空間的注意および危険感を中心とした移動時の注意不全に関する研究：A D H D 傾向者・健常高齢者を対象とした検討

<table>
<thead>
<tr>
<th>著者</th>
<th>小菅 英恵</th>
</tr>
</thead>
<tbody>
<tr>
<td>発行年</td>
<td>2019</td>
</tr>
<tr>
<td>学位授与大学</td>
<td>筑波大学</td>
</tr>
<tr>
<td>学位授与年度</td>
<td>2018</td>
</tr>
<tr>
<td>報告番号</td>
<td>甲第 418 号</td>
</tr>
<tr>
<td>URL</td>
<td>http://doi.org/10.15068/00157081</td>
</tr>
</tbody>
</table>
空間的注意および危険感を中心とした移動時の注意不全に関する研究

：ADHD 傾向者・健常高齢者を対象とした検討
目次

第 1 部 序論 .. 1

第 1 章 道路交通事故に関わるヒューマンファクターと注意 2

1.1. 道路交通事故の現況 ... 2

1.2. 道路交通事故とヒューマンファクター ... 3

1.3. 道路交通事故と注意の問題 .. 4

第 2 章 道路交通事故に関わる人間の行動制御と主観的リスク反応 10

第 3 章 人間の安全な行動に関わる注意 ... 12

3.1. 直面する脅威への対処に関わる情報処理の働きと仕組み 12

3.2. 移動行動と空間的注意 ... 17

3.3. 移動時の認知的活動とエラー特性の測定 ... 20

第 4 章 交通リスクの主観評価と危険感 ... 22

第 5 章 本研究の目的と構成 ... 24

5.1. 解決すべき課題と本研究の目的 .. 24

5.2. 本研究の構成 ... 26

第 2 部 本論 ... 29

第 1 章 移動時の注意不全に関する心理尺度、危険感評価ツールの作成 .. 30

1.1. 【研究 1】一般成人の移動時注意不全尺度の開発 30

1.1.1. 研究の背景と目的 .. 30
第2章 【研究3】移動時注意不全の差異の検討

: ADHD傾向者と健常高齢者・一般成人者の比較 71

2.1. 研究の背景と目的 ... 71

2.2. 方法 .. 72

2.3. 結果 ... 74

2.4. 考察 .. 78

第3章 ADHD傾向者の移動時注意不全に関する実験心理学的検討 80

3.1. 【研究4】ADHD傾向者の空間的注意機能 80

3.1.1. 研究の背景と目的 ... 80

3.1.2. 方法 ... 81

3.1.3. 結果 ... 95

3.1.4. 考察 ... 113

3.2. 【研究5】ADHD傾向者の空間的注意機能と移動時注意不全の関係 117

3.2.1. 研究の背景と目的 ... 117

3.2.2. 方法 ... 118

3.2.3. 結果 ... 121

3.2.4. 考察 ... 132

3.3. 【研究6】ADHD傾向者の危険感 ... 133

3.3.1. 研究の背景と目的 ... 133

3.3.2. 方法 ... 134
第3章 健常高齢者の移動時注意不全に関する実験心理学的検討

4.1. 【研究7】健常高齢者の空間の注意機能
4.1.1. 研究の背景と目的
4.1.2. 方法
4.1.3. 結果
4.1.4. 考察

4.2. 【研究8】認知的加齢における空間的注意機能と移動時注意不全の関係
4.2.1. 研究の背景と目的
4.2.2. 方法
4.2.3. 結果
4.2.4. 考察

4.3. 【研究9】健常高齢者の危険感：注意機能からの考察
4.3.1. 研究の背景と目的
4.3.2. 方法
4.3.3. 結果
4.3.4. 考察

第3部 結論
第1章 本研究の目的と各研究の成果 ... 194

第2章 得られた成果に基づく移動時注意不全の情報処理過程と
注意制御の関係 ... 204

2.1. 人間の移動時注意不全の情報処理過程と注意制御 204

2.2. ADHD傾向の影響による情報処理過程と移動時注意不全エラー 208

2.3. 加齢の影響による情報処理過程と移動時注意不全エラー 211

2.4. 移動時注意不全のADHD傾向と加齢による処理の違い 214

第3章 今後の課題と展望 ... 215

第4章 本研究の意義 ... 219

引用・参考文献 ... 220

謝辞 ... 232

Appendix1. 質問紙・フェイスシート
Appendix2. 質問紙・ADHDチェックリスト
Appendix3. 質問紙・移動時注意不全尺度の項目
Appendix4. 数量化理論第Ⅲ類から質的変数間の距離の算出式
Appendix5. ①空間的情報選択課題・刺激
Appendix6. ①空間的情報選択課題・刺激提示のエリア
Appendix7. ②注意切替課題・刺激
Appendix8. ③変化検出課題・刺激□注意集中場面
Appendix9. ③変化検出課題・刺激□注意分散場面
第 1 部 序論
第1章 道路交通事故に関わるヒューマンファクターと注意

1.1 道路交通事故の現状

道路交通事故は「歩行者、自転車、二輪車、普通自動車、トラック等の道路交通上の移動体が相互にあるいや他に物体と接触することによって、人あるいは物体に何らかの損傷を生じる過程および結果（谷口，1999）」である。我が国の道路交通事故の推移をみると、1970（昭和45）年に負傷者数は約98万人、死者数は約1万7千人を占めたが、2016（平成28）年では負傷者数は約62万人、交通事故死者数は約4千人と減少傾向にある。政府は第10次交通安全基本計画に則り、2020（平成32）年までに道路交通事故の死傷者を2500人以下とすることを目標に掲げている（内閣府，2018）。

世界保健機関WHO（2018）によると、道路交通事故により毎年125万人以上の人々の生活に困難が生じており、道路交通事故による傷害は、個人、その家族、および国全体へ多大な経済的損失を生じさせ、公衆衛生上の問題であることを指摘している。

死亡率・経済的コスト・健康上の問題などから計算される世界の疾病負荷は、虚血性疾患、下気道感染症、脳卒中が高く、道路交通事故は10位に位置する。我が国の道路交通事故による死亡は全体の0.4％であるが、事故による障害など生活上の困難を考えると、道路交通事故は高い水準にあり、道路交通事故防止は今後も継続して取り組む課題である。
1.2. 道路交通事故とヒューマンファクター

道路交通事故の発生を人間行動から捉えると、道路交通事故発生に影響を及ぼす要因は、道路利用者の「人」の要因と、人が置かれた「環境」や「車両」要因の相互作用により生じる。したがって、道路や道路環境の整備、車両性能が向上しても、それらを利用する人々が道路交通事故発生につながる行動を伴えば、道路交通事故リスクは高まる。

Treat, Tumbas, McDonald, Shinar, Hume, Mayer, Stansifer, and Castellan（1979）は、道路交通事故原因の92.6％がヒューマンファクター（人間の特性）であり、33.8％が環境的要因、12.6％が車両要因と報告しており、道路交通事故発生には、道路を利用する人間の特性の影響が大きい。

黒田（1996）は、人間・機械系の人間の特性について、6つの要因から整理している。生理学的（Physiological）、身体的（Physical）、病理学的（Pathological）、薬剤的（Pharmaceutical）、社会心理的（Psychosocial）、心理的（Psychological）要因であり、道路交通事故発生の背景には、これらの要因が独立的あるいは相互に関わり合いをもたらしながら事故原因となると考えられている。
1.3. 道路交通事故と注意の問題

（1）ADHD者の注意と安全の問題

発達障害者は定型発達者に比べ歩行事故の死亡リスクが高く（Strauss, Shavelle, Anderson, & Baumeister, 1998）、定型発達者と注意欠如・多動症／注意欠如・多動性障害（Attention-Deficit/Hyperactivity Disorder、以下ADHD）者を比較した論文のメタ分析において、ADHD者の道路交通事故発生率は有意に高い（Jerome, Segal, & Habinski, 2006）ことが報告されている。

交通行動をみると、ADHDの児・者は、歩行・横断時の行動において、変動性の高さ（Clancy, Rucklidge, & Owen, 2006）や危険性の高い横断環境の選択（Stavrinos, 2009）、自転車運転では、不適切なタイミングの道路の進入（Nikolas, Elmore, Franzen, O’neal, Kearney, & Plumert, 2016）、自動車運転では、操縦の変動（Barkley & Cox, 2007; Barkley, Murphy, & Kwasnik, 1996）や単調な運転時の衝突率の高さ（Biederman, Fried, Monuteaux, Reimer, Coughlin, Surman, Aleardi, Dougherty, Schoenfeld, Spencer, & Faraone, 2007）などが報告されている。

神経発達症群／神経発達障害群（Neurodevelopmental Disorders）に分類される“発達障害”の一つであるADHDは、「日常生活および社会生活のなかで支障をきたすほどの多動性・衝動性、不注意またはそのいずれかが持続している状態」「一般的には、多動性・衝動性は青年期早期までに軽減するが、不注意症状はしばしば成人期まで持続する」臨床像で説明される（高橋・大西・松本, 2015）。

ADHDの状態像の背景には中枢神経系の不全があり、道路交通事故発生の背景にADHD特有の注意の働きが仮定される。
Sergeant（2000, 2005）のCognitive Energetic Modelでは、情報処理過程、心的エネルギーの諸側面、管理の側面からADHDの状態像をモデル化している（Fig.1.1）。情報処理過程とは、符号化（encoding）、処理系（central processing）、出力系（response organization）である。エネルギーの諸側面とは、努力（arousal）、覚醒（effort）、活性化（activation）である。管理（management / executive function）の側面は、最も下位の情報処理過程と、各処理系のエネルギーの側面を全体的に管理する。

Fig.1.1 SergeantのCognitive Energetic Model
Sergeant（2005）Fig1より抜粋
しかし、ADHDの障害特性が注意の求められる高リスクな道路交通場面において、どのような情報処理のメカニズムで道路交通事故発生に影響を及ぼすのか、注意のどのような働きによって道路交通場面でエラーが発現しやすいのかは明らかになっていない。

（2）高齢者の注意と安全の問題

我が国では超高齢社会を迎えたことで、加齢に伴う注意機能の低下がみられる高齢者の道路交通事故が社会問題として取り上げられている。

交通事故統計データによると、75歳以上の運転者の死亡事故の要因は、「操作不適」28％に次いで「内在的前方不注意」が23％、「安全不確認」が22％と報告されている（内閣府, 2018）。また交通事故統計データ（柴崎, 2017）からは、高齢運転者が第1当事者となる追突の道路交通事故の要因をみると、「内在的前方不注意」は18％、「外在的前方不注意」は37％を占める。内在的前方不注意・外在的前方不注意は、不注意（driver inattention）や注意散漫（driver distraction）と同じ、運転者の不注意の問題から考えられる。

Kramer, Hahn, and Gopher (1999), Plude and Doussard-Roosvelt (1989)の心理学実験等より、実験室実験において、高齢者は若齢者に比べ注意機能の遂行能力は低いことが報告されている。

こうした注意の低下や加齢による認知機能の低下は、注意資源容量の低下（Craik & Byrd, 1982）や、抑制機能の低下（Hasher, Zacks, & May, 1999）から説明されている。人間は移動行動など何らかの活動を行う際、限界のある「注意資源」である心的エネルギーを用いている。同時並列的に行なう活動が増えれば、各活動に必要な資源を分配しなければならない。Craik and Byrd (1982)は、同時に遂行する課題の多さ、あるいは課
題そのものの認知的負荷が高い条件では、「注意資源」の相対的な容量が加齢と共に減衰しているため加齢効果があらわれる、と説明する。

抑制機能低下モデル（Hasher et al., 1999）では、人間が意図や目標をもって何らかの活動を行なう際には行動の制御が必要であり、現在進行形の活動に必要な情報を効率的に収集するために、不要な情報を無視、抑制する機能が加齢と共に低下すると説明する。

これらのモデル（Craik & Byrd, 1982; Hasher et al., 1999）や、道路交通事故データを用いた高齢者の道路交通事故分析（小菅, 2018; 柴崎・小菅・平川, 2017）においても、高齢者の道路交通事故の背景には、加齢による認知機能や注意機能低下の影響が示唆される。しかし、高齢者もADHD者と同様に、加齢に伴い低下する注意がどのようなプロセスを経て移動時の不注意に至るのか十分に明らかにされていない。

（3）道路交通事故予防対策と道路利用者の注意特性の把握

交通事故統計データを用いて、運転者の道路交通死傷事故の原因となった人為的要因を分析した研究（田久保, 2005）では、「安全不確認」が45.2%と最も多く、次いで「外在的前方不注意」が20.0%、「内在的前方不注意」が8.6%と報告されている。「安全不確認」とは、その状況下で必要な安全確認をしなかったことや不十分な場合、「外在的不注意」とは、注意すべき対象以外を注視、すなわち脇見の場合、「内在的不注意」とは、考え事や会話等による意識や注意力の低下、例えば漫然運転の場合につく調査項目であり、これらには共通して認知的特性の中でも、人間の不注意の問題が指摘できる。

実際、道路交通事故発生的人的要因の中でも、注意散漫（driver distraction）や不注意（driver inattention）といった人間の注意の問題は、
運転者の道路交通事故発生の主要かつ直接的な原因として数多く報告されてきた（e.g., Dozza, 2013; Hoel, Jaffard, & Van Elslande, 2010, April; Klauer, Dingus, Neale, Sudweeks, & Ramsey, 2006）。

道路交通事故発生の原因として取り上げられる注意散漫と不注意の捉え方は、研究者によって、これらの注意の背景が本質的に同じであるとみなす研究者がいる一方で、注意散漫と不注意の現象を生じさせる誘因が運転者の外部にあるか、内部にあるかで本質的に異なると主張する研究者も存在する（Caird & Dewar, 2007; Ledesma, Montes, Poó, & López-Ramón, 2015; Pettitt, Burnett, & Stevens, 2005; Regan, Hallett, & Gordon, 2011）。道路交通場面における注意散漫と不注意については、人間の不注意が大きく道路交通事故発生に影響することは指摘されるが、実証的な分析は少なく、道路交通事故発生に関わる注意不全のプロセスは明らかになっていない。

道路交通事故発生の原因は、道路交通システムを構成する道路利用者の影響が大きく、人間の特性の中でも不注意や注意散漫など“不注意”に起因する事が指摘・報告されている。道路交通事故防止においては組織や管理（システム）及び人（パーソン）からの両アプローチが求められる（Reason, 2000）が、道路を利用するADHD者や高齢者などの道路交通事故発生に関わる不注意のメカニズムが明らかになれば、道路交通事故防止のための効果的な安全教育など、道路利用者の特性に焦点をあてた事故防止対策を検討する事が可能となり、効果的な道路交通事故発生の抑制につながると考えられる。

しかし現状では、ADHD者と高齢者の事故発生の背景として指摘される不注意について、観察される不注意に違いはみられるのか、その不注意の背景にあるプロセスは同じメカニズムなのか、あるいは異なるメカ
ニズムなのか、異なるとすればどのように異なるのかなど、明らかにされていない。
第2章 道路交通事故に関わる人間の行動制御と主観的リスク反応

Michon（1979）は、道路交通事故に関わる人間行動について、行動とリスクの両面を考慮する必要性を述べ、Fig.1.2 に示すように主観的リスク反応と行動制御の側面を3つの段階から階層的に整理している。

道路上の人間行動と道路交通事故発生の最も上位の階層は、「戦略」階である。移動（travelling）は、道路交通事故といったリスクを伴う活動であり、道路交通事故というリスクに対する主観的反応では、まず、移動に伴うリスクを受け入れるか否か「リスクの受け入れ」反応が関わる。このリスクの受け入れに関する反応は、行動制御の面では、移動の目的やルート、移動車両の選択など、「行動計画」と密接に関わる。

<table>
<thead>
<tr>
<th>段階</th>
<th>＜主観的リスク反応＞</th>
<th>＜行動制御＞</th>
</tr>
</thead>
<tbody>
<tr>
<td>上位（戦略）</td>
<td>リスクの受け入れ</td>
<td>移動の計画</td>
</tr>
<tr>
<td>中位（戦術）</td>
<td>リスクテイキング</td>
<td>行動の選択</td>
</tr>
<tr>
<td>下位（運用）</td>
<td>脅威への対処</td>
<td>基礎的能力</td>
</tr>
</tbody>
</table>

Fig.1.2 道路交通事故に関わる人間の行動制御と主観的リスク反応
移動中の行動遂行は、多くの場合、車両の運転であれば速度をあげる、減速を行なう、追越しをするなど、道路交通事故発生につながる衝突を高める「行動の選択」が伴う。このように、移動中にどのような行動を選択するかといった移動の「戦術」段階は、道路交通事故が顕在する可能性に積極的に関与するか否かという「リスクテイキング」と密接に関わる。また移動中の「行動の選択」は、どのような目的で移動をするか、いつまでに目的地への到着するかといった移動全体の計画と一致して働くため、「戦術」段階は上位の「戦略」段階の影響を受ける。

下位に位置する階層は、車両の運転であれば操舵や制動の操作技能、歩行であれば歩行や横断技能といった、行動を制御するための「基礎的能力」が直接的に作用する「運用」段階である。道路交通事故発生に結びつく危険源が目前に迫れば衝突を回避するための反応がとられるため、この段階の行動制御は、「脅威への対処」と密接に関わる。

3つの段階は明確に分けられるものではない。ただし時々刻々と変化する交通状況で、急な環境の変化や危険に直面した際の人間の回避行動に最も直接的な影響を及ぼすのは、「脅威への対処」反応と、「基礎的能力」の「運用」段階であろう。すなわち、道路交通事故リスクを回避するための環境からの情報収集、収集した結果を基にした意思決定、その後の回避行動の実行系に至る一連の情報処理過程が明らかになる事で、根本的で効果的な道路交通事故防止対策が検討できると考えられる。
第3章 人間の安全な行動に関わる注意

3.1. 直面する脅威への対処に関わる情報処理の働きと仕組み

（1）注意不全とヒューマンエラー

時々刻々と変化する道路交通場面で人々が安全に行動するには、状況の要求や行動目標に応じて、多くの情報の中から必要な情報を優先的に入力-取り入れた情報を処理-その結果を出力といった情報処理の過程を繰り返し、直面する「脅威への対処」を行うことが求められる。道路交通場面における実際の行動は、一連の情報処理過程が円滑に行われることで、道路交通事故やそのリスク回避が実行可能となる。この一連の円滑な情報処理活動やその結果に基づく行動の遂行は、情報処理の制御、すなわち注意の働きによって担われている。したがって、一連の処理過程が上手く行なわれない場合、「注意し続けなければならない状況にも関わらず、漫然運転をしていた」「見えるべき信号・標識を見落とした」「まさか自転車が飛び出してくるとは思わず衝突しそうになった」などの情報処理の失敗が生じ、一般に“不注意”と呼ばれる現象が生じる。“不注意”はヒューマンエラーの研究で数多く扱われており、認知心理学的研究では、何らかの作業遂行時の情報処理過程で中心的役割をはたす注意が十分に機能していないこと、すなわち注意不全から検討されている(e.g.,山下,2002;篠原,2011)。

