Nrf2 deficiency causes tooth decolorization
due to iron transport disorder in enamel organ

Toru Yanagawa¹, Ken Itoh²,³, Junya Uwayama¹, Yasuaki Shibata⁴, Akira Yamaguchi⁴, Tsuneyoshi Sano⁵, Tetsuro Ishii⁶, Hiroshi Yoshida¹ and Masayuki Yamamoto²,³, *

¹Institute of Clinical Medicine, ²JST-ERATO Environmental Response Project, ³Institute of Basic Medical Sciences and Center for Tsukuba Advanced Research Alliance, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba 305-8575, ⁴Division of Oral Pathology and Bone Metabolism, Department of Developmental and Reconstructive Medicine, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki, 852-8588, ⁵Department of Oral Anatomy, Showa University School of Dentistry, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8585, and ⁶Institute of Community Medicine, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba 305-8577, Japan

Running head: Nrf2 regulation of iron transport

Key words: ameloblast, iron transport, Nrf2

*Corresponding author

Please send proofs to:
Abstract

Rodents have brownish-yellow incisors whose color represents their iron content. Iron is deposited into the mature enamel by ameloblasts that outline enamel surface of the teeth. Nrf2 is a basic region-leucine zipper type transcription factor that regulates expression of a range of cytoprotective genes in response to oxidative and xenobiotic stresses. We found that genetically engineered Nrf2-deficient mice show decolorization of the incisors. While incisors of wild type mice were brownish yellow, incisors of Nrf2-deficient mice were grayish white in color. Micro X-ray imaging analysis revealed that the iron content in Nrf2-deficient mouse incisors were significantly decreased compared to that of wild type mice. We found that iron was aberrantly deposited in the papillary layer cells of enamel organ in Nrf2-deficient mouse, suggesting that the iron transport from blood vessels to ameloblasts was disturbed. We also found that ameloblasts of Nrf2-null mouse show degenerative atrophy at the late maturation stage, which gives rise to the loss of iron deposition to the surface of mature enamel. Our results thus demonstrate that the enamel organ of Nrf2-deficient mouse has a reduced iron transport capacity, which results in both the enamel cell degeneration and disturbance of iron deposition onto the enamel surface.
Introduction

The brownish yellow color of the rodent incisors is owing to iron deposition in the enamel surface layer (Halse, 1973; Halse, 1974; Halse & Selvig, K. A. 1974; Kallenbach, 1970). In the enamel organ of rodents, where the tooth develops, a layer of cells that outline the enamel surface called ameloblasts contain the entire sequence of cell development stages. From the apical end toward the incisal end these stages are classified regionally into presecretory, secretory, transition, and maturation stages. Secretory ameloblasts produce enamel matrix proteins, whereas ameloblasts at the maturation stage act to incorporate iron and deposit it into the surface of the mature enamel, in addition to their fundamental roles in enamel formation. In this unique iron transport system, ferritin functions as a transient iron reservoir in the cell, sequestering iron into the cytoplasmic granules (Karim & Warshawsky, 1984). This particle first appears free in the cytoplasm, and then gradually becomes confined to the membrane bound ferritin-containing vesicles with the progression of cell developmental stages. Finally, the iron is secreted from ameloblasts into the enamel surface at the end of maturation, presumably through the process of lysosomal digestion of ferritin (Takano & Ozawa, 1981).

Iron is critically involved in a wide variety of cellular events ranging from DNA synthesis to cellular respiration (Cammack et al. 1990). However, at the same time, free iron generates highly reactive oxygen species via Fenton chemistry and causes an oxidative stress to cells (Linn et al. 1998). Thus, the cellular iron metabolism should be strictly regulated in the presence of various transport and
storage proteins (McCord, 1998).

