
\(T' \) fluctuation in air temperature
\(T_0 \) a reference temperature
\(T_a \) air temperature
\(T_L \) leaf temperature
\(T_{len} \) mean time length for net carbon gain
\(T_s \) soil temperature
\(TR \) transpiration rate
\(u \) wind speed
\(u^* \) friction velocity
\(w \) vertical wind speed
\(w' \) fluctuation in vertical wind speed
\(z_{ch} \) the roughness parameter for transfer of sensible heat
\(z_{em} \) the roughness parameter for transfer of momentum

GREEK ALPHABET

\(\alpha \) Priestley-Taylor parameter
\(\beta \) Bowen ratio
\(\gamma \) the psychrometric constant
\(\Delta \) the slope of the saturation water vapor pressure vs. temperature curve
\(\Delta C \) the amount of \(\text{CO}_2 \) stored in the canopy
\(\Delta S \) the net physical storage of energy
\(\rho \) the air density
\(\Omega \) omega factor
List of Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>BOREAS</td>
<td>the Boreal Ecosystem Atmosphere Study</td>
</tr>
<tr>
<td>DOY</td>
<td>day of the year</td>
</tr>
<tr>
<td>EC</td>
<td>eddy correlation</td>
</tr>
<tr>
<td>BFEDA</td>
<td>the ECHIVAL Field Experiment in a Desertification-Threatened Area, the European field experiment in desertification-threatened areas</td>
</tr>
<tr>
<td>ERC</td>
<td>the Environmental Research Center</td>
</tr>
<tr>
<td>FACE</td>
<td>Free Air CO₂ Enrichment</td>
</tr>
<tr>
<td>GAME</td>
<td>the GEWEX Asian Monsoon Experiment</td>
</tr>
<tr>
<td>GAME-HUBEX</td>
<td>GAME- the HUaihe River Basin EXperiment Processes</td>
</tr>
<tr>
<td>GAME-Thailand</td>
<td></td>
</tr>
<tr>
<td>GAME-Siberia</td>
<td></td>
</tr>
<tr>
<td>GAME-Tibet</td>
<td></td>
</tr>
<tr>
<td>GEWEX</td>
<td>the Global Energy and Water Cycle Experiment</td>
</tr>
<tr>
<td>GCMS</td>
<td>General Circulation Models</td>
</tr>
<tr>
<td>HAPEX</td>
<td>the Hydrological-Atmospheric Pilot EXperiment</td>
</tr>
<tr>
<td>HAPEX-MOBILHY</td>
<td>the Hydrological-Atmospheric Pilot EXperiment-Modelisation du Bilan Hydrique</td>
</tr>
<tr>
<td>HAPEX-SAHEL</td>
<td>the Hydrological-Atmospheric Pilot EXperiment-Sahel</td>
</tr>
<tr>
<td>HEIFE</td>
<td>the HEIihe River Basin Field Experiment on Land Surface Processes</td>
</tr>
<tr>
<td>HIFE</td>
<td>the ISLSCP Field Experiment</td>
</tr>
<tr>
<td>IGBP</td>
<td>the International Geosphere-Biosphere Program</td>
</tr>
<tr>
<td>ISLSCP</td>
<td>the First International Satellite Land Surface Climatology Project</td>
</tr>
<tr>
<td>IRGA</td>
<td>infra-red gas analyzer</td>
</tr>
<tr>
<td>JST</td>
<td>Japan Standard Time</td>
</tr>
<tr>
<td>LAI</td>
<td>leaf area index</td>
</tr>
<tr>
<td>LCP</td>
<td>canopy light compensation point</td>
</tr>
<tr>
<td>LCP_{am}</td>
<td>canopy light compensation point in the morning</td>
</tr>
<tr>
<td>LCP_{pm}</td>
<td>canopy light compensation point in the afternoon</td>
</tr>
<tr>
<td>MOM</td>
<td>micrometeorological observation mast</td>
</tr>
<tr>
<td>MOT</td>
<td>meteorological observation tower</td>
</tr>
<tr>
<td>NDVI</td>
<td>normalized difference vegetation index</td>
</tr>
<tr>
<td>NEE</td>
<td>net ecosystem CO₂ exchange</td>
</tr>
<tr>
<td>NEE_D</td>
<td>net ecosystem CO₂ exchange in the daytime</td>
</tr>
<tr>
<td>NEE_N</td>
<td>net ecosystem CO₂ exchange at night</td>
</tr>
<tr>
<td>NOPEX</td>
<td>the Northern Hemisphere Climate-Processes Land-Surface Experiment</td>
</tr>
<tr>
<td>Acronym</td>
<td>Description</td>
</tr>
<tr>
<td>---------</td>
<td>-------------</td>
</tr>
<tr>
<td>OTC</td>
<td>open top chamber</td>
</tr>
<tr>
<td>PFT</td>
<td>plant functional type</td>
</tr>
<tr>
<td>PAR</td>
<td>photosynthetically active radiation</td>
</tr>
<tr>
<td>PPFD</td>
<td>photosynthetically active photon flux density</td>
</tr>
<tr>
<td>SHA</td>
<td>vertical sensible heat advection</td>
</tr>
<tr>
<td>SiB</td>
<td>the Simple Biosphere model</td>
</tr>
<tr>
<td>SPAC</td>
<td>the soil-plant-atmosphere continuum</td>
</tr>
<tr>
<td>SWC</td>
<td>soil water content</td>
</tr>
<tr>
<td>TABLE92</td>
<td>the Tsukuba Atmospheric Boundary Layer Experiment 92</td>
</tr>
<tr>
<td>TDR</td>
<td>time-domain reflectometry</td>
</tr>
<tr>
<td>VPD</td>
<td>vapor pressure deficit</td>
</tr>
<tr>
<td>VPD_L</td>
<td>vapor pressure deficit at the leaf surfaces</td>
</tr>
<tr>
<td>WUE</td>
<td>water use efficiency</td>
</tr>
</tbody>
</table>