（2）注意の性質

Wickens and McCarley (2008) は、認知的活動に関わる“注意”を「フィルター」と「注意資源」のメタファーで説明している。人間の情報処理には限界があるため、外界に存在する全ての情報を収集することはできない。
きない。そこで「フィルター」によって膨大な情報の中から必要な情報の取捨選択を行なう。また一度取り入れた情報を知覚や認知など機能させるには、動かすための燃料である「注意資源」が必要となる。「注意資源」の容量には限界があるが、人間は制約ある「注意資源」を各処理過程にうまく配分することで、道路交通場面において衝突対象を発見し、その後の状況の危険性を予測し、道路交通事故発生を回避する行動の遂行などが可能となる。

Wickens（2002）は認知活動について、「処理段階」「知覚モダリティ」「処理符号」および「反応方法」の次元を想定しそれぞれの注意資源プールを仮定している。本モデルによれば、独立的な注意資源の貯蔵庫が仮定されるため、貯蔵庫が競合せず、残余の「注意資源」があれば、同じモダリティ、同じ処理段階においてエラーは生じにくいと考えられる。

(3) 情報処理の制御の働き

注意の「フィルター」「注意資源」は、それらを管理・制御するシステムに支えられていると考えられている。心理学のモデルでは、Norman and Shallice（1986）の「注意監督システム」（Supervisory Attentional System: SAS）のモデルがある。
このモデルでは、自動的に活性化されるパフォーマンスと、意識的に統制されている場合のパフォーマンスについて、スキーマの制御から考えられている。運転や歩行のように、十分に学習された行動パターンは、ある種のスキーマが形成されている。情報が知覚システムを通じて入力されると、データが自動的に駆動し、スキーマが自動的に活性化する。そのようなスキーマについて、スキーマ制御のユニット層で、現在の活動には関係のないスキーマを抑制することで行為が制御されるが、このスキーマの選択や制御を担うのが「注意監督システム」であると考えられている。

このモデルによれば、人間の不注意を主とした行動的、内部的なエラーは、スキーマの活性化に関わる不適切な情報の入力を制御できないため
に生じると考えられる。

また、Baddeley（1996）が提唱したワーキングメモリのモデルでは、「中央実行系」が、注意の焦点化、異なる情報間での注意の分割、課題間の注意の切り替え、ワーキングメモリと長期記憶をつなげる注意の管理や制御の役割を担うとされている。Baddeley（1996）はこの「中央実行系」のモデルとして、SASの「注意監督システム」を仮定している。

脳の働きでは、中脳損傷患者の脳損傷部位と精神心理学検査などのパフォーマンスとの関係から、前頭前野において、①energization: その場での問題解決に必要な認知的活動を継続して処理し続ける、②executive: 内／外の情報に対応しながら情報の処理・制御を行なう、③self-reguration: 感情を含め自立的に行動を制御する、④metacognition: 自分の状態や情報処理活動をモニタリングするといった、4種の異なる制御系の相互作用による働きが整理されている（Levine, Turner, & Stuss, 2008）。

（4）記憶の働き

現在、記憶の処理過程は「符号化（記録）」「貯蔵（保持）」「検査（想起）」の各段階から考えられている。知覚と記憶の働きについては、入力された情報はまず感覚情報貯蔵庫に保管され、特徴抽出の処理後、知覚的に処理され、既に保有している貯蔵された情報と参照し意味情報に変換される。こうした符号化の処理後、記憶の処理段階へ伝達されて長期記憶への意味情報の保持や、貯蔵されている情報の想起などのやり取りを経て、何らかの反応として出力される（Norman & Rumelhart, 1970）。

人間の活動には記憶の処理が重要であり、このような知覚・記憶の情報処理モデルによれば、人間の不適切な反応には、外的環境から感覚情
報を入力し、その後、意味情報に変換する符号化過程の失敗も考えられる。

(5) 情報処理と最適な注意制御

道路を利用する歩行者や車両の運転者の、見間違え、考え違い、し忘れ、し損ないなどの情報処理の失敗、あるいは注意を要する状況下での注意の逸れや漫然とした覚醒水準が低下した状態といった“不注意”は、人間の情報処理全体の過程から捉えると、最適な注意制御の失敗と考えられる（Fig.1.4）。

したがって道路交通事故発生に関わる道路利用者の行動について、人間の情報処理過程とその注意の制御過程に着目し、どのような注意不全を生じやすいのか、また、どのようなメカニズムなのか明らかにするとは、移動時の人間行動の解明において、極めて重要な視点であると考える。

![Fig.1.4 主体的な移動行動に関わる情報処理過程・注意・制御の模式図](Image)
3.2. 移動行動と空間的注意

注意は多くの刺激の中から特定の刺激や情報にのみ、受動的、能動的に働くことができ、視線とは独立的に特定の空間位置に向けることもできる。

人間がある地点からある地点へ主体的に空間を移動（travelling）する際の行動は、注意のある地点から地点へ移動（shift）させ、その地点に注意をとどめ（engagement）、ある地点に留まる注意を解放（disengagement）し、また別の地点へ注意を移すという「空間的注意の移動」（Posner & Cohen, 1984）を繰り返す、空間的注意の働きが密接に関与する。

空間的注意は、Posner (1980) によって、視野内を照らすスポットライトに例えられる。スポットライトは眼球運動とは独立に、ある一定の範囲のスポットライトが視野内を移動し、スポットライトが当たっている位置の情報が選択されると考えられている。

また、空間的注意はズームレンズ（Eriksen & James, 1986）にもたとえられる。スポットライトではなく、注意が向けられた範囲は空間的位置を中心に広がりを持つ。ズームレンズのように可変なので、注意の周辺にある顕著な刺激や行為者の興味関心のある刺激は検出される。

空間的注意は狭義では、Posner 課題（Posner, 1980）と呼ばれる空間手がかり法で測定されるパフォーマンスを指すが、本研究では、人間の主体的な移動行動に関わる空間上のある特定の場所に注意を移す働きを総称して、空間的注意（spatial attention）と呼ぶ。
（1）空間的な情報の選択

主体的な人間の移動行動には、環境内の様々な空間的位置にある標識、表示、あるいは回避が必要なハザードなどの情報を、ある対象や位置から、別の対象や位置へ注意を移動させながら探索することが求められる。

人間の移動行動には、空間的な情報選択の働きが関わると考えられ、このような、注意の空間位置に基づく情報選択の性質を評価する代表的な実験パラダイムには、Posnerの先行手がかり課題（1980）がある。

（2）階層的注意の切り替え

環境内の情報は、さまざまな階層から構成されている。運転中であれば、たとえば速度を確認する際は運転席のさまざまなパネルから情報を受け取るが、速度メーターはパネルの計器の一部であり、その情報の収集時に注意の焦点は絞られる。一方、運転中であれば直ぐに前方に意識を向けなおすが、通常特定の情報に注意を集中するのではなく、前方の車両、道路など様々な情報で構成されている走行環境全体の情報を収集し、その際の注意の焦点はゆったりと広がっている。

人間の移動行動では、時々刻々と変化する状況やその場の目標に応じて、注意の焦点の拡大・収縮が求められる。こうした柔軟な注意焦点の階層的切り替えには、注意の切り替えの個人差を測定するCDCT（Compound Digit Cancellation Test：複合数字抹消検査、Ohashi, Gyoba, & Morikawa, 2003）で用いられるNavonの階層文字が有用であると考えられる。Navon（1977）は部分文字の集合から全体文字を構成する複合パターン（compound pattern）と呼ばれる階層文字の刺激を数々の実験で用いたが、階層構造を持つ刺激を使う事で、注意焦点の拡大・縮小の切り替え性質を評価することが可能であると考えられる。
（3）変化の検出

安全な移動行動には、道路交通場面内のさまざまな変化に素早く気づくことが求められるが、人間はしばしば場面内の変化に気がつかない。これは変化の見落とし（change blindness）と呼ばれている。

人間の移動行動に関わるこのような注意の変化検出の性質は、Rensink（2000）のflicker課題が代表的な実験パラダイムである。
3.3. 移動時の認知的活動とエラー特性の測定

道路交通場面は、無数の人々が交差し車両が高速で移動する空間であるため、運転者だけでなく、道路を利用する歩行者など、すべての道路利用者の活動にとって、見落としなどのいわゆる“不注意”な現象が、事故につながるリスクが高い。このように考えると、全ての道路利用者の道路交通事故発生につながる重要な心理的背景因子として注意があり、移動時にあらわれやすい“不注意”傾向、すなわち移動時注意不全エラーから道路交通事故防止を考えることは意義が大きい。

作業に伴う不注意傾向を測定するツールには、日常作業における認知的活動のエラー特性を測定する、SIML（Short Inventory Memory Lapse）（Reason, 1993）、CFQ（Cognitive Failure Questionnaire. Broadbent, Cooper, FitzGerald, & Parkes, 1982）など、質問紙法による測定が試みられてきた。作業の中でも注意を要する日常場面の失敗傾向については、注意機能測定尺度（山下，2002）、EAEQ（Everyday Attention Experiences Questionnaire. 篠原・小高・三浦, 2002 ; 篠原・神田・臼井・中村・太刀掛・小高，2004）の研究が存在する。日常作業におけるエラー特性の測定は、勉強や比較的ルーティン化された日常従事する作業に関わる注意不全の測定であり、高速移動する車両が行き交う高リスクで、時々刻々と変化する道路交通場面で要求される注意不全の測定をすることは出来ない。

道路交通場面におけるエラー特性は、主に Driving Behavior Questionnaire（DBQ. Reason, Manstead, Starding, Baxter, & Campbell, 1990）を用いた研究が行なわれてきた。DBQ は運転者の普段の運転行動にあらわれる操舵や制動の操作技能のエラー特性の把握である。したがって、
移動という人間の目的指向的な行動における注意不全を主としたエラー特性について、認知的活動とその制御過程との関係から把握するには適切な尺度とは言えない。
第4章 交通リスクの主観評価と危険感

Michon（1979）のリスクと道路交通事故の枠組みによれば、道路交通事故には人間の情報処理過程やその制御過程すなわち「注意」と、「脅威への対処」（coping with threat）反応が密接な関わりを持つ。

道路交通場面の人間の「脅威への対処」は、リスク・パーセプション（risk perception）と呼ばれる“交通リスクの主観評価”に関する研究の枠組みの中で、運転者を対象に数多くされてきた。例えば、運転者が交通状況の衝突対象となる危険源の存在を察知し、道路交通事故発生につながる事態の中で、その後の展開を的確に読み取る危険予測（e.g., 小川, 1993）のように、“交通リスクの主観評価”は運転課題の遂行に伴う認知技能（cognitive skill）としてアプローチされてきた。

しかし、人間の主観的リスク反応を、リスク情報から反応までの一定の情報処理過程として位置づけると、リスクという「情報の収集」、「情報の処理」とそれらを通した「反応」の心的過程が考えられる（Fig.1.5）。

従来の“交通リスクの主観評価”に関する研究アプローチで評価が試みられてきた認知技能は、情報処理過程から整理すると、運転経験を基にしたスキーマや技能を手がかりとして、論理的に説明可能な道路交通事故発生に関与する危険源を「能動的に探索」し、リスクの「推論・予測」を通した「分析的処理」過程による危険予測と言える。

一方で人間のリスクに対する反応は、推論や予測のように分析的になされるのではなく、経験的（experimental）反応の優位性が提唱されている（Slovic, Finucane, Peters, & MacGregor, 2004）。Slovic et al.（2004）は、“交通リスクの主観評価”に関する研究を整理し、リスクに対する個人の反応の質的な差は、刺激に関連する急速で自動的に生じるフィーリ
ング：主観的感情（feeling）であり、刺激に対する主観的な解釈に基づき喚起されたイメージがリスクに対する反応の差を産み出すと述べている。つまり人間の主観的リスク反応には、情報処理過程から整理すると、環境内の刺激を「受動的に補足」し、「印象評価」を通した「直感的処理」過程による「危険感」が考えられる。しかし、交通リスクに対する主観評価の形成過程については実証的に明らかにされていない。

Fig.1.5 主観的リスク反応の過程の模式図
第5章 本研究の目的と構成

5.1. 解決すべき課題と本研究の目的

ここまで述べてきた道路交通事故発生に関する人間の特性や行動の問題は、人間が自ら移動する行為者となった際の注意不全の問題と言え、それは以下に整理できる。本研究は、道路利用者が安全に目的地に到着するためには自ら交通環境の情報を収集、処理、反応する情報処理過程を行なうとの前提に立ち、情報処理の失敗による注意不全（不注意）の解明を目指す。したがって本研究では、バスやタクシーなどの公共交通や、他者の運転に同乗している際の移動は扱わない。本研究の移動時とは「歩行や車両の運転など移動手段に関わらず、自ら交通環境の情報を収集、処理し、移動行為の主体者となってある時点から別の地点まで移る時」と定義する。

① 移動時注意不全エラーを評価するには、高リスクでかつ時々刻々と変化する道路交通場面で求められる注意要求に対する不注意傾向を評価可能な尺度を作成する必要がある。【研究1】
② 効果的な道路交通事故防止対策を検討する上で、ADHD者と高齢者の移動時注意不全エラーの差異について検証する必要がある。【研究3】
③ ADHDの特性や認知的加齢に応じた事故防止対策検討の端緒として、移動時の認知的活動の制御処理の中でも、空間的注意の働きを検討する必要がある。【研究4】【研究7】
④ ADHDの特性や認知的加齢における空間的注意の働きと移動時注意不全エラーとの関係性を明らかにし【研究5】【研究8】、移動時注意不全の発現に至るダイナミックな情報処理と制御の過程を考察する。
ことが重要である。

⑤ 行動の制御と主観的リスク反応は密接であり、交通リスクに対する主観評価の形成過程を実証データから確認し、危険感を評価可能なツールを作成する必要がある。【研究2】

⑥ 人間の認知活動の制御処理を担う注意と密接な危険感について、ADHDの特性や、認知的加齢の特徴を明らかにする必要がある。【研究6】【研究9】

本研究ではこれらの課題の解決に向けて、高リスクで時々刻々と変化する道路交通場面における移動時注意不全の発現について、「空間的注意」および「危険感」の要因から、ADHD傾向者や健常高齢者の移動時注意不全エラー、認知的活動とその制御処理過程を検討することを目的とする。

Fig.1.6は、本研究で中心的に扱う変数の関連を示す。

Fig.1.6 道路交通事故リスクに関わる本研究で扱う変数間の関係図
5.3. 本研究の構成

本研究の本論の構成は、Fig.1.7に示す。

序論では、人間の移動時注意不全に関して、背景となると理論や知見を整理し、本研究で解決すべき課題と本研究の目的を述べた。

これらの課題解決に向け、本論では、まず第1章において、「移動時の注意不全に関する心理尺度、危険感評価ツールの作成」と題し、【研究1】では、ADHD者や高齢者の移動時注意不全の特性解明に用いるために、定型発達成人の特徴と比較・照合可能なツールとして「一般成人の移動時注意不全尺度の開発」を試み、普段の移動時にあらわれやすい不注意傾向を評価する「移動時注意不全尺度」の作成を行う。

【研究2】では、「危険感の評価ツールの作成」を目的に、交通リスクに対する主観評価の形成過程を実証的に明らかにし、その上で、動画による道路交通場面に直感的に抱く「危険印象評価課題」の作成を行う。

第2章では、「移動時注意不全の差異の検討」と題し、研究1で作成した尺度を用いて、ADHD傾向群と健常高齢群および一般成人群の比較を行ない、移動時注意不全エラーがどのように異なるのかを明らかにする【研究3】。

第3章では「ADHD傾向者の移動時注意不全に関する実験心理学的検討」と題し、【研究4】では、①空間的情報選択課題・②注意切替課題・③変化検出課題の遂行成績から、ADHD傾向者の空間的注意の特徴を明らかにする。

【研究5】では、「ADHD傾向者の空間的注意機能と移動時注意不全の
関係」を検討するため、②注意切替課題・③変化検出課題の遂行成績と移動時注意不全エラーとの関係を分析し、ADHD 傾向者に特徴的な移動時注意不全エラーに及ぶ空間的注意の影響を明らかにする。

【研究 6】では、研究 2 で作成した危険印象評価課題の遂行成績から、ADHD の優勢状態別に危険感の特徴を分析する。

第 4 章では、「健常高齢者の移動時注意不全に関する実験心理学的検討」と題し、【研究 7】では、①空間的情報選択課題・②注意切替課題・③変化検出課題の遂行成績から、健常高齢者の空間的注意の特徴を明らかにする。

【研究 8】では、②注意切替課題・③変化検出課題の遂行成績と移動時注意不全エラーとの関係から、移動時注意不全に及ぼす認知的加齢に特徴的な空間的注意の影響を明らかにする。

【研究 9】では、健常高齢者の危険感の特徴について、ADHD 傾向者、比較対照者のデータと比較し、実証的に明らかにする。

最後に結論として、第 3 部では、各研究で得られた知見を整理し、人間の移動時注意不全の情報処理過程と注意制御のモデル化を行ない、各研究で得られた知見と作成したモデルを統合し、ADHD 傾向者と健常高齢者の移動時注意不全に至る情報処理過程の差異を論じる。また、本研究の意義と課題について述べる。
第1章 移動時の注意不全に関する心理尺度、危険感評価ツールの作成