Nrf2 belongs to the CNC transcription factor family which share a characteristic basic domain first identified in the Drosophila cap’n’collar (CNC) protein (Itoh et al. 1995, Mohler et al. 1991). Nrf2 is essential for the coordinate transcriptional induction of phase II enzymes and antioxidant genes via antioxidant responsive element (ARE) (Itoh et al. 1997, Ishii et al. 2000). Furthermore, Nrf2 constitutes a crucial cellular sensor for oxidative stress together with its cytoplasmic repressor Keap1, and mediates a key step in the signaling pathway by a novel Nrf2 nuclear shuttling mechanism (Itoh et al. 1999b). Activation of Nrf2 leads to the induction of phase II enzyme and antioxidant stress genes in response to various stresses (Ishii et al. 2000; Itoh et al. 1999a).

Whereas Nrf2-deficient mice (Nrf2–/–) grow normally and are fertile (Itoh et al. 1997), the mice are susceptible to various oxidative stresses including acetaminophen intoxication (Enomoto et al. 2001; Chan et al. 2001), BHT intoxication (Chan et al. 1998), chemical carcinogenesis (Ramos-Gomez et al. 2001), hyperoxia (Cho et al. 2002), and diesel exhaust inhalation (Aoki et al. 2001). The Nrf2–/– mice are also susceptible to lupus-like autoimmune nephritis (Yoh et al. 2001). However, no apparent phenotype has yet been described (Itoh et al. 1997; Kuroha et al. 1998). In this study, we found that incisors of the Nrf2–/– mice are decolorized and become grayish white. The examination of the mechanisms leading to the decolorization in the Nrf2–/– mouse revealed that the iron transport is defective in the developing enamel organ of Nrf2–/– mice.
Results

Decolorization of the maxillary incisors of Nrf2–/– mice

In an attempt to find subtle anatomical changes in the germ line Nrf2–/– mice (Itoh et al. 1997), we noticed that the incisors of Nrf2–/– mice are always grayish white (Fig. 1B), while in contrast, incisors of wild-type and heterozygous mutant (Nrf2+/–) mice are always brownish yellow (Fig. 1A). In order to examine the decolorization phenotype in more detail, we mated Nrf2+/– male with Nrf2+/– female mice and examined 50 mice for the relationship between Nrf2 genotype and the incidence of decolorization by macroscopic examination. Fourteen mice had grayish-white incisors and all of them were homozygous for the Nrf2 germ line mutation. On the contrary, of the 36 mice with brownish yellow incisors, 26 were Nrf2 heterozygous and 10 were wild type. Thus, the penetration of decolorization phenotype in Nrf2–/– mice was 100% (P<0.001).

Iron content in enamel surface was specifically decreased in Nrf2–/– mice

Scanning electron microscopic analysis detected no significant structural differences in the tooth surface between wild-type (Fig. 2A) and Nrf2–/– mice (Fig. 2D). However, X-ray microanalysis revealed an apparent difference in the iron content on the enamel surfaces between the Nrf2–/– and wild-type mice (Table 1). A dot-map image analysis revealed the remarkable decrease of iron content in the enamel surface of Nrf2–/– mouse incisors (Fig. 2F) compared to those of wild-type mice (Fig. 2C). Calcium content was within comparable range between wild-type (Fig. 2B) and Nrf2–/– mice (Fig. 2E).
Table 1 summarizes the calcium, phosphorus and iron contents of the incisors that were quantified by X-ray microanalysis. Importantly, we found that the mean iron content (weight %) of the \(Nrf2^{-/-} \) mouse enamel was less than one-tenth of that of the wild-type mouse. The decrease shows gene copy number dependence such that in the \(Nrf2^{+/–} \) mouse incisors the mean iron content was about one half of that of the wild-type mice. In contrast, no significant difference was observed in the content of calcium and phosphorus amongst \(Nrf2^{–/–} \), \(Nrf2^{+/–} \) and wild-type mice. Similarly, the molar ratio (MR) as well as weight % ratio (WR) of calcium to potassium was unaffected. These results indicate that the iron metabolism is specifically affected in the \(Nrf2^{–/–} \) mouse teeth.

General iron status in \(Nrf2^{–/–} \) mice

To examine the reason why the iron metabolism of enamel organ was impaired in \(Nrf2^{–/–} \) mice, we measured the general iron status in \(Nrf2^{–/–} \) mice. We did not find any significant differences in hematocrit, serum iron concentration, total iron binding capacity (TIBC) and transferrin saturation (Table 2), indicating that the general iron status of \(Nrf2^{–/–} \) mice is not affected. In contrast, non-heme iron content of liver was found to be significantly higher in \(Nrf2^{–/–} \) mice than that in wild-type liver. The precise reason of this iron increase in the liver remains to be clarified.

