Nonperturbative O(α) improvement of Wilson quark action in three-flavor QCD with plaquette gauge action

<table>
<thead>
<tr>
<th>著者別名</th>
<th>岩崎 洋一</th>
</tr>
</thead>
<tbody>
<tr>
<td>事務所名</td>
<td>未定</td>
</tr>
<tr>
<td>電話番号</td>
<td>未定</td>
</tr>
<tr>
<td>郵便番号</td>
<td>未定</td>
</tr>
<tr>
<td>番号</td>
<td>未定</td>
</tr>
<tr>
<td>権利</td>
<td>未定</td>
</tr>
</tbody>
</table>

doi: 10.1103/PhysRevD.71.054505
Nonperturbative $O(a)$ improvement of Wilson quark action in three-flavor QCD with plaquette gauge action

(CP-PACS and JLQCD Collaborations)

1High Energy Accelerator Research Organization (KEK), Tsukuba, Ibaraki 305-0801, Japan
2Institute of Physics, University of Tsukuba, Tsukuba, Ibaraki 305-8571, Japan
3Institute for Cosmic Ray Research, University of Tokyo, Kashiwa 277-8582, Japan
4Department of Physics, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8526, Japan
5Center for Computational Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8577, Japan

(Received 6 July 2004; revised manuscript received 20 January 2005; published 11 March 2005; corrected 31 March 2005)

We perform a nonperturbative determination of the $O(a)$-improvement coefficient c_{SW} for the Wilson quark action in three-flavor QCD with the plaquette gauge action. Numerical simulations are carried out in a range of $\beta = 12.0-5.2$ on a single lattice size of $8^3 \times 16$ employing the Schrödinger functional setup of lattice QCD. As our main result, we obtain an interpolation formula for c_{SW} and the critical hopping parameter K_c as a function of the bare coupling. This enables us to remove the $O(a)$ scaling violation from physical observables in future numerical simulation in the wide range of β. Our analysis with a perturbatively modified improvement condition for c_{SW} suggests that finite volume effects in c_{SW} are not large on the $8^3 \times 16$ lattice. We investigate N_f dependence of c_{SW} by additional simulations for $N_f = 4, 2, 0$ at $\beta = 9.6$. As a preparatory step for this study, we also determine c_{SW} in two-flavor QCD at $\beta = 5.2$. At this β, several groups have carried out large-scale calculations of the hadron spectrum, while no systematic determination of c_{SW} has been performed.

DOI: 10.1103/PhysRevD.71.054505 PACS numbers: 11.15.Ha, 12.38.Gc

I. INTRODUCTION

Recent large-scale simulations in two-flavor QCD have demonstrated that quenching artifacts found in various physical observables are reduced by dynamical effects of up and down quarks. There has been significant progress also in the algorithms for QCD with odd numbers of flavors: while the conventional Hybrid Monte Carlo (HMC) algorithm [1] is applicable only to even-flavor QCD, the exact algorithms, such as the Multi-Boson [2] and the polynomial HMC algorithms [3] capable of odd-flavor cases, have been developed. Clearly the time has come to undertake fully realistic and extensive simulations of QCD with dynamical up, down, and strange quarks.

Since simulations with dynamical quarks are computationally demanding, highly improved lattice actions should be employed in the three-flavor simulations. The leading cutoff effect in physical quantities is $O(a)$ with the Wilson quark action, and this error can be removed by adding a single counterterm, the Sheikholeslami-Wohlert (SW) term [4], to the action with a nonperturbatively determined coefficient c_{SW}. However, c_{SW} has been determined only in quenched and two-flavor QCD so far [5,6].

In this article, we perform a nonperturbative determination of c_{SW} in three-flavor QCD with the plaquette gauge and the Wilson quark actions. In Refs. [7,8], however, we found that this theory has a nontrivial phase structure: there is an unphysical phase transition at $\beta = 5.0$, where the lattice cutoff a^{-1} is roughly 2.6 GeV. It is expected that the phase transition strongly distorts scaling properties of physical observables. This transition is considered as an artifact due to the finite lattice spacing and can be removed by the use of improved gauge actions [7,8]. Therefore, there are two strategies for meaningful simulations in three-flavor QCD: (i) use the plaquette gauge action at $\beta \gg 5.0$, or (ii) use an improved gauge action, if simulations at $a^{-1} \approx 2.6$ GeV are needed. We explore the former strategy in this article, and the latter possibility is studied in a separate publication [9].

In our determination of c_{SW}, we follow the method proposed by ALPHA Collaboration in Refs. [5,10]. We explore a wide range of $\beta = 12.0-5.2$, which is significantly higher than the phase transition point $\beta = 5.0$, employing a single lattice size of $8^3 \times 16$. As our main result, we derive an interpolation formula for c_{SW} as a function of the bare coupling. The critical hopping parameter K_c in the $O(a)$-improved theory is also obtained as a by-product. We examine finite volume effects in c_{SW} by modifying the improvement condition at one-loop order of perturbation theory. Additional simulations in four-flavor, two-flavor, and quenched QCD at $\beta = 9.6$ are carried out to investigate the N_f dependence of c_{SW}.

As a preparatory step toward this study, we also determine c_{SW} in two-flavor QCD at $\beta = 5.2$. In the previous work by ALPHA Collaboration [6], they carried out the nonperturbative tuning of c_{SW} at $\beta \geq 5.4$, and derived an interpolation formula of their result as a function of g_0.

1550-7998/2005/71(5)/054505(16)$23.00 054505-1 © 2005 The American Physical Society
However, due to the limitation of available computer power, recent large-scale simulations by UKQCD Collaboration[11] and JLQCD Collaboration [12] were performed at a lower value $\beta = 5.2$ with c_{SW} obtained by extrapolating ALPHA's formula. We, therefore, determine c_{SW} directly at $\beta = 5.2$ in order to see if the extrapolation of the formula to this value of β really works out, and to confirm that the $O(a)$ scaling violation is absent in the UKQCD and JLQCD simulations.

This paper is organized as follows. In Sec. II, we briefly introduce the method for the nonperturbative tuning of c_{SW} employed in this study. Section III is devoted to detailed description of our numerical analysis and results in two-flavor QCD at $\beta = 5.2$. We present our results in three-flavor QCD and discuss its $O(a/L)$ uncertainty in Sec. IV. Finally, our conclusion is given in Sec. V.

II. IMPROVEMENT CONDITION FOR $O(a)$ IMPROVE

In our determination of c_{SW}, we basically follow the method proposed in Refs. [5,10], which employs the Schrödinger functional (SF) setup of lattice QCD [13]. In this section, we briefly introduce the SF setup and the choice of the improvement condition to fix c_{SW}.

A. SF setup

The SF is the generating functional of the field theory with the Dirichlet boundary condition imposed in the temporal direction. In this study, the spatial link variables at the boundaries are set to the following diagonal, constant SU(3) matrices:

$$
U_k(x, x_0)|_{x_0=0} = \exp[aC_k],
$$

$$
U_k(x, x_0)|_{x_0=T} = \exp[aC'_{k}].
$$

(1)

$$
C_k = \frac{i\pi}{6L_k} \begin{pmatrix}
-1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 1
\end{pmatrix}, \quad C'_k = \frac{i\pi}{6L_k} \begin{pmatrix}
-5 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 3
\end{pmatrix},
$$

(2)

where $L_k (k=1,2,3)$ and T are physical lattice sizes in the spatial and temporal directions. All quark fields at the boundaries are set to zero. In the spatial directions, the periodic boundary condition is imposed for both gauge and quark fields.

