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Abstract—Portable (standards-compliant) systems software is usually associated with unavoidable overhead from the standards-
prescribed interface. For example, consider the POSIX Threads standard facility for using thread-specific data (TSD) to implement
multithreaded code. The first TSD reference must be preceded by pthread_getspecific(), typically implemented as a function or macro
with 40-50 instructions. This paper proposes a method that uses the runtime specialization facility of the Tempo program specializer to
convert such unavoidable source code into simple memory references of one or two instructions for execution. Consequently, the
source code remains standard compliant and the executed code’s performance is similar to direct global variable access.
Measurements show significant performance gains over a range of code sizes. A random number generator (10 lines of C) shows a
speedup of 4.8 times on a SPARC and 2.2 times on a Pentium. A time converter (2,800 lines) was sped up by 14 and 22 percent,
respectively, and a parallel genetic algorithm system (14,000 lines) was sped up by 13 and 5 percent.

Index Terms—Performance, portability, threads, software libraries, concurrent programming, runtime specialization, thread-specific
data.
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1 INTRODUCTION

PORTABILITY of systems software means the adoption of a
standard application program interface (API), e.g.,

POSIX [27] for different flavors of Unix. Accordingly, every
implementation of such standard packages must implement
the most general interpretation of each procedure and
function. Otherwise, a so-called standard API would not
work the same way across different platforms. Conse-
quently, each procedure invocation of a standard API
carries the full overhead of the required general implemen-
tation, even though only a subset of functionalities is used
in most cases. This has been accepted as an “inevitable” cost
trade-off of portability versus performance.

The very nature of the standardization process favors a
minimalist API with general facilities since, otherwise, the
proliferation of special cases would make a standard too big
for full compliance in practice. The need for standard APIs
to be small and general makes it challenging to achieve both
performance and portability in systems software. Since
portability dictates the use of standard library functions in
an API, one way to meet the challenge is through the
management of multiple implementations of similar library
functions. Sometimes, these alternative implementations are
called “lightweight” since they carry a much smaller

overhead for common simple cases. For example, SunOS
includes two implementations that convert a string repre-
sentation into an integer value. One is strtol(), which is
a general implementation that can deal with nondecimal
representations and returns the address of the first
nonnumerical character. The other is atoi(), which is a
lightweight implementation that can deal with only decimal
representations and cannot return the address of the first
nonnumerical character. Providing multiple implementa-
tions makes library maintenance more difficult and de-
creases portability. Another example is the GNU MP
(Multiple Precision) library, which contains assembly and
C versions of code for arbitrary precision arithmetic
operation. The assembly version is fast and nonportable,
while the C version is slower and portable.

In addition to the trade-off between portability and
performance, there is a similar trade-off between simplicity
and performance in systems software. Sometimes perfor-
mance requirements make the programmer decide to
sacrifice simplicity by choosing faster library functions
within a standard API. For example, to write a multithreaded
program, a programmer often chooses locking instead of
using Thread Specific Data (TSD) because TSD has been
considered expensive for a long time [18], [24]. Using TSD
can simplify the program and can make it less likely to
deadlock [25]. However, the POSIX Threads package
specifies the invocation of the function pthread_getspe-
cific() before a TSD variable becomes accessible. Typi-
cally, this call adds 40-50 instructions, while locking can be
implemented with fewer instructions.

Instead of providing multiple implementations, we
propose a method to recover the performance of generic
library functions in a standard API through specialization.
Our method also recovers the performance of simple but
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slow library functions in the standard API. Specialization is
a well-established technique to improve the performance of
systems software by eliminating unnecessary code auto-
matically [23], [28]. Tool-based specialization [5] eliminates
code made unnecessary by invariants. Specialization has
two main advantages. First, the maintainers of standard
library functions do not have to provide a number of fixed
alternate implementations since specialization generates the
most appropriate implementation for a given set of
invariants. Second, programmers do not have to choose
fast but complex library functions since specialization
creates automatically correct code from the simple source
code plus invariant specifications.

The main contribution of this paper is an experimental
demonstration of the specialization method to eliminate the
apparently unavoidable standard API overhead from
production POSIX-compliant multithreaded programs with-
out thread-aware compiler or memory mapping support.
(See Section 6 for comparisons with previous work with
such support.) Our method adds invariants to enable
automated runtime specialization using Tempo, a program
specializer for the C language [5]. In this paper, we show
invariants in POSIX-compliant multithreaded programs
with TSD. The POSIX Threads package specifies the
invocation of the function pthread_getspecific()
before a TSD variable becomes accessible. Typically (see
Section 2.3 for a more detailed discussion), this call adds
40-50 instructions to a simple global reference due to the
dynamic binding of TSD. In many applications, the thread
does not require a dynamic binding and fixed TSD suffices.
Although the TSD address is unknown at compile-time,
runtime specialization is able to use the fixed TSD invariant
to transform each invocation of pthread_getspecific()
into a simple constant reference.

Our method follows the specialization-based method
developed by Marlet et al. [19], [20]. This method consists of
two steps: first, develop a correct multithreaded program
based-on a single-threaded program by adding TSD access
and, second, improve performance through specialization.
We apply the method to two system library routines: a
small module, a random number generator (10 lines of
C code, as described in Section 3), a medium module, and a
time converter (2,800 lines of C code in 14 files, as described
in Section 5). In addition, we use a parallel genetic
algorithm program (GALOPPS, Section 4) to demonstrate
the performance gains in a large program (14,000 lines of
C code in 40 files).