Ameloblasts of \(Nrf2^{–/–} \) mice show premature degenerative atrophy
We next examined development of ameloblasts in \(Nrf2^{−/−} \) mouse, since it is ameloblasts that deposit iron into the enamel surface. A histological examination with lower magnification of wild-type mouse tissues with hematoxylin and eosin staining showed slight signs of degenerative atrophy in the late maturation stage of the ameloblast development (Im, Fig. 3A). Compared to the wild-type mice, however, these changes in the \(Nrf2^{−/−} \) mouse ameloblasts were abrupt and premature (below). We found that, while ameloblasts of \(Nrf2^{+/−} \) mice showed very similar morphological appearance to that of the wild-type mice during the transition (t) stage and the early maturation (em) stage, ameloblasts of \(Nrf2^{−/−} \) mice suffered severely from premature degenerative atrophy at the late maturation stage (Fig. 3B; green arrow). The late maturation stage is the time when iron is excreted from ameloblasts to the enamel surface. At higher magnification, cell heights of ameloblasts gradually reduced from the early maturation stage to the late maturation stage in wild type ameloblasts. At the stages of reduced ameloblasts, they were changed to atrophic flat squamous cells on the most incisal side. In agreement with the observations with the lower magnification sections (Fig. 3B), \(Nrf2^{−/−} \) mice ameloblasts showed similar morphological appearance to the wild-type ameloblasts during the transition stage (Fig. 4A and C). However, the \(Nrf2^{−/−} \) ameloblasts suffered from premature degenerative changes at the late maturation stage (Fig. 4D; compare with those in the wild type mouse, Fig. 4B) and the flat squamous epithelia largely disappeared in the mutant mouse tissues (data not
shown). These results thus demonstrate that the normal differentiation of ameloblasts are severely disturbed at the late maturation stage in the $Nrf2^{-/-}$ mice.

Iron transport is defective in $Nrf2^{-/-}$ mice

To examine whether the incomplete differentiation affects the ameloblasts function, iron metabolism during the ameloblast development was examined in $Nrf2^{-/-}$ mice. We carried out Berlin blue staining of wild type and $Nrf2^{-/-}$ mouse incisors (Fig. 4, panels E-H). In the wild-type mouse incisors, positive staining of Berlin blue, which indicates the accumulation of iron, was detected in the ameloblast cytosol during the transition stage and early maturation stage (Fig. 4E). The accumulation of iron was then shifted to the plasma membrane on the enamel side at the late maturation stage, reflecting the iron excretion process into the enamel surface at this stage (Fig. 4F).

No Berlin blue-positive staining was detected at the reduced ameloblast stage (data not shown). In the $Nrf2^{-/-}$ enamel organ, iron was detected both in the papillary layer cells and ameloblasts during the transition and early maturation stages, and the iron accumulation in the ameloblast cytosol was markedly decreased (Fig. 4G). This may be due to defect of the iron transport from blood vessels to the ameloblasts.

We also found that the aberrant iron deposition overlapping with the degenerated cells (Fig. 4H), suggesting that the abnormal accumulation of iron might provoke, at least in part, the degeneration of papillary cells and ameloblasts of $Nrf2^{-/-}$ enamel organ.

Ferritin expression was decreased in $Nrf2^{-/-}$ papillary layer cells
Since ferritin is known to play an important role in the cellular iron metabolism, we next examined the expression of ferritin by immunohistochemical and in situ hybridization analyses. Ferritin heavy chain mRNA was expressed exclusively in the ameloblasts during transition and early maturation stages. The Nrf2\(^{-/-}\) ameloblasts show similar level expression to the wild-type ameloblasts (Fig. 5C and A, respectively). However, ferritin heavy chain mRNA expression was very faint or not observed in the late maturation stage and reduced ameloblast stage (data not shown) of the ameloblast development in both wild type and Nrf2\(^{-/-}\) mice (panels B and D, respectively).