We use the plaquette gauge action

$$
S_g = \frac{\beta}{6} \sum_{x,\mu,\nu} \text{Tr}[1-U_{x,\mu,\nu}],
$$

(3)

where $U_{x,\mu,\nu}$ is the product of gauge link variables $U_{x,\mu}$ around the plaquette

$$
U_{x,\mu,\nu} = U_{x,\mu} U_{x+\hat{\mu},\nu} U_{x+\hat{\nu},\mu} U_{x,\nu}.
$$

(4)

The $O(a)$-improved Wilson quark action [4] is given by

$$
S_q = \sum_{x,y} \bar{q}_x D_{xy} q_y,
$$

(5)

$$
D_{xy} = \delta_{xy} - k \sum_{\mu} [(1 - \gamma_\mu) U_{x,\mu} \delta_{x+\hat{\mu},y} + (1 + \gamma_\mu) U_{x-\hat{\mu},\nu} \delta_{x-\hat{\mu},y}] + \frac{i}{2} k c_{\text{SW}} \sigma_{\mu,\nu} F_{x,\mu,\nu} \delta_{xy},
$$

(6)

with the field strength tensor $F_{x,\mu,\nu}$ defined by

$$
F_{x,\mu,\nu} = \frac{1}{8} [(U_{x,\mu,\nu} + U_{x,\nu,\mu} + U_{x,\mu,\nu} - U_{x,\nu,\mu}) - (\text{h.c.})],
$$

(7)

where (h.c.) denotes the Hermitian conjugate of the preceding bracket, and $\sigma_{\mu,\nu} = (i/2)[\gamma_\mu, \gamma_\nu]$. The last term in Eq. (6) is the counterterm to remove $O(a)$ effects in on-shell quantities. Its coefficient c_{SW} is set to unity to remove the tree-level $O(a)$ scaling violation from physical observables. The main purpose of this article is nonperturbative tuning of c_{SW} for removal of all $O(a g^2_0)$ scaling violation ($n \geq 0$). For the $O(a)$ improvement of the SF itself, we add counterterms made of the gauge and quark fields at boundaries to the lattice action. However, these counterterms affect the PCAC relation at order of a^2 or higher, and hence are not necessary for determination of c_{SW} from the PCAC relation. In ALPHA Collaboration’s studies, the counterterms are omitted except for a term

$$
\delta S_g^a = \frac{\beta}{6} (c_i - 1) \sum_{x, \mu, \nu} \text{Tr}[1 - U_{x,\mu,\nu}].
$$

(8)

which is made of the temporal plaquettes touching the boundaries. In this study, we also include this counterterm to the total lattice action $S = S_g + \delta S_g^a + S_q$ so that we can directly compare our and ALPHA Collaboration’s results. The coefficient of the counterterm c_i is set to the one-loop estimate in Ref. [14].

B. Improvement condition

We determine c_{SW} by imposing the validity of the PCAC relation

$$
\frac{1}{2}(\partial_\mu + \partial_\mu^a) A_{\text{imp},\mu}^a = 2m P^a,
$$

(9)

up to order of a^2. The pseudoscalar operator and $O(a)$-improved and unimproved axial currents are given by

$$
P^a = \bar{\psi} \gamma_5 \tau^a \psi,
$$

(10)

$$
A_{\text{imp},\mu}^a = A_\mu^a + c_s \frac{1}{2}(\partial_\mu + \partial_\mu^a) P^a,
$$

(11)

$$
A_\mu^a = \bar{\psi} \gamma_\mu \gamma_5 \tau^a \psi,
$$

(12)

where ∂_μ and ∂_μ^a are the forward and backward lattice
derivatives and SU(N_f) generators $\sigma'\tau$ act on the flavor indices of the quark fields $\bar{\psi}$ and ψ.

We measure two correlation functions,

$$f_{A}(x_{0}) = -\frac{1}{N_{f}^{2} - 1} \langle A^0_0(x) O^{a}\rangle, \quad (13)$$

$$f_{P}(x_{0}) = -\frac{1}{N_{f}^{2} - 1} \langle P^{a}(x) O^{a}\rangle, \quad (14)$$

where $\langle \cdots \rangle$ denotes the expectation value after taking trace over color and spinor indices and summing over spatial coordinate x. For the source operator, we take

$$O^{a} = a^{6} \sum_{y,z} \bar{\xi}(y) \gamma_{5} \tau^{a} \xi(z), \quad (15)$$

defined from the boundary fields

$$\xi(x) = \frac{\delta}{\delta \rho(x)}, \quad \bar{\xi}(x) = \frac{\delta}{\delta \rho(x)}. \quad (16)$$

where $\rho(x)$ is the quark field at $x = 0$ and is set to zero in the calculation of f_{A} and f_{P}. The bare quark mass is then calculated from f_{A} and f_{P} through the PCAC relation equation (9):

$$m(x_{0}) = r(x_{0}) + c_{A}s(x_{0}), \quad (17)$$

$$r(x_{0}) = \frac{1}{4} (\partial_{0} + \partial_{0}^{*}) f_{A}(x_{0}) / f_{P}(x_{0}), \quad (18)$$

$$s(x_{0}) = \frac{1}{2} a \partial_{0} \partial_{0}^{*} f_{P}(x_{0}) / f_{P}(x_{0}). \quad (19)$$

We can calculate another set of m', r', and s' from the correlation functions

$$f'_{A}(T - x_{0}) = +\frac{1}{N_{f}^{2} - 1} \langle A^0_0(x) O'^{a}\rangle. \quad (20)$$

$$f'_{P}(T - x_{0}) = -\frac{1}{N_{f}^{2} - 1} \langle P^{a}(x) O'^{a}\rangle, \quad (21)$$

using the source operator at the other boundary

$$O'^{a} = a^{6} \sum_{y,z} \bar{\xi}'(y) \gamma_{5} \tau^{a} \xi'(z), \quad (22)$$

where ξ' is the boundary field at $x_{0} = T$.

The improvement condition to fix c_{SW} is obtained by requiring that quark masses calculated with different boundary conditions coincide with each other. However, a naive condition $m(x_{0}) = m'(x_{0})$ requires a nonperturbative tuning of c_{A} as well as c_{SW}. To eliminate c_{A} from the process, it was proposed in Ref. [5] to use a modified definition of the quark mass

$$M(x_{0}, y_{0}) = m(x_{0}) - \frac{m(y_{0}) - m'(y_{0})}{s(y_{0}) - s'(y_{0})} s(x_{0}), \quad (23)$$

and similarly defined $M'(x_{0}, y_{0})$. Therefore, c_{SW} is tuned so that the following mass difference,

$$\Delta M(x_{0}, y_{0}) = M(x_{0}, y_{0}) - M'(x_{0}, y_{0}), \quad (24)$$

vanishes with a certain choice of (x_{0}, y_{0}).

In principle, we can take an arbitrary choice for (x_{0}, y_{0}), since a change of the choice leads to a difference in the $O(a^2)$ scaling violation in physical observables. In this study, we take $(x_{0}, y_{0}) = (3T/4, T/4)$ for $\Delta M(x_{0}, y_{0})$, and $(x_{0}, y_{0}) = (T/2, T/4)$ for $M(x_{0}, y_{0})$. The latter is used to specify the massless point. We note that this choice is the same as that in ALPHAS’s studies in quenched and two-flavor QCD. From now on, M and ΔM without arguments denote $M(T/2, T/4)$ and $\Delta M(3T/4, T/4)$, respectively.

