<table>
<thead>
<tr>
<th>著者別名</th>
<th>門脇 和男</th>
</tr>
</thead>
<tbody>
<tr>
<td>氏名</td>
<td>未定</td>
</tr>
<tr>
<td>務職</td>
<td>未定</td>
</tr>
<tr>
<td>部署</td>
<td>未定</td>
</tr>
<tr>
<td>機関</td>
<td>未定</td>
</tr>
<tr>
<td>権利</td>
<td>未定</td>
</tr>
</tbody>
</table>

doi: 10.1103/PhysRevLett.79.3506
Unusual Dispersion and Line Shape of the Superconducting State Spectra of Bi$_2$Sr$_2$CaCu$_2$O$_{8+\delta}$

1Materials Sciences Division, Argonne National Laboratory, Argonne, Illinois 60439
2Department of Physics, University of Illinois at Chicago, Chicago, Illinois 60607
3Department of Crystalline Materials Science, Nagoya University, Nagoya 464-01, Japan
4Tata Institute of Fundamental Research, Bombay 400005, India
5Department of Physics, Tohoku University, 980 Sendai, Japan
6National Research Institute for Metals, Sengen, Tsukuba, Ibaraki 305, Japan
7Institute of Materials Science, University of Tsukuba, Ibaraki 305, Japan

(Received 18 February 1997)

Photoemission spectra of Bi$_2$Sr$_2$CaCu$_2$O$_{8+\delta}$ below T_c show two features near the ($\pi, 0$) point of the zone: a sharp peak at low energy and a higher binding energy hump. We find that the sharp peak persists at low energy even as one moves towards ($0, 0$), while the broad hump shows significant dispersion which correlates well with the normal state dispersion. We argue that these features are naturally explained by the interaction of electrons with a sharp mode which appears only below T_c, and speculate that the latter may be related to the resonance seen in recent neutron data.

PACS numbers: 74.25.Jb, 74.72.Hs, 79.60.Bm

Angle-resolved photoemission data on the quasi-two-dimensional high temperature superconductors can be interpreted in terms of the one-electron spectral function [1]. This implies that important information about the self-energy Σ, and how it changes from the normal to the superconducting (SC) state, can be obtained by analysis of the angle-resolved photoemission spectroscopy (ARPES) line shape. This obviously has important ramifications in elucidating a microscopic theory of high temperature superconductors.

Perhaps the most dramatic effect in this regard is the temperature dependence of the line shape in Bi2212 (Fig. 1). A very broad normal state spectrum near the ($\pi, 0$) point of the zone evolves quite rapidly for $T < T_c$ into a sharp, resolution limited, quasiparticle peak [1] followed at higher binding energies by a dip [2,3] then a hump, the latter corresponding to where the spectrum recovers to its normal state value. Similar effects are observed in tunneling spectra [4].

In this paper we focus on another remarkable difference between the normal state and SC state data which has not been noticed earlier. In Fig. 2, we show spectra for a $T_c = 87$ K Bi2212 sample along $\Gamma - M - Z$, i.e., $(0,0) - (\pi, 0) - (2\pi,0)$, in (a) the normal state (105 K) and (b) the SC state (13 K), from which we note two striking features. First, we see that the low energy peak in the SC state persists over a surprisingly large range in k space, even when the normal state spectra have dispersed far from the Fermi energy. For example, the sharp peak is visible at about 40 meV even in curve 4 of Fig. 2(b), when the corresponding normal state spectrum is peaked 320 meV below E_F. Second, when the hump in the SC state disperses, it essentially follows that of the normal state spectrum. This is accompanied by a transfer of weight to the hump from the low frequency peak, which is fairly fixed in energy. The same phenomena are also seen along M to Y [Fig. 2(c)]. We will argue in this paper that the unusual dispersion seen in the SC state of Fig. 2 is closely tied to the line shape change observed in Fig. 1.