【研究1】
一般成人の移動時注意不全尺度の開発

【研究2】
危険感の評価ツールの作成

第2章 【研究3】移動時注意不全の差異の検討：ADHD傾向者と健常高齢者・一般成人者の比較

第3章 ADHD傾向者の移動時注意不全に関する実験心理学的検討

【研究4】
ADHD傾向者の空間的注意機能

【研究5】
ADHD傾向者の空間的注意機能と移動時注意不全の関係

【研究6】
ADHD傾向者の危険感

第4章 健常高齢者の移動時注意不全に関する実験心理学的検討

【研究7】
健常高齢者の空間的注意機能

【研究8】
認知的加齢における空間的注意機能と移動時注意不全の関係

【研究9】
健常高齢者の危険感：注意機能からの考察

Fig.1.7 本論の構成
第 2 部 本論
第1章 移動時の注意不全に関する心理尺度、危険感評価ツールの作成

1.1. 【研究1】一般成人の移動時注意不全尺度の開発

1.1.1. 研究の背景と目的

ADHD者や健常高齢者は、障害特性または加齢の影響により注意不全を生じやすく、彼らの注意不全に関わる特性が、道路交通事故発生の一因となることが推測される。道路交通事故の防止の視点では、個々人の車両の運転時や歩行時などで、主体的な移動時にあらわれやすい不注意傾向を測定することで、個々の傾向性に応じた効果的な道路交通事故防止対策の検討につながると考えられる。したがって、ADHD者や高齢者が、主体的な移動時にどのような不注意傾向を有しているのか、すなわち移動時注意不全エラーを解明していく必要がある。

道路交通場面は車両が高速で行きかう高リスクな場面であり、自ら車両の運転や歩行といった交通行動で目的地へ向かう行動には、運転者も歩行者も注意を能動的に働かせ情報収集が求められる。このような高リスクな移動時の交通行動に関する注意不全エラーの測定を考える際、既存のツールでは、室内での主にルーチン作業時にあらわれやすい個人の失敗傾向を測定しているため、十分に測定可能とは言えない。

そこで、本研究ではADHD者や高齢者が、主体的な移動時にどのような注意不全エラーの特徴を有しているのかを解明するため、定型発達成人の特徴と比較・照合可能な移動時注意不全エラーを評価する尺度の試作を行ない、試案尺度の妥当性・信頼性を検証することを目的とする。
1.1.2. 方法

1.1.2_1. 対象者

Web 調査会社（マクロミル社）にパネル登録された全国の 30 代～50 代の男女 208 名（30 代男性 24 名・女性 46 名、40 代男性 32 名・女性 38 名、50 代男性 47 名・女性 21 名）。なお調査対象となる 208 名をサンプリングする際は、年代毎の人数が均等になるよう回答データを収集した。

1.1.2_2. 手続き

(1) 移動時注意不全尺度の作成

① 項目の収集：質問項目は、注意理論（Wickens & McCarley, 2008）および既存の注意不全の測定に関する質問紙（Reason et al., 1990；篠原・山田・神田・臼井, 2007；山田, 1999；山下, 2002）などを参考に、主体的な移動時に要する注意機能について 5 つのカテゴリ（①注意の転導、②変化の気づき、③注意の切り替え、④覚醒水準低下、⑤空間・時間認識の注意不全）を仮定し、カテゴリ毎に項目を検討した。

②質問紙の構成：最終的に 5 つのカテゴリ毎に独自に作成した 9 項目、計 45 項目からなる質問項目を採用した。回答形式は、普段の車両の運転や歩行中、過去 1 年間に生じた不注意の頻度について、6 段階評定（全く無かった、もっと無かった、あまり無かった、時々あった、よくあった、非常によくあった）とした。また、主体的な移動時にあらわれる注意不全エラーを評価するため、通勤・買い物等で、普段自分が使用する移動手段（運転又は歩行）による移動をイメージしながら回答するよう教示した。
(2) 実施手続き

調査参加者は、個別にWeb画面上で、調査データの匿名性が確保される点など、研究倫理に関わる説明を確認し、調査の同意後にフェイスシート、ADHDに関する18項目、45問の移動時注意不全尺度（以下、注意不全尺度）」に回答した(Appendix3)。

フェイスシートは、年齢・性別などの属性のほか、日常の道路移動の手段や外出の頻度、普段の車両の運転時や歩行時の事故や危険体験の頻度を問うものであった(Appendix1)。

ADHDに関する項目は、アメリカ精神医学会Diagnostic and Statistical Manual of Mental Disorders: DSM-5（以下、DSM-5）(American Psychiatric Association, 2013)のADHDチェックリスト全18項目で、成人向けの表現に日本語訳したものを用いた(Appendix2)。なお教示ならびに回答形式は、「成人向けADHD自記式チェックリスト(World Health Organization, 2003)」を参考に、過去6か月の不注意の頻度を5段階評定（全く無かった、めったに無かった、ときどきあった、頻繁にあった、非常に頻繁にあった）で求めた。

ADHDの症状は、CEM理論(The Cognitive-Energetic Model)(Sergeant, 2000, 2005)において、入力系－中枢処理系－反応系の一連の情報処理過程、覚醒（arousal）や努力（effort）などの心的エネルギー、それらの管理機能の相互作用によって説明される。ADHDの「不注意」「多動性・衝動性」の状態は、情報処理過程で中心的役割をはたす注意が十分に機能していない「注意不全」と共通するメカニズムで説明され、ADHD傾向の高い者は車両の運転時や歩行時の注意不全を生じやすいことが推測される。したがって、主体的な移動時における注意不全の概念と理論上の関連性を仮定できる既存のADHDチェックリストを用いる。
(3) 得点化の手続き

注意不全尺度の質問項目の回答は、「全く無かった」から1点刻みで得点化し、逆転項目は逆の得点化を行なった。

ADHDに関する項目は、仁平（2013）のADHDのアナログ研究法の手続きを参考に、「全く無かった」を0点、「非常に頻繁にあった」を4点とした。ADHDの傾向は、それぞれ9問で評価される優勢状態毎のスコア、および18問の合計からADHD傾向を評価する合算スコアを算出した。

なお統計解析は、統計ソフトウェアR（3.3.2）を用いた。

1.1.2_3. 倫理的配慮

本研究は、筑波大学人間系倫理審査委員会の承認を得て実施した（承認番号筑27-66）。

33
1.1.3. 結果

1.1.3_1. 尺度の構成

本分析では、注意不全尺度の回答から、個人の主体的な移動時注意不全エラーに関する因子構造を検討した。

208名45項目毎基本統計量を算出し、最小値-最大値の幅が狭く、かつ中央値が1を示す5つの質問項目を除いた。40項目について平行分析の結果から、4因子解とした。尤法・プロマックス回転で探索的因子分析（累積寄与率60％、RMSEA=.077、BIC=-2062.19）を行ない、いずれの項目に.40以下の因子負荷量を示す項目と、複数の項目に同程度の負荷を示す項目を削除し、最終的に30項目を採用した（Tab.1.1_1）。

第I因子は、逸脱、衝突、接近など道路交通事故や、道路交通事故につながりやすい事象が既に発生していた質問項目が多く含んでいた。道路からの逸脱、対向車（者）との衝突、後方からの追突などは、交通環境に適応的に行動するための、状況に応じた最適な注意制御不全のあらわれと考えられ、「注意の制御不全（以下、制御不全）」と命名した。

第II因子は、「気づくことができる」「察知できる」「注意を切り替えることができる」といった項目が高い負荷量を示した。これらの項目は、時々刻々と変化する道路交通場面でわずかな変化を素早く検出し、注意焦点を適切に変更（shifting）していく能力に関わると考えられ、「注意の変更機能不全（以下、変更不全）」と命名した。

第III因子は、車両の運転時や歩行時に上の空の状態や、意識がポーっととする状態、気づきの遅さや気が付かない状態の質問項目の負荷量が高かった。このような状態は注意を要求されている場面にもかかわらず、一定の注意を維持し続けることの困難さ、すなわちビジランスの維持に
関わると考えられ、「覚醒水準の低下（以下、水準低下）」と命名した。

第□因子は、時間の読み違いや、外部環境から割り込んだ刺激の抑制困難、情報収集が求められる状況で必要情報の選択の失敗をあらわす質問項目が高い負荷量を示した。抑制機能や注意選択機能の不全に関わる注意の逸れやすさを反映すると考えられ、「注意の転導性（以下、転導性）」と命名した。

以上より、注意不全尺度は4つの下位尺度から構成した。
Tab. 1.1 注 意 不 全 尺 度 30 項 目 の 因 子 分 析 の 因 子 負 荷 量

<table>
<thead>
<tr>
<th>因子負荷量</th>
<th>第Ⅰ因子</th>
<th>第Ⅱ因子</th>
<th>第Ⅲ因子</th>
<th>第Ⅳ因子</th>
<th>共通性</th>
</tr>
</thead>
<tbody>
<tr>
<td>子</td>
<td>子</td>
<td>子</td>
<td>子</td>
<td>子</td>
<td></td>
</tr>
<tr>
<td>質問項目 [＊]:逆転項目</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>気がついた時には、道路から逸脱していた事がある</td>
<td>.85</td>
<td>.05</td>
<td>-.03</td>
<td>.05</td>
<td>.75</td>
</tr>
<tr>
<td>救急車などのサイレン音に気がつかない事がある</td>
<td>.82</td>
<td>-.02</td>
<td>-.09</td>
<td>.04</td>
<td>.62</td>
</tr>
<tr>
<td>いったん注意がそれると、交通状況に注意を向け直す事が困難な時がある</td>
<td>.77</td>
<td>-.01</td>
<td>.31</td>
<td>-.16</td>
<td>.79</td>
</tr>
<tr>
<td>対向してくる人や車などをうまく避けられず、ぶつかったり、ぶつかりそうになる事がある</td>
<td>.75</td>
<td>-.08</td>
<td>.29</td>
<td>-.24</td>
<td>.65</td>
</tr>
<tr>
<td>どこに向かってきているのか目的がわからなくなり、道に迷ったり、知らない場所に到着する事がある</td>
<td>.63</td>
<td>.10</td>
<td>-.02</td>
<td>.26</td>
<td>.68</td>
</tr>
<tr>
<td>気づいた時には後方に近づく車やバイクなどに、追突された事がある</td>
<td>.54</td>
<td>-.07</td>
<td>-.25</td>
<td>.37</td>
<td>.45</td>
</tr>
<tr>
<td>移動中に人や車にぶつかる事がある</td>
<td>.54</td>
<td>-.02</td>
<td>.35</td>
<td>-.04</td>
<td>.61</td>
</tr>
<tr>
<td>どうしても周囲の出来ごとに目がとまってしまい、人や車とぶつかりそうになる事がある</td>
<td>.52</td>
<td>-.02</td>
<td>.11</td>
<td>.29</td>
<td>.71</td>
</tr>
<tr>
<td>気がつくと、人や車が自分の真後ろに異常に接近している事がある</td>
<td>.51</td>
<td>.00</td>
<td>.04</td>
<td>.11</td>
<td>.39</td>
</tr>
<tr>
<td>路地や障害物の陰から出てくる人や車などに、素早く気づくことができる[＊]</td>
<td>-.12</td>
<td>.90</td>
<td>.00</td>
<td>.21</td>
<td>.76</td>
</tr>
<tr>
<td>後方の車のベルやクラクションなど、わずかな音でもすぐに察知できる[＊]</td>
<td>.06</td>
<td>.83</td>
<td>-.09</td>
<td>.05</td>
<td>.72</td>
</tr>
<tr>
<td>周囲に気配を知れない状況では、自分の主観に注意を切り替える[＊]</td>
<td>.04</td>
<td>.82</td>
<td>-.04</td>
<td>.05</td>
<td>.67</td>
</tr>
<tr>
<td>道順は直ぐに覚えられる[＊]</td>
<td>-.26</td>
<td>.78</td>
<td>.25</td>
<td>.12</td>
<td>.53</td>
</tr>
<tr>
<td>狭い道や障害物などがいる道でも、人や車などを上手く避けて通れる[＊]</td>
<td>.16</td>
<td>.72</td>
<td>.04</td>
<td>-.22</td>
<td>.60</td>
</tr>
<tr>
<td>移動中に気になる事があっても、すぐに意識を切り替えられる[＊]</td>
<td>-.09</td>
<td>.70</td>
<td>.12</td>
<td>-.05</td>
<td>.46</td>
</tr>
<tr>
<td>移動しながら、これから自分がやるべき事を色々考えたり、作業の段取りをつける事ができる[＊]</td>
<td>.34</td>
<td>.65</td>
<td>-.13</td>
<td>-.26</td>
<td>.60</td>
</tr>
<tr>
<td>上の空で移動している事がある</td>
<td>.06</td>
<td>.04</td>
<td>.98</td>
<td>-.20</td>
<td>.76</td>
</tr>
<tr>
<td>ふと気づくと、ボーっとしたまま移動している事がある</td>
<td>.02</td>
<td>.03</td>
<td>.87</td>
<td>-.02</td>
<td>.74</td>
</tr>
<tr>
<td>周囲の変化に気が付かなかったり、気づくのが遅い事がある</td>
<td>.30</td>
<td>-.06</td>
<td>.65</td>
<td>-.09</td>
<td>.68</td>
</tr>
<tr>
<td>周囲に気配を知れないような状況でも、気になる事があるとしてもそれに注意が向いてしまい</td>
<td>.41</td>
<td>-.05</td>
<td>.58</td>
<td>-.05</td>
<td>.75</td>
</tr>
<tr>
<td>周囲の出来ごとに目がとまってしまい、人や車とぶつかりそうになる事がある</td>
<td>.40</td>
<td>.01</td>
<td>.56</td>
<td>-.08</td>
<td>.68</td>
</tr>
<tr>
<td>移動中に意識が別の世界へ飛んでしまう事がある</td>
<td>.27</td>
<td>.11</td>
<td>.42</td>
<td>.13</td>
<td>.55</td>
</tr>
<tr>
<td>道が混雑してるわけではないのに、到着の時間を読み違えて遅刻する事がある</td>
<td>.05</td>
<td>.12</td>
<td>-.15</td>
<td>.84</td>
<td>.58</td>
</tr>
<tr>
<td>周りの出来ごとに気をとられ、信号や標識・表示などを見落とす事がある</td>
<td>-.03</td>
<td>-.06</td>
<td>-.10</td>
<td>.81</td>
<td>.53</td>
</tr>
<tr>
<td>交差点や横断歩道で信号の変化に気づかず見落としたり、気づくのが遅い事がある</td>
<td>.14</td>
<td>.00</td>
<td>.00</td>
<td>.66</td>
<td>.59</td>
</tr>
<tr>
<td>意識がまんやりしていて、信号を無視しちゃったり、無視する事がある</td>
<td>.30</td>
<td>-.08</td>
<td>-.16</td>
<td>.61</td>
<td>.56</td>
</tr>
<tr>
<td>移動中にもかわらず、寝不足のような状態でぼんやりする事がある</td>
<td>-.25</td>
<td>-.01</td>
<td>.41</td>
<td>.54</td>
<td>.52</td>
</tr>
<tr>
<td>ルート案内などの「右(左)に曲がる」指示とは逆に、「左(右)」に曲ってしまう事がある</td>
<td>.39</td>
<td>.06</td>
<td>-.14</td>
<td>.51</td>
<td>.53</td>
</tr>
<tr>
<td>前の車や歩く人の速度が減速したことに気づかず、ぶつかったり、ぶつかりそうになる事がある</td>
<td>.27</td>
<td>.02</td>
<td>.11</td>
<td>.47</td>
<td>.59</td>
</tr>
<tr>
<td>ぼんやりしていて、前方の人や車などにぶつかったり、ぶつかりそうになる事がある</td>
<td>.25</td>
<td>-.03</td>
<td>.09</td>
<td>.45</td>
<td>.53</td>
</tr>
</tbody>
</table>
1.1.3_2. 尺度の信頼性

各因子に負荷する項目の合計点を各尺度の項目数で割った項目平均値を尺度スコアとし、4つの尺度毎の内的一貫性を検討するため、Cronbachのα係数を求めた。結果、制御不全尺度は.93、変更不全尺度は.91、水準低下尺度は.92、転導性尺度は.89であり、各尺度の内部整合を確認した。

1.1.3_3. 下位尺度間の相関

下位尺度毎にスコアを算出し、尺度間の相関係数を求めた結果、「制御不全」尺度と「水準低下」尺度（r=.81, p<.001）および「転導性」尺度（r=.78, p<.001）、「水準低下」尺度と「転導性」尺度（r=.74, p<.001）の間に有意な正の相関関係がみられた。「変更不全」尺度と「制御不全」尺度（r=.06, p=.41）、「水準低下」尺度（r=-.07, p=.29）、「転動性」尺度（r=-.09, p=.18）の各尺度間に相関はみられなかった。

1.1.3_4. 構成概念妥当性

ADHDチェックリストによるADHD傾向の高い者と、当該尺度で評価する主体的な移動時における注意不全のあらわれやすさは正の相関関係が仮定できる。そこで、注意不全尺度とADHDチェックリストについて各スコアの相関係数を算出した。

結果（Tab.1.1_2）、注意不全尺度の「制御不全」、「水準低下」、「転導性」の尺度スコアと、ADHDの優勢状態毎のスコア、および合算スコアとの
間に有意な正の相関(0.53〜0.66)、「変更不全」の尺度スコアとADHDの優勢状態毎のスコアおよび合算のスコアとの間に有意な負の相関（0.20〜0.29）を示した。

1.1.3.5 基準関連妥当性

本尺度の測定内容は、主体的な移動時における注意不全を前提としており、各下位尺度スコアの高い者は低い者に比べ、普段の車両の運転時や歩行時に衝突や道路交通事故、あと少しで事故発生につながるような危険な状況を体験しやすいと考えられる。

そこで、普段の外出頻度が週3回以上の対象者（N=171）のうち、車両の運転時や歩行時の事故、および、あと少しで道路交通事故になりそうな危険な状況を経験した回数について、0回を危険体験なし群（n=64）、2回以上を危険体験あり群（n=107）とし、当該尺度の尺度スコアについてF検定を行なった（Fig.1.1_1）。
フィギュア1.1 危険体験の有無別下位尺度との関係

† p < .10, * p < .05
結果、危険体験あり群はなし群に比べ、「水準低下」($F(1,169)=4.50, p<.05)$、「転導性」($F(1,169)=4.29, p<.05$)の尺度スコアが有意に高かった。また「制御不全」では有意差はみられなかったが、危険体験あり群の尺度スコア（1.69）は、危険体験なし群の尺度スコア（1.52）よりも高い値を示した。反対に、「変更不全」では、危険体験なし群の尺度スコア（3.64）が、危険体験あり群の尺度スコア（3.30）よりも有意に高い傾向であった（$F(1,169)=3.16, p<.10$）。
1.1.4. 考察

本研究では、ADHD者や高齢者の移動時注意不全エラーを解明するための定型発達成人の特徴と比較・照合可能なツールの作成を目的に、普段の車両の運転や歩行など、主体的な移動時にあらわれやすい不注意傾向を評価する尺度を試作した。そして、試案尺度の妥当性・信頼性の検証として、収集したデータの因子分析、ならびにADHDチェックリストとの相関関係等の分析を行なった。