In practice, c_{SW} is determined by demanding that M and ΔM satisfy the following improvement condition,

$$\begin{bmatrix} M \\ \Delta M \end{bmatrix} = \begin{bmatrix} 0 \\ \Delta M_0 \end{bmatrix}, \quad (25)$$

where ΔM_0 is the tree-level value of ΔM at the massless point $M = 0$ on the finite lattice volume $L^3 \times T$. We tune ΔM to $\Delta M(0)$ but not to zero so that the weak coupling limit of the nonperturbatively determined c_{SW} is exactly unity. On our lattice size of $8^3 \times 16$, $a\Delta M_0 = 0.000277$ [5]. We also note that the tuning of M to the massless point provides a nonperturbative estimate of the critical hopping parameter K_c in the $O(a^2)$-improved theory.

III. TWO-FLAVOR QCD AT $\beta = 5.2$

A. Simulation method

In this section, we report the determination of c_{SW} in two-flavor QCD at $\beta = 5.2$.

Our numerical simulations are carried out on a $8^3 \times 16$ lattice at six values of c_{SW} in a range $c_{SW} = 1.5$–3.0. We choose two to four values for the hopping parameter K at each c_{SW} so that we have data of ΔM at both positive and negative values of M, and/or at M close to the massless point ($|aM| \leq 0.01$ in our study). This enables us to tune $(M, \Delta M)$ to $(0, \Delta M(0))$ by an interpolation or short extrapolation. The simulated values of c_{SW} and K are summarized in Table I.

We use the standard HMC algorithm with the asymmetric even-odd preconditioning described in Refs. [15,16] for the determinants of the quark matrix D. We solve the linear equation $DX = B$ using the BiCGStab algorithm [17] with the stopping condition

$$||R_i||/||B|| < 10^{-14}, \quad (26)$$

where $R_i = DX_i - B$ is the residual vector and X_i is the estimate for the solution X in the ith BiCGStab iteration. The HMC trajectory length is fixed to the unit length. We set the number of the molecular dynamics steps to 60–80, which achieves the acceptance rate higher than 80%.
correlators \(f_X \) and \(f'_X \) are measured at every trajectory. We use the jackknife method to estimate statistical errors of \(f_X, f'_X \) and all results derived from them.

B. Numerical results

Numerical results of \(M \) and \(\Delta M \) are summarized in Table II. In order to fix \(c_{SW} \) and \(K_c \) satisfying the improvement condition Eq. (25), we parametrize \(M \) and \(\Delta M \) by a simultaneous fit in terms of \(1/K \) and \(c_{SW} \):

\[
aM = a_M + \frac{b^{(1)}_M}{K} + \frac{b^{(2)}_M}{K^2} + c^{(1)}_M c_{SW} + c^{(2)}_M c_{SW}^2 + \frac{d_M}{K} c_{SW},
\]

\[
a\Delta M = a_{\Delta M} + \frac{b^{(1)}_{\Delta M}}{K} + \frac{b^{(2)}_{\Delta M}}{K^2} + c^{(1)}_{\Delta M} c_{SW} + c^{(2)}_{\Delta M} c_{SW}^2 + \frac{d_{\Delta M}}{K} c_{SW},
\]

(27)

(28)

Fit parameters are summarized in Table III. Figure 1 shows \(1/K \) dependence of \(M \) and \(\Delta M \), and \(M \) dependence of \(\Delta M \) at each \(c_{SW} \). By interpolating \((M, \Delta M)\) to \((0, \Delta M^{(0)})\) with this parametrization, we obtain

\[
c_{SW} = 1.908(64), \quad K_c = 0.1381(12).
\]

We also test another method for the parametrization of \(M \) and \(\Delta M \) in order to estimate the systematic error due to the simultaneous fit equations (27) and (28). At each \(c_{SW} \), we determine \(\Delta M \) at \(M = 0 \) by a linear fit

\[
a\Delta M = a_{\Delta M}' + b_{\Delta M}' c_{SW} + c_{\Delta M}' c_{SW}^2.
\]

(31)

At \(c_{SW} = 1.90 \) and 2.02 where we simulate more than two values for \(K \), we also test a quadratic form and find that the higher order contribution is small and can be safely neglected in this analysis. Figure 2 shows \(c_{SW} \) dependence of \(\Delta M \) at \(M = 0 \) which we parametrize by linear or quadratic forms

\[
a\Delta M = a_{\Delta M}' + b_{\Delta M}' c_{SW} + c_{\Delta M}' c_{SW}^2.
\]

(32)

By tuning \(\Delta M \) to its tree-level value, we obtain \(c_{SW} = 1.979(68) \) from the linear fit as reported in Ref. [12], and 1.975(50) from the quadratic one. These are consistent with the result from the combined fit. This good agreement originates from our careful choice of \(c_{SW} \) and \(K_c \) in simu-
relations: since we choose these parameters so that the region of \((M, \Delta M)\) contains \((0, \Delta M^{(0)})\) as shown in Fig. 1, \(c_{SW}\) can be fixed by a short interpolation for which the uncertainty due to the choice of the parametrization function for \(M\) and \(\Delta M\) is not large.

ALPHA’s interpolation formula in Ref. [6] gives \(c_{SW} = 2.017\) at \(\beta = 5.2\), which is consistent with our results. This confirms that ALPHA’s formula can be used down to \(\beta = 5.2\) as in the UKQCD [11] and JLQCD simulations [12].

However, as pointed out in Ref. [18], there are large cutoff effects in the PCAC quark mass \(m\) and the mass dependence of the Sommer scale \(r_0\) [19] around \(\beta = 5.2\). There is a possibility that the improvement condition Eq. (25) adopted in this and ALPHA’s previous studies leaves unexpectedly large \(O(a^2)\) scaling violations in physical observables around this value of \(\beta\). Therefore, a test of alternative improvement conditions and scaling properties of physical observables is an important subject to avoid the large cutoff effects in future lattice calculations.

IV. THREE-FLAVOR QCD

A. Simulation method

We determine \(c_{SW}\) in three-flavor QCD at nine values of \(\beta\) in the range \(\beta = 12.0 – 5.2\). Numerical simulations are carried out on a \(8^3 \times 16\) lattice at four values of \(c_{SW}\) at each \(\beta\), and three or four values of \(K\) at each \(c_{SW}\). These values are carefully chosen so that the region of \((M, \Delta M)\) contains or is sufficiently close to the point \((0, \Delta M^{(0)})\) which satisfies the improvement condition Eq. (25). These simulation parameters are summarized in Table IV.

In our simulations, we adopt the standard HMC algorithm for two-flavors of dynamical quarks and a polynomial HMC algorithm developed in Ref. [16] for the remaining one-flavor. We employ the symmetric even-odd preconditioning in Refs. [15,16] for the quark matrix \(D\). As in the two-flavor simulations at \(\beta = 5.2\), we calcu-
TABLE IV. Simulation parameters in three-flavor QCD.