We also performed immunohistochemical analysis of ferritin expression, utilizing an anti-rat liver ferritin antibody that cross-reacts with mouse ferritin (Miyazaki et al. 1998). The analysis revealed that the expression level of ferritin protein was comparable between ameloblasts and papillary layer cells at the transition and early maturation stages in the wild-type mouse (Fig. 5E). Importantly, however, in the Nrf2\(^{-/-}\) mouse the expression of ferritin in the papillary layer cells was significantly reduced compared to that in the ameloblasts (Fig. 5G). Consistent with the results of in situ ferritin heavy chain mRNA analysis, ferritin was expressed only faintly in the more advanced stages of ameloblasts (Fig. 5F and H). These results clearly indicate that although ferritin is expressed in the ameloblasts, it is not transferred efficiently from the ameloblasts to the papillary layer cells in Nrf2\(^{-/-}\) animals.
Nrf2^{−/−} teeth have decreased acid resistance

To assess changes in the quality of the teeth, we first examined the Knoop hardness of the teeth. However, we could not detect significant difference between wild-type and Nrf2^{−/−} teeth. We next examined acid resistance of Nrf2^{−/−} teeth. For this purpose, the teeth were exposed to 0.1 M acetate buffer at pH 4.0 and amounts of eluted calcium ion were quantified at several time points by the methylxylenol blue method. As shown in Figure 6, the concentration of eluted calcium ion from Nrf2^{−/−} teeth was significantly higher than that from the wild-type teeth. The initial elution velocity increased rapidly, but the elution seems to be saturated at 30 and 40 min time points in Nrf2^{−/−} teeth. The calcium concentration level from the Nrf2^{−/−} teeth is significantly higher than that from the wild-type teeth (P<0.05: Student’s t-test). Thus, the acid resistance of Nrf2^{−/−} teeth was significantly decreased compared to that of the wild-type mice, suggesting that the Nrf2^{−/−} teeth is susceptible to dental caries.
Discussion

Closer examination of the $Nrf2^{-/-}$ mice unveiled that the surface color of maxillary incisors of the $Nrf2^{-/-}$ mice is grayish white, which is a marked contrast to the yellowish brown color of the wild-type mouse incisors. Our analyses further revealed that this decolorization is due to the decrease in the iron content of the mature enamel. The analysis of iron metabolism in the enamel organ showed that the iron transport from blood vessels to the ameloblasts was disturbed in the $Nrf2^{-/-}$ mouse during the ameloblast maturation stages. In the $Nrf2^{-/-}$ mouse, ameloblasts underwent severe degenerative changes and disappeared prematurely during their maturation stages, so the loss of the ameloblast function resulted in the failure of iron deposition to the enamel surface and the decolorization of the incisors. To our knowledge, this is the first report describing the iron metabolism disorder in the $Nrf2^{-/-}$ mouse.

Iron is critically involved in various cellular events ranging from DNA synthesis to cellular respiration (Cammack et al. 1990). Among them, the iron utilization in the rodent enamel organ illustrates one of the most interesting examples of iron usage in mammals. Iron deposited onto the enamel surface seems to contribute to the formation of acid resistance and hardness of the rodent incisors, which is advantageous for grinding the hard seeds in the environment (Halse et al. 1974; Stein et al. 1959). In fact, the diminished acid resistance of iron-poor $Nrf2^{-/-}$ teeth (Fig. 6) supports the notion that the iron deposition to the enamel surface is an important
event to preserve the rodent tooth function.

In terms of the iron and calcium transport, as well as matrix and water removal, the papillary layer cells have been shown to form an intimate functional unit with the ameloblasts during early to late stages of the enamel maturation (Ohshima et al. 1998; Grant et al. 1968; Skobe et al. 1974). Importantly, transferrin receptors are found to be mainly expressed in the papillary layer cells of the enamel organ of rat incisors (Mataki et al. 1989), suggesting that the papillary layer cells uptake iron efficiently from the circulating blood. Although mechanism of the next transfer process of iron, i.e. from the papillary layer cells to ameloblasts, is not well understood at present, one plausible explanation for this is that the transferrin-bound iron from the circulating blood may be transferred to ferritin within the papillary layer cells, and subsequently the ferritin-bound iron is transferred to ameloblasts. Consistent with this contention, we observed high ferritin protein accumulation both in the ameloblasts and papillary layer cells in the wild-type enamel organ.