Experimental results confirm significant performance
improvements while preserving source code POSIX com-
pliance. The random number generator with TSD is sped up
by a factor of 4.8 on a SPARC, and factor of 2.2 on a
Pentium. The parallel genetic algorithm program is sped up
by 13 percent on the SPARC and 5.1 percent on the
Pentium. The time converter is sped up by 14 percent on the
SPARC and 22 percent on the Pentium. Consequently, the
specialized TSD code has an efficiency level comparable to
locking-based code and much better scalability for multi-
processors (see Sections 3.4.3, 4.3.3, and 5.4.3). Our results
strongly suggest that TSD with specialization is a good
technique for the development of multithread software that

needs to be efficient, portable (standards-compliant), and
scalable.

The rest of the paper is organized as follows: Section 2
outlines the constraints introduced by the POSIX Threads
standard and the “unavoidable” overhead associated with
TSD. Sections 3, 4, and 5 describe the application of our
method to a random number generator, a parallel genetic
algorithm that uses the random number generator, and a
time converter, respectively. For each, we summarize the
problem, apply specialization using Tempo, and show
execution performance gains as well as good multiproces-
sor scalability. Section 6 summarizes related work and
Section 7 concludes the paper.

2 SYSTEMATIC METHOD TO SPECIALIZE
POSIX-COMPLIANT MULTITHREADED PROGRAMS

We first outline a specialization-based method for devel-
oping multithreaded programs with TSD. Second, we show
the performance problem of general implementations of
POSIX library functions. Third, we illustrate the perfor-
mance problem of POSIX TSD through a simple microbe-
nchmark. Fourth, we summarize the principles of operation
and the usage of the partial evaluator Tempo. Finally, we
explain the experimental environments used in the follow-
ing sections.

2.1 Method for Developing Correct and Efficient
Multithreaded Programs with TSD and
Specialization

In a previous paper [23], we applied the specialization-
based method developed by Marlet et al. [19], [20] to the
RPC stack. We eliminated the overhead of copying and
layering by using compile-time specialization. In this paper,
we will apply this method to multithreaded parallel
programs by using runtime specialization and, in so doing,
eliminate the overhead of TSD access.

Fig. 1 shows our method for creating a correct multi-
threaded program based on a single-threaded program. The
first step of our method uses TSD to contain thread-specific
variables instead of lock-based mutual exclusion because
using TSD is much easier and simpler than using locking.
Furthermore, programs with TSD are potentially scalable in
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Fig. 1. Developing efficient multithreaded code with TSD and
specialization.



symmetric multiprocessors (SMPs). However, using TSD
adds 40-50 instructions in a straightforward implementa-
tion, while locking can be implemented with fewer
instructions (for details see Section 2.3).

The second step of our method improves multithreaded
code performance through specialization. By carefully
exploiting the runtime invariants of TSD code, we are able
to reduce the overhead of using TSD and get almost the
same performance as the unsafe version (see Section 2.4 and
the performance evaluation experiments in Sections 3, 4,
and 5). Our method is fairly general and independent of

particular software tools. For example, we use the Tempo
specializer in our experiments, but other program specia-
lizers could be used (see related work in Section 6).

2.2 The Performance Problem of General Library
Functions

We illustrate the performance penalty introduced by the
POSIX standard with two simple library functions atoi()
and strtol(). Both functions convert a string representa-
tion into an integer value, but strtol() is more general
than atoi(). The function strtol() takes two additional
arguments: the pointer to the last nonnumeric character in
the string and the base for conversion. Fig. 2 is an actual
code fragment from GNU Libc (Glibc). The code of atoi()
passes two constants to strtol(): NULL for endptr and
10 for base. Therefore, the implementation of function
strtol() includes unnecessary checking of parameters
when it is called from atoi(). This is an example of
invariants that remain unchanged during program execu-
tion. Specialization can take advantage of these invariants to
eliminate redundant code. In Section 2.4, we show how
invariants are used by Tempo in compile time specialization
to eliminate this kind of overhead while preserving the
generality of the source code.

Fig. 3 compares the execution times of atoi() and
strtol() to show the performance penalty in Glibc and the
gains from specialization (to be explained in Section 2.4). All
the execution times were measured on an UltraSPARC II
running SunOS 4.7 for the string argument “1.” Since the
general implementation of atoi() of GNU Libc calls
strtol() internally, atoi() is slower than strtol().

2.3 The Performance Problem of POSIX TSD
We explain the TSD performance penalty introduced by the
POSIX Threads standard with the help of a simple microbe-
nchmark program iret_tsd() shown in Fig. 4. The
microbenchmark is compared to a non-TSD program
iret_extern() shown in Fig. 5 since both simply return
an integer value. The iret_tsd() follows the POSIX-
prescribed way to access TSD variables. At program
initialization time, pthread_key_create() is called once
to create a key for the TSD variable. At thread initialization
time, memory for the TSD variable is allocated and its
address is bound to the key by pthread_setspecific().
Thereafter, each time the function using TSD is called,
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Fig. 2. The library functions atoi() and strtol() in GNU Libc 2.2.

Fig. 3. The execution times of simple library functions that convert a
string to an integer in nanoseconds.

Fig. 4. A function returning a value of a TSD variable.

Fig. 5. A function returning a value of an external variable.



pthread_getspecific() is invoked to initialize the base
pointer to the TSD variable specified by the key. From that
moment, the TSD variables become accessible from the
program. In iret_tsd(), the prescribed pthread_get-
specific() call introduces significant overhead since it
contains 40-50 instructions while the simple global reference
in iret_extern() compiles into one or two instructions.