独自に作成した45項目について、30代から50代の一般成人208名を対象に質問紙調査を実施し、因子分析を行なった結果、「制御不全」「変更不全」「水準低下」「転導性」の4因子（30項目）を抽出し、得られたα係数値から尺度の信頼性を確認した。構造を確認したところ、質問項目の作成時に想定した主体的な移動時における注意不全カテゴリに対応した因子がほぼ確認できた。ただし「変化の気づき」「空間・時空間認識の注意不全」カテゴリに対応した因子は見出されなかった。主体的な移動時に何かの変化に素早く気づくには、空間内の物理的変化が生じた位置に注意を能動的に向ける働きが関わるが、人がこうした能力の側面を意識することは困難であり、質問紙による自己評価は難しいと考えられる。また測定しようとする移動時注意不全エラーは、“移動”という時空間における一連の連続した行為の中であらわれる。よって、時空間という単独の因子として抽出されなかったと推測する。また「変更不全」尺度は、「～できる」で文末が表現された“能力に対するさま”をあらわす質問項目のみで構成されていた。このことから、本因子は、注意の変更能力に対する自己認知の側面を含んでいることが示唆された。

下位尺度間の相関結果では、「制御不全」尺度と「水準低下」尺度おおよ
び「転導性」尺度、「水準低下」尺度と「転導性」尺度の間に正の相関がみられた。これは、主体的な移動時における注意不全が、交通環境からの情報収集など外的制御のみならず、「移動」という目的志向的な一連の行為や、その交通環境に意識を向け続けるといった注意の維持という内
的制御にも関わることを示唆すると考えられる。「変更不全」尺度が他の下位尺度間と関連性を示さなかったことは、他の下位尺度とは異なる心
的過程の影響を示すためと考えられる。

以上、因子分析ならびに下位尺度間の関連性から主体的な移動時にお
ける注意不全は、異なる心的過程が相互に関係をしながら構成されて
いることが示唆された。すなわち注意の変更能力に対する自己認知の側
面を含み、主体的な移動時に要求される注意の外的制御と内的制御の相
互の不全によって、道路交通場面で求められる最適な注意制御が損なわ
れることが考えられる。

妥当性については、先ず、注意不全尺度の各下位尺度スコアと、ADHD
チェックリストの優勢状態毎のスコアおよび合算のスコア間に相関パタ
ンを示し、理論上の関連が考えられる両尺度の関連性を確認した。すな
わち、ADHDの傾向性と、主体的な移動時における注意不全との関連が
示された。一方「変更不全」尺度は、ADHDの傾向性との間には負の相
関を示し、一見すると、理論上矛盾した結果であった。しかし、一般に
運転などの能力や技能に対する自己評価は過大評価の方向に歪みやすい
（松浦,2000; 中井・臼井,2008）。また自己の能力や技能を高く評価する
者は、低く評価する者に比べ、リスク評価を媒介して不安全であることが
報告されている（三沢・稲富・山口,2006; 蓮花,2000）。「変更不全」に
に関する能力や技能は、注意に関するメタ認知の能力に関わると想定され
るが、主体的な移動時の注意の変更能力を高く認知する者は、自己の注
意能力を制御可能と評価し、日常生活であらわれやすい注意不全を低く評価したと考えられる。

次に、普段の車両の運転時や歩行時の危険体験の頻度と注意不全尺度の下位尺度間について、普段の移動時に危険な状況を体験しやすい者はそうでないものに比べ下位尺度のスコアが高いと仮説を立て分析した。結果、「変更不全」尺度以外について仮説との整合性を確認した。「変更不全」尺度では、危険体験なし群は尺度スコアが高いという結果であった。これは先行知見（三沢ら，2006；蓮花，2000）より、注意の変更能力を高く認知する者は、移動時の危険を危険と感じず、結果、危険を体験していないと認識することを示唆することが考えられる。

注意不全尺度のスコアが高い傾向の者はADHDチェックリストのスコア高く、普段の車両の運転時や歩行時に危険状況の体験を有すること、さらに、注意の変更能力を高く認知する者は、自己の注意能力を制御可能と評価することが考えられ、移動時の危険を危険と感じにくいことが示唆されることから、当該尺度と既存のADHDチェックリストおよび外的基準の危険体験頻度との間に、妥当な関連性を確認した。
1.2. 【研究2】危険感の評価ツールの作成

1.2.1. ター羅さの目的と研究の流れ

人間の主観的リスク反応は、先行研究（Slovic et al., 2004）より、理論上は直感的反応傾向による危険感が示唆されている。したがって、交通リスクの主観評価の測定では、危険感を測定することが望ましいと考えられる。

しかし、交通リスクに対する主観評価にどのような処理過程が関わり、どのような形成要因があるのかは実証的に明らかにされていない。

そこで本研究では、Fig.1.2_1の作業の流れに従って、まず交通リスクに対する主観評価の形成過程について、道路交通場面の危険の主観評価データから、交通リスクに対する直感的処理過程による形成要因を確認する。その上で危険感を測定するための手法を吟味検討し、危険印象評価課題の作成を試みる。

1.2.2.	交通リスクに対する主観評価の形成過程の分析
1.2.3.	危険感測定手法の検討
1.2.4.	動画による危険印象評価課題の作成

Fig.1.2_1 研究2の作業の流れ
1.2.2. 交通リスクに対する主観評価の形成過程の分析

1.2.2.1. 目的

道路交通場面の危険の主観評価データを収集、分析し、交通リスクに対する直感的な処理過程による形成要因を確認することを目的とする。

1.2.2.2. 方法

1.2.2.2_1. 対象者

複数の会社に勤務する25歳から59歳の社会人97名（平均年齢42.3歳±10.87：男性67名・女性30名）。

1.2.2.2_2. 提示刺激

(1) 道路交通場面

株式会社電脳社製「危険感受性チェック」の静止画。運転席から見える道路交通の前景場面で、5種類の異なる道路交通場面の静止画（Fig.1.2_2）。
場面 1
停車しているバスがいる通学路で運転者がバスを追い越そうとする場面

場面 2
道路の両側に駐車している車がある狭い道路で運転者が先の交差点を左折しようとする場面

場面 3
対向車線には左折の合図をしている車と直進車が続いており運転者が交差点で右折の発進待ちをしている場面

場面 4
右車線には信号待ちの車両が停止しており運転者が減速しながら交差点に近づくとちょうど信号が青に変わり直進する場面

場面 5
左側に公園のある道路で対向車が左折の合図を出しており運転者は直進しようとする場面

Fig.1.2_2 場面と場面状況を説明する文章
(2) 場面刺激作成の手続き

刺激の一場面の大きさは、縦 4.6cm 横 10cm とした。場面には、実験者が設定した道路交通場面で想定されるハザードを含み、ハザードの分類は、「直接的危険」「間接的危険」「死角的危険」の分類（蓮花、1996）を参考に、「顕在的ハザード」「予測的ハザード」「潜在的ハザード」とした。場面内に描かれる歩行者や車両などの変化や動きは、漫画で使われる動線の画法により速度感を表現し、車両の進路方向の合図は、光の点滅をあらわすマークと色で描写した。

「顕在的ハザード」：提示された場面で自車側が回避しないと衝突につながる対象が場面に直接描かれているハザード。

「潜在的ハザード」：衝突対象は直接場面に描かれていないが、場面の状況から衝突対象の出現が予想される死角などの箇所や事象のハザード。

「予測的ハザード」：その状況における自車や他者（車）の今後の動きから、衝突や事故につながる危険性を含む対象や事象のハザード。

1.2.2.2_3. 実施手続き

場面と場面の状況説明文を同時に提示し、自身が運転している状況を頭の中でイメージさせながら、場面を観察させた。一つの場面を見る時間はおおよそ 1 分と教示した。回答は、場面の観察時に「危ない」と感じて注意を払うものや「危なそう」と感じる対象、箇所、事象があれば、場面内のそれらを直接〇で囲わせた。深く考え込まず回答すること、丸（〇）で囲う対象、箇所、事象は複数回答であることを教示した。
1.2.2_2_4. 倫理的配慮

本研究を行なうにあたり、調査協力者に研究の趣旨、個人情報の保護の点など不利益を被ることが無いことを口頭で説明し、回答をもって研究の同意を得たこととした。

1.2.2.3. 結果
1.2.2.3_1. 事前分析によるデータの数量化

97名の回答から、「危ない」「危なそう」と評価された対象、箇所、事象として、全54の項目が抽出された。項目毎に97名の反応を1：危険を感じる、0：危険を感じないの二値データで割り振った。分析の対象とした項目は、項目に対し「危ない」「危なそう」と評価した反応者率の低い項目を除外するため、平均反応者率（41.1％）－1SD以下の項目を除いた残り40項目とした。

統計解析は、統計ソフトウェア R（2.11.1）を用いた。

40項目に対する97名のデータに対し、数量化理論第2類を行ない、サンプルスコアとカテゴリースコアを算出した。軸の寄与は、第1軸11.42％、第2軸9.29％、第3軸7.21％、第4軸6.18％だった。軸の抽出は一般的に6軸以内とわれ、また、数量化理論第2類の解法が項目やサンプルの類似性や空間の相対的位置関係の解析にあるため、第4軸まで（累積寄与率34.10％）を抽出した。
1.2.2.3_2. 抽出された項目のクラスター構造の確認

(1) 項目間距離の算出と距離式

事前分析で得た第 4 軸までのカテゴリースコアを用いて、項目間同士の距離を算出し、階層的クラスター分析を行なった。

距離は、質的変数間の距離の算出法として、項目間のユークリッド距離に数量化理論第Ⅱ類で得た各軸の寄与率を重み係数として用いる式（小菅・西田・山下, 2008）を適用した（Appendix.4）。

結合方式は、データのちらばりが不明なため、ウォード法、最近隣法、重心法、群平均法を用いた。

(2) 樹形図作成

各結合方式によって得られた樹形図を比較検討し、最終的に、ウォード法による樹形図を選択した。クラスター切断の距離は、理論的な解釈可能性から距離 59.13 と 82.11 の間で切断し、クラスター数は 5 であった（Fig.1.2_3）。
Fig.1.2_3 全40項目によるクラスター分析の樹形図
1.2.2.4. 考察

Fig.1.2_3より道路交通場面の危険の主観評価の構造が確認できた。得られたクラスターより、道路交通場面の危険の主観評価を形成する心理的背景を考察する。

1.2.2.4.1. 各クラスターについて

（1）刺激の特徴から喚起される危険感

Fig.1.2_3のNo1〜15の項目によるクラスターは、主に自転車・モーターバイク等の「二輪車」や「人」、そして「車両の線条変更」や「車両の後退」、「車両の開閉しそうなドア」など、何らかの変化や動きをイメージさせる項目から構成されていた。

我が国の道路交通統計によると、道路交通事故は、自転車（財団法人交通事故総合分析センター, 2004）や歩行者側の違反行為（財団法人交通事故総合分析センター, 1995）が原因でも発生しており、日常生活において私たちは自転車や歩行者に対し、瞬時に「危ない」「危なそうな」と感じやすく、ハザードとしての熟知が高い項目と推測される。また、モーターバイクについては、四輪運転者から危険と意識されやすい事が報告されている（荻田, 1994）。道路交通場面の人が二輪車はハザードとして身近であり、「危ない」「危なそう」と主観評価を抱きやすいと考えられる。

動画で自動車を運転する場面を提示した場合のリスクについては、歩行者、潜在的交通参加者、自動車、標識の順に評定されること（吉川・高木, 2002）が示されている。道路交通場面内の「人」は注意を引きやすく、「危ない」「危なそう」と評価しやすい対象といえる。
また、運動、明るさ、色、奥行きといった刺激の特徴は、人の視覚系の初期段階で抽出される（横澤, 1992）。そのため、道路交通場面でも「車両の車線変更」「車両の後退」「車両の開閉しつつあるドア」など変化や動きをイメージさせる項目は、直感的に「危ない」「危なそう」と評価されやすいと考えられる。

本クラスターは、刺激自体が持つ誘目性や変化、動きなどの特徴から観察者の注意が喚起され、直感的に「危ない」「危なそう」と評価される項目から構成されるクラスターと考えられる。

(2) 自車との相対的な距離による危険感

Fig.1.2_3 の No16〜26 の項目によるクラスターは、主に「ドアミラーに映る後続車」や「ミラーに移る対向車」などの項目、また「母親」と「子供」の項目から構成されていた。

No23「子供と手をつなぐ母親」と No25「犬を散歩させる子供」の項目は、本研究と同様の刺激と手続きにより得られた 123 名のデータからエントロピー（情報量：不確実の度合い）を算出したところ、「母親」は.986、「子供」は.947 の値が得られた。つまり、これらの項目は「危ない」「危なそう」か否かの不確実性が高く認知されている項目といえる。さらに、これらの項目の情報利得比をみると、「子供」に対する「母親」の項目間は.426、「母親」に対する「子供」の項目間は.443 の値が得られており、項目間の相互依存の関連性が確認された。つまり「犬を散歩させる子供」項目に「危ない」「危なそう」と感じる場合、その「子供と手をつなぐ母親」項目にも同様に「危ない」「危なそう」と感じる、双方向に影響しあう関係性があることが示された。このような項目同士の関連性が高く、かつ危険の不確実性の高い項目は、直感的に主観評価がなされると考え
られる。そのため、「ドアミラーに映る後続車」や「ミラーに移る対向車」など接近感をイメージさせるような項目と同様のクラスターに含まれたと考察する。

一般に、道路交通場面で自車に対して車両や人などの距離が相対的に近づけば、その接近物に対して直感的に「危ない」「危なそう」と感じると考えられる。

よって本クラスターは、自車との距離や位置の関係から、直感的に「危ない」「危なそう」と主観評価された項目が分類されたクラスターと推測する。

(3) 状況の危険性の判断

Fig.1.2_3のNo27〜29の項目によるクラスターは、「信号機」と「何も映っていないドアミラー」の項目から構成されていた。No28「ドアミラー・場面1」は、自車が前方に停車するバスの側方を通過する際、対向車線にはみ出すため、自車の加速行動が考えられる状況である。また、No27「歩行者用信号機」とNo29「信号機・場面3」は、交差点内で自車が右折発進する設定である。このような自車が加速や右折など、今までの運転挙動から変更する事態においては、挙動の変更に伴うリスクが生じないか否かを判断する必要が高まると考えられ、その判断に「ドアミラー」や「信号機」を用いることが考えられる。

よって、本研究の「信号機」と「何も映っていないドアミラー」の項目は「危ない」「危なそう」と直感的にイメージされるとは考えにくい項目であり、本クラスターは、状況のリスク性判断に関わる項目のクラスターと考えられる。
（4）自車の行動によるリスクの推定

Fig.1.2.3のNo30〜33の項目によるクラスターは、主に「ルームミラーに映る後続車」と「合囲を出す対向車」の項目から構成されていた。

No30「左折合囲を出す対向車・場面5」の項目は、自車の走行車線側に、衝突対象となる可能性のある他者の飛出しを予測される公図が描かれている。何かが飛び出した場合、自車はハンドルを切るなど回避行動を取ることで、対向車線の対向車との衝突を推定することが考えられる。

また「後続車両」との衝突は、自車の制御だけでは回避できないリスクであるが、自車が急ブレーキを踏む、などの行動によっても生じる。

本クラスターは、自車の制御だけでは回避できない状況や対象と、自車の挙動次第では道路交通事故が生じる事態を招く可能性の高い項目から構成されたクラスターと考えられる。

（5）出現の予測と衝突可能性の推定

Fig.1.2.3のNo34〜40の項目によるクラスターは、主に他者の出現が予測される「死角」などの「潜在的ハザード」の項目、「横断中の老人」の項目から構成されていた。

No39「横断中の老人」は「顕在的ハザード」として設定した項目であったが、「老人」が横断歩道の先頭の車両に隠されて描写されており、その意味で先頭車両という死角からの出現と考えられる。そのため、本クラスターに含まれた項目と考えられる。

本クラスターは、場面内に衝突の可能性が見込まれる対象が明確に存在しなくても、死角などから衝突対象と想定される何かが出現し、その他者との衝突可能性を予測する項目から構成されたクラスターと考えられる。
1.2.2.4_2. 交通リスクの主観評価の形成要因

以上、道路交通場面の危険の主観評価は、項目間の距離から5つのクラスターに分類され、Fig.1.2_3の階層的構造より、主観評価が2種に大別できると考えられる。

一つは、二輪車（自転車、モーターバイクなど）、人（子ども、会話しながら歩行する人など）、何かしらの変化や動きを伴った対象（対向車、停車車両の開くドアなど）、対象との接近感のように、注意が喚起されやすい刺激から構成されている。このクラスター群は、環境側の刺激の特徴が影響し、直感的に危険の印象が対象に対して喚起されると考えられる。

他方のクラスターは、場面内に衝突の可能性を推測させる対象が、直接描写されていない対象（公園や駐車中の車両）、ルームミラーに映る車両、交通環境を構成する対象（信号機）などの項目から構成されていた。これは、主体側の過去の経験や保有の知識、道路交通場面での経験などにより、自車と対象や状況の関連性、対象間の相互関係などを予測し、場面や事象に対して危険性が推測、判断された結果と考えられる。

このクラスターは、主体側の学習により体系化された運転など道路交通場面に関連する知識が影響し、状況や事態に対して分析的に危険性を推定し評価するクラスター群と推測される。

この2種のクラスターは、運転中に危険源を報告させ、報告内容から、動的対象の「交通コメント」と、静的対象の「道路コメント」に分類した先行研究（Soliday, 1974）の知見と類似している。動的対象、静的対象に対する交通リスクの主観評価は、個人にとって優位な情報処理の影響によると考えられるかもしれない。動的対象に感じる交通リスクの主観評価は、自動的に危険感が喚起される直感的処理の影響を受ける事を示
唆していると考えられる。

また、本研究の手法で用いた場面想定法による印象反応から得られた5つのクラスターと、動画で道路交通場面を提示しその状況内の気になる対象の判断から得られた4つの因子（小川・蓮花・長山, 1993）は、「自車との相対的な距離による危険感」、「自車の行動によるリスク事態の推定」の2つのクラスター以外、構造に共通点がみられる。これらのクラスターを構成する対象は、主にルームミラーやドアミラーに映る後続車であり、4つの因子を得た先行研究では刺激場面内に存在しない項目であるため、類似の構造は確認できなかった。場面想定法による危険の印象評価と、時々刻々と変化する動画や道路交通場面の知覚は、共通する心理的な基盤を示唆しているかもしれない。

