<table>
<thead>
<tr>
<th>Year</th>
<th>Month</th>
<th>Day</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>1991</td>
<td>08</td>
<td>31</td>
<td>Journal of Tsukuba English Studies</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Publication Title</td>
</tr>
<tr>
<td>Volume</td>
<td>Page</td>
<td></td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>301-302</td>
<td></td>
<td></td>
</tr>
<tr>
<td>URL</td>
<td></td>
<td></td>
<td>http://hdl.handle.net/2241/7606</td>
</tr>
</tbody>
</table>
Pustejovsky (1988) attempts to define the aspektual classification of a verb (or sentence) in terms of the topology of the event. Thus a state is a simple nonbranching event, as in (1a), a process a multiple-branching structure as in (1b), and a transition a simple binary branching structure as in (1c) (e represents an event individual and \(E \) is an event-type variable).

(1) a. State (S): sick, love, know \([_s e]_s\)
b. Process (P): run, push, drag \([P e_1 \ldots e_n]_p\)
c. Transition (T): \([T E_T E_T]_t\)

The transition template in (1c) allows for the following four structures, where either e or a process is substituted for \(E \):

(2) a. Simple Transition: give, open, close
\([T e e]_t\)
b. Logical Transition: build, draw, destroy
\([T [P e_1 \ldots e_n]_p e]_t\)
c. Culminating Transition: die, lose, win, arrive
\([T [P e_1 \ldots e_n]_p e]_t\)
d. Process Transition: throw, drop, mail, send
\([T e [P e_1 \ldots e_n]_p]_t\)

However, this analysis has serious flaws. It cannot account for (3) or (4).

(3) The light flashed.
(4) He lent me the book for two weeks/until Monday.

In (3) the event is punctual, and in (4) the verb includes the resultant state as part of its temporal structure, as is
clear from the time adverbials. Furthermore, the decomposition of the event-types into subevents is quite arbitrary.

Our alternative analysis, incorporating the insights of Lys & Mommer (1986), overcomes these difficulties. Two mechanisms are called for. On the one hand, two primitives: \(P \), a point in time, and \(R \), a region in time (cf. the temporal tier in Jackendoff 1987). On the other hand, four temporal phases: Initial, Nucleus, Culmination and Result. The combination of these two mechanisms allows for the following paradigm:

<table>
<thead>
<tr>
<th>Initial</th>
<th>Nucleus</th>
<th>Culmination</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>(P)</td>
<td>(P)</td>
<td>(R) (P)</td>
<td>(P)</td>
</tr>
</tbody>
</table>

- : John left.
- : John ran.
- : The light flashed.
- : The ice-cream cone melted.
- : John crossed the street.
- : John locked the door.
- : John died.

The presence of \(P \) or \(R \) in a particular phase is tested by the modifiability of time adverbials. For instance, the \(in \)-PP can be attached to the sequence of a Nucleus \(R \) plus a Culmination \(P \). The \(for \)-PP is possible with an \(R \), either in a Nucleus or a Result phase. The \(at \)-PP refers to a \(P \), etc.