Table 1 compares the overhead of pthread_getspe-
cific() to a simple external variable access. The multi-
threaded program with TSD is slower by a factor of 17 on a
SPARC64 running SunOS, 15 on a UltraSPARC running
SunOS, and 5.3 on a Pentium running Linux (for repeated
access to a warm cache with a fixed size stack). This
repeated cost due to pthread_getspecific() pre-
scribed by POSIX is really unnecessary since the value of
tsdkey1 is the same for every invocation of pthread_-
getspecific(), and the result it returns is also the same
for each thread. This is an example of an invariant that
remains unchanged during program execution. Specializa-
tion can take advantage of this invariant to eliminate
redundant code. In Section 2.4, we show how invariants are
used by Tempo in runtime specialization to eliminate this
kind of overhead while preserving standard compliance at
the source code level.

There are some system-specific ways to reduce this kind
of overhead. First, the POSIX standard allows the function
pthread_getspecific() to be implemented as a macro,
typically in a system-specific manner. A macro implemen-
tation eliminates function invocation instructions, but it is
still more expensive than a simple global variable access. In
practice, pthread_getspecific() is a real function in
many systems, such as SunOS, Linux, FreeBSD, and Irix.
Second, it is feasible to include special compiler support for

such functions. For example, in Section 6, we briefly discuss
the Thread Local Storage facility in Microsoft’s Visual C++.
Third, it is possible to use special kernel support for
memory mapping to implement user-level TSD, as is also
discussed in Section 6. In contrast, our method does not rely
on special compiler or kernel memory mapping support.

2.4 Compile Time and Runtime Specialization with
Tempo

Tempo [5] is a well-known C (and Java) program specializer
based on partial evaluation (in this paper, we use the terms
partial evaluator and program specializer interchangeably).
Tempo supports both compile time and runtime program
specialization through invariants and hints specified in C
and ML. Fig. 6 illustrates the runtime specialization process
in Tempo. Tempo takes the source code plus hints that
specify invariants in the source code. Using a program
analysis technique called Binding Time Analysis [12],
Tempo discovers the program variables whose values only
depend on information contained in the invariants.

If these static/invariant values are known at compile-
time, we perform compile time specialization to generate
specialized C code. On the other hand, if these static/
invariant values are computed at runtime, we perform
runtime specialization to generate C code called a template
that has holes to be filled in by a runtime specializer in C (also
generated by Tempo) (Fig. 6). The runtime specializer can
be seen as a linker/loader specialized for this template. It
runs at program load/initialization time, evaluates the
static/invariant part of the program, and fills the holes with
the computed invariant values (Fig. 6).

We use the function atoi() in Fig. 2 to illustrate
compile-time specialization in the Tempo partial evaluator.
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TABLE 1
Execution Times of a Simple Function that Returns the Value of an External Integer Variable or a TSD Variable

Fig. 6. Runtime specialization in Tempo.



Fig. 7 shows hints (written in ML) for specializing the
function atoi() in Fig. 2. The keyword entry_point
specifies the function to be specialized. The character “D” in
the parentheses means that those arguments of the function
can vary (dynamic). The keywords post_inlining,
post_do_inline, and post_inlining_mode are de-
clared to force inlining on all the functions being specia-
lized. No special hints in C are required for this
specialization, and two empty declarations are included in
Fig. 8 for completeness.

Tempo takes the source program in Fig. 2 plus the hints
in Fig. 7 and Fig. 8, and produces the specialized code
shown in Fig. 9. Compared with the original code in Fig. 2,
the specialized code omits some if-branches and function
invocations. Therefore, the specialized code is faster than
the original general code in Fig. 2. Fig. 3 shows the
performance improvement by this compile-time specializa-
tion. The specialized atoi() is faster than the original
atoi() by 25 percent.

We again use the simple function in Fig. 4 to illustrate
runtime specialization in the Tempo partial evaluator.
Unlike explicit constants in atoi(), the return value of
pthread_getspecific() is unknown at compile-time,
so only runtime specialization is able to use the invariant
for each thread. Fig. 10 and Fig. 11 show hints in ML and C
for specializing the simple function in Fig. 4 for each thread.
The keyword entry_point specifies the function to be
specialized, which is “iret_tsd.” The keyword static
_locations specifies invariant variables and invariant
fields in structures. The TSD key tsdkey1 is declared an
invariant. The keyword external_functions specifies a
candidate for evaluation at specialization time, which is
“pthread_getspecific.” This means that “pthread_-
getspecific” can be invoked once at specialization time
if all of its arguments are invariant, and the invariant result
can be reused at every invocation time. Finally, the
keyword lift_all tells the runtime specializer to evaluate
pointer values including the return value of pthread_-
getspecific(). Without this parameter, Tempo consid-
ers fetching the pointer values lightweight and leaves them
in the specialized code. With this parameter, Tempo moves
them to the runtime specializer if they are static.

Tempo takes the source program in Fig. 4 plus the hints
in Fig. 10 and Fig. 11, and produces a template and a

runtime specializer in C. Fig. 12 shows the decompiled code
that is generated by the runtime specializer based on the
template. The most significant difference between the
original code and the specialized code is that the specialized
code includes a constant reference (the address of an
external variable H0) instead of the function invocation. H0
is a hole in the template. The runtime specializer fills the
hole &H0 with the value returned by pthread_getspe-
cific(). Consequently, the specialized program runs with
one or two instructions that load an integer value from a
known absolute address. In other words, the specialized
code will execute as fast as the function in Fig. 5.

In the above specialization example, we use the
address of TSD (the value returned by pthread_get-
specific) as the invariant. By specifying this invariant
in hints, Tempo specializes the code automatically. In the
rare case where a program changes the address of TSD
by invoking pthread_setspecific() after initializa-
tion, the program can always be translated into an
equivalent one that does not change the address of
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Fig. 7. Hints in ML for specializing atoi().