<table>
<thead>
<tr>
<th>β</th>
<th>c_{SW}</th>
<th>c_{SW}</th>
<th>c_{SW}</th>
<th>c_{SW}</th>
<th>c_{SW}</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$= 1.08624$</td>
<td>$= 1.12036$</td>
<td>$= 1.15448$</td>
<td>$= 1.18860$</td>
<td></td>
</tr>
<tr>
<td>K</td>
<td>N_{tra}</td>
<td>N_{tra}</td>
<td>N_{tra}</td>
<td>N_{tra}</td>
<td>N_{tra}</td>
</tr>
<tr>
<td>0.128958</td>
<td>3000</td>
<td>0.128958</td>
<td>3000</td>
<td>0.128958</td>
<td>3000</td>
</tr>
<tr>
<td>0.129607</td>
<td>3000</td>
<td>0.129607</td>
<td>3000</td>
<td>0.129607</td>
<td>3000</td>
</tr>
<tr>
<td>0.130257</td>
<td>3000</td>
<td>0.130257</td>
<td>3000</td>
<td>0.130257</td>
<td>3000</td>
</tr>
<tr>
<td>0.130906</td>
<td>3000</td>
<td>0.130906</td>
<td>3000</td>
<td>0.130906</td>
<td>3000</td>
</tr>
</tbody>
</table>

We note that, even with the SF setup, there is a difficulty in simulating massless or negative quark masses in three-flavor QCD. In the strong coupling region, eigenvalues of D have large fluctuations and they can take values outside the radius of convergence of $P[D]$. If this happens, the polynomial approximation $P[D]$ and Taylor expansion of $W[D]$ break down. For this reason, our simulations in the strong coupling region are performed only down to $M \approx 0$, while negative quark masses $M \approx -0.03$ are simulated in the weak coupling region $\beta \approx 12$.

We accumulate statistics N_{tra} summarized in Table IV, and measure the correlators f_X and $f_X/(X = A, P)$ at every trajectory. The dependence of the jackknife error of M on the bin size N_{bin} is investigated in a range $N_{\text{bin}} = 1 - N_{\text{tra}}/20$. We then adopt N_{bin} giving the maximum error in the jackknife procedure in the following analysis.

We determine c_{SW} and K_c nonperturbatively also in four-flavor, two-flavor, and quenched QCD at $\beta = 9.6$ to study their N_f dependence. The simulation method is similar to that in three-flavor QCD, except that we use the standard HMC algorithm in these cases. Simulation parameters are summarized in Tables V, VI, and VII.

B. Nonperturbative c_{SW} in three-flavor QCD

Numerical results of M and ΔM are summarized in Table VIII. In Fig. 3, we plot M and M' at several values of β as a function of x_0. With our statistics, aM, aM', and hence $a\Delta M$ have an accuracy of 10^{-3} at all simulation parameters. These accurate data enable us to reduce the statistical error of c_{SW} to the level of $\sim 5\%$ even at our coarsest lattice spacing.

In order to parametrize the K and c_{SW} dependence of M and ΔM, we use the combined fit of Eqs. (27) and (28). Fit parameters are summarized in Tables IX and X. Figs. 4 and 5 show M and ΔM and their fit curves at several values of β. We observe that our data are well described by the combined fit. Consequently, as shown in Fig. 6, M dependence of ΔM is reproduced reasonably well by the fit. We fix c_{SW} and K_c satisfying the improvement condition late D^{-1} using the BiCGStab algorithm with the tolerance parameter $||R||/||B|| < 10^{-14}$. We set the number of the molecular dynamics steps to 80. This achieves the acceptance rate of about 90\% or higher.

In the PHMC algorithm, we use the Chebyshev polynomial $P[D]$ to approximate D^{-1}. In order to make this algorithm exact, the correction factor

$$P_{\text{corr}} = \det[W(D)]$$

with $W[D] = P[D]D$ is taken into account by the noisy Metropolis method [20]. We calculate the square root of $W[D]$, which is required in the Metropolis test, with an accuracy of 10^{-14} using the Taylor expansion of $W[D]$ [16]. The order of the polynomial N_{poly} is chosen so that we achieve the acceptance rate of about 90\% or higher for the Metropolis test.

We determine c_{SW} and K_c nonperturbatively also in four-flavor, two-flavor, and quenched QCD at $\beta = 9.6$ to study their N_f dependence. The simulation method is similar to that in three-flavor QCD, except that we use the standard HMC algorithm in these cases. Simulation parameters are summarized in Tables V, VI, and VII.
The interpolation formula for K_c reasonably well with k with the nonperturbatively tuned c. Eq. (25) using this parametrization. Numerical results for the nonperturbatively tuned c_{SW} and K_c are summarized in Table XI.

As in the analysis in two-flavor QCD at $\beta = 5.2$, we test Eqs. (31) and (32) as the alternative method for the alternative form,

$$K_c = 1/8 + k^{(1)} g_{0}^{2} + 0.000964911 g_{0}^{4} + 0.00298136 g_{0}^{6} + 0.00100995 g_{0}^{8} - 0.00235564 g_{0}^{10},$$

with $k^{(1)} = 0.00843986$. These fits reproduce our data reasonably well with χ^2/dof of around 1.6. We also note that the coefficients of $O(g_{0}^{2})$ terms in these fits are constrained so that these expressions coincide with their one-loop estimates [21,22] up to $O(g_{0}^{3})$.

We plot the β dependence of c_{SW} and K_c in Fig. 7. While c_{SW} in three-flavor QCD is well approximated by the parametrization. We confirm that the two methods give consistent results both for c_{SW} and K_c, and hence conclude that the systematic error due to the parametrization method for M and ΔM is small.

We fit c_{SW} to a rational function of g_{0}^{2} and obtain the following interpolation formula,

$$c_{SW} = \frac{1 - 0.194785 g^{2} - 0.110781 g^{4} - 0.0230239 g^{6} + 0.137401 g^{8}}{1 - 0.46068 g^{2}}.$$ \hspace{1cm} (34)

The interpolation formula for K_c is obtained in a polynomial form,

$$K_c = 1/8 + k^{(1)} g_{0}^{2} + 0.000964911 g_{0}^{4} + 0.00298136 g_{0}^{6} + 0.00100995 g_{0}^{8} - 0.00235564 g_{0}^{10},$$

with $k^{(1)} = 0.00843986$. These fits reproduce our data reasonably well with χ^2/dof of around 1.6. We also note that the coefficients of $O(g_{0}^{2})$ terms in these fits are constrained so that these expressions coincide with their one-loop estimates [21,22] up to $O(g_{0}^{3})$.

We plot the β dependence of c_{SW} and K_c in Fig. 7. While c_{SW} in three-flavor QCD is well approximated by the parametrization. We confirm that the two methods give consistent results both for c_{SW} and K_c, and hence conclude that the systematic error due to the parametrization method for M and ΔM is small.

We fit c_{SW} to a rational function of g_{0}^{2} and obtain the following interpolation formula,

$$c_{SW} = \frac{1 - 0.194785 g^{2} - 0.110781 g^{4} - 0.0230239 g^{6} + 0.137401 g^{8}}{1 - 0.46068 g^{2}}.$$ \hspace{1cm} (34)

The one-loop estimate in the weak coupling region of $g_{0}^{2} < 0.4 (\beta > 15)$, it develops a significant deviation toward the strong coupling. Similar deviation is also observed in K_c. It is possible that these deviations are partly compensated by a better choice of the expansion parameter for lattice perturbation theory [23]. However, the large deviation at the strong coupling $g_{0}^{2} \approx 1.0$ suggests that one-loop $O(a)$-improved Wilson quark action leads to a significant $O(a)$ scaling violation in physical observables at the strong coupling region, where high statistics simulations are feasible with currently available computer resources. Therefore, the use of c_{SW} in Eq. (34) is essential to remove the $O(a)$ effects in practical lattice calculations.
<table>
<thead>
<tr>
<th>K</th>
<th>$c_{SW} = 1.08624$</th>
<th>$c_{SW} = 1.20836$</th>
</tr>
</thead>
<tbody>
<tr>
<td>aM</td>
<td>$a\Delta M$</td>
<td>K</td>
</tr>
<tr>
<td>0.128958</td>
<td>0.03502(11)</td>
<td>0.00107(13)</td>
</tr>
<tr>
<td>0.129607</td>
<td>0.01498(13)</td>
<td>0.00099(12)</td>
</tr>
<tr>
<td>0.130257</td>
<td>-0.00544(10)</td>
<td>0.00100(14)</td>
</tr>
<tr>
<td>0.130906</td>
<td>-0.02591(11)</td>
<td>0.00116(12)</td>
</tr>
</tbody>
</table>