従来の交通リスクの主観評価研究では、危険源の探索や、交通状況の危険性の推定など、分析的処理の影響を前提に、年齢差、運転経験や技能の熟慮の程度、などの属性別に検討されてきた。

しかし、運転席からの前景の交通動画場面を提示し、場面内の危険性の高い対象を3つ指摘させる課題により運転経験の効果を検討した研究（Renge, 1998）では、運転経験が豊富なほどハザード（場面内の衝突対象となる可能性のある危険源）の検出率は高まるが、自動車運転時の前方風景を動画で提示し、場面別4項目毎に気になる対象かどうかを評価させ、項目の危険の程度をスコア化したデータを年齢層で比較した結果（臼井, 1993）では、ハザード得点は高年者より若年者のほうが高い結果が得られている。さらに、場面別4項目毎に気になる対象かどうかを評価させ、主成分分析を行ない、4因子を得た研究（小川ら, 1993）では、年齢別の得点率による曲線から、側方（因子□）と動的対象（因子□）を気にするかどうかは、年齢の大きな差はみられないが、死角からの飛び
出し（因子□）を気にするかどうかは、年齢に従って低下の傾向が見られ、年齢が上がるにつれて徐々に気になくなる傾向が示されている。一方で、状況と対象間の関連性の連想（因子□）は、年齢が上がるにつれて増加しており、加齢により気にしていく傾向が示されている。また、本研究と同様の場面を用いて、運転免許の有無別に「顕在的危険」「潜在的危険」「予測的危険」別の正答率を比較したところ、「予測的危険」では運転免許取得の有無別の差は見られず、さらに場面別の危険源の正答率にも免許の有無による差は見られなかった（小菅・藤平・志田・山下，2010）。

これらの研究からは、一貫した運転経験の効果や年齢の効果は見出されておらず、また、ハザードの内容によって、年齢や知識の影響が異なることを示している。したがって、交通リスクの主観評価について、運転技能や経験だけからアプローチすることの限界を示していると考えられる。交通リスクの主観評価は、対象に直感的に感じる危険の印象評価からアプローチする必要性があるだろう。
1.2.3. 危険感測定手法の検討

1.2.3.1. 目的

1.2.2 において、交通リスクに対する直感的な処理過程による形成要因を実証的に確認し、静止画を用いた場面想定法による危険の印象評価と、
動画を用いた時々刻々と変化する道路交通場面の知覚には、共通する心理的基盤が示唆された。しかし、直感的反応を評価する刺激媒体とし
て、静止画は時々刻々と変化するその場における反応の測定には限界が
あり、静止画による感觉・感性レベルの印象反応の抽出は不十分と考え
られる。

1.2.3 では、交通リスクへの直感的反応傾向である危険感を測定可能な
手法を検討する。

1.2.3.2. 方法

本研究で測定を試みる交通リスクの主観評価は、“刺激から瞬時に
イメージされ、危ない、危なそうという感じ”を伴う、危険感である。
危険感の測定に適した手法を選定するため、質問方法、反応方法、提
示刺激について先行研究や知見を整理した。

また、提示刺激は危険感に関わる感情喚起場面が望ましいと考えられ
るが、道路交通場面と危険感に関わる感情に関する先行研究が見当たら
ない。そこで、どのような道路交通場面がどのような感情を喚起させる
のかを調査した。
1.2.3.3. 結果

1.2.3.3_1. 交通リスクへの直感的反応傾向の測定手法

一般に交通リスクの主観評価の測定では、運転者の視界環境の道路交通場面を視覚提示し、運転状態を仮想しながら刺激を観察させ、回答を求める場面想定法（hypothetical situation method）が用いられる。

提示される場面は、移動中の時空間的に連続した運転などの状況が静止画や動画で提示される。刺激場面を用いることで、ある意味やまとまりを持った状況や場面における情報処理の個人差により、環境内のリスクに対する情報処理の反応差が測定可能となるという仮定（長山監訳クレペルスバールク, 1990）に基づく。刺激場面には道路交通事故現象そのものは描写されず、一連のシナリオの中で道路交通事故発生に結びつく可能性のある事象、対象、条件等が視覚的に表現される事が多い。

本研究で作成する課題でも、視覚提示する道路交通場面を説明する文章を提示して、提示される場面をイメージさせながら反応させる場面想定法を採用する。

(1) 質問方法

① 測定する危険感の表現の仕方：「悲しい」「楽しい」など感情の表現は形容詞が使われる。危険感は feeling（フィーリング）であり、交通リスクへの直感的反応傾向と考えられる。そこで、危険に対する感じ、感じ、フィーリングを表現する形容詞である「危ない」、および未来の主観的リスクを含む「危そう」の単語で、測定内容を表現する。

② 問う内容：ある刺激の観察に基づく交通リスクの印象は、場
面全体への評価だけでなく、「危ない」「危なそう」と感じる場面内の構成要素や個々の情報について選択的にも評価されると考えられる。個々の情報に対する印象評価は、事故防止の安全教育を想定すると、個人への危険感の程度について具体的なフィードバックがしやすく、場面全体への印象評価より有効性が高いと考えられる。そこで、場面全体ではなく、場面の「どこ」という箇所、「何」という対象に「危ない」「危なそう」という印象を形成したのかを問う形式を採用する。

3 直感的反応の問い方：直感的反応は、「危ない」「危なそう」という感覚、感じ、フィーリングを伴う。こうしたフィーリングの測定では印象評価が有効と考えられる。フィーリングが関わる印象評価を問うには、危険予測の測定課題（深澤, 1983, 1990, 2005；長山・蓮花, 1992；小川ら, 1993）で用いられてきた「危ないと考える」 「危ないと思う」のがどれかといった思考や推論を問うのではなく、「危ないと感じる」のはどれか、という感覚・感じを問うこととする。

（2）反応の方法

①回答形式：紙筆検査の危険予測の測定課題では、評価者に選択肢（深澤, 1983, 1990, 2005；長山・蓮花, 1992；小川ら, 1993）が提示され、その中から適切な解答を選択させる方法がとられていた。しかし選択肢は、それ自体が交通リスクに関する手がかりを提示することになり、直感的な反応の測定では、評価に影響を及ぼすような外的な手がかり情報は排除する事が望ましい。作成する課題では、評価者が観察している最中に、「危ない」
「危なそう」と感じた道路交通場面の対象、箇所などを、自由に直接選択（タップ）させる方法を採択する。

(3) 提示刺激とする道路交通場面と感情の関係の検証

危険感測定の提示刺激は、危険感に関わる感情喚起場面が望ましいと考えられる。しかし、道路交通場面と危険感に関わる感情に関する先行研究が見当たらない。

そこで、どのような道路交通場面がどのような感情を喚起させるのかを明らかにするため、プレテストを実施した。

① 対象者：自動車運転免許を取得した成人男女 15 名（範囲：20〜56歳、男性 4 名・女性 11 名）。
② 手続き：歩行・運転の移動手段別に、交通参加者や交通量の程度や道路幅員の程度が異なる静止画を3種合計6種類用意し、20個の感性語で場面の印象評価を行なった。

＜移動手段：歩行場面＞

・ 良く見知った近所の狭路場面①

・ 人が多く雑な商店街路場面②

・ 車が見えないので車道の歩行場面③

＜移動手段：自動車運転場面＞

・ 人通りの多い商店街の道路場面④

・ 交通量少ない生活道路の路地場面⑤

・ 見通しの良い片側2車線の道路場面⑥
全6種の静止画と20の感性語は場面別A4用紙1枚にまとめ、6場面で一つの冊子とした。実験者の合図で1場面ごと観察させ、感性語による場面評価を求めた。場面観察では、観察前に実験者が場面の状況を説明し、その場面をイメージさせながら、観察・評価を実施した。回答は、各感性語について、場面を見て直感的にイメージする程度を5件法（非常にあてはまる・あてはまる・どちらともいえない・あてはまらない・全くあてはまらない）で単一選択させた。

感性語は、Russell（1980）の円環モデルに基づき、快－不快、覚醒－眠りの次元から、①高覚醒・快、②低覚醒・快、③高覚醒・不快、④低覚醒・不快の4象限を評価可能な単語として、人の注意や覚醒の程度、快不快の感情を表現し、かつ「～な場面」「～な状況」「～な空間」のように空間や生活場面を表現可能な単語としてオノマトペに着目し、象限毎に5単語選定した。

③感性語の分析結果：どのような場面がどのような危険感に関わる感情を喚起しやすいのか把握するため、場面ごと20の感性語別に、「全くあてはまらない（5）」から「非常にあてはまる（1）」の5件による直感的イメージの平均値を算出し、グラフ化した（Fig.1.2_4）。また、場面と喚起されやすい感情との関係を視覚的に整理するため、快－不快、高覚醒－低覚醒の二次元に感性語を対応させ、場面をマッピングした（Fig.1.2_5）。

62
Fig. 1.2_4 場面ごと感性語別評価値

Fig. 1.2_5 快・不快・高覚醒・低覚醒次元と場面のマッピング
Fig.1.2_5 より、場面①と場面⑤は同じ象限に付置した。これらの場合は現在ハザードの多さや、生活道路の場面で、不快で高覚醒な印象を喚起しやすい場合と考えられる。

場面②と場面④は、回避しないと衝突する歩行者、自転車の現在ハザードが含まれる場合である。これらの場面はFig.1.2_4より、不快印象の評価がやや高い傾向が似ており、歩行者・自転車の多い場面は不快印象が喚起されやすい場合と考えられる。

Fig.1.2_4より、場面①と場面⑥は「ゆうゆう」「ゆったり」など低覚醒・快の評価の評価値が同様の傾向を示し、Fig.1.2_5より、同じ象限に付置した。

以上のプレテストの結果、道路交通場面は、移動手段の異なる場合が類似の感情を喚起する傾向がみられ、歩行、運転といった移動手段は、道路交通場面に抱く感情や景観としての道路交通場面全体の印象に大きく影響しない可能性が考えられる。
1.2.3.4. 考察

“刺激から瞬時にイメージされ、危ない、危なそうという感じ”を伴う危険感の測定では、先行研究や知見を整理した結果、測定手法、質問方法、反応方法は従来の紙筆検査の測定法（e.g., 小菅, 2013）と同様の方法が適していると考えられる。

危険感というネガティブな感情喚起に関わる道路交通場面は、①衝突対象となる歩行者や自転車の顕在ハザードが含まれる不快さを喚起やすい場面、②生活道路や狭路の設定から高覚醒を喚起しやすい場面が考えられる。また危険を感じにくい場面には③見通しが良く低覚醒・快を喚起しやすい場面が考えられる。
1.2.4. 動画による危険印象評価課題の作成

1.2.4.1. 動画の道路交通場面

1.2.3で危険感測定の方法を検討したところ、提示刺激は、感覚・感性レベルの印象反応の抽出が望ましいと考えられる。その刺激媒体は動画が適していると考えられるため、危険感測定の刺激とする道路交通場面の動画を作成した。

動画は、実験協力者の運転者が様々な道路交通場面を一般的な自家用乗用車で走行している状況を撮影したものとした。

撮影は複数日に渡ったが、走行時の天気は晴れまたは曇り、走行の時間帯は午後から夕方に統一した。

刺激場面は、運転者の視界に近づけること、交通リスクの評価に関わる後続車が映るルームミラーを含めること、印象評価に不要な運転者の指や腕は映りこまないことに配慮した。最終的に動画は、運転者の目線の高さに合わせ、道路から120cm、フロントガラスから105cmの位置にあたる、運転者の左目真横に設置したカメラで撮影した。

この手続きで撮影した動画について、Windowsムービーメーカーソフトを用い、約40秒程度の動画にカットしていき、3つの感情喚起の場面（①衝突対象となる歩行者や自転車の顕在ハザードが含まれる不快さを喚起しやすい場面、②生活道路や狭路の設定から高覚醒を喚起しやすい場面、③見通しが良く低覚醒・快を喚起しやすい場面）を参考に、約70の動画に分割した。

最終的に交通リスクへの直感的反応傾向に適した刺激として、8場面を選定した（Fig.1.2_6）。
Fig.1.2_6 危険印象評価課題の動画場面と状況説明文
1.2.4.2. 測定装置

液晶ディスプレー上を指で操作するマルチタッチスクリーンが搭載された、およそ A5 サイズ（21cm×14.8cm）に相当するタブレット型薄型コンピュータ。

視覚刺激の提示、提示刺激の制御、刺激選択の反応時間、タップの座標軸の計測・記録は、iPad 4th generation（アップル社製）に搭載した危険印象評価課題専用のアプリケーションソフト（ジェナ社製）で行なう。

なお視覚刺激が提示されるディスプレーのサイズは 9.7 インチ（対角）縦約 20cm、横約 15cm のディスプレーに表示される。

1.2.4.3. 危険印象評価課題

動画による 8 つの異なる道路交通場面（Fig.1.2_6）について、場面状況を文章で提示し、その状況をイメージさせながら動画を観察させ、直接的に「危ない」「危なそう」と感じる対象・箇所などについて自由に直接複数個所のタップを求める課題（Fig.1.2_7）とした。

練習試行含め、課題全体で約 9 分、本施行は合計 8 試行とした。
教示では、「この課題は「危険感」ゲームです。動画で運転中の場面が流れます。全部で8問出題されます。課題の流れは、①各問題は、3・2・1のカウントダウンで始めます。②カウントダウン後、これから提示される動画の状況が説明されます。その状況を頭に思い浮かべイメージしましょう。運転免許を持っていない方は、助手席から見ている景色をイメージしましょう。③説明後、直ぐに動画がはじまります。動画を見て、自分が「危ない」「危なそう」と感じた所を、どんどんタッチしてください。タッチの場所に正解はありません。道路交通法などの規制やルールに囲まれず、素直に「危ない」と感じれば、どんな場所でも、どんな物でもタッチして構いません。ただしタッチの際は、ディスプレイを連打するのはやめてください。フリーズして動かなくなる恐れがあります。④動画は1分程度です。動画終了後、2問目に移り、1問目と同じように、カウントダウンがはじまります。このような流れで、続けて8つの動画が提示されます。」と説明する。
1.2.5. 危険感の評価ツールの考察

研究2では、1.2.2の分析の結果、交通リスクへの直感的反応傾向を確認し、その結果を受けて、1.2.3では「危険感」を測定するための手法について検討を行なった。

これらの手続きから、危険感の測定手法・質問方法は従来の紙筆検査の測定法（e.g., 小菅, 2013）を採用し、刺激媒体は動画を用い、装置はiPadに組み込んだ専用アプリケーションソフトによるタブレット型薄型コンピュータを用いる危険印象評価課題を作成した。

これらの手続きを経て作成した本危険印象評価課題は、提示刺激の方法や反応取得などに工夫を凝らし、有効に交通リスクへの直感的反応傾向を測定可能な課題と考えられる。
第2章 【研究3】移動時注意不全の差異の検討

：ADHD傾向者と健常高齢者・一般成人者の比較

2.1. 研究の背景と目的

人間の注意不全の観点から、効果的な道路交通事故防止対策を検討する上では、対策の対象となる人々に固有の注意の特徴を洗い出し、特徴に応じた対策を展開することが望ましい。しかし、注意に問題を抱えているADHD者と高齢者の移動時にあらわれやすい不注意傾向、すなわち移動時注意不全エラーが異なるのか、あるいは同質なのかは実証的に明らかにされていない。

本研究では、研究1で作成した注意不全尺度（小菅・熊谷, 2017a）を用いて、大学生を対象としたアナログ研究法によるADHD傾向者と、加齢による注意機能低下が指摘される健常高齢者、そして一般成人者を比較し、移動時注意不全エラーの差異を検証することを目的とする。
2.2. 方法

2.2.1. 分析対象者

ADHD 傾向群: 大学生 190 名（平均年齢 19.62±1.56 歳、男性 85 名、女性 105 名）から回答不備の者を除き、DSM-5・ADHD チェックリスト日本語版全 18 項目を用い、数式と回答方法・選択肢は WHO（2003）の ASRS-v1.1 に準じて過去 6 カ月間の不注意の頻度を 5 件法（全く無かった〜非常に頻繁にあった）で求め、仁平（2013）に準じて得点化（レンジ: 0〜72 点）した平均値 26.23±1SD の該当者 20 名（平均年齢 19.05±1.50 歳、男性 11 名、女性 9 名）。

健常高齢群: 都内シルバーエンターセンターの登録者および郊外居住者 46名（平均年齢 70.74±5.73 歳、男性 23 名・女性 23 名）。

一般成人群: 研究 1 の 30 代〜50 代の男女（N=208）からランダムサンプリングした該当者 40 名（平均年齢 44.78±8.80 歳）。

2.2.2. 移動時注意不全

研究 1 で作成した全 30 項目、4 つの下位尺度（制御不全、変更不全、水準低下、転導性）から構成される注意不全尺度により評価した。

注意不全尺度は、場面想定法により、普段の車両の運転や歩行をイメージしながら、過去 1 年間に生じた移動時の不注意の頻度を 6 段階評定（全く無かった：1〜非常によくあった：6）で求めた。
2.2.3. 手続き

本研究では、ADHD 傾向群と健常高齢群の分析に用いた注意不全尺度のデータは、小数から 30 名前後の集団に対し、フェイスシート、注意不全尺度、ADHD チェックリストをまとめた冊子を配布し回収した調査のデータを用いた。

一般成人群の注意不全尺度のデータは、研究 1 のインターネット調査の手続きにより収集したデータを用いた。

2.2.4. 要因計画

3×4 の混合計画。第 1 要因は群で、ADHD 傾向群・健常高齢群・一般成人群の 3 水準。第 2 要因は移動時注意不全エラーで、注意不全尺度の下位尺度ごとに、制御不全・変更不全・水準低下・転導性の 4 水準。第 1 要因は被験者間、第 2 要因は被験者内計画。