Fig. 8: Hints in C for specializing atoi().

Fig. 9: The specialized code of atoi().

Fig. 10. Hints in ML for specializing iret_tsd().

Fig. 11. Hints in C for specializing iret_tsd().

Fig. 12. The specialized code of iret_tsd().



TSD, manually or semiautomatically. The key idea is that
we allocate a TSD variable that holds the address of the
original TSD variable. This translation corresponds to the
following translation for a normal variable.

Before translation:

int *p ; /* corresponds a TSD variable */
p = malloc(sizeof(int));

/* pthread_setspecific(),
initialization */

...
p = malloc(sizeof(int));

/* pthread_setspecific(), changing */

After translation:

#define p (*pp)
int **pp ; /* corresponds a TSD variable */
pp = malloc(sizeof(int *));

/* pthread_setspecific()
initialization */

p = malloc(sizeof(int));
/* the content of pp is invariant */

...
p = malloc(sizeof(int));

/* the content of pp is invariant */

Although this translation introduces an indirection over-
head, this overhead will be eliminated by specialization.

Our method introduces some additional source code
processing time. In the parallel GA system GALOPPS (see
Section 4), for example, running Tempo required 7.5 seconds
on a Sun Enterprise 450. This time includes analyzing
230 lines of C code, generating 450 and 700 lines of the
template and runtime specializer, and compiling these
generated programs. Building the entire application pro-
gram that consists of 14,000 lines of C files required
40 seconds. Therefore, using Tempo added 20 percent more
time for building the application.

In our method, we envision a program specializer such
as Tempo being used by programmers or maintainers who
write or modify source code. A programmer finds the
appropriate specialization invariants and directs Tempo to
generate specialized code. Several techniques have been
introduced to facilitate the task of program specialization,
including Specialization Classes [7] and Specialization
Scenarios [6], [15], [16], [17]. Furthermore, if a specializa-
tion facility is integrated into gcc and a dynamic linker,
we can generate templates and runtime specializers with
gcc, and automatically use specialized code through the
dynamic linker.

Although our method requires accessing the source code,
it is applicable to non-open-source products. For open-
source software, anyone can use our method. For non-open-
source software, vendors with access to source code can
apply this method. Compiled object code of the templates
and runtime specializers are shipped to customers. The
customers first call the runtime specializers, generate the
specialized code, and then use the specialized code.

2.5 Experimental Environments
In the following sections, we measured the performance
on two SPARC SMPs (symmetric multiprocessors) and a
Pentium SMP. These represent two distinct and dominant
architectures. One SPARC SMP has eight SPARC64 IV
450 MHz processors [32], each with an 8MB external
cache, and a total of 6,114 MB of shared main memory.
Its operating system is Solaris 7 (SunOS 5.7). The other
SPARC SMP (Sun Enterprise 450) has four UltraSPARC II
480 MHz processors [33], each with an 8 MB external
cache, and a total of 2,048 MB of shared main memory.
Its operating system is Solaris 8 (SunOS 5.8). The Pentium
SMP has eight Pentium III 550 MHz processors, each with
a 2 MB external cache and a total of 3,890 MB of shared
main memory. Its operating system is Red Hat Linux 6.2
with kernel 2.2.16 SMP and GNU Libc Version 2.1.3
(Linux Thread 0.7).

We use Tempo Version 1.194 (1999/04/27) on the
SPARCs, 1.202 (2000/07/10) on the Pentium, and gcc
version 2.95.2 (1999/10/24 release). All measured programs
including the time converter in Section 5 are compiled with
the optimization flag “-O2 -malign-functions=32” and
“-mcpu=v8” on the SPARCs and “-O2 -malign-func-
tions=5” on the Pentium.

In the experiments, we measured the peak performance
for speedup and the mean performance for throughput. The
peak performance ignores the effects of cache refill misses,
but is representative of how these functions would be used
(e.g., in tight inner loops) [26]. During each execution, the
function being measured is invoked repeatedly from 1,000
to 1,000,000 times. The number of trials is high enough to
reach several tens of milliseconds to several hundreds of
milliseconds. The resulting times were obtained using the
Unix gettimeofday() system call in multiuser mode, and
were divided by the number of iterations. The same
benchmark programs were executed 100 times. We used a
single thread to measure the peak performance for speedup
and multiple threads to measure the mean performance for
throughput.

In addition to speedup and throughput, we measured
the break-even point. The break-even point is the number of
times the specialized code must be executed before the cost
of runtime specialization (at initialization) is recovered. This
number is calculated from the gain of specialization and the
time to generate the specialized code.

We also tuned the data and instruction layout carefully
to minimize the influence of instruction layout in our
experiments. UltraSPARC fetches up to four instructions
per clock from an aligned group of eight instructions [33].
When the fetch address mod 32 is equal to 20, 24, or 28,
three, two, or one instruction(s), respectively, will be added
to the instruction buffer. This means that the start address
of a function affects the execution times. For some
functions, we tried all the combinations of the start
addresses. We found that the alignment at mod 32 usually
minimizes the fluctuations of execution time due to
instruction layout. A full discussion of the execution code
layout is beyond the scope of this paper. We performed this
tuning for both the original code and the specialized code.
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3 SPECIALIZING A RANDOM NUMBER GENERATOR
WITH TSD

In this section, we specialize the random number generator
with TSD in the GALOPPS parallel GA system [14], and
show the speedup due to the specialization. The sequential
and parallel GA each consume a massive amount of
random numbers as do simulation applications, such as
Monte-Carlo methods. This section deals with the effect of
specialization for a single function. Section 4 shows the
impact of specialization on the entire parallel GA system.