$\beta = 12.0$

<table>
<thead>
<tr>
<th>K</th>
<th>$c_{SW} = 1.15448$</th>
<th>$c_{SW} = 1.18860$</th>
</tr>
</thead>
<tbody>
<tr>
<td>aM</td>
<td>$a\Delta M$</td>
<td>K</td>
</tr>
<tr>
<td>0.128958</td>
<td>0.02581(9)</td>
<td>0.00027(12)</td>
</tr>
<tr>
<td>0.129607</td>
<td>0.00561(11)</td>
<td>0.00015(11)</td>
</tr>
<tr>
<td>0.130257</td>
<td>-0.01512(14)</td>
<td>0.00008(13)</td>
</tr>
<tr>
<td>0.130906</td>
<td>-0.03555(17)</td>
<td>0.00025(13)</td>
</tr>
</tbody>
</table>

$\beta = 9.6$

<table>
<thead>
<tr>
<th>K</th>
<th>$c_{SW} = 1.12990$</th>
<th>$c_{SW} = 1.16539$</th>
</tr>
</thead>
<tbody>
<tr>
<td>aM</td>
<td>$a\Delta M$</td>
<td>K</td>
</tr>
<tr>
<td>0.13043</td>
<td>0.03818(12)</td>
<td>0.00118(10)</td>
</tr>
<tr>
<td>0.13109</td>
<td>0.01805(9)</td>
<td>0.00100(12)</td>
</tr>
<tr>
<td>0.13175</td>
<td>-0.00275(10)</td>
<td>0.00104(14)</td>
</tr>
<tr>
<td>0.13240</td>
<td>-0.02312(11)</td>
<td>0.00104(13)</td>
</tr>
</tbody>
</table>

$\beta = 7.4$

<table>
<thead>
<tr>
<th>K</th>
<th>$c_{SW} = 1.2258$</th>
<th>$c_{SW} = 1.2643$</th>
</tr>
</thead>
<tbody>
<tr>
<td>aM</td>
<td>$a\Delta M$</td>
<td>K</td>
</tr>
<tr>
<td>0.13293</td>
<td>0.04147(22)</td>
<td>0.00135(19)</td>
</tr>
<tr>
<td>0.13360</td>
<td>0.02134(21)</td>
<td>0.00158(25)</td>
</tr>
<tr>
<td>0.13427</td>
<td>0.00079(21)</td>
<td>0.00099(26)</td>
</tr>
<tr>
<td>0.13494</td>
<td>-0.02065(24)</td>
<td>0.00077(28)</td>
</tr>
</tbody>
</table>

$\beta = 6.8$

<table>
<thead>
<tr>
<th>K</th>
<th>$c_{SW} = 1.2783$</th>
<th>$c_{SW} = 1.3184$</th>
</tr>
</thead>
<tbody>
<tr>
<td>aM</td>
<td>$a\Delta M$</td>
<td>K</td>
</tr>
<tr>
<td>0.13391</td>
<td>0.04462(36)</td>
<td>0.00066(28)</td>
</tr>
<tr>
<td>0.13459</td>
<td>0.02457(29)</td>
<td>0.00079(32)</td>
</tr>
<tr>
<td>0.13526</td>
<td>0.00338(33)</td>
<td>0.00098(30)</td>
</tr>
<tr>
<td>0.13594</td>
<td>-0.01824(30)</td>
<td>0.00163(37)</td>
</tr>
</tbody>
</table>

$\beta = 6.8$
\begin{table}[h]
\centering
\begin{tabular}{cccccc}
\hline
K & aM & $a\Delta M$ & K & $c_{SW} = 1.3117$ & aM & $a\Delta M$ \\
\hline
0.13501 & 0.05392(55) & 0.00085(50) & 0.13501 & 0.03677(44) & 0.00097(29) \\
0.13555 & 0.03766(40) & 0.00107(32) & 0.13555 & 0.02065(30) & 0.00063(33) \\
0.13609 & 0.02152(36) & 0.00080(38) & 0.13609 & 0.000353(6) & 0.00058(32) \\
0.13664 & 0.00403(41) & 0.00175(34) & 0.13664 & $-0.01345(53)$ & 0.00168(41) \\
\hline
K & aM & $a\Delta M$ & K & $c_{SW} = 1.4233$ & aM & $a\Delta M$ \\
\hline
0.13446 & 0.03635(37) & 0.00070(37) & 0.13446 & 0.01834(37) & $-0.00034(33)$ \\
0.13501 & 0.01915(34) & 0.00028(37) & 0.13501 & 0.00198(38) & 0.00060(30) \\
0.13555 & 0.00284(43) & 0.00092(33) & 0.13550 & $-0.000807(57)$ & 0.00075(47) \\
0.13609 & $-0.01497(43)$ & 0.00050(37) & 0.13555 & $-0.01599(41)$ & $-0.00039(51)$ \\
\hline
K & aM & $a\Delta M$ & K & $c_{SW} = 1.3237$ & aM & $a\Delta M$ \\
\hline
0.13552 & 0.07608(51) & 0.00154(39) & 0.13552 & 0.05826(50) & 0.00156(37) \\
0.13607 & 0.06056(57) & 0.00175(43) & 0.13607 & 0.04182(39) & 0.00124(44) \\
0.13661 & 0.04411(52) & 0.00204(48) & 0.13661 & 0.02400(46) & 0.00077(40) \\
0.13716 & 0.02755(53) & 0.00241(53) & 0.13716 & 0.00843(50) & 0.00259(53) \\
\hline
K & aM & $a\Delta M$ & K & $c_{SW} = 1.4364$ & aM & $a\Delta M$ \\
\hline
0.13448 & 0.05492(48) & 0.00054(40) & 0.13448 & 0.03635(37) & $-0.00060(60)$ \\
0.13552 & 0.03893(49) & 0.00035(54) & 0.13552 & 0.01878(41) & 0.00030(45) \\
0.13607 & 0.02221(48) & 0.00107(44) & 0.13607 & 0.002354(5) & $-0.00057(48)$ \\
0.13661 & 0.00562(49) & 0.00031(50) & 0.13661 & $-0.000692(49)$ & 0.00076(39) \\
\hline
K & aM & $a\Delta M$ & K & $c_{SW} = 1.5431$ & aM & $a\Delta M$ \\
\hline
0.13575 & 0.04354(59) & 0.00079(42) & 0.13575 & 0.02748(50) & $-0.00068(47)$ \\
0.13644 & 0.02091(55) & $-0.00039(51)$ & 0.13644 & 0.00695(130) & 0.00053(54) \\
0.13712 & $-0.00181(57)$ & 0.00072(53) & 0.13712 & $-0.00087(70)$ & $-0.00087(64)$ \\
0.13750 & $-0.01386(70)$ & 0.00070(72) & 0.13750 & $-0.01702(60)$ & $-0.00089(65)$ \\
\hline
K & aM & $a\Delta M$ & K & $c_{SW} = 1.6745$ & aM & $a\Delta M$ \\
\hline
0.13507 & 0.01331(69) & $-0.00081(51)$ & 0.13507 & 0.02292(42) & $-0.00140(52)$ \\
0.13540 & 0.00078(64) & $-0.00022(61)$ & 0.13540 & 0.00521(59) & $-0.00104(39)$ \\
0.13575 & $-0.00097(54)$ & $-0.00078(43)$ & 0.13575 & $-0.00173(44)$ & $-0.00082(42)$ \\
0.13585 & $-0.01124(62)$ & $-0.00115(51)$ & 0.13585 & $-0.01153(59)$ & $-0.00172(69)$ \\
\hline
K & aM & $a\Delta M$ & K & $c_{SW} = 1.7401$ & aM & $a\Delta M$ \\
\hline
0.13750 & 0.03310(70) & 0.00015(43) & 0.13750 & 0.03592(56) & $-0.00031(40)$ \\
0.13810 & 0.01245(75) & 0.00083(52) & 0.13810 & 0.02622(54) & 0.00032(52) \\
0.13825 & 0.00684(78) & 0.00053(62) & 0.13825 & 0.01653(48) & 0.00030(46) \\
0.13840 & 0.00082(124) & 0.000100(49) & 0.13840 & $-0.00589(52)$ & 0.00106(57) \\
\hline
K & aM & $a\Delta M$ & K & $c_{SW} = 1.9$ & aM & $a\Delta M$ \\
\hline
0.13480 & 0.03073(51) & $-0.00129(56)$ & 0.13480 & 0.03600(40) & $-0.00149(40)$ \\
0.13520 & 0.01650(50) & $-0.00048(49)$ & 0.13520 & 0.02250(34) & $-0.00167(51)$ \\
0.13560 & 0.00373(52) & 0.000107(47) & 0.13560 & 0.00871(47) & $-0.00104(40)$ \\
0.13580 & $-0.00426(70)$ & $-0.00062(53)$ & 0.13580 & $-0.00508(51)$ & $-0.00194(51)$ \\
\hline
\end{tabular}
\caption{TABLE VIII. (continued)}
\end{table}
TABLE VIII. (continued)

