Thickness dependence of the effective dielectric constant in a thin film capacitor

<table>
<thead>
<tr>
<th>Authors</th>
<th>Name (Sato)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Journal</td>
<td>Applied Physics Letters</td>
</tr>
<tr>
<td>Volume</td>
<td>73</td>
</tr>
<tr>
<td>Number</td>
<td>5</td>
</tr>
<tr>
<td>Pages</td>
<td>632-634</td>
</tr>
<tr>
<td>Year</td>
<td>1998</td>
</tr>
<tr>
<td>DOI</td>
<td>10.1063/1.121930</td>
</tr>
</tbody>
</table>

(C) 1998 American Institute of Physics
Thickness dependence of the effective dielectric constant in a thin film capacitor

Kenji Natori, a) Daijiro Otani, and Nobuyuki Sano
Institute of Applied Physics, University of Tsukuba, Tsukuba, Ibaraki 305-8573, Japan

(Received 17 March 1998; accepted for publication 27 May 1998)

The static value of the effective dielectric constant in a thin film capacitor is simulated by means of the local field theory. The value of it shows a sharp decrease as the film thickness is decreased in an ultrathin film geometry. This phenomenon is due to the size effect intrinsic to a thin film structure and has nothing to do with the material aspect. The decrease is more remarkable for larger values of the bulk dielectric constant. It is recovered by inserting interface layers with larger atomic polarizability between the film and the capacitor electrode. © 1998 American Institute of Physics.

As a higher integration of dynamic random access memory is pursued, the possibility of applying high dielectric materials such as (Ba, Sr)TiO$_3$ to a high density memory cell capacitor has been investigated with a great deal of interest.$^{1-5}$ It is frequently reported, however, that the dielectric constant of such a material decreases as the film thickness is decreased.$^{1-3}$ The reason for this phenomenon is usually ascribed to a degradation in film quality. The film quality degrades as the thickness is decreased, yielding a smaller dielectric constant. Or, low dielectric constant interface layers are formed adjacent to the electrode, and they dominate the capacitance as the film thickness is decreased.

In this study, we have simulated the effective dielectric constant of a thin film capacitor and have found a strong dependence of the effective dielectricity on the thickness of the material. The thickness dependence in our simulation has nothing to do with the film quality change, but is an intrinsic effect due to the presence of a film surface.

According to the Lorentz’s local field theory,6 the dielectric constant of the bulk material, $K\varepsilon_0$, where ε_0 is the permittivity of a vacuum, is related to the atomic polarizability α of the constituent dipole moment, by the Clausius-Mossotti (CM) relation

$$\frac{K-1}{K+2} = \frac{1}{3\varepsilon_0} N\alpha,$$

where N is the number density of the dipole.

The effective dielectric constant of a thin film capacitor is simulated by means of the local field theory as follows. The sample structure consists of atomic dipole moments arranged on lattice points of a simple cubic lattice (periodicity d) with an infinite extension along the x and y axis and with finite dipole layers (n layers) along the z axis (Fig. 1). The ith layer atomic dipole moment $p(i)$ is equal to $(4\pi\varepsilon_0 d^3)\alpha(i)E_L(i)$ in the linear approximation, where $\alpha(i)$ and $E_L(i)$ are, respectively, the dimensionless atomic polarizability and the local field at the ith layer atomic site. All dipole moments in the sample yield the dipole field at each atomic site, and the dipole field as well as the field due to the capacitor plate charge constitutes the local field thereof. The contribution to the local field at an ith layer site from all of the jth layer dipole moments is expressed as $(1/4\pi\varepsilon_0 d^3)G_{ij}p(j)$. The coupling factor G_{ij} is computed by

\[G_{ij} = \frac{1}{(4\pi\varepsilon_0 d^3)} \sum_{k=1}^{n} \frac{1}{r_{ik}^3} \delta_{jk}, \]

where r_{ik} is the distance between the ith and kth atomic sites.

According to the Lorentz’s local field theory,6 the dielectric constant of the bulk material, $K\varepsilon_0$, where ε_0 is the permittivity of a vacuum, is related to the atomic polarizability α of the constituent dipole moment, by the Clausius-Mossotti (CM) relation

$$\frac{K-1}{K+2} = \frac{1}{3\varepsilon_0} N\alpha,$$

where N is the number density of the dipole.