3.1 Implementing a Random Number Generator
with TSD

We extended the function randomperc() in GALOPPS
Version 3.2.2, as shown in Fig. 13. This function uses a
subtractive method in [13], and returns a single random
number between 0.0 and 1.0. The original version used two
file-scope variables to save the internal state, and using
these file-scope variables is unsafe for multithreaded
programs. We packed the file-scope variables into a TSD
structure obtained by random_gettsd(). Internally, the
function random_gettsd() invokes pthread_getspe-
cific() and returns the result of this call. In addition,
random_gettsd() handles the allocation of the memory
for the structure random, the initialization of the structure,
and the address registration through pthread_setspe-
cific() when called the first time in the thread. It also
creates a TSD key when it is called the first time in the
process through pthread_once(). Then, the function
randomperc() tries to get a random number in the buffer
sr->sr_buf[]. If cur(sr->sr_jrand + 1) is greater
than or equal to 55, the buffer is empty. In this case, the
function calls an external function advance_random() to
refill the buffer. Finally, it fetches and returns a single
random number.

3.2 Hints to the Partial Evaluator Tempo
Fig. 14 shows selected hints (written in ML) for specializing
the random number generator. The other hints are the same
as those in Fig. 10. The keyword entry_point specifies
the function to be specialized (“randomperc”). The
function random_gettsd() is marked to be evaluated at
specialization time by the runtime specializer. Similarly,

Fig. 15 shows hints in C for specializing the random number
generator.

3.3 The Specialized Program
Tempo takes the source code outlined in Section 3.1 and
the hints described in Section 3.2, to produce a template
and a runtime specializer in C. Fig. 16 shows what the
specialized program might look like if generated in C.
Similar to Fig. 12, the specialized code includes a constant
reference (the address of an external variable H0) instead
of the invocation of the function random_gettsd(). The
runtime specializer fills the hole H0 with the result of
invoking random_gettsd(), and the holes H1 and H2
with the value of sr and the address of sr->sr_buf.
The size of the specialized code was 96 bytes on the
SPARCs and 72 bytes on the Pentium.

3.4 Experimental Results
3.4.1 Speedup
First, we measured the peak execution times of the random
number generator to assess the speedup due to specializa-
tion. We used the following versions for comparison:

. unsafe. The original function in GALOPPS.

. mutex. The intermediate state protected with a
mutex.

. tsd. The random number generator with TSD
(Section 3.1).

. tsd-spec. The specialized version of [tsd] (Section 3.3).
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Fig. 13. A random number generator randomperc() with a TSD
variable.

Fig. 14. Hints in ML for randomperc().

Fig. 15. Hints in C for randomperc().

Fig. 16. The specialized random number generator.



Fig. 17 summarizes the execution times to generate a
single random number including the outer loop. The TSD
version is slower than the unsafe version by a factor of 4.8

on the SPARC64 IV running SunOS, 4.0 on the UltraSPARC
II running SunOS, and 2.3 on the Pentium running Linux.
Runtime specialization improves the performance of the
TSD version by a factor of 4.8 on the SPARC64 IV, 3.8 on the
UltraSPARC II, and 2.2 on the Pentium. This means that the
specialized TSD code achieves nearly the maximum
improvement possible (almost the same performance as
the unsafe version).

3.4.2 The Breakeven Point
Table 2 shows the breakeven points of specializing the
random number generator. On the SPARC64, we see the
gain is 0.196 microseconds by comparing the TSD and
specialized versions of the random number generator, and
it takes 4.3 microseconds for runtime specialization. There-
fore, the breakeven point is 22. Similarly, the breakeven
points are 21 and 16 on the UltraSPARC and the Pentium,
respectively. We conclude that runtime specialization will
produce significant performance savings in moderately
frequently executed small-size modules.

3.4.3 Scalability
The results of parallel processing of the benchmark
program are summarized in Fig. 18. The x-axis is the
number of worker threads. The y-axis is throughput in
millions of random numbers generated per second. For each
point, the benchmark program is executed 100 times. This
figure shows the average throughput, with the error bar
representing 90 percent of samples. The mutex version
shows declining throughput even for two processors. In
contrast, the TSD versions are scalable (approximately
linearly) for up to eight CPUs (four with UltraSPARC II).
Although it is a microbenchmark, the test program shows a
potential bottleneck due to locking in mutex. Another
potential source of overhead is the shared state variables
among threads and physical CPUs, which may increase the
number of cache misses as the number of CPU increases.

4 APPLICATION: A PARALLEL GA SYSTEM

In Section 3, we described the specialization of a simple
function and its microbenchmark, with the improvement by
a factor of 4.8 on the SPARC64, 3.8 on the UltraSPARC, and
2.2 on the Pentium. In this section, we use a parallel GA
system to show the impact of such specialization on the
performance of a large application program.
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Fig. 17. Execution time to generate a single random number. (a) SunOS/
SPARC64 IV 450MHz. (b) SunOS/UltraSPARC II 480 MHz. (c) Linux/
Pentium III 550 MHz.