<table>
<thead>
<tr>
<th>β</th>
<th>χ^2/dof</th>
<th>a_M</th>
<th>$b_M^{(1)}$</th>
<th>$b_M^{(2)}$</th>
<th>$c_M^{(1)}$</th>
<th>$c_M^{(2)}$</th>
<th>d_M</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.0</td>
<td>0.96</td>
<td>-10.9(1.1)</td>
<td>240(28)</td>
<td>-0.125(18)</td>
<td>-0.47(13)</td>
<td>-0.012(23)</td>
<td>0.046(16)</td>
</tr>
<tr>
<td>9.6</td>
<td>1.41</td>
<td>-13.1(1.1)</td>
<td>3.02(30)</td>
<td>-0.168(20)</td>
<td>-0.64(14)</td>
<td>-0.047(22)</td>
<td>0.076(17)</td>
</tr>
<tr>
<td>7.4</td>
<td>1.17</td>
<td>-15.9(2.9)</td>
<td>3.90(81)</td>
<td>-0.233(55)</td>
<td>-0.90(34)</td>
<td>-0.057(39)</td>
<td>0.106(46)</td>
</tr>
<tr>
<td>6.8</td>
<td>1.57</td>
<td>-24.9(4.3)</td>
<td>6.6(1.2)</td>
<td>-0.430(85)</td>
<td>-2.30(47)</td>
<td>0.016(53)</td>
<td>0.266(68)</td>
</tr>
<tr>
<td>6.3</td>
<td>0.66</td>
<td>-19.0(5.8)</td>
<td>5.0(1.7)</td>
<td>-0.33(12)</td>
<td>-1.99(66)</td>
<td>-0.094(40)</td>
<td>0.262(97)</td>
</tr>
<tr>
<td>6.0</td>
<td>1.19</td>
<td>-12.2(6.6)</td>
<td>3.2(1.9)</td>
<td>-0.20(13)</td>
<td>-1.75(64)</td>
<td>-0.111(40)</td>
<td>0.234(92)</td>
</tr>
<tr>
<td>5.7</td>
<td>1.16</td>
<td>-7.6(9.5)</td>
<td>1.6(3.0)</td>
<td>-0.07(23)</td>
<td>-0.4(1.8)</td>
<td>-0.007(99)</td>
<td>0.005(280)</td>
</tr>
<tr>
<td>5.4</td>
<td>0.92</td>
<td>-27(11)</td>
<td>8.0(3.7)</td>
<td>-0.58(30)</td>
<td>-5.0(2.7)</td>
<td>-0.19(17)</td>
<td>0.7(45)</td>
</tr>
<tr>
<td>5.2</td>
<td>1.42</td>
<td>-38(22)</td>
<td>11.9(7.4)</td>
<td>-0.91(62)</td>
<td>-8.0(5.5)</td>
<td>-0.32(35)</td>
<td>1.17(93)</td>
</tr>
</tbody>
</table>

C. N_f dependence

In Fig. 7, a comparison of our interpolation formula and those by ALPHA Collaboration in two-flavor and quenched QCD suggests that c_{SW} monotonously decreases as N_f increases at fixed β. However, the difference between two- and three-flavor QCD is not large. This comparison may also suffer from the systematic error due to the difference in the analysis method between the two collaborations. In order to study the N_f dependence more carefully, we determine c_{SW} and K_c for $N_f = 4, 2, 0$ at $\beta = 9.6$ with an analysis method similar to that for $N_f = 3$. We obtain M and ΔM summarized in Tables XII, XIII, and XIV. A fit to Eqs. (27) and (28) results in parameters given in Tables XV and XVI. Using the improvement condition Eq. (25), we obtain c_{SW} and K_c summarized in Table XVII.

Figure 8 shows c_{SW} and K_c at $\beta = 9.6$ as a function of N_f. While K_c has an evident N_f dependence, that for c_{SW} is

TABLE IX. Fit parameters for Eq. (27) in three-flavor QCD.

<table>
<thead>
<tr>
<th>β</th>
<th>χ^2/dof</th>
<th>a_M</th>
<th>$b_M^{(1)}$</th>
<th>$b_M^{(2)}$</th>
<th>$c_M^{(1)}$</th>
<th>$c_M^{(2)}$</th>
<th>d_M</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.0</td>
<td>0.96</td>
<td>-10.9(1.1)</td>
<td>240(28)</td>
<td>-0.125(18)</td>
<td>-0.47(13)</td>
<td>-0.012(23)</td>
<td>0.046(16)</td>
</tr>
<tr>
<td>9.6</td>
<td>1.41</td>
<td>-13.1(1.1)</td>
<td>3.02(30)</td>
<td>-0.168(20)</td>
<td>-0.64(14)</td>
<td>-0.047(22)</td>
<td>0.076(17)</td>
</tr>
<tr>
<td>7.4</td>
<td>1.17</td>
<td>-15.9(2.9)</td>
<td>3.90(81)</td>
<td>-0.233(55)</td>
<td>-0.90(34)</td>
<td>-0.057(39)</td>
<td>0.106(46)</td>
</tr>
<tr>
<td>6.8</td>
<td>1.57</td>
<td>-24.9(4.3)</td>
<td>6.6(1.2)</td>
<td>-0.430(85)</td>
<td>-2.30(47)</td>
<td>0.016(53)</td>
<td>0.266(68)</td>
</tr>
<tr>
<td>6.3</td>
<td>0.66</td>
<td>-19.0(5.8)</td>
<td>5.0(1.7)</td>
<td>-0.33(12)</td>
<td>-1.99(66)</td>
<td>-0.094(40)</td>
<td>0.262(97)</td>
</tr>
<tr>
<td>6.0</td>
<td>1.19</td>
<td>-12.2(6.6)</td>
<td>3.2(1.9)</td>
<td>-0.20(13)</td>
<td>-1.75(64)</td>
<td>-0.111(40)</td>
<td>0.234(92)</td>
</tr>
<tr>
<td>5.7</td>
<td>1.16</td>
<td>-7.6(9.5)</td>
<td>1.6(3.0)</td>
<td>-0.07(23)</td>
<td>-0.4(1.8)</td>
<td>-0.007(99)</td>
<td>0.005(280)</td>
</tr>
<tr>
<td>5.4</td>
<td>0.92</td>
<td>-27(11)</td>
<td>8.0(3.7)</td>
<td>-0.58(30)</td>
<td>-5.0(2.7)</td>
<td>-0.19(17)</td>
<td>0.7(45)</td>
</tr>
<tr>
<td>5.2</td>
<td>1.42</td>
<td>-38(22)</td>
<td>11.9(7.4)</td>
<td>-0.91(62)</td>
<td>-8.0(5.5)</td>
<td>-0.32(35)</td>
<td>1.17(93)</td>
</tr>
</tbody>
</table>

TABLE X. Fit parameters for Eq. (28) in three-flavor QCD.