2.2.5. 倫理的配慮

本研究は、筑波大学人間系倫理審査委員会の承認を得て実施した（承認番号 筑 27-66）。

73
2.3. 結果

Tab.2.1_1 に、群別移動時注意不全エラー別尺度スコアの基本統計量を示す。

統計解析は、統計ソフトウェア R (3.3.2) を用いた。

<table>
<thead>
<tr>
<th>移動時注意不全エラー</th>
<th>ADHD傾向群</th>
<th></th>
<th>健常高齢群</th>
<th></th>
<th>一般成人群</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>n</td>
<td>M</td>
<td>SD</td>
<td>n</td>
<td>M</td>
</tr>
<tr>
<td>制御不全</td>
<td>20</td>
<td>2.13</td>
<td>0.75</td>
<td>46</td>
<td>1.47</td>
</tr>
<tr>
<td>変更不全</td>
<td>20</td>
<td>3.11</td>
<td>0.82</td>
<td>46</td>
<td>2.59</td>
</tr>
<tr>
<td>水準低下</td>
<td>20</td>
<td>3.10</td>
<td>1.37</td>
<td>46</td>
<td>1.66</td>
</tr>
<tr>
<td>転導性</td>
<td>20</td>
<td>2.78</td>
<td>0.77</td>
<td>46</td>
<td>1.78</td>
</tr>
</tbody>
</table>
下位尺度スコアについて、群（ADHD 傾向群・健常高齢群・一般成人群）×移動時注意不全エラー（制御不全・変更不全・水準低下・転導性）の 2 要因分散分析を行なった（Fig.2.1_1）。

Fig.2.1_1 移動時注意不全エラーごと 各群の平均尺度スコア

[注] *p < .05
下位尺度 at ADHD 傾向群の統計結果は赤色で示す
下位尺度 at 健常高齢群の統計結果は青色で示す
結果、群×移動時注意不全エラーの交互作用が有意であった（$F(6,309)=18.56, p<.001$, 効果量 ηp²=.113）。移動時注意不全エラー別に群の単純主効果を検定した結果、「制御不全」（$F(2,103)=7.60, p<.001$, 効果量 ηp²=.129）、「変更不全」（$F(2,203)=7.41, p<.001$, 効果量 ηp²=.126）、「水準低下」（$F(2,103)=18.97, p<.001$, 効果量 ηp²=.270）、「転導性」（$F(2,103)=12.38, p<.001$, 効果量 ηp²=.194）の群の効果が有意であった。

Holm-Bonferroni の多重比較の結果、「制御不全」のスコアは ADHD 傾向群が健常高齢群（$t(103)=3.90, p<.05$）と一般成人群（$t(103)=2.54, p<.05$）に比べ高いことが分かった。「変更不全」スコアは一般成人群が健常高齢群（$t(103)=3.81, p<.05$）に比べ高いことが分かった。「水準低下」スコアは ADHD 傾向群が健常高齢群（$t(103)=6.07, p<.05$）と一般成人群（$t(103)=4.91, p<.05$）に比べ高いことが分かった。「転導性」スコアは ADHD 傾向群が健常高齢群（$t(103)=4.93, p<.05$）と一般成人群（$t(103)=3.83, p<.05$）に比べ高いことが分かった。

群別に移動時注意不全エラーの単純主効果を検定した結果、健常高齢群（$F(3,135)=33.11, p<.001$, 効果量 ηp²=.424）、一般成人群（$F(3,117)=45.71, p<.001$, 効果量 ηp²=.540）、ADHD 傾向群（$F(3,57)=6.59, p<.001$, 効果量 ηp²=.258）の水準において、移動時注意不全エラーの効果が有意であった。Holm-Bonferroni の多重比較の結果、健常高齢群では、「制御不全」スコアが「変更不全」（$t(45)=7.45, p<.05$）、「転導性」（$t(45)=5.07, p<.05$）、「水準低下」（$t(45)=4.38, p<.05$）に比べ低いことが分かった。「変更不全」スコアは「水準低下」（$t(45)=5.63, p<.05$）、「転導性」（$t(45)=4.78, p<.05$）に比べ高いことが分かった。一般成人群では、「制御不全」スコアが「変更不全」（$t(39)=8.42, p<.05$）、「転導性」（$t(39)=3.53, p<.05$）、「水準低下」（$t(39)=3.18, p<.05$）に比べ低いことが分かった。
が分かった。「変更不全」スコアは「水準低下」 $(t(39)=6.73, p < .05)$、「転導性」 $(t(39)=6.40, p < .05)$ に比べ高いことが分かった。ADHD 傾向群では、「制御不全」スコアが「転導性」 $(t(19)=6.73, p < .05)$、「水準低下」 $(t(19)=4.31, p < .05)$、「変更不全」 $(t(19)=3.71, p < .05)$ に比べ低いことが分かった。

分析の結果、ADHD 傾向群は「制御不全」「水準低下」「転導性」のスコアが他群より有意に高く、「変更不全」のスコアは一般成人群が健常高齢群より高いことが分かった。

一般成人群と健常高齢群は、「変更不全」スコアが「水準低下」と「転導性」よりも有意に高かったが、ADHD 傾向群ではみられなかった。また「変更不全」「水準低下」「転導性」のスコアに差がなく、「制御不全」スコアは有意に他の尺度のスコアよりも低いことが分かった。
2.4. 考察

本研究では、ADHD者と高齢者において共通して指摘されている道路交通事故発生の人的要因である“不注意”現象解明の端緒として、研究1で作成した注意不全尺度を用いて、ADHD傾向者、健常高齢者、一般成人者を比較し、主体的な移動時注意不全エラーの特徴を検証することを目的とした。

本結果より、注意不全尺度の下位尺度「水準低下」「転導性」のスコアが、ADHD傾向群と一般成人群および健常高齢群を区別することが明らかとなり、ADHD傾向者は、健常高齢者・一般成人者と移動時の不注意傾向、すなわち移動時注意不全エラーが異なることが分かった。

ADHD傾向者は、その特性から、交通状況が時々刻々と求める注意が必要な処理要求に応えるのが難しく、DSM-5のADHDチェックリストにあるように、高リスクな道路交通場面でも、上の空や注意散漫などの不注意な状態像があらわれやすいことが示された。一方、健常高齢者の移動時注意不全エラーは一般成人と同様の傾向を示し、相対的に他の群より移動時注意不全エラーの自覚は弱いが、「変更不全」エラーは自覚しやすい傾向を示した。加齢に伴い同時に複数の課題を処理する能力は低下するため、健常高齢者の移動時注意不全エラーは同時並行作業の遂行時にあらわれやすいと考えられる。

道路交通事故の人的要因や、そのヒューマンエラーについては、高齢者とADHD者は、同じ注意機能不全の枠組みで説明されることが多い。しかし、本研究では、ADHD傾向者と健常高齢者の移動時にあらわれやすい不注意が異なることを明らかにした。この結果は、高リスクでかつ主体的な移動時における注意の働き方が、ADHD傾向と加齢
では異なるためと考えられる。注意に関わる能力は個人差が大きく、移動時には、ある空間上の地点からある地点へ注意を移す「空間的注意」の働きが関与する。今後は空間的注意に着目し、ADHD傾向者と健常高齢者の移動時注意不全エラーのパターンの違いや、空間的注意の特徴について、より詳細に検討していく必要がある。
第3章 ADHD傾向者の移動時注意不全に関する実験心理学的検討

第2章【研究3】移動時注意不全の差異の検討：ADHD傾向者と健常高齢者・一般成人者の比較において、ADHD傾向者と健常高齢者では移動時注意不全エラーの特徴が異なることが明らかとなった。

そこで第3章では、ADHD傾向者の移動時注意不全の心理的背景について、実験心理学的手法により検討を行なう。

3.1. 【研究4】ADHD傾向者の空間的注意機能
3.1.1. 研究の背景と目的

本研究では、空間的注意に関連する課題として、①空間的情報選択課題、②注意切替課題、③変化検出課題を設定し、大学生を対象としたADHDのアナログ群と比較対照群の遂行成績の比較を通じて、ADHD傾向者の空間的注意の特徴を検討することを目的とする。
3.1.2. 方法

3.1.2_1. 対象者

(1) 調査対象者

関東近郊の複数の大学に通う大学生 190 名（平均年齢：19.62 ±1.56 歳、男性 85 名、女性 105 名）のうち、回答不備等を除いた 156 名。

(2) 分析対象者

研究 3 の ADHD 傾向群と同様に、DSM-5・ADHD チェックリスト日本語版全 18 項目を用い、教示・回答方法・選択肢は WHO・ASRS-v1.1 に準じ、過去 6 カ月間の不注意の頻度を 5 件法（全く無かった～非常に頻繁にあった）で求め、仁平（2013）に準じて得点化（レンジ：0 ～72 点）した。

Fig.3.1_1 は、156 名の ADHD チェックリスト 18 項目の合算スコアの度数分布である。正規分布を仮定できるため、合算スコアの平均値 26.23 を基準に、平均値 ±1SD の範囲（Fig.3.1_1 の赤色点線）の 20 名を ADHD 傾向群（平均年齢 19.05±1.50 歳、男性 11 名、女性 9 名）とした。

また、比較対照群は平均値 −1SD の範囲（Fig.3.1_1 の青色点線）の 23 名（平均年齢 19.48±0.99 歳、男性 8 名、女性 15 名）とした。
Fig.3.1_A ADHD チェックリスト合算スコアの度数分布
3.1.2_2. 要因計画

(1) ①空間的情報選択課題

2×2×2の混合計画。第1要因は群で、ADHD傾向群・比較対照群の2水準。第2要因は先行刺激の感情持ちがかりで、「ネガティブ感情持ちがかり」「ポジティブ感情持ちがかり」の2水準。第3要因は手がかり刺激と標的刺激の刺激提示位置の一一致で、「一致」「不一致」の2水準。

第1要因は被験者間、第2・第3要因は被験者内計画。

(2) ②注意切替課題

①2×2の混合計画：第1要因は群で、ADHD傾向群・比較対照群の2水準。第2要因は階層文字で、「全体文字」「部分文字」の2水準。第1要因は被験者間、第2要因は被験者内計画。

②2×3の混合計画：第1要因は群で、ADHD傾向群・比較対照群の2水準。第2要因は階層の切替方向で、「全体文字から部分文字への切り替え」(以下、全体→部分)「部分文字から全体文字への切り替え」(以下、部分→全体)「切り替え無し」の3水準。第1要因は被験者間、第2要因は被験者内計画。

(3) ③変化検出課題

①2×2の混合計画：第1要因は群で、ADHD傾向群・比較対照群の2水準。第2要因は場面特性で、「注意集中場面」「注意分散場面」の2水準。第1要因は被験者間、第2要因は被験者内計画。

②2×3の混合計画：第1要因は群で、ADHD傾向群・比較対照群の2水準。第2要因は変化の種類で、「消失」「追加」「位置移
動」の 3 水準。第 1 要因は被験者間、第 2 要因は被験者内計画。

3.1.2_3. 空間的注意課題

空間的注意機能に関連する課題として、①空間的情報選択課題、②注意切替課題、③変化検出課題の 3 タイプをそれぞれ作成した。課題は、一人 1 台配布した iPad で個別に机上で行ない、視覚刺激は iPad のディスプレーに提示、課題の制御は iPad に搭載した専用アプリケーションソフトで行なった。

すべての課題で iPad を横に置き、実験参加者から約 50cm 程度離した位置に設置した。

(1) ①空間的情報選択課題

①手続き：先行手がかり法（pre-cueing technique. Posner, 1980）に基づき、画面上、ランダムな位置に提示される標的刺激（target）について先行する感情手がかり（cue）刺激を無視して出来るだけ早く正確にタッチを求める課題（Fig.3.1_2）。練習試行含め、課題全体で約 4 分、本施行は合計 24 試行。
本課題は、「ポジティブ感情手がかり」「ネガティブ感情手がかり」の各条件が12試行、また、手がかりと標的の刺激提示の「一致」条件は8試行、「不一致」条件が4試行で、各条件はランダムな順で提示された。

教示では、「この課題は「マーク探し」ゲームです。全部で24問出題されます。課題の流れは、①各問題では、ディスプレイの中央に、アメーバ型の「マーク」が示されます。マークが出現したら目を動かさずに良く見ましょう。②その後マークが消え、ディスプレイのどこかに「漢字」一文字が出現しますが、無視します。③その後、画面のどこかに最初と同じ「マーク」が出現するので、できるだけ素早く見つけタッチします。④タッチ後、2問目に移り、1問目と同じように、中央にアメーバ型のマークが提示されますので、目を動かさず良く見ましょう。このような流れで、続けて24問が提示されます。」と説明した。

刺激：手がかり刺激は、梅林（2012）の研究を参考に、ネガテ

Fig.3.1_2 ①空間的情報選択課題の手続き
イプ又はポジティブ感情を喚起しやすい有意味文字の漢字一文字で、感じごと3種用意した。漢字は黒色・HGP明朝体フォントを採用した。標的刺激は、感情を喚起させないよう、無意味刺激としてアメーバ型の図形を3種用意した(Appendix5)。アメーバ図形の選定では、複雑性が大きくならないように配慮した。

手がかり刺激と標的刺激ともに、白地に角丸の黒い正方形の枠内中央に位置し、iPadのディスプレイでは2cm×2cmの大きさで表示した。

③課題の操作：本課題では、2つの要因を操作した。操作要因の一つは、先行手がかりの感情値で、「ネガティブ感情手がかり」条件と「ポジティブ感情手がかり」条件とした。手がかり刺激は有意味文字の漢字で、20代～50代15名のプレテストにおいて、宮崎・本山・菱谷(2003)の研究を参考に、ネガティブ漢字(嫉・苦・危・切・死)とポジティブ漢字(光・希・明・生・幸)をそれぞれ5種用意した。漢字ごと「とても不快(1)」から「とても快い(7)」の7件で評価させ漢字ごとの平均値を算出し、快(7点)/不快(1点)の近似値の漢字から3種選定した。結果、ポジティブ感情を喚起しやすい漢字は「希(5.7)」「幸(5.5)」「明(5.4)」、ネガティブ感情を喚起しやすい漢字は「死(2.0)」「危(2.1)」「苦(2.3)」であった。

操作要因のもう一つは、手がかり刺激と標的刺激の提示位置で、手がかりが与えられた位置と同じ位置に標的刺激が出現する「一致」(valid trial)条件、手がかりとは異なる位置に標的刺激が出現する「不一致」(invalid trial)条件とした。刺激提示の位置は、中心/周辺および上下左右で8エリア
(Appendix 6) に分け、刺激提示が特定のエリアに偏らないよう操作した。なお手がかり感情刺激のブロックごと、一致刺激の出現確率は試行全体の約 70%、不一致刺激の出現確率は約 30%とした。

(2) ②注意切替課題

① 手続き: CDCT（Compound Digit Cancellation Test. Ohashi et al., 2003）を参考に、同時に提示される 2 枚の階層文字の形の一致・不一致を、ランダムなタイミングで切り替わるルールに従って、出来るだけ速く正確に文字の形の一致性を判断する課題（Fig.3.1_3）。練習試行含め、課題全体で約 5 分、合計 40 試行。

Fig.3.1_3 ②注意切替課題の手続き
本課題は、「全体文字」「部分文字」の各条件が20試行、また、「全体→部分」への階層切り替え試行、「部分→全体」への階層切り替え条件が11試行、「切り替え無し」試行条件が18施行で、各条件はランダムな順で提示された。

教示では、「この課題は「文字の一致判断」ゲームです。ルールに従って2つの文字の形が同じか否かを判断します。全部で40問出題されます。まずルールについて説明します。ルールは比較する文字の種類にあわせて2つあります（Fig.3.1_4）。ルール「大きな文字同士を比べる」とは、いま見ている文字そのものの形同士を比較します。一方、ルール「小さな文字同士を比べる」とは、いま見ている文字を構成する小さな文字、文字の内側に文字があり、その小さい文字同士の形を比較します。

課題の流れは、①示されたどちらかのルールに従って、比較する文字同士の形が同じ場合は〇、違う場合は×をできるだけ素早くタッチします。②ルールは問題の途中で、ランダムに変わっていきますので、新しいルールが提示されたらそのルールに従って、文字同士の形を比べていきます。このような流れで、続けて40問が提示されます。」と説明した。
ルールについて

・ルールは、文字の種類にあわせて、2つあります。

![ルール](image)

\[\text{Fig.3.1_4 ②注意切替課題のルールと刺激の関係}\]

②刺激：Navon (1977) 図形を応用した部分文字の集合で構成される全体文字で、階層構造を持つ数字とアルファベットの一文字・各10種 (Appendix7)。数字・アルファベットは、それぞれ部分文字と全体文字の不一致刺激は6種、部分文字と全体文字の一致刺激は4種とした。

階層文字の刺激は、部分文字は縦8×横5の黒色ドットで作成し、全体文字は縦5×横5の部分文字で作成した。刺激は、白地に角丸の緑色の長方形の枠内中央に位置し、iPadのディスプレイでは縦6.5cm×横5cmの大きさで表示した。

③課題の操作：本課題では、2つの要因を操作した。操作要因の一つは、刺激の文字の階層で、「全体文字」条件と「部分文字」条件とした。
操作要因のもう一つは、ルールによって切り替わる文字の階層の切替方向で、ルール提示直前の施行と直後の施行が異なる階層への切替を行なう条件では、①小さな文字同士を比べるルール提示によって、ルール直前と直後の施行が「全体→部分」へ切り替わる条件、②大きな文字同士を比べるルール提示によって、ルール直前と直後の施行が「部分→全体」へ切り替わる条件とした。同じルールが続き同じ試行を繰り返す試行は、階層の「切り替え無し」条件とした。

(3) ③変化検出課題

①手続：フリッカー変化検出法（Rensink, 2000）による、交互に提示される一組の写真内の構成要素の変化に気づいたら、その変化した対象、箇所を出来るだけ速く選択する課題（Fig.3.1_5）。環境内の僅かな変化の察知を評価する。練習試行含め、課題全体で約14分、合計18試行。
本課題は、「注意集中場面」「注意分散場面」の各条件が9試行、また「追加」「消失」「位置移動」の変化の種類の各条件が6試行で、各条件はランダムな順で提示された。

教示では、「この課題は「間違い探し」ゲームです。全問18問出題されます。課題の流れは、①各問題は、3・2・1のカウントダウンで始まります。中央の数字をよく見てください。②カウントダウン後、直ぐに、2枚の写真が交互に高速で続けて何回も示されます。③2枚の写真は微妙にどこかが異なっています。写真の違いに気づいたら、その場所をできるだけ素早く1回タッチしてください。④なお、写真が交互に提示される回数は決まっています。写真の提示回数が上限に達すると、2問目に移り、次の問題のカウントダウンがはじまります。中央の数字を見よくみてください。このような流れで、続けて18問が提示されます。」と説明した。