TABLE 2
Breakeven Points of Specializing the Random Number Generator



4.1 Parallel GALOPPS System
Genetic algorithms mimic the process of evolution in a
population. Evolution happens as individuals in the
population reproduce, and random mutations change an
offspring. When individuals in a population reproduce, two
parents are selected, and portions of the parents’ chromo-
somes are combined to generate the chromosomes of their
offsprings (crossover). Genetic algorithms use random
number generators extensively when combining chromo-
somes as well as selecting parents and simulating muta-
tions. For our large program benchmark, we chose the
GALOPPS system [14], a parallel genetic algorithm system
based on the isolated subpopulation model. In this model,
each processor operates independently on an isolated
subpopulation (Fig. 19). After several generations, the
processors share their best individuals with the other
processors (migration). In GALOPPS, each processor

computes several populations and exchanges the best
individuals through checkpoint files or PVM messages.

We parallelized the checkpointing version of GALOPPS
using POSIX Threads. First, we created a worker thread
for each “processor” in GALOPPS. Each thread operates
several populations. Second, we allocated shared memory
to all the populations, so each thread can exchange the
best individuals through the shared memory instead of
checkpoints.

4.2 Specializing the Crossover Function in
GALOPPS

We chose the crossover() function shown in Fig. 20 for
specialization since it consumes more than half of the
random numbers. The crossover() function makes
60 percent of invocations to the rnd() function, which in
turn makes 90 percent of the invocations to random-
perc(), already specialized in the previous section (shown
in Fig. 16). Fig. 21 shows selected hints written in ML for
specializing the function crossover(). The other hints in
ML and C are analogous to those in Fig. 14 and Fig. 15,
respectively.
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Fig. 18. The throughput of random number generators (average and
90 percent range as error bars). (a) SunOS/SPARC64 IV 450MHz.
(b) SunOS/UltraSPARC II 480 MHz. (c) Linux/Pentium III 550 MHz.

Fig. 19. A parallel genetic algorithm based on the isolated population
model.

Fig. 20. The overview of crossover() and rnd().



Tempo takes the source code of the functions cross-
over(), rnd(), and randomperc(), plus the hints in ML
and C (Fig. 21, Fig. 14, and Fig. 15), and produces a template
and a runtime specializer. An overview of the specialized
code is shown in Fig. 22. The code is specialized with
respect to the function crossover(). The specialized
crossover() function calls the specialized rnd() func-
tion, which in turn calls the specialized randomperc()
function (Fig. 16). From the specialized rnd() function, two
“if” branches, two integer operations, and two integer-to-
float conversions are eliminated. The size of the specialized
code was 1,004 bytes on the SPARCs and 777 bytes on the
Pentium.

4.3 Experimental Results
We measured the performance of the parallel GALOPPS in
the experimental environments and using the measurement
method described in Section 2.5. We ran the parallel
GALOPPS to solve the traveling salesman problem example
included in the GALOPPS 3.2.2 distribution and used the
same parameters and settings as in the example. The
mutations were permutations among 20 cities to find the
optimal path. Good mutations reduced the total distance
traveled between the 20 cities. The number of subpopula-
tions was set to eight and each population had 100 in-
dividuals. We created 1, 2, 4, or 8 worker threads, so each
thread computed 8, 4, 2, or 1 subpopulation. Each thread
exchanged migrants every four generations, and repeated
this cycle 10 times. The probability of crossover and
mutation was set to 0.9 and 0.2, respectively.

4.3.1 Speedup
First, we measured the peak execution times to obtain the
speedup by specialization using a single thread. We used
the same random number generators for comparison as in

Section 3.4.1. Fig. 23 summarizes the execution times of
these versions. On the SPARC64 (Fig. 23a) and the
UltraSPARC (Fig. 23b), specialization improves perfor-
mance by 13 percent and 8 percent, respectively, and the
specialized TSD version becomes faster than the mutex
version and comparable to the unsafe version. On the
Pentium (Fig. 23c), the TSD version is already faster than
the mutex version since locking appears to be more
expensive. Specialization improves the TSD version perfor-
mance by another 5.1 percent. We observe that on the
Pentium, the specialized TSD version is even faster than the
original unsafe version. This is because the specialization
eliminates parameter passing and two “if” branches, as
described in Section 4.2.
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Fig. 21. Hints in ML for specializing crossover().

Fig. 22. The specialized code of crossover() and rnd().

Fig. 23. Execution time of a parallel genetic algorithm. (a) SunOS/
SPARC64 IV 450MHz. (b) SunOS/UltraSPARC II 480 MHz. (c) Linux/
Pentium III 550 MHz.



4.3.2 The Breakeven Point
Table 3 shows the breakeven points of specializing the
function crossover(). They were only five on the SPARCs
and two on the Pentium. We conclude that runtime
specialization may produce nontrivial performance gain
for moderately frequently executed large size code.

4.3.3 Scalability
Fig. 24 shows the throughput of the parallel genetic
algorithm in parallel processing. The x-axis is the number
of worker threads. This number is equal to the number of
CPUs that are obtained from the operating system (limited
to eight or four in our experiments due to hardware
limitations). The y-axis is throughput in generations per
second.

For such a large application program, it is interesting
to observe the same trend as in the microbenchmark in
Section 3. The mutex version shows immediately de-
creased throughput. Both the nonspecialized and the
specialized TSD versions show the same scalability as the
number of threads and CPUs grows.

5 SPECIALIZING A TIME CONVERTER WITH TSD
We applied our method to a time converter library function,
localtime_r(), which is longer than the random number
generator and shorter than GALOPPS crossover. Time
converter functions are invoked extensively and frequently,
e.g., a network packet monitor such as tcpdump invokes
this function every time it dumps a matched packet and an
HTTP server calls this function every time it receives a
request for logging.

5.1 Implementing the Function localtime_r()
with TSD

The function localtime_r() is a reentrant version of
localtime(). Both functions convert an integer time
value (time_t) into a structure struct tm to get the
month, day, hours, minutes, seconds, etc. Although
localtime_r() has a reentrant interface, its original
implementation locks time zone data that are to be shared
with the function tzset(). The function tzset()
changes the time zone data according to the environment
variable TZ.