The effective dielectric constant of a thin film capacitor is simulated by means of the local field theory as follows. The sample structure consists of atomic dipole moments arranged on lattice points of a simple cubic lattice (periodicity d) with an infinite extension along the x and y axis and with finite dipole layers (n layers) along the z axis (Fig. 1). The ith layer atomic dipole moment $p(i)$ is equal to $(4\pi\varepsilon_0 d^3)\alpha(i)E_L(i)$ in the linear approximation, where $\alpha(i)$ and $E_L(i)$ are, respectively, the dimensionless atomic polarizability and the local field at the ith layer atomic site. All dipole moments in the sample yield the dipole field at each atomic site, and the dipole field as well as the field due to the capacitor plate charge constitutes the local field thereof. The contribution to the local field at an ith layer site from all of the jth layer dipole moments is expressed as $(1/4\pi\varepsilon_0 d^3)G_{ij}p(j)$. The coupling factor G_{ij} is computed by

\[G_{ij} = \frac{1}{(4\pi\varepsilon_0 d^3)} \sum_{k=1}^{n} \frac{1}{r_{ik}^3} \delta_{jk}, \]

where r_{ik} is the distance between the ith and kth atomic sites.

As a higher integration of dynamic random access memory is pursued, the possibility of applying high dielectric materials such as (Ba, Sr)TiO$_3$ to a high density memory cell capacitor has been investigated with a great deal of interest.$^{1-5}$ It is frequently reported, however, that the dielectric constant of such a material decreases as the film thickness is decreased.$^{1-3}$ The reason for this phenomenon is usually ascribed to a degradation in film quality. The film quality degrades as the thickness is decreased, yielding a smaller dielectric constant. Or, low dielectric constant interface layers are formed adjacent to the electrode, and they dominate the capacitance as the film thickness is decreased.

In this study, we have simulated the effective dielectric constant of a thin film capacitor and have found a strong dependence of the effective dielectricity on the thickness of the material. The thickness dependence in our simulation has nothing to do with the film quality change, but is an intrinsic effect due to the presence of a film surface.

According to the Lorentz’s local field theory,6 the dielectric constant of the bulk material, $K\varepsilon_0$, where ε_0 is the permittivity of a vacuum, is related to the atomic polarizability α of the constituent dipole moment, by the Clausius-Mossotti (CM) relation

$$\frac{K-1}{K+2} = \frac{1}{3\varepsilon_0} N\alpha,$$

where N is the number density of the dipole.

The effective dielectric constant of a thin film capacitor is simulated by means of the local field theory as follows. The sample structure consists of atomic dipole moments arranged on lattice points of a simple cubic lattice (periodicity d) with an infinite extension along the x and y axis and with finite dipole layers (n layers) along the z axis (Fig. 1). The ith layer atomic dipole moment $p(i)$ is equal to $(4\pi\varepsilon_0 d^3)\alpha(i)E_L(i)$ in the linear approximation, where $\alpha(i)$ and $E_L(i)$ are, respectively, the dimensionless atomic polarizability and the local field at the ith layer atomic site. All dipole moments in the sample yield the dipole field at each atomic site, and the dipole field as well as the field due to the capacitor plate charge constitutes the local field thereof. The contribution to the local field at an ith layer site from all of the jth layer dipole moments is expressed as $(1/4\pi\varepsilon_0 d^3)G_{ij}p(j)$. The coupling factor G_{ij} is computed by

\[G_{ij} = \frac{1}{(4\pi\varepsilon_0 d^3)} \sum_{k=1}^{n} \frac{1}{r_{ik}^3} \delta_{jk}, \]

where r_{ik} is the distance between the ith and kth atomic sites.

FIG. 1. The simulated capacitor structure. The dielectric film consists of atomic dipole moments arranged on lattice points of a simple cubic lattice with infinite extension along the x and y axis and with finite dipole layers along the z axis.