The data of Figs. 1 and 2 were obtained on high quality slightly overdoped Bi2212 single crystals ($T_c = 87$ K), with measurements carried out at the Synchrotron Radiation Center, Wisconsin, using a high resolution 4 m...
normal incidence monochromator [5]. The 22 eV photons polarized along \(\Gamma - M \) (the Cu-O bond direction) were used for both narrow energy scans (resolution FWHM = 18 meV) and wide energy scans (FWHM = 35 meV). Similar results were seen on a variety of samples with different doping levels, photon polarizations, and photon energies.

The simplest explanation of the SC state spectra would be the presence of two bands (e.g., due to bilayer splitting), one responsible for the peak and the other for the hump. However, this explanation is untenable. First, if the sharp peak were associated with a second band, then this band should also appear above \(T_c \). But there is no evidence for it in the normal state data. Second, if the peak and hump were from two different bands, then their intensities must be governed by different matrix elements. However, we found [3] that the intensities of both features scaled together as the photon polarization was varied from in plane to out of plane, as if they were governed by a common matrix element. These arguments suggest that the unusual line shape and dispersion represent a single electronic state governed by nontrivial many-body effects.

Although the above arguments can also be used to eliminate a ghost image of the CuO band caused by the incommensurate superlattice [3,5] as the source of the unusual dispersive effects, it is still worthwhile to examine this in greater detail, particularly since one predicts a Fermi crossing of one of these images near curve 4 of Fig. 2. Our arguments against a superlattice interpretation are as follows. First, the ghost images are not visible in the normal state in this polarization geometry and therefore should not be visible in the SC state either. They do, however, become quite visible in the normal state if the photon polarization is rotated by 45°, as shown in Ref. [3]. Second, comparison of superconducting state spectra in these two polarizations indicate that the midpoint of the leading edge in the present polarization (20 meV) is near that of the \(M \) point, whereas in the 45° rotated polarization, the midpoint is 5 meV. The latter value would be consistent with the ghost image being measured at this \(k \) point, the former not. Third, the intensity of the peak monotonically rises from \(\Gamma \) with a maximum near \(M \), indicating only one spectral feature, unlike in the 45° polarization geometry where two strong maxima are found (one associated with the CuO band, the other with its superlattice image).

We now return to Fig. 1 which shows high resolution data at the \(M \) point. The data are consistent with a strong reduction of the imaginary part of the self-energy (\(\text{Im} \Sigma \)) at low frequencies in the SC state [6]. An important feature of this change in \(\text{Im} \Sigma \) has been addressed previously [7]. If the scattering is electron-electron—like in nature, then \(\text{Im} \Sigma \) at frequencies smaller than \(-3\Delta\) will be suppressed due to the opening of the superconducting gap. On closer inspection, though, Fig. 1 reveals a more interesting story than this simple picture. First, the SC and normal state data match beyond 90 meV (they continue to match for energies beyond those in the figure, as can be seen from the wider scan data of Fig. 2). This means that the self-energy of the electrons in the normal and superconducting states are equivalent beyond this energy. This simple observation has nontrivial consequences as shown below. From 90 meV, the dip is quickly reached at 70 meV, then one rises to the resolution limited peak. Notice that since the FWHM of the peak is around 20 meV, then the change in behavior of the spectra (from hump, to dip, to the trailing edge of the peak) is occurring on the scale of the energy resolution. That means that the intrinsic dip must be quite sharp. We have attempted to fit the SC state data with various assumed forms for \(\text{Im} \Sigma \), taking into account the observed momentum and energy resolution [8]. The surprising conclusion is that the large \(\text{Im} \Sigma \) at high energies (equivalent to that in the normal state, as mentioned above) must drop to a small value over a narrow energy interval to be consistent with the data. For instance, if one assumes that \(\text{Im} \Sigma \) is of the form \(\omega(\omega/\bar{\omega})^n \) (where \(\bar{\omega} \) is near the energy of the dip), then \(n \) must be large to be consistent with the data; i.e., there is essentially a step in \(\text{Im} \Sigma \). This is interesting, since the standard analysis based on a \(d \)-wave pairing state would give \(n = 2 \) [9], which does not give a dip at all. Moreover, the models mentioned above [7] predict \(\text{Im} \Sigma \) to decay smoothly to zero, rather than the abrupt change indicated by the data. In fact, the data are not only consistent with a step in \(\text{Im} \Sigma \), but...
the depth of the dip is such that it is best fit by a peak in \(\text{Im} \Sigma \) at the dip energy, followed by a rapid drop to a small value.