② 刺激：刺激はインターネットフリー素材の写真から、日常の生活場面や情景を写した「注意集中場面」写真3種（Appendix8）と「注意分散場面」の写真3種（Appendix9）合計6枚。それらの写真について、画像修正可能なRetouch Pilotアプリケーションソフトを用い、写真内の構成要素のいずれかを写真から削除する「消失」、新たな構成要素を追加する「追加」、写真内の構成要素の位置を変える「位置移動」の加工を行なった。加工した構成要素は、「消失」「追加」「位置移動」の変化で、それぞれ異なる構成要素とした。提示は、実験で使用したiPadのディスプレイの大きさで表示した。

③ 課題の操作：本課題では、2つの要因を操作した。操作要因の
一つは、場面が持つ注意特性で、多くの人にとって注意が集中しやすい「注意集中場面」と、多くの人の注意が分散しやすい「注意分散場面」の2条件とした。20代～50代15名のプレテストにおいて、場面刺激は、屋内・屋外、人物の有無で異なる日常の風景写真で12種（会議室・ヨット・家庭教師・パーティ・歩道・ビーチ・牧場・寝室・クリスマス・庭・紅葉・家族と犬）用意し、A4縦の用紙に写真を1枚ごと配置し、1つの冊子とした。実験者の合図で写真を観察させ、最初に目についた写真内の対象や箇所を一つだけ○印で囲ませた。写真ごと印の構成要素を項目として洗い出し、項目ごとのチェック率を算出した。結果、12枚の写真でチェックされた項目数の中央値は6であった。6項目チェックされた「会議室」は「木」のチェック率が.60、4項目チェックされた「寝室」は「枕」のチェック率が.60、4項目チェックされた「パーティ」は、「中央の子供の顔」のチェック率が.53であった。これらの写真は、場面の中でチェックされる項目数は中央値あるいはそれ以下と少なく、かつ多くの人が同じ構成要素にチェックをつける場面であり「注意集中場面」とした。反対に、7項目チェックされた「歩道」・「牧場」、6項目チェックされた「ヨット」の各項目のチェック率は中央値、あるいはそれ以上で、各項目のチェック率が.07～.27であり、多くの人が写真内の様々な対象・箇所にまんべんなくチェックをつけていますから「注意分散場面」とした。

操作要因のもう一つは、写真内の構成要素の変化で、「消失」「追加」「位置移動」の変化を操作した。一つの場面において、全ての変化を操作した。
3.1.2_4. 手続き

30 名前後の集団に対し、フェイスシート、研究1で作成した注意不全尺度、ADHDチェックリストをまとめた冊子を配布した。配布後、それぞれの質問紙実施の前に、実験者が質問紙の目的と回答の仕方を説明し、集団全員の回答が終了後、空間的注意課題と危険感評価課題を組み込んだiPad 4th generation（アップル社製）を1人1台配布した。

iPad による課題は一斉に実施した。「筑波大学アプリ（本試験用）」と名付けたアプリケーションを開かせ、IDを入力してもらい、各課題実施へ移行した（Fig.3.1_6）。

Fig.3.1_6 iPadによる課題実施の流れ
事前に、「①4つ異なる課題がある事、②実験が始まると、実験全体の説明・課題の説明・練習試行・本番はすべて自動的に最後まで遷移する事、③各課題の本番前には必ず練習試行がある事、④アプリは触った個所が赤い小さな円（〇）で示される事」を説明した。各問題・解答の仕方については、専用の説明資料を作成・配布し、補助教材を使いながら説明した。常に説明資料を手元に控えておくよう教示した。練習施行は、本番の問題と同様の手続きで数試行練習させた。どうしても理解できない参加者がいる場合は、アプリケーションを一旦停止し、実験補助者が1対1で補助の上、解答方法を熟知させてから本施行に移った。

すべての調査が終了後、冊子およびiPadを回収した。刺激の提示・制御、反応時間、タップの座標軸の計測・記録はiPadに搭載したアプリケーション（ジェナ社製）で統制した。

実施時は実験補助者を会場に3〜4名配置した。また、実験補助者は落ち着きが無い、そわそわしている、何度説明しても理解が遅いなどの実験参加者について、その様子を記録した。

3.1.2_5. 倫理的配慮

本研究は、筑波大学人間系倫理審査委員会の承認を得て実施した（承認番号筑27-66)。
3.1.3. 結果

ADHD 傾向者（図では ADHD と表示）の空間的注意の特徴を検討するため、課題ごと、正答率、無答率、正答試行の RT および回数について、比較対照群（図では Ctl と表示）と比較した。

統計解析は、統計ソフトウェア R（3.3.2）を用いた。

3.1.3_1. ① 空間的情報選択課題

Tab.3.1_1 は、指標ごとに、群別感情手がかり別刺激提示位置別の基本統計量を示したものである。

<table>
<thead>
<tr>
<th>指標</th>
<th>ADHD傾向群</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th>比較対照群</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>n</td>
<td>M</td>
<td>SD</td>
<td>M</td>
<td>SD</td>
<td>n</td>
<td>M</td>
<td>SD</td>
<td>M</td>
</tr>
<tr>
<td>正答率</td>
<td>一致</td>
<td>20</td>
<td>0.94</td>
<td>0.12</td>
<td>0.95</td>
<td>0.14</td>
<td>23</td>
<td>0.93</td>
<td>0.14</td>
</tr>
<tr>
<td></td>
<td>不一致</td>
<td>20</td>
<td>0.93</td>
<td>0.18</td>
<td>0.91</td>
<td>0.19</td>
<td>23</td>
<td>0.95</td>
<td>0.17</td>
</tr>
<tr>
<td>無答率</td>
<td>一致</td>
<td>20</td>
<td>0.04</td>
<td>0.12</td>
<td>0.05</td>
<td>0.14</td>
<td>23</td>
<td>0.07</td>
<td>0.13</td>
</tr>
<tr>
<td></td>
<td>不一致</td>
<td>20</td>
<td>0.06</td>
<td>0.18</td>
<td>0.08</td>
<td>0.18</td>
<td>23</td>
<td>0.05</td>
<td>0.17</td>
</tr>
<tr>
<td>正答試行の RT</td>
<td>一致</td>
<td>20</td>
<td>663</td>
<td>81.77</td>
<td>630</td>
<td>78.68</td>
<td>23</td>
<td>651</td>
<td>64.36</td>
</tr>
<tr>
<td></td>
<td>不一致</td>
<td>20</td>
<td>659</td>
<td>94.77</td>
<td>633</td>
<td>75.78</td>
<td>23</td>
<td>650</td>
<td>72.74</td>
</tr>
</tbody>
</table>
正答率、無答率、正答試行の RT について、群（ADHD 傾向群・比較対照群）×感情手がかり（ネガティブ感情手がかり・ポジティブ感情手がかり）×刺激提示位置（一致・不一致）の 3 要因分散分析を行なった。

正答率では、群×感情手がかりの 2 要因の交互作用（$F(1,41)=3.04$, $p < .10$, 効果量 $\eta^2 = .069$）と、群×刺激提示位置の 2 要因の交互作用（$F(1,41)=3.44$, $p < .10$, 効果量 $\eta^2 = .077$）が有意傾向であった。群別に感情手がかりの単純主効果を検定した結果、比較対照群における感情手がかり要因（$F(1,22)=5.84$, $p < .05$, 効果量 $\eta^2 = .210$）（Fig.3.1_7）が有意であった。比較対照群では「ポジティブ感情手がかり」で正答率が低いことが分かった。また、群別に刺激提示位置の単純主効果を検定した結果、有意な要因はみられなかった。

![Fig.3.1_7](image)

①空間的情報選択課題の群別感情手がかり別平均正答率

[注] *$p < .05$
無答率では、群×感情手がかりの2要因の交互作用（\(F(1,41)=5.32, p < .05 \), 効果量 \(\eta^2=.115 \)）が有意であり、群×刺激提示位置の2要因の交互作用（\(F(1,41)=3.12, p < .05 \), 効果量 \(\eta^2=.071 \)）が有意傾向であった。群別感情手がかりの単純主効果を検定した結果、比較対照群における感情手がかり要因（\(F(1,22)=6.34, p < .05 \), 効果量 \(\eta^2=.224 \)（Fig.3.1_8）が有意であった。比較対照群では、「ポジティブ感情手がかり」で無答率が高いことが分かった。また、群別に刺激提示位置の単純主効果を検定した結果、有意な要因はみられなかった。

Fig.3.1_8 ①空間的情報選択課題の群別感情手がかり別平均無答率

[注] * \(p < .05 \)
正答試行の RT では、感情手がかりの主効果 \((F(1,41)=9.04, p < .01, \eta^2=.181) \) のみ有意であった。「ポジティブ感情手がかり」は「ネガティブ感情手がかり」に比べて正答試行の RT が遅延することが分かった。
3.1.3_2. ②注意切替課題

(1) 群×階層文字

Tab.3.1_2は、指標ごとに群別階層文字別の基本統計量を示す。

<table>
<thead>
<tr>
<th>指標</th>
<th>ADHD傾向群 全体文字</th>
<th>部分文字</th>
<th>比較対照群 全体文字</th>
<th>部分文字</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>n</td>
<td>M</td>
<td>SD</td>
<td>M</td>
</tr>
<tr>
<td>正答率</td>
<td>20</td>
<td>0.78</td>
<td>0.15</td>
<td>0.86</td>
</tr>
<tr>
<td>無答率</td>
<td>20</td>
<td>0.10</td>
<td>0.11</td>
<td>0.10</td>
</tr>
<tr>
<td>正答試行のRT</td>
<td>16</td>
<td>1201</td>
<td>147.66</td>
<td>1243</td>
</tr>
</tbody>
</table>
正答率、無答率、正答試行の RT について、群（ADHD 傾向・比較対照）×階層文字（全体文字・部分文字）の 2 要因分散分析を行なった。なお正答試行の RT では、エラーの平均数が 2SD 以上の対象者（全体文字：8.9以上・部分文字：8.4以上）を除き分析した。また図中の Global は「全体文字」、Local は「部分文字」を示す。

正答率では、階層文字の主効果（$F(1,41)=12.20, p < .05, \eta^2_p=.230$）（Fig.3.1_9）が有意で、群の主効果（$F(1,41)=3.06, p < .05, \eta^2_p=.070$）は有意傾向がみられた。②注意切替課題は「全体文字」の正答率が「部分文字」に比べ低く、ADHD 傾向群は比較対照群に比べ正答率が低い傾向であることが分かった。

Fig.3.1_9 ②注意切替課題の群別階層文字別平均正答率

[注] † $p < .10, **p < .01$
正答試行の RT では、群×階層文字の交互作用（$F(1,37)=3.60, p<.10$, 効果量 $\eta^2=.089$）が有意傾向であった。階層文字別に群の単純主効果を検定した結果、「全体文字」における群の要因（$F(1,37)=5.89, p<.05$, 効果量 $\eta^2=.137$）（Fig.3.1_10）が有意であり、群別に階層文字の単純主効果を検定した結果、ADHD 傾向群における階層文字の要因（$F(1,15)=3.30, p<.10$, 効果量 $\eta^2=.180$）が有意傾向であった。ADHD 傾向群は「全体文字」条件の正答試行の RT が速いことが分かった。

![Fig.3.1_10 ②注意切替課題の群別階層文字別平均 RT](image)

[注] † $p<.10$, *$p<.05$
無答率では、すべての効果が有意ではなかった。

(2) 群×階層の切替方向

Tab.3.1_3 は、指標ごとに、群別階層の切替方向別の基本統計量を示す。

<table>
<thead>
<tr>
<th>指標</th>
<th>ADHD傾向群</th>
<th>比較対照群</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>部分→全体</td>
<td>全体→部分</td>
</tr>
<tr>
<td>正答率</td>
<td>20 0.76 0.16 0.85 0.24 0.83 0.22</td>
<td>23 0.84 0.12 0.92 0.12 0.91 0.09</td>
</tr>
<tr>
<td>無答率</td>
<td>20 0.07 0.12 0.10 0.16 0.10 0.15</td>
<td>23 0.07 0.10 0.04 0.06 0.08 0.08</td>
</tr>
<tr>
<td>正答試行のRT</td>
<td>16 1209 168.72 1285 120.91 1183 116.42</td>
<td>23 1320 160.24 1308 146.67 1300 159.95</td>
</tr>
</tbody>
</table>
正答率、無答率、正答試行の RT について、群（ADHD 傾向群・比較対照群）×階層の切替方向（全体→文字・部分→全体・切り替え無し）の 2 要因分散分析を行なった。なお正答試行の RT では、各条件において、エラーの平均数が 2SD 以上の対象者（全体文字：8.9 以上・部分文字：8.4 以上）を除き分析した。また図中の L→G は「全体→文字」、G→L は「部分→全体」、No switching は「切り替え無し」を示す。

正答率では、階層の切替方向の主効果（$F(2,82)=8.63, p < .001$, 効果量 $\eta^2=.174$）（Fig.3.1_11）が有意であり、群の主効果（$F(1,41)=3.41, p < .10$, 効果量 $\eta^2=.077$）は有意傾向であった。階層の切替方向の効果について Bonferroni 法の多重比較を行なった結果、「部分→全体」の切り替えは「切り替え無し」（$t(41)=3.17, p < .05$）と「全体→部分」の切り替え（$t(41)=3.14, p < .05$）に比べ正答率が低いことが分かった。
無答率では、群×階層の切替方向の交互作用（\(F(2,82)=3.19, p < .05\)，効果量 \(\eta_p^2=.072\)）（Fig.3.1_12）が有意であった。階層の切替方向別に群の単純主効果を検定した結果、「全体→部分」の切り替えにおける群の要因（\(F(1,41)=3.61, p < .10\)，効果量 \(\eta_p^2=.080\)）が有意傾向であり、ADHD傾向群は「全体→部分」の切り替え条件で無答率が高い傾向があることが分かった。また群別に階層の切替方向の単純主効果を検定した結果、比較対照群における階層の切替方向要因（\(F(2,44)=2.89, p < .10\)，効果量 \(\eta_p^2=.116\)）（Fig.3.1_12）が有意傾向であり、Bonferroni法の多重比較を行なった結果、比較対照群の「全体→部分」の切り替え条件は「切り替え無し」条件に比べ無答率が高い（\(t(22)=3.05, p < .05\）ことが分かった。

![Graph](image-url)

Fig.3.1_12 ②注意切替課題の群別階層の切替方向別平均無答率

[注] † \(p < .10\)，* \(p < .05\)

104
正答試行の RT では、群×階層の切替方向の交互作用（$F(2,74)=3.88, p < .05$ 效果量 $\eta^2=.095$）（Fig.3.1_13）が有意であった。階層の切替方向別に群の単純主効果を検定した結果、「部分→全体」の切替えにおける群の要因（$F(1,37)=4.32, p < .05$, 効果量 $\eta^2=.105$）と、「切り替え無し」における群の要因（$F(1,37)=6.24, p < .05$, 効果量 $\eta^2=.144$）が有意であり、ADHD 傾向群は「部分→全体」の切り替え、「切り替え無し」条件の正答試行が速いことが分かった。また群別に階層の切替方向の単純主効果を検定した結果、ADHD 傾向群における階層の切替方向要因（$F(2,30)=6.19, p < .01$, 効果量 $\eta^2=.292$）が有意傾向であり、Bonferroni 法の多重比較を行なった結果、ADHD 傾向群の一者×部分の切り替え無し条件は「全体→部分」の切り替え条件に比べ RT が速い（$t(15)=4.27, p < .05$）ことが分かった。

Fig.3.1_13 ②注意切替課題の群別階層の切替方向別平均 RT

[注] *$p < .05$
3.1.3.3. ③変化検出課題

(1) 群×場面特性

Tab.3.1_4 は、指標ごとに、群別場面特性別の基本統計量を示す。

<table>
<thead>
<tr>
<th>Tab.3.1_4 ③変化検出課題の指標ごと群別場面特性別基本統計量</th>
</tr>
</thead>
<tbody>
<tr>
<td>指標</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>正答率</td>
</tr>
<tr>
<td>無答率</td>
</tr>
<tr>
<td>正答試行の回数</td>
</tr>
</tbody>
</table>
正答率、無答率、正答試行の回数について、群（ADHD傾向群・比較対照群）×場面特性（注意集中場面・注意分散場面）の2要因分散分析を行なった。なお正答試行の回数では、エラーの平均数が2SD以上の対象者（注意集中：4.82以上・注意分散：2.88以上）を除き分析した。また図中のFocalは「注意集中場面」、Dispersiveは「注意分散場面」を示す。

正答率では、場面特性の主効果（F(1,41)=14.08, p<.001, 効果量ηp²=.256）（Fig.3.1_14）が有意だった。③変化検出課題は「注意集中場面」の正答率が「注意分散場面」に比べ低いことが分かった。

Fig.3.1_14 ③変化検出課題の群別場面特性別平均正答率

[注] *** p < .001
無答率では、場面特性の主効果（$F(1,41)=17.52, p<.001$，効果量$\eta^2=.299$）（Fig.3.1_15）が有意だった。③変化検出課題は「注意集中場面」の無答率が「注意分散場面」に比べ高いことが分かった。

![Fig.3.1_15 ③変化検出課題の群別場面特性別平均無答率](image)

【注】*** $p<.001$
正答試行の回数では、すべての効果が有意ではなかった。

(2) 群×変化の種類

Tab.3.1_5 は、指標ごとに、群別変化の種類別の基本統計量を示す。

<table>
<thead>
<tr>
<th>指標</th>
<th>ADHD傾向群</th>
<th></th>
<th></th>
<th>比較対照群</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>消失</td>
<td>追加</td>
<td>位置移動</td>
<td>消失</td>
<td>追加</td>
<td>位置移動</td>
</tr>
<tr>
<td>正答率</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>0.79</td>
<td>0.15</td>
<td>0.86</td>
<td>0.13</td>
<td>0.81</td>
<td>0.17</td>
</tr>
<tr>
<td>無答率</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>0.18</td>
<td>0.15</td>
<td>0.13</td>
<td>0.13</td>
<td>0.18</td>
<td>0.17</td>
</tr>
<tr>
<td>正答試行の回数</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>5.76</td>
<td>1.21</td>
<td>7.15</td>
<td>1.69</td>
<td>6.06</td>
<td>1.81</td>
</tr>
</tbody>
</table>
正答率、無答率、正答試行の回数について、群（ADHD傾向群・比較対照群）×変化の種類（消失・追加・位置移動）の2要因分散分析を行なった。なお正答試行の回数では、エラーの平均数が2SD以上の対象者（注意集中：4.82以上・注意分散：2.88以上）を除き分析した。また図中のDeletionは「消失」、Additionは「追加」、Location changeは「位置移動」を示す。