Ferritin serves as the transient iron reservoir in mature ameloblasts, and surprisingly the ameloblasts express ferritin mRNA most abundantly amongst rat tissues (Miyazaki et al. 1998). Ferritin is a 480-kDa intracellular protein that can store up to 4500 atoms of iron. The protein consists of heavy and light chains. The ratio of subunits within a ferritin molecule varies widely from tissue to tissue, which in turn modulates the ferritin function (Miyazaki et al. 1998). Although ferritin is expressed at equal levels both in
ameloblasts and papillary layer cells in the wild type enamel organ, the *in situ* analysis of ferritin heavy chain mRNA expression demonstrates that the mRNA is exclusively expressed in the ameloblasts. This observation suggests that the ferritin synthesized in the ameloblasts may be transferred to the papillary cells (Mataki, S. *et al.* 1989). An alternative, and less likely, possibility is that the expression of ferritin mRNA in papillary cells might be under the detection limit of the *in situ* hybridization method and efficient translation compensated for the weak expression of the gene at mRNA level.

While ferritin is abundantly accumulated, iron accumulation is scarcely observed in the papillary layer cells of the wild type mouse. This observation suggests that the iron transfer process from the papillary layer cells to ameloblasts may be very efficient in the wild-type enamel organ. We envisage that ferritin may be loaded with iron in the papillary layer cells and rapidly transferred to the ameloblasts.

An important observation is that the accumulation level of ferritin is abnormally reduced, but accumulation level of iron is abnormally increased, in the *Nrf2*−/− papillary layer cells, suggesting that the iron transfer process is somehow disturbed in the *Nrf2*−/− enamel organ. We envisage the following scenario to explain the observation, which is depicted schematically in Figure 7. Since the expression levels of ferritin heavy chain mRNA and ferritin protein in the *Nrf2*−/− ameloblasts was almost comparable to those of the wild-type ameloblasts (see Fig. 5), a translocation or recycling step of ferritin from the ameloblasts to the papillary layer cells might
be affected in the \textit{Nrf2}^{-/-} mice (Radisky \textit{et al}. 1998; Kwok \textit{et al}. 2003). Although the translocation of ferritin from ameloblasts to papillary layer cells has not been evidenced to date, such a mechanism might be affected in \textit{Nrf2}^{-/-} enamel organ most probably because of the enhanced oxidative stress in ameloblasts.

An alternative explanation is that the decrease in the ferritin mRNA expression may be involved in the decrease of ferritin in the \textit{Nrf2}^{-/-} papillary cells. Indeed, it was recently reported that the chemical activators of Nrf2 upregulates the ferritin heavy and light chain gene expression \textit{in vivo}, indicating that the ferritin gene expression is under the regulation of Nrf2/ARE pathway (Primiano \textit{et al}. 1996; Tsuji \textit{et al}. 2000, Pietsch \textit{et al}. 2003). Supporting this contention, it was also reported that the expression of ferritin genes is not induced, but basal level of the gene expression is rather reduced in \textit{Nrf2}^{-/-} mouse embryonic fibroblasts (Pietsch \textit{et al}. 2003). Moreover, decrease in the basal expression as well as the induction of ferritin gene was found in \textit{Nrf2}^{-/-} astrocytes (Lee \textit{et al}. 2003). The basal level expression of ferritin mRNA in \textit{Nrf2}^{-/-} small intestine was also decreased in a microarray analysis (Thimmulappa \textit{et al}. 2002). Thus, further analyses is required to clarify the underlying mechanisms of iron transport defect observed in \textit{Nrf2}^{-/-} enamel organ.