Since time zone changes happen very rarely, we wrote a
new function localtime_r() that has a local copy of the
time zone data for each thread. While the shared time zone
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TABLE 3
The Breakeven Points of Specializing the Function crossover()

Fig. 24. Throughput of a Parallel Genetic Algorithm (average and

90 percent range as error bars). (a) SunOS/SPARC64 IV 450MHz.

(b) SunOS/UltraSPARC II 480 MHz. (c) Linux/Pentium III 550 MHz.



is unchanged, each thread can convert time values using its
local copy without locking. If the shared time zone is
changed by tzset(), each thread refreshes the local copy
by locking the shared time zone variable.

Fig. 25 shows an overview of our new function
localtime_r(). First, this function calls tz_gettsd()
to dynamically link the TSD structure tz_tsd. Internally,
the function tz_gettsd() invokes pthread_getspeci-
fic() and returns its value. In addition, tz_gettsd()
handles the allocation of memory for the structure tz_tsd,
the initialization of the structure, and address registration
through pthread_setspecific() when it is called the
first time in the thread. Second, the function localti-
me_r() compares the version numbers of the shared time
zone data and the cached copy in TSD. If the cache is stale, it
is refreshed by calling tz_tsd_refresh(). The version
number of the shared variables is incremented when the
function tzset() is invoked to change the time zone.
Finally, the function localtime_r() calls tz_convert()
which performs the time conversion using the TSD structure
without locking.

5.2 Hints to the Partial Evaluator Tempo
Fig. 26 shows selected hints for the Tempo partial evaluator
in ML to specialize the function localtime_r() described
in Section 5.1. The other hints in ML and C are analogous to
those in Fig. 14 and Fig. 15, respectively. The function
tz_gettsd() is marked to be evaluated at specialization
time by the runtime specializer.

5.3 The Specialized Program
Tempo takes the source code outlined in Section 5.1 and
hints summarized in Section 5.2 to generate a template and a
runtime specializer in C. Fig. 27 shows how the specialized
program might look if generated in C. The runtime
specializer calls tz_gettsd(), executes the initialization
code, which includes pthread_setspecific(), and

replaces the subsequent invocations of tz_gettsd() with
the constant address of TSD. The constant nature of the TSD
address results in the replacement of the tz_gettsd()
invocation with the TSD address at the hole &H0. The other
holes &H2 and &H3 are filled with the value returned by
tz_gettsd(). In addition to eliminating one function
invocation, an ”if” branch is eliminated. The size of the
specialized code was 96 bytes on the SPARCs and 54 bytes
on the Pentium.

5.4 Experimental Results
We measured the performance of the specialized time
converter. The performance of the time converter depends
on the time zone. In the experiments, the time zone was
initialized to GMT, and its definition was read from a
56-byte file included in the Linux distribution.

5.4.1 Speedup
First, we measured the peak execution times to obtain the
speedup due to specialization. We used the following
versions for comparison:

. mutex. This version protects shared variables
through pthread_mutex_lock() and pthread_-
mutex_unlock(), as implemented in GNU libc
version 2.

. tsd. The version described in Section 5.1, executed
without specialization.

. tsd-spec. This is the specialized version of [tsd]
(described in Section 5.3).

Fig. 28 summarizes the execution times of these versions
including the outer loop that continually invokes one of the
versions. In both SunOS and Linux, we extracted the source
code of the time converter from GNU libc version 2,
compiled it with the same options as others (see Section 2.5),
and linked it statically. Therefore, the execution times do
not include the overhead of dynamic linking within the
time converter module. All the execution times include the
overhead of invoking external dynamically linked functions
outside the time converter modules, such as strcmp() and
strlen(). We also tuned the data and instruction layout
for the outer loop and each localtime_r() of these
versions including nonspecialized versions. On the
SPARC64 (Fig. 28a), despite moving the locking primitives
out of the critical path, the new TSD program is slower than
the mutex one. However, specialization improves perfor-
mance by 14 percent, and the specialized TSD version
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Fig. 25. An implementation of localtime_r() with TSD.

Fig. 26. Hints in ML for specializing localtime_r().

Fig. 27. The specialized code of localtime_r().



becomes faster than the mutex version. On the UltraSPARC
(Fig. 28b) and the Pentium (Fig. 28c), the TSD version is
already faster than the mutex version since locking appears
to be more expensive. Specialization improves the TSD
version performance by another 18 percent and 22 percent,
respectively.

5.4.2 The Breakeven Point
Table 4 shows the breakeven points of specializing the
function localtime_r(). Since they were small enough,
we conclude that runtime specialization will produce
significant performance savings in frequently executed
medium-sized systems code.

5.4.3 Scalability
Fig. 29 shows the throughput of localtime_r() in
parallel processing. The x-axis is the number of worker
threads. This number is equal to the number of CPUs that
are obtained from the operating system (limited to eight or
four in our experiments due to hardware limitations). The
y-axis is throughput in million executions per second of
each version when invoked repeatedly. The results are
consistent with the experiments in Section 3 and Section 4.
The mutex version shows immediately declining through-
put. In contrast, the TSD versions are scalable (approxi-
mately linearly) up to eight CPUs.