<table>
<thead>
<tr>
<th>β</th>
<th>χ^2/dof</th>
<th>a_M</th>
<th>$b_M^{(1)}$</th>
<th>$b_M^{(2)}$</th>
<th>$c_M^{(1)}$</th>
<th>$c_M^{(2)}$</th>
<th>d_M</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.0</td>
<td>0.96</td>
<td>-10.9(1.1)</td>
<td>240(28)</td>
<td>-0.125(18)</td>
<td>-0.47(13)</td>
<td>-0.012(23)</td>
<td>0.046(16)</td>
</tr>
<tr>
<td>9.6</td>
<td>1.41</td>
<td>-13.1(1.1)</td>
<td>3.02(30)</td>
<td>-0.168(20)</td>
<td>-0.64(14)</td>
<td>-0.047(22)</td>
<td>0.076(17)</td>
</tr>
<tr>
<td>7.4</td>
<td>1.17</td>
<td>-15.9(2.9)</td>
<td>3.90(81)</td>
<td>-0.233(55)</td>
<td>-0.90(34)</td>
<td>-0.057(39)</td>
<td>0.106(46)</td>
</tr>
<tr>
<td>6.8</td>
<td>1.57</td>
<td>-24.9(4.3)</td>
<td>6.6(1.2)</td>
<td>-0.430(85)</td>
<td>-2.30(47)</td>
<td>0.016(53)</td>
<td>0.266(68)</td>
</tr>
<tr>
<td>6.3</td>
<td>0.66</td>
<td>-19.0(5.8)</td>
<td>5.0(1.7)</td>
<td>-0.33(12)</td>
<td>-1.99(66)</td>
<td>-0.094(40)</td>
<td>0.262(97)</td>
</tr>
<tr>
<td>6.0</td>
<td>1.19</td>
<td>-12.2(6.6)</td>
<td>3.2(1.9)</td>
<td>-0.20(13)</td>
<td>-1.75(64)</td>
<td>-0.111(40)</td>
<td>0.234(92)</td>
</tr>
<tr>
<td>5.7</td>
<td>1.16</td>
<td>-7.6(9.5)</td>
<td>1.6(3.0)</td>
<td>-0.07(23)</td>
<td>-0.4(1.8)</td>
<td>-0.007(99)</td>
<td>0.005(280)</td>
</tr>
<tr>
<td>5.4</td>
<td>0.92</td>
<td>-27(11)</td>
<td>8.0(3.7)</td>
<td>-0.58(30)</td>
<td>-5.0(2.7)</td>
<td>-0.19(17)</td>
<td>0.7(45)</td>
</tr>
<tr>
<td>5.2</td>
<td>1.42</td>
<td>-38(22)</td>
<td>11.9(7.4)</td>
<td>-0.91(62)</td>
<td>-8.0(5.5)</td>
<td>-0.32(35)</td>
<td>1.17(93)</td>
</tr>
</tbody>
</table>
not so clear. The leading N_f dependence of c_{SW} is of order $g_0^4 N_f$. By fitting our results to a linear form in N_f

$$c_{SW} = c_0 + c_1 g_0^4 N_f,$$

we obtain $c_1 = -0.0117(40)$ which suggests that the two-loop N_f dependence is significant also in c_{SW} at the relatively weak coupling $\beta = 9.6$. If a two-loop perturbative calculation of c_{SW} becomes available in the future, it will be interesting to compare the above estimate of c_1 to the perturbative estimate.
D. $O(a/L)$ uncertainty in c_{SW}

Our nonperturbative estimate of c_{SW} has $O(a/L)$ uncertainties, which affects physical observables at $O(a^2)$ when the spatial lattice size L is fixed. However, since we calculate c_{SW} with the spatial size in lattice units L/a fixed to a constant value 8, the $O(a/L)$ dependence of c_{SW} induces $O(a)$ effects in observables. These effects can be removed by extrapolating c_{SW} to the infinite volume limit, or interpolating to a fixed physical size in the whole region of g_0. However, we are not able to do that in the present work, since our data are taken at a single lattice size at each g_0.

FIG. 5. Mass difference ΔM as a function of $1/K$. Top, middle, and bottom figures show data at $\beta = 12.0$, 9.6, and 5.2, respectively. Dotted lines are fit curves of Eq. (28).

FIG. 6. Mass difference ΔM as a function of M in three-flavor QCD. Top, middle, and bottom figures show data at $\beta = 12.0$, 9.6, and 5.2, respectively. Dotted lines are fit curves reproduced from Eqs. (27) and (28).
TABLE XI. Nonperturbative estimate of c_{SW} and K_c in three-flavor QCD obtained from tree-level improvement condition Eq. (25).

<table>
<thead>
<tr>
<th>β</th>
<th>c_{SW}</th>
<th>K_c</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.0</td>
<td>1.1415(48)</td>
<td>0.129 841(21)</td>
</tr>
<tr>
<td>9.6</td>
<td>1.1916(50)</td>
<td>0.131 321(28)</td>
</tr>
<tr>
<td>7.4</td>
<td>1.316(11)</td>
<td>0.133 567(87)</td>
</tr>
<tr>
<td>6.8</td>
<td>1.358(13)</td>
<td>0.134 66(12)</td>
</tr>
<tr>
<td>6.3</td>
<td>1.447(15)</td>
<td>0.135 39(16)</td>
</tr>
<tr>
<td>6.0</td>
<td>1.494(14)</td>
<td>0.136 12(16)</td>
</tr>
<tr>
<td>5.7</td>
<td>1.544(32)</td>
<td>0.137 06(39)</td>
</tr>
<tr>
<td>5.4</td>
<td>1.740(30)</td>
<td>0.136 50(41)</td>
</tr>
<tr>
<td>5.2</td>
<td>1.764(103)</td>
<td>0.137 89(159)</td>
</tr>
</tbody>
</table>

TABLE XII. Quark mass M and its difference ΔM in four-flavor QCD at $\beta = 9.6$.