The aberrant accumulation of iron in \textit{Nrf2}^{-/-} papillary cells seems to lead the ameloblasts to premature degeneration by oxidative stress, as iron generates highly reactive oxygen species via Fenton chemistry and causes an oxidative stress to cells (Linn \textit{et al}. 1998). Upon utilization of iron, therefore, cells need to be equipped with an array of antioxidant systems to prevent
its toxicity. Since Nrf2 regulates expression of the genes that protect cells from oxidative stress (Ishii et al. 2000; Itoh et al. 1999b), there is a possibility that defective expression of certain Nrf2/ARE-regulated gene(s) might be involved in the degenerative changes observed in the $Nrf2^{-/-}$ enamel organ. For the understanding of the iron transport system that is defective in the $Nrf2^{-/-}$ mouse, comprehensive as well as quantitative analyses of the expression of ARE-regulated genes in the enamel organ is critically important. However, we need a technical breakthrough for collecting enough amounts of mouse enamel organs for such analyses.
Experimental procedures

Macroscopic observation

The generation of Nrf2 gene mutant mice was previously described (Itoh et al. 1997). The incidence of decolorization phenotype was analyzed by the chi square test.

Scanning electron microscopic observation and micro x-ray analysis

The murine incisors, including maxillary bones, were fixed in 100% ethanol and dehydrated by the critical point drying method. The incisors from Nrf2+/- and Nrf2-/- mice were examined using a scanning electron microscope (Hitachi S-2500CX) operated at 15 kV. Micro x-ray analysis was performed to determine the chemical components of the incisors. For energy-dispersive x-ray analysis, an x-ray detector system (Kevex Quantum Delta IV) attached to a scanning electron microscope was used. The micro x-ray analysis system was operated at a 15-kV accelerating voltage and a 0.1-nA probe current, with a 20- nm probe size and a 100-sec counting time. Five points on the enamel surface were selected and analyzed for the amounts of calcium, phosphorus and iron. The iron concentration was detected in 1 µm depth of enamel surface.

In situ hybridazation, immunohistochemistry and iron staining

Ferritin heavy chain cDNA was subcloned into the pBluescript KS+ vector and used as a template for cRNA production. DIG-11-UTP-labeled single-strand antisense and sense RNA probes were prepared by DIG-RNA Labeling Kit (Boehringer Mannheim) according to the manufacturer’s instruction. Samples were fixed with
4% paraformaldehyde with PBS overnight at 4°C and decalcified in 10% EDTA (pH 7.4) for two weeks, embedded in paraffin and sectioned. **In situ** hybridization was performed as previously described (Shibata et al. 2000). After treatment with 0.2 N hydrochloric acid and Proteinase K (10 μg/ml), hybridization was performed with the probe (1 μg/ml) at 50°C overnight. After extensive washing and RNase A treatment, the hybridized DIG-labeled probes were detected with alkaline phosphatase-conjugated anti-DIG antibody and 5-bromo-4-chloro-3-indolyl phosphate as the substrate, using a nucleic acid detection kit (Boehringer Manheim).

Immunostaining was performed using the labeled streptavidin biotin method (LsAB method: Nichirei). Sections were immersed in 0.3% hydrogen peroxide in methanol for 30 min, and incubated with 5% normal goat serum for 30 min at room temperature. The sections were then incubated with anti-rat liver ferritin rabbit polyclonal antibody (1:200 v/v) in PBS at 4°C overnight (Miyazaki et al. 1998). The slides were reacted with biotinylated goat anti-rabbit antibody for 30 min at room temperature, followed by horseradish peroxidase conjugated with streptavidin. The peroxidase activity was visualized by the 3-amino-9-ethylcarbasol substrate-chromogen system (Nichirei, Tokyo). The sections were counterstained with hematoxylin, dehydrated, and mounted. Control staining was performed with non-immune rabbit serum. Berlin blue staining was performed to detect iron deposits.
Serum iron parameters and liver iron content

Blood was obtained from abdominal aorta of anesthetized mice and 200 μl of serum from each animal was used for analysis of iron and total iron binding capacity. These assays were performed by SRL Inc. (Tokyo) using an automatic chemical analyzer (Hitachi). Non-heme iron in the liver was measured as previously described (Foy et al. 1967).