What are the consequences of this behavior in \(\text{Im} \Sigma \)? If \(\text{Im} \Sigma \) has a sharp drop at \(\tilde{\omega} \), then by Kramers-Kronig transformation, \(\text{Re} \Sigma \) will have a sharp peak at \(\tilde{\omega} \). This peak can very simply explain the unusual SC state dispersion shown in Fig. 2, as it will cause a low energy quasiparticle pole to appear even if the normal state dispersion shown in Fig. 2, as it will cause a low energy peak can very simply explain the unusual SC state occurs superconducting state by Scalapino and co-workers [10].

An important feature of the data is the dispersionless nature of the sharp peak. The mode picture discussed above would imply a dispersion of the peak from \(\Delta_k \) to \(\tilde{\omega} = \omega_0 + \Delta_k \) as the normal state binding energy increases (where \(\omega_0 \) is the mode energy). However, this dispersion turns out to be weak. From the data at \(\tilde{M} \), we infer an \(\omega_0 = 1.3 \Delta_{\tilde{M}} \), \(\omega_0 \) being essentially the energy separation of the peak and dip. Since \(\Delta_k \) is known to be of the \(d_{x^2-y^2} \) form from ours and others’ ARPES data, then \(\Delta_k \) should go to zero as we disperse towards the \(\Gamma \) point. Therefore, the predicted dispersion is only from \(\Delta_{\tilde{M}} \) to 1.3\(\Delta_{\tilde{M}} \) (32 to 42 meV). In fits we have done, the comparison of the model to the data can be greatly improved by assuming \(\omega_0 = 1.3 \Delta_{\tilde{k}} \) [8]. This not only leads to an almost dispersionless low energy peak as indicated by the data, it gives a much better description of the observed intensity falloff of the peak as one moves towards \(\Gamma \). In a proper theory, though, \(\omega_0 \) would depend not on \(k \), but on the transferred momentum, so the above description is incomplete. We note that although a collective mode is the most natural explanation of the data, it may not be unique. The fact that the low energy peak always has an energy near \(\Delta_{\tilde{M}} \) may indicate that the peak is directly associated with \(\Delta \) itself, i.e., due to the off-diagonal, rather than the diagonal, part of the Nambu self-energy. In this connection, we should remark that the line shape in Fig. 1 was previously attributed [12] to the off-diagonal self-energy, but under the (incorrect) assumption that the data represented a density of states rather than a spectral function.

To proceed further would require a detailed knowledge of the \(k \) dependence of \(\Sigma \). At this stage, we can make only qualitative observations. Since the dip-hump structure is most apparent at the \((\pi,0) \) points, it is natural to assume that it has something to do with \(Q = (\pi,\pi) \) scattering, as recently discussed by Shen and Schrieffer [13]. But here we find a new effect. If one compares the data of Figs. 2(b) and 2(c), one sees that a low energy peak also exists along \((\pi,0) - (\pi,\pi) \) for approximately the same momentum range as the one from \((\pi,0) - (0,0) \). That is, if there is a peak for momentum \(p \), one also exists for momentum \(p + Q \). This can be understood, since the self-energy equations for \(p \) and \(p + Q \) will be strongly coupled if \(Q \) scattering is dominant. In the mode picture discussed above and in the limit where we consider only \(\omega_0(Q) \), the part of \(\text{Im} \Sigma \) due to the mode will be proportional to \(A_{p+Q} \). Thus, peaks in \(A_{p+Q} \) will cause peaks in \(\Sigma_p \), which in turn will cause peaks in \(A_p \), which will cause peaks in \(\Sigma_{p+Q} \).