<table>
<thead>
<tr>
<th>K</th>
<th>$c_{SW} = 1.129 90$</th>
<th>$c_{SW} = 1.165 39$</th>
</tr>
</thead>
<tbody>
<tr>
<td>aM</td>
<td>$a\Delta M$</td>
<td>aM</td>
</tr>
<tr>
<td>0.130 43</td>
<td>0.035 30(11)</td>
<td>0.001 11(14)</td>
</tr>
<tr>
<td>0.131 09</td>
<td>0.015 27(12)</td>
<td>0.001 18(15)</td>
</tr>
<tr>
<td>0.131 75</td>
<td>-0.005 22(12)</td>
<td>0.001 10(12)</td>
</tr>
<tr>
<td>0.132 40</td>
<td>-0.026 11(13)</td>
<td>0.001 23(12)</td>
</tr>
</tbody>
</table>

We estimate the magnitude of $O(a/L)$ uncertainty in c_{SW} by using a modified improvement condition. In our study as well as in ALPHA’s, the improvement condition Eq. (25) is adopted instead of $\Delta M = 0$ in order to remove the tree-level $O(a/L)$ correction to c_{SW} [5]. We extend this procedure to the one-loop level, namely, the one-loop correction to ΔM for the finite lattice volume $8^3 \times 16$ given by [24]

$$a\Delta M^{(1)} = -(0.00004839 + 0.00006455N_f)$$ \hspace{1cm} (37)

is incorporated into the improvement condition

$$\begin{align*}
M & = 0, \\
\Delta M & = \Delta M^{(0)} + g_0^2 \Delta M^{(1)}
end{align*}$$ \hspace{1cm} (38)

in order to remove the $O(g_0^2 a/L)$ correction from c_{SW}.

TABLE XIII. Quark mass M and its difference ΔM in two-flavor QCD at $\beta = 9.6$.

<table>
<thead>
<tr>
<th>K</th>
<th>$c_{SW} = 1.129 90$</th>
<th>$c_{SW} = 1.165 39$</th>
</tr>
</thead>
<tbody>
<tr>
<td>aM</td>
<td>$a\Delta M$</td>
<td>aM</td>
</tr>
<tr>
<td>0.130 43</td>
<td>0.040 89(10)</td>
<td>0.001 27(13)</td>
</tr>
<tr>
<td>0.131 09</td>
<td>0.020 85(10)</td>
<td>0.001 19(13)</td>
</tr>
<tr>
<td>0.131 75</td>
<td>0.000 47(12)</td>
<td>0.001 02(16)</td>
</tr>
<tr>
<td>0.132 40</td>
<td>-0.019 98(13)</td>
<td>0.001 04(13)</td>
</tr>
</tbody>
</table>

$$c_{SW} = 1.200 89$$

\hspace{1cm}

$$c_{SW} = 1.236 38$$
From the parametrization of Eqs. (27) and (28) and the modified improvement condition Eq. (38), we obtain c_{SW} and K_c summarized in Table XVIII. A comparison with Table XI shows that the modified and original improvement conditions give consistent results with each other for c_{SW}, and hence that the $O(g_0^2a/L)$ correction is small in our results.

In Fig. 3, we observe that M and M' have a mild x_0 dependence at $4a < x_0 < 14a$. This may suggest that different conditions give consistent results with each other for c_{SW}, and hence that the $O(g_0^2a/L)$ correction is small in our results.

In Fig. 3, we observe that M and M' have a mild x_0 dependence at $4a < x_0 < 14a$. This may suggest that different conditions give consistent results with each other for c_{SW}, and hence that the $O(g_0^2a/L)$ correction is small in our results.

From the parametrization of Eqs. (27) and (28) and the modified improvement condition Eq. (38), we obtain c_{SW} and K_c summarized in Table XVIII. A comparison with Table XI shows that the modified and original improvement conditions give consistent results with each other for c_{SW}, and hence that the $O(g_0^2a/L)$ correction is small in our results.

In Fig. 3, we observe that M and M' have a mild x_0 dependence at $4a < x_0 < 14a$. This may suggest that different conditions give consistent results with each other for c_{SW}, and hence that the $O(g_0^2a/L)$ correction is small in our results.

Table XIV. Quark mass M and its difference ΔM in quenched QCD at $\beta = 9.6$.

| Table XIV. Quark mass M and its difference ΔM in quenched QCD at $\beta = 9.6$. |
|---------------------------------|---------------------------------|---------------------------------|
| $c_{SW} = 1.12990$ | $c_{SW} = 1.16539$ | $c_{SW} = 1.20089$ | $c_{SW} = 1.23638$ |
| K | aM | $a\Delta M$ |
| 0.13043 | 0.03458(9) | 0.000 36(11) | 0.13043 | 0.02840(8) | −0.000 15(10) | 0.13043 | 0.03458(9) | 0.000 36(11) | 0.13043 | 0.02840(8) | −0.000 15(10) |
| 0.13109 | 0.01451(7) | 0.000 34(12) | 0.13109 | 0.00818(7) | 0.000 06(10) | 0.13109 | 0.01451(7) | 0.000 34(12) | 0.13109 | 0.00818(7) | 0.000 06(10) |
| 0.13175 | −0.00580(8) | 0.000 50(14) | 0.13175 | −0.01231(8) | −0.000 05(13) | 0.13175 | −0.00580(8) | 0.000 50(14) | 0.13175 | −0.01231(8) | −0.000 05(13) |
| 0.13240 | −0.02607(10) | 0.000 53(16) | 0.13240 | −0.03247(10) | −0.000 13(21) | 0.13240 | −0.02607(10) | 0.000 53(16) | 0.13240 | −0.03247(10) | −0.000 13(21) |

FIG. 7. Nonperturbatively determined c_{SW} (top figure) and K_c (bottom figure) as a function of g_0^2. For K_c in quenched QCD, author’s interpolation of ALPHA’s results is plotted.

FIG. 8. Plots of c_{SW} (top figure), K_c (bottom figure) at $\beta = 9.6$ as a function of N_f. The dashed line shows a linear fit to data.
different choices of \(x_0 \) for the improvement condition Eqs. (25) and (38) lead to a small difference in \(c_{SW} \) and hence its \(O(a/L) \) ambiguity is not large.

From these observations, we expect that \(O(g_a^2 a/L) \) corrections are not large at \(L/a = 8 \), and that \(c_{SW} \) in the infinite volume limit is well approximated by our results. It is an important subject in future studies to confirm this point by a direct calculation of \(c_{SW} \) with varying \(L \).

V. CONCLUSION

In this paper, we have performed a nonperturbative \(O(a) \) improvement of the Wilson quark action in three-flavor QCD with the plaquette gauge action. Our high statistics at carefully chosen simulation parameters \(c_{SW} \) and \(K \) enable us to determine nonperturbative \(c_{SW} \) with an accuracy of \(\sim 5\% \) level in the wide range of \(\beta = 12.0 \text{ to } 5.2 \). The main result of this study is the interpolation formula equation (34), with which the \(O(a) \) scaling violation in physical observables can be removed in future simulations at \(\beta \geq 5.2 \). As a by-product, we also obtain the interpolation formula for \(K_c \), which is useful to locate simulation points.

While it is expected that \(O(a/L) \) uncertainty in \(c_{SW} \) is not large, this point should be confirmed by a direct determination of \(c_{SW} \) with varying \(L \). A test of scaling properties of physical observables with our estimate of \(c_{SW} \) is an important next step toward an extensive simulation of three-flavor QCD with the plaquette gauge action.

054505-15
We note that the range of β explored in this study is significantly higher than $\beta = 5.0$, where an artificial phase transition exists. Numerical studies at β below our range would possibly suffer from large distortion of scaling properties of physical observables. The use of improved gauge actions removes the lattice artifact and can push simulations toward coarser lattice spacings. This possibility is explored in a separate publication [9].

ACKNOWLEDGMENTS

This work is supported by the Supercomputer Project No. 98 (FY2003) of the High Energy Accelerator Research Organization (KEK), and also in part by the Grant-in-Aid of the Ministry of Education (No. 12740133, No. 13135204, No. 13640260, No. 14046202, No. 14740173, No. 15204015, No. 15540251, No. 15540279, No. 16028201, No. 16540228, No. 16740147).