Analysis of acid resistance and Knoop hardness

Hardness test of the enamel surface was performed by using a hardness tester equipped with a Knoop diamond penetrator. Six kg load was applied to each tooth for 10 s. To measure the acid resistance of the teeth, a 5 mm x 0.5 mm of the buccal surface of the murine incisors was exposed to 100 μl of acetate buffer (100 mM) at pH 4.0 at room temperature. The eluted calcium ion was measured by the methylxylenol blue method (Calcium E test Wako, Wako) at 5, 10, 15, 20, 30 and 40 min. The means from five independent incisors from 8-12 week old mice were presented with standard errors.
Acknowledgements

We thank Dr. Takanobu Isokawa and Kit I. Tong for discussion and advice. This work was supported in part by grants from JST-ERATO, JSPS, the Ministry of Education, Science, Sports and Technology, the Ministry of Health, Labor and Welfare, CREST, and the Naito foundation.
References

Garant, P. R. & Gillespie, R. (1969) The presence of fenestrated

34, 3-9.
of ferritin H in response to xenobiotics and cancer
chemopreventive dithiolethiones. J. Biol. Chem. 278, 2361-2369.
(1996) Induction of hepatic heme oxygenase-1 and ferritin in rats by cancer
chemopreventive dithiolethiones. Carcinogenesis. 17, 2291-2296.
be recycled through lysosomal degradation in human fibroblasts. Biochem. J. 336,
201-215.
(2001) Sensitivity to carcinogenesis is increased and chemoprotective efficacy of
enzyme inducers is lost in nrf2 transcription factor-deficient mice. Proc.
Natl. Acad. Sci. USA 98, 3410-3415.
decalcifying protocols for detection of specific RNA by non-radioactive in

Table 1. Micro x-ray analysis of the incisors of Nrf2+/− mutant mice

<table>
<thead>
<tr>
<th>Nrf2 genotype</th>
<th>+/+</th>
<th>+/-</th>
<th>-/-</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fe (% (w/w))</td>
<td>5.143±0.754</td>
<td>2.748±0.454*</td>
<td>0.396±0.076*</td>
</tr>
<tr>
<td>Ca (% (w/w))</td>
<td>36.389±0.222</td>
<td>36.073±0.039</td>
<td>36.161±0.067</td>
</tr>
<tr>
<td>P (% (w/w))</td>
<td>18.057±0.091</td>
<td>17.808±0.104</td>
<td>17.954±0.047</td>
</tr>
<tr>
<td>Ca/P WR</td>
<td>2.0158±0.006</td>
<td>2.0262±0.011</td>
<td>2.0149±0.007</td>
</tr>
<tr>
<td>Ca/P MR</td>
<td>1.5578±0.005</td>
<td>1.5659±0.008</td>
<td>1.5550±0.007</td>
</tr>
</tbody>
</table>

The calcium, phosphorus, and iron contents of the enamel surface of wild-type, Nrf2+/−, or \textit{Nrf2}+/− incisors determined by micro x-ray analysis. The means from five incisors are presented with standard deviations. Student’s t-test was used for the statistical analysis. Asterisks indicate significant difference compared with wild type (P < 0.001).
Table 2. General iron status of Nrf2^{−/−} mice

<table>
<thead>
<tr>
<th>Nrf2 genotype</th>
<th>+/-</th>
<th>-/-</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hematocrit (%)</td>
<td>52.2 ± 2.9</td>
<td>52.7 ± 2.9</td>
</tr>
<tr>
<td>Serum iron (μg/dl)</td>
<td>219.5 ± 40.6</td>
<td>271.0 ± 50.5</td>
</tr>
<tr>
<td>TIBC (μg/dl)</td>
<td>407.8 ± 52.6</td>
<td>460.3 ± 71.2</td>
</tr>
<tr>
<td>Transferrin saturation (%)</td>
<td>54.4 ± 11.8</td>
<td>59.1 ± 8.7</td>
</tr>
<tr>
<td>Liver iron content (ng/mg)</td>
<td>55.0 ± 18.0</td>
<td>90.0 ± 11.7*</td>
</tr>
</tbody>
</table>

Hematocrit, serum iron concentration, total iron binding capacity (TIBC), transferrin saturation and liver iron content were measured in wild-type and Nrf2^{−/−} mice. The means from 6 mice are presented with standard deviations. Student's t-test was used for the statistical analysis. Asterisks indicate significant difference compared with wild type (P < 0.01).
Figure legends

Figure 1 Incisors of Nrf2^{−/−} mice are decolorized. The incisors of wild-type mouse show the normal brownish-yellow color (A), whereas the incisors of Nrf2^{−/−} mice have grayish white color (B).