6 RELATED WORK

Much of systems research has focused on efficiency gains.
Other systems properties such as maintainability and
portability have been considered ”software engineering”
problems. The main contribution of this paper is a method
to achieve efficiency through specialization and portability
through standards compliance. We demonstrated our
method’s usefulness in three experiments on the application
of TSD for multithreaded programs. To the best of our
knowledge, there is little previous research on achieving
efficiency and portability simultaneously. Therefore, we
briefly compare our research with previous work on
multithreading, TSD, standards, and specialization.

Research on multithreading primarily has focused on
efficient (fixed) implementations, including the coopera-
tion between user-level and kernel-level threads, and
resource allocation including scheduling and register
allocation [1], [8], [21], [31], [34]. In this paper, we have
shown that TSD with specialization can reduce the

SHINJO AND PU: ACHIEVING EFFICIENCY AND PORTABILITY IN SYSTEMS SOFTWARE: A CASE STUDY ON... 797

Fig. 28. Execution times of localtime_r(). (a) SunOS/SPARC64 IV
450MHz. (b) SunOS/UltraSPARC II 480 MHz. (c) Linux/Pentium III
550 MHz.

TABLE 4
Breakeven Points of Specializing the Function localtime_r()



synchronization overhead and provide much better scal-
ability. Eraser is a dynamic verifier for multithreaded
programs [29]. Eraser checks that all shared memory
accesses follow a consistent locking discipline dynamically.
In this paper, we have shown a systematic method to
create a correct and efficient multithreaded program with a
base single-threaded program, TSD, and specialization.

Compiler support in Visual C++ [4] provides Thread
Local Storage (TLS) at a much lower overhead than the
POSIX Threads package, which is equivalent to dynamic
TLS. Static TLS is similar to our specialized case, although it
still requires four load instructions instead of the single load
instruction for global variable access. In contrast, our
method only requires a general C compiler and a C program

specializer, neither of which needs to recognize threads
explicitly.

Kernel support for memory mapping can be used to
implement efficient user-level TSD. For example, kernel-
level TSD can be used to store the pointer to the structure
for the currently running user-level thread. In an early
system, kernel-level TSD is realized as a per-process
memory region while a group of processes share most of
the memory [2]. If we can extend the per-thread structure,
user-level TSD can be implemented with a single indirec-
tion overhead. However, the POSIX Threads Standard does
not expose the per-thread structure. In our method, no
kernel support for memory mapping is needed, and there is
no indirection overhead.

POSIX has chosen the internal locking approach for
functions that maintain a state between invocations [11],
[27]. For functions such as localtime(), POSIX has
chosen to provide alternate reentrant versions such as
localtime_r() that do not use TSD. The regular POSIX
TSD based on a key-value scheme has been considered
expensive for a long time and is used infrequently [18], [24].
Our TSD-based systematic development method largely
eliminates the performance penalty of POSIX compliance.

The previous work on specialization targets file systems
and network protocol stacks including RPC [3], [9], [22],
[23]. To the best of our knowledge, this paper is the first one
on systematic specialization of multithreaded programs,
particularly by using the runtime specialization facilities of
Tempo. Tempo can specialize Java programs with Harissa,
a Java-to-C translator, and Assirah, a C-to-Java translator
[30]. Currently, Tempo for Java supports only compile-time
specialization. We used Tempo as a runtime specializer for
the C language. Other runtime specializers for the
C language, such as ‘C [26] and DyC [10] could be used
in place of Tempo, with appropriate specifications for those
specializers.

7 CONCLUSION

In this paper, we addressed the problem of achieving
efficiency and portability in systems software through a
methodical approach. Typically, standard-compliant code
carries apparently unavoidable overhead due to the
standard-prescribed interface, which may add 40-50 in-
structions to simple system functions. Using specialization
tools such as Tempo, we can eliminate the performance
penalty during execution to achieve efficiency while
maintaining the source code standard compliance to
achieve portability. Our method preserves standard com-
pliance by giving declarations of invariants with the source
code instead of modifying it. We eliminate the execution
overhead by using the partial evaluator Tempo’s runtime
specialization facility.

We applied our method to the creation of efficient and
portable (POSIX-compliant) code using thread-specific data
(TSD) for multithreading systems and application software.
In this case, the main source of TSD overhead was the
POSIX-prescribed interface to TSD variable binding such as
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Fig. 29. The throughput of localtime_r()(average and 90 percent
range as error bars). (a) SunOS/SPARC64 IV 450MHz. (b) SunOS/
UltraSPARC II 480 MHz. (c) Linux/Pentium III 550 MHz.



pthread_getspecific(). Using our method, Tempo
generates templates and runtime specializers to convert the
standard-prescribed function calls in the source code into
simple global references at runtime, when the TSD memory
location is invariant for each thread.

We demonstrated the effectiveness of our method in
three representative experiments on widely used produc-
tion software: a short system function (random number
generator), a large application (parallel genetic algorithm
program), and an intermediate library routine (time con-
verter). For each case, we showed that runtime specializa-
tion gave significant performance improvements, a low
breakeven point (a few executions of the specialized code to
recover the runtime specialization overhead), and better
scalability of TSD on SMPs compared with locking.

In most cases, specialized TSD code has performance
comparable to that of direct access to global variables (i.e.,
code written for single threaded programs). Concretely, the
execution time of the TSD-based random number generator
is reduced by a factor of 4.8 on a SPARC running SunOS
and by a factor of 2.2 on a Pentium running Linux. The
execution time of the TSD-based parallel genetic algorithm
is reduced by 13 percent on the SPARC and 5.1 percent
on the Linux. The time converter’s time is reduced by
14 percent on the SPARC and 22 percent on the Pentium.
Our results suggest strongly that TSD with specialization is
a good technique for the development of multithreaded
systems software that is efficient, standard-compliant, and
scalable.
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