FIG. 2. The effective dielectric constant K_{eff} as a function of the uniform value of the dimensionless atomic polarizability, $\alpha(i)=\alpha_0$. The parameter is n, the thickness of the sample. CM stands for the Clausius-Mossotti relation.

a)Electronic mail: natori@hermes.esys.tsukuba.ac.jp
summing up the contribution from all the dipole moments in
the jth layer as $G_{ij} = d^3 \sum (3 \cos^2 \theta - 1)r^3 \delta_{ij}$, where the radial vector from one of the jth layer dipoles to the ith layer site
has the magnitude r and forms an angle θ with the dipole
moment direction. The summation over the jth layer dipoles
farther than a definite distance R from a jth layer site equivalent
to the ith layer site can be approximated by an integration.
A sufficiently large R is chosen so that G_{ij} does not depend
on R. The local field $E_r(i)$ is expressed as $(Q/\varepsilon_0)E_\theta(i)$ where Q is the charge density on the capacitor
plate and is assumed to be equal to the electric flux density
$D(i)$ in our geometry, and the dimensionless local field
$E_r(i)$ is a solution of the simultaneous equation,

$$\sum_k [\delta_{ij} - G_{ij} a(j)] E_r(j) = 1.$$ \hspace{1cm} (2)

δ_{ij} equals unity for $i=j$ and vanishes otherwise. The macroscopic polarization $P(i)$ is given by $p(i)/d^3$, and the macroscopic field is equal to $[D(i) - P(i)]/\varepsilon_0$ at the ith layer site. The local dielectric constant $K_r(i)\varepsilon_0$ at the ith layer, which is defined by the ratio of the electric flux density and the macroscopic field thereof, is evaluated as $K_r(i) = [1 - 4\pi a(i) E_r(i)]^{-1}$. The effective dielectric constant $K_{eff}\varepsilon_0$, which is defined by the capacitance of the thin film capacitor $C = Q/V = K_{eff}\varepsilon_0/(nd)$, is expressed as

$$K_{eff} = \left[1 - \frac{1}{n} \sum_{i=1}^{n} 4\pi a(i) E_r(i)\right]^{-1}. \hspace{1cm} (3)$$

Notice that K_{eff} is related to $K_r(i)$ by $K_{eff}^{-1} = [\sum_{i=1}^{n} K_r(i)^{-1}] / n$.

Figure 2 shows the simulated effective dielectric constant K_{eff} as a function of the uniform atomic polarizability $\alpha(i) = \alpha_0$. The parameter is n, the thickness of the sample. The bulk dielectric constant K given by the CM relation is also shown. It is clear that the effective dielectric constant increases to the CM result as the thickness increases. Figure 3 shows the thickness dependence of the effective dielectric constant. The parameter is the atomic polarizability converted to K by the CM relation. The effective dielectric constant sharply decreases as the film thickness is decreased, and the decrease is more remarkable for larger K values. Some of the numerical values are summarized in Table I. Notice that the thickness dependence is almost negligible for samples with $K \leq 10$. Figure 4 shows the local dielectric constant distribution along the thickness direction for the case of $n = 10$. It is clear that the local dielectric constant at the edge site has a reduced value due to the absence of an enforcing field exerted by the nearest neighbor dipole in the adjacent layer, which fact yields a smaller effective dielectric constant in a thinner sample structure. The local dielectric constant has a bulk value deep in the film. Figure 5 shows that the decreased effective dielectric constant is recovered and is even enhanced by increasing the atomic polarizability of the edge layers. The parameter β is defined so that $\alpha(1) = \alpha(n) = \beta\alpha_0$ as well as $\alpha(i) = \alpha_0 (2 \leq i \leq n-1)$.

The effective dielectric constant of a thin film capacitor was simulated by means of Lorentz's local field theory. It was shown that the value decreases as the film thickness is reduced in ultrathin film geometry. This is due to the surface dipole moments suffering from different environmental conditions than the bulk dipole moments, and is due to the size effect intrinsic to the film structure. The decrease is more remarkable in samples with a larger bulk dielectric constant. The decreased value is recovered and is even enhanced by replacing the surface layers with layers having a larger atomic polarizability.
This work was supported by the Ministry of Education, Science, Sports, and Culture of Japan under a Grant-in-Aid for Scientific Research on Priority Areas.