FIG. 3. Positions (eV) of the sharp peak and the broad hump in the SC state versus normal state peak position obtained from Figs. 2(a) and 2(b). Solid points connected by a dashed line are the data; the dotted line represents the normal state dispersion.

(1) the peak in \(\text{Re} \Sigma \), which provides an additional mass renormalization of the SC state relative to the normal state, and thus pushes spectral weight towards the Fermi energy, and (2) the superconducting gap, which pushes spectral weight away. This also explains the strong drop in intensity of the low energy peak as the higher binding energy hump disperses.

On general grounds, the flat dispersion of the low energy peak seen in Fig. 3 is a combination of two effects: of the single broad peak in the normal state. This plot has a striking resemblance to that predicted for electrons of approximately the same momentum range as the one discussed [13]. But here we find a new effect. If one compares the data of Figs. 2(b) and 2(c), one sees that a low energy peak also exists along \((\pi,0) - (\pi,\pi) \) for approximately the same momentum range as the one from \((\pi,0) - (0,0) \). That is, if there is a peak for momentum \(p \), one also exists for momentum \(p + Q \). This can be understood, since the self-energy equations for \(p \) and \(p + Q \) will be strongly coupled if \(Q \) scattering is dominant. In the mode picture discussed above and in the limit where we consider only \(\omega_0(Q) \), the part of \(\text{Im} \Sigma \) due to the mode will be proportional to \(A_{p+Q} \). Thus, peaks in \(A_{p+Q} \) will cause peaks in \(\Sigma_p \), which in turn will cause peaks in \(A_p \), which will cause peaks in \(\Sigma_{p+Q} \).

To proceed further would require a detailed knowledge of the \(k \) dependence of \(\Sigma \). At this stage, we can make only qualitative observations. Since the dip-hump structure is most apparent at the \((\pi,0) \) points, it is natural to assume that it has something to do with \(Q = (\pi,\pi) \) scattering, as recently discussed by Shen and Schrieffer [13]. But here we find a new effect. If one compares the data of Figs. 2(b) and 2(c), one sees that a low energy peak also exists along \((\pi,0) - (\pi,\pi) \) for approximately the same momentum range as the one from \((\pi,0) - (0,0) \). That is, if there is a peak for momentum \(p \), one also exists for momentum \(p + Q \). This can be understood, since the self-energy equations for \(p \) and \(p + Q \) will be strongly coupled if \(Q \) scattering is dominant. In the mode picture discussed above and in the limit where we consider only \(\omega_0(Q) \), the part of \(\text{Im} \Sigma \) due to the mode will be proportional to \(A_{p+Q} \). Thus, peaks in \(A_{p+Q} \) will cause peaks in \(\Sigma_p \), which in turn will cause peaks in \(A_p \), which will cause peaks in \(\Sigma_{p+Q} \).
which will finally cause peaks in A_{p+Q}. Thus, in such a model, the peaks in A for p and $p+Q$ self-consistently generate one another if the coupling is strong enough.

We now connect our observations to previous theoretical work. The fact that the linewidth collapses at low energies has been recognized for some time now, as remarked earlier. The most natural explanation is based on a one loop approximation ($\Sigma \sim \int \chi G$ where χ is an electronic susceptibility and G is the electron Green’s function). Superconductivity will cause gaps in both χ and G leading to a suppression of $\text{Im} \Sigma$ below 3Δ [7].

We thank Yuri Vilk for several stimulating discussions. This work was supported by the U. S. Department of Energy, Basic Energy Sciences, under Contract No. W-31-109-ENG-38, the National Science Foundation DMR 9624048, and DMR 91-20000 through the Science and Technology Center for Superconductivity. The Synchrotron Radiation Center is supported by NSF Grant No. DMR-9212658.

[11] See Fig. 50 of Scalapino, Ref. [10].