Figure 2 Scanning electron microscopic and micro x-ray analysis of the surface of the mouse incisor. (A and D) Scanning electron microscopic images of incisors of wild-type (A) and Nrf2^{−/−} mouse (D). (B and E) Dot-map images of calcium on the surface of wild-type (B) and Nrf2^{−/−} incisors (E) by micro x-ray analysis. (C and F) Dot-map images of iron on the surface of wild-type (C) and Nrf2^{−/−} mouse incisors (F).

Figure 3 Nrf2^{−/−} ameloblasts show degenerative atrophy at the late maturation stage. (A and B) Hematoxylin and eosin staining of wild type (A) and Nrf2^{−/−} (B) mouse enamel organs. The ameloblasts of Nrf2^{−/−} mouse show severe premature degenerative atrophy at the late maturation stage (40 x original magnification). Abbreviations are t, transition stage; em, early maturation stage; lm, late maturation stage; ra, region of reduced ameloblasts.

Figure 4 Defective iron transport in Nrf2^{−/−} mouse enamel organ. (A to D) Hematoxylin and eosin staining of wild type (A and B) and Nrf2^{−/−} (C and D) mouse enamel organs. (E to H) Berlin blue staining of wild type (E and F) and Nrf2^{−/−} (G and H) mouse enamel organs. Panels A, C, E and G show the transition stage,
while panels B, D, F and H show the late maturation stage of ameloblast maturation. AM, ameloblasts; PA, Papillary cell layer.

Figure 5 Expression of ferritin and ferritin heavy chain mRNA in *Nrf2*−/− enamel organ. (A to D) In situ hybridization analysis of ferritin heavy chain mRNA of wild type (A and B) and *Nrf2*−/− (C and D) mouse enamel organs. (E to H) Immunohistochemical analysis of ferritin in the wild type (E and F) and *Nrf2*−/− (G and H) mouse enamel organs. Panels A, C, E and G show the transition stage, while panels B, D, F and H show the late maturation stage of ameloblast maturation. AM, ameloblasts; PA, Papillary cell layer.

Figure 6 *Nrf2*−/− mice incisors have diminished acid resistance. A 0.5 mm x 5 mm area of the buccal surface of murine incisors was exposed to acetate buffer at pH 4.0, and the amount of eluted calcium ion was determined. The surface of the *Nrf2*−/− tooth (open square) eroded significantly earlier in acetic acid than that of the wild-type mice (open circle). *P*<0.05: Student's t-test.

Figure 7 *Nrf2*−/− mice were defective in iron utilization in developing enamel organ. *Nrf2*−/− teeth were grayish white (bottom panel), whereas those of wild type mice were brownish yellow (middle panel). This decolorization is owing to the defect of iron deposition in the mature enamel surface. *Nrf2*−/− enamel organs have iron transport defect that leads to both enamel cell degeneration and
disturbed iron deposition onto the enamel surface. Brown arrows designate the direction of iron transport and subsequent deposition.
Fe

Wild type mouse

nrf2 deficient mouse

Iron deposition

transport disorder?

Rodent incisor

Summary figure
Figure 3

(A) Wild type

(B) nrf2(-/-)

maturation stage

incisal e

em

lm

ra

degenerative atrophy

maturation stage

incisal en

t

em

lm

ra

Figure 3
Figure 4 (A-L)

- Transition~early maturation stage
- Late maturation stage
- Region of reduced ameloblasts
Region of reduced ameloblasts

Transition~early maturation stage
Late maturation stage

Figure 4 (M-X)
Figure 5

Calcium ion concentration

mg / 100ml

nrf2(-/-)

nrf2(+/+)

* P<0.05

min