正答率では、群×変化の種類（消失・追加・位置移動）の交互作用（$F(2,82)=5.47, p<.05$, 効果量 $\eta^2=.118$）（Fig.3.1_16）が有意だった。変化の種類別に群の単純主効果を検定した結果、「消失」における群の要因（$F(1,41)=7.60, p<.01$, 効果量 $\eta^2=.156$）が有意であり、ADHD傾向群は「消失」条件の正答率が低いことが分かった。また群別に変化の種類の単純主効果を検定した結果、比較対照群における変化の種類要因（$F(2,44)=4.43, p<.05$, 効果量 $\eta^2=.168$）が有意であり、Bonferroni法の多重比較を行なった結果、比較対照群の「消失」条件は「追加」条件に比べ正答率が高い（$t(22)=3.02, p<.05$）ことが分かった。

Fig.3.1_16 ③変化検出課題の群別変化の種類別平均正答率

[注] * $p<.05$, ** $p<.01$
無答率では、群×変化の種類の交互作用（$F(2,82)=3.71, p<.05$，効果量 $\eta^2=.083$）（Fig.3.1_17）が有意だった。変化の種類別に群の単純主効果を検定した結果、「消失」における群の要因（$F(1,37)=5.02, p<.05$，効果量 $\eta^2=.119$）が有意であり、ADHD 傾向群は「消失」条件の無答率が高いことが分かった。また群別に変化の種類の単純主効果を検定した結果、ADHD 傾向群における変化の種類要因（$F(2,44)=3.34, p<.05$，効果量 $\eta^2=.132$）が有意であり，Bonferroni 法の多重比較を行なった結果，比較対照群の「追加」条件は「消失」条件に比べ無答率が高い（$t(22)=2.64, p<.05$）ことが分かった。

Fig.3.1_17 ③変化検出課題の群別変化の種類別平均無答率

[注] * $p < .05$
正答試行の回数では、群×変化の種類の交互作用（$F(2,74)=3.19, p<.05$、効果量 $\eta^2=.079$）（Fig.3.1_18）有意だった。変化の種類別に群の単純主効果を検定した結果、「追加」における群の要因（$F(1,37)=5.02, p<.05$、効果量 $\eta^2=.119$）有意であり、ADHD傾向群は「追加」条件の正答試行の回数が多いことが分かった。また群別に変化の種類の単純主効果を検定した結果、ADHD傾向群における変化の種類要因（$F(2,34)=6.48, p<.01$、効果量 $\eta^2=.276$）有意であり、Bonferroni法の多重比較を行なった結果、ADHD傾向群の「追加」条件は、「位置移動」条件（$t(17)=2.49, p<.05$）と「消失」条件（$t(17)=3.73, p<.05$）に比べ正答試行の回数が多いことが分かった。ADHD傾向群は、正しい「追加」変化の検出に時間がかかることが分かった。

![Fig.3.1_18](注) * $p<.05$
3.1.4. 考察

本研究では、ADHD傾向者を対象に、空間的注意機能に関連する課題として、①空間的情報選択課題、②注意切替課題、③変化検出課題の3タイプを設定し、比較対照群との各課題の遂行成績の比較を行なった。

①空間的情報選択課題の分析結果では、比較対照群では「ポジティブ感情手がかり」で情報選択の遂行成績の質が低下した。また課題の特徴として「ポジティブ感情手がかり」が「ネガティブ感情手がかり」に比べ正答試行のRTを遅延させた。しかし、ADHD傾向群ではこうした特徴はみられなかった。ADHD傾向群は比較対照群に比べ、感情情報へのアクセスの弱さや、感情手がかりを使った情報探索を方略として用いないことが考えられるかもしれない。

②注意切替課題の分析結果では、課題の特徴として「全体文字」よりも「部分文字」の一一致を正しく判断する傾向が示された。しかしADHD傾向群は、「全体文字」条件の正答試行のRTが「部分文字」条件よりも有意に速かった。また階層の切替方向の課題の特徴をみると、「部分→全体」の切り替えは正答率が低くなり、比較対照群では「全体→部分」の切り替え条件は「切り替え無し」条件に比べ無答率が低かった。しかしADHD傾向群では比較対照群とは反対に、「全体→部分」への切り替え条件で無答率が高くなる傾向であった。さらにADHD傾向群は「部分→全体」への切り替え、「切り替え無し」条件の正答試行が速いことが分かった。

本結果から②注意切替課題の特徴として、「部分文字」の一一致判断は「全体文字」の一一致判断よりも遂行成績が高く、「全体→部分」への切り替えは他の条件よりも容易であり、「部分→全体」への切り替えが難しい。
という特徴が示された。しかしADHD傾向群では通常観察される特徴と反対の特徴が示されており、「全体→部分」への切り替えは遂行成績が悪く、「部分→全体」への切り替えのRTが速かった。これは、ADHD傾向者は、注意の切り替え時に全体情報の強い干渉を受け、その結果、部分情報から全体情報への反応は早まるが、全体情報から部分情報へ注意を切り替える際に処理に時間がかかることが示唆される。

③変化検出課題の分析結果では、課題の特徴として「注意集中場面」は「注意分散場面」に比べ遂行成績が低かった。また比較対照群では変化の「消失」条件は「追加」条件に比べ無答率が低かったが、反対にADHD傾向群では変化の「消失」条件の無答率が高かった。

③変化検出課題は、Rensinkの変化検出パラダイムを用いている。Rensink（2005）によれば、場面内の構成要素の変化検出は、以下の3つの独立したシステムから説明される（Fig.3.1_19）。
視覚の初期の段階では、個々のオブジェクト（object）の存在だけを察知する。その後、場面内の個々のオブジェクトの配置（layout）、個々のオブジェクトからgistと呼ばれるシーン全体の雰囲気が形成され、形成された仮のオブジェクトと、初期のオブジェクトを比較参照し、人間は場面内の構成要素を認知する。

これら視覚の処理には、意味処理への知覚と記憶の処理が関わる。変化検出課題において、変化を見落とさずに検出するには、変化前と変化後の情報を比較する視覚的記憶や、ワーキングメモリの処理過程が関わると考えられる。そのためには、課題に視覚的に注意を維持し続けることが求められるため、変化検出の処理には課題遂行に努力（effort）し続ける、課題遂行に注意を払い続ける注意の持続性も関わると考えられる。

なぜ ADHD 傾向者が「消失」変化を見落としやすいのかについては、
今後、③変化検出課題の遂行成績と移動時注意不全エラーのパターンとの関係などから分析し、検討していく必要があると考える。
3.2. 【研究5】ADHD傾向者の空間的注意機能と移動時注意不全の関係

3.2.1. 研究の背景と目的

ADHD者の特性と移動時における注意不全の発現に至る情報処理過程およびその制御処理過程との関係を明らかにするには、空間的注意がどのように移動時注意不全エラーと関わるのかを明らかにする必要がある。

移動時注意不全エラーについては、研究3において、ADHD傾向者は一般成人者や健常高齢者と異なり、移動時に「水準低下」エラーや「転導性」エラーを経験しやすい傾向が明らかとなった。

ADHD傾向者の空間的注意のパフォーマンスについては、研究4において、②注意切替課題の群と階層の切替方向の要因間に交互作用がみられ、比較対照群では無答率が低い「全体→部分」への階層の切替方向において、ADHD傾向群は比較対照群に比べ無答率が高くなることが明らかとなった。また、③変化検出課題の群と変化の種類の要因間で交互作用がみられ、比較対照群では無答率が低い「消失」変化において、ADHD傾向群は比較対照群に比べ無答率が高くなることが明らかとなった。研究4の結果からは、比較対照群と比べたADHD傾向者の空間的注意課題の遂行成績の差異は、②注意切替課題および③変化検出課題における無答率の指標にあらわれやすい事が示唆される。

そこで本研究では、研究4と同様にADHD傾向の高低の比較を通じて、②注意切替課題、③変化検出課題の無答率に着目し、それらの遂行成績と、研究1で作成した注意不全尺度（小菅・熊谷, 2017a）の下位尺度スコアの関係から、ADHD傾向者の移動時注意不全に及ぼす空間的注意の影響を明らかにすることを目的とする。
3.2.2. 方法

3.2.2_1. 対象者

(1) 調査対象者

研究4と同様。関東近郊の複数の大学に通う大学生190名（平均年齢19.62±1.56歳、男性85名、女性105名）のうち、回答不備等を除いた156名。

(2) 分析対象者

研究4と同様の方法で、大学生のDSM-5・ADHDチェックリスト日本語版全18項目の自記式スコアの平均値±1SDの該当者をADHD傾向群20名（平均年齢19.05±1.50歳、男性11名、女性9名）、平均値-1SDの該当者を比較対照群23名（平均年齢19.48±0.99歳、男性8名、女性15名）とした。

3.2.2_2. 要因計画

2×2×4の混合計画。第1要因は群で、ADHD傾向群と比較対照群の2水準。第2要因は空間的注意遂行の程度で、各課題の遂行成績の高・低の2水準。第3要因は移動時注意不全エラーで、注意不全尺度の4つの下位尺度を用い、制御不全・変更不全・水準低下・転導性の各尺度の4水準。第1・第2要因は被験者間、第3要因は被験者内計画。
3.2.2_3. 空間的注意課題

(1) ②注意切替課題

研究4と同様。同時に提示される2枚の階層文字の形の一致・不一致を、ランダムなタイミングで切り替わるルールに従って、出来るだけ速く正確に一致性を判断する課題。合計40試行。

(2) ③変化検出課題

研究4と同様。交互に提示される一組の写真内の構成要素の変化に気づいたら、その対象や箇所を出来るだけ速く選択する課題。合計18試行。

3.2.2_4. 移動時注意不全

研究1で作成した全30項目、4つの下位尺度（制御不全、変更不全、水準低下、転導性）から構成される注意不全尺度により評価した。

注意不全尺度は、場面想定法により、普段の車両の運転や歩行をイメージしながら、過去1年間に生じた移動時の不注意の頻度を6段階評定（全く無かった：1～非常によくあった：6）で求めた。
3.2.2_4. 手続き

研究4の調査手続きにより収集された、移動時注意不全と空間的注意課題のデータを分析した。移動時注意不全データは、30名前後の集団に対し、フェイスシート、研究1で作成した注意不全尺度、ADHDチェックリストをまとめた冊子を配布し、集団全員の回答後に回収した。空間的注意課題のデータは、課題を組み込んだiPad 4th generation（アップル社製）を1人1台配布し一斉に実施し記録されたデータを用いた。

3.2.2_5. 倫理的配慮

本研究は、筑波大学人間系倫理審査委員会の承認を得て実施した（承認番号筑27-66）。
3.2.3. 結果

空間的注意遂行の程度が、移動時注意不全エラーに及ぼす影響を検討するため、群ごと各課題の無答率の基本統計量を算出し、無答率の平均値以上を各課題の「注意遂行低」、無答率の平均値以下を各課題の「注意遂行高」とした。

分析では、注意不全尺度の下位尺度スコアについて、群と群別各課題の「注意遂行低」と「注意遂行高」の比較を行なった。分散分析の下位検定では Holm の多重比較を行なった。

統計解析は、統計ソフトウェア R（3.3.2）を用いた。
なお図では ADHD 傾向群は ADHD H、比較対照群は ADHD L と表示する。

3.2.3_1．注意切替遂行の程度と移動時注意不全エラーの関連

Tab.3.2_1 に、群別注意切替遂行の程度別尺度スコアの基本統計量を示す。

| Tab.3.2_1 群別注意切替遂行の程度別尺度スコアの基本統計量 |
|---------------------------------|---------------------------------|---------------------------------|---------------------------------|
| 移動時注意不全エラー | ADHD傾向群 | | 比較対照群 | |
| | n | M | SD |
| 制御不全 | 7 | 2.17 | 0.90 | 13 | 2.11 | 0.70 | 8 | 1.10 | 0.18 | 15 | 1.37 | 0.59 |
| 変更不全 | 7 | 3.37 | 0.84 | 13 | 2.98 | 0.81 | 8 | 3.27 | 1.19 | 15 | 2.50 | 0.77 |
| 水準低下 | 7 | 3.14 | 1.63 | 13 | 3.08 | 1.29 | 8 | 1.35 | 0.27 | 15 | 1.76 | 0.72 |
| 転導性 | 7 | 2.79 | 1.01 | 13 | 2.78 | 0.65 | 8 | 1.39 | 0.30 | 15 | 1.73 | 0.68 |
群（ADHD傾向群・比較対照群）×注意切替遂行の程度（注意切替遂行低・注意切替遂行高）×移動時注意不全エラー（制御不全・変更不全・水準低下・転導性）の3要因分散分析の結果（Fig.3.2-1）、3要因（$F(3,117)=3.18,ns$、効果量 $\eta^2=.076$）ならびに、群×注意切替遂行の程度（$F(1,39)=0.23,ns$、効果量 $\eta^2=.006$）の2要因の交互作用はみられなかった。

Fig.3.2-1 群別注意切替遂行の程度別
移動時注意不全エラーの平均尺度スコア
群×移動時注意不全エラー（$F(3,117)=7.09, p<.001$, 効果量 $\eta^2=.154$）の2要因の交互作用は有意であった（Fig.3.2_2）。移動時注意不全エラー別群の単純主効果検定では、「変更不全」以外、「制御不全」（$F(1,39)=19.77, p<.001$, 効果量 $\eta^2=.336$）、「水準低下」（$F(1,39)=20.96, p<.001$, 効果量 $\eta^2=.350$）、「転導性」（$F(1,39)=30.96, p<.001$, 効果量 $\eta^2=.443$）の各水準における群の要因の主効果がみられた。ADHD 傾向群は比較対照群に比べ、「制御不全」「水準低下」「転導性」の尺度スコアが高かった。

群別移動時注意不全エラーの単純主効果検定の結果、ADHD 傾向群の移動時注意不全エラー要因（$F(3,54)=6.07, p<.01$, 効果量 $\eta^2=.252$）が有意であった。下位検定において ADHD 傾向群の「変更不全」（$t(18)=3.65, p<.05$）、「水準低下」（$t(18)=4.00, p<.05$）、「転導性」（$t(18)=6.18, p<.05$）の尺度スコアは、有意に「制御不全」のスコアより高いことが分かった。また比較対照群の移動時注意不全エラー要因（$F(3,63)=65.80, p<.001$, 効果量 $\eta^2=.758$）は有意であり、下位検定において、比較対照群は「制御不全」尺度スコアに比べ「変更不全」（$t(21)=10.84, p<.05$）、「水準低下」（$t(21)=4.64, p<.05$）、「転導性」（$t(21)=5.12, p<.05$）の尺度スコアは有意に高かった。「変更不全」尺度スコアは「水準低下」（$t(21)=7.71, p<.05$）、「転導性」（$t(21)=7.93, p<.05$）に比べ有意に高かった。
Fig.3.2_2 背別移動時注意不全エラーの平均尺度スコア

[注] *p < .05, ***p < .001
注意切替遂行の程度×移動時注意不全エラー（$F(3,117)=3.18, p<.05$、効果量 $\eta^2=.076$）の2要因の交互作用は有意であった（Fig.3.2_3）。移動時注意不全エラー別注意切替遂行の程度要因の単純主効果検定では、「変更不全」尺度水準における注意切替遂行の程度要因（$F(1,39)=4.14, p<.05$、効果量 $\eta^2=.096$）の主効果がみられた。②注意切替課題の遂行が低いと「変更不全」の尺度スコアが高いことが分かった。

注意切替遂行の程度別移動時注意不全エラーの単純主効果検定の結果、「注意切替遂行高」水準の移動時注意不全エラー要因（$F(3,39)=17.17, p<.01$、効果量 $\eta^2=.569$）が有意であり、下位検定において、「注意切替遂行高」条件の「制御不全」の尺度スコアに比べ「変更不全」（$t(13)=6.07, p<.05$）、「水準低下」（$t(13)=3.78, p<.05$）、「転導性」（$t(13)=4.74, p<.05$）の尺度スコアは有意に高かった。「変更不全」尺度スコアは「水準低下」（$t(13)=3.28, p<.05$）、「転導性」（$t(13)=4.01, p<.05$）に比べ有意に高かった。また「注意切替遂行低」水準の単純主効果（$F(3,78)=12.79, p<.001$、効果量 $\eta^2=.330$）が有意であった。下位検定において、「制御不全」尺度スコアに比べ「変更不全」（$t(26)=5.82, p<.05$）、「水準低下」（$t(26)=4.53, p<.05$）、「転導性」（$t(26)=7.36, p<.05$）の尺度スコアは有意に高かった。「変更不全」の尺度スコアは「転導性」（$t(26)=2.65, p<.05$）に比べ有意に高かった。
Fig.3.2.3 注意切替遂行の程度別移動時注意不全エラーの平均尺度スコア

【注】
*p < .05
3.2.3_2. 変化検出遂行の程度と移動時注意不全エラーの関連

Tab.3.2_2に、群別変化検出遂行の程度別尺度スコアの基本統計量を示す。

<table>
<thead>
<tr>
<th></th>
<th>ADHD傾向群</th>
<th></th>
<th>比較対照群</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>変化検出遂行 低</td>
<td>変化検出遂行 高</td>
<td>変化検出遂行 低</td>
</tr>
<tr>
<td>移動時注意不全エラー</td>
<td>n M SD n M SD</td>
<td>n M SD n M SD</td>
<td></td>
</tr>
<tr>
<td>制御不全</td>
<td>6 2.57 0.69 14 1.94 0.72</td>
<td>11 1.13 0.19 12 1.41 0.65</td>
<td></td>
</tr>
<tr>
<td>変更不全</td>
<td>6 3.48 0.66 14 2.96 0.86</td>
<td>11 2.97 1.12 12 2.58 0.85</td>
<td></td>
</tr>
<tr>
<td>水準低下</td>
<td>6 3.89 1.05 14 2.76 1.39</td>
<td>11 1.41 0.33 12 1.81 0.78</td>
<td></td>
</tr>
<tr>
<td>転導性</td>
<td>6 3.02 0.90 14 2.68 0.72</td>
<td>11 1.43 0.43 12 1.77 0.69</td>
<td></td>
</tr>
</tbody>
</table>
群（ADHD 傾向群・比較対照群）×変化検出遂行の程度（変化検出遂行低・変化検出遂行高）×移動時注意不全エラー（制御不全・変更不全・水準低下・転導性）の 3 要因分散分析の結果（Fig.3.2_4）、3 要因（$F(3,117)=1.96, ns, 効果量 \eta^2 = .048$）、変化検出遂行の程度×移動時注意不全エラー（$F(3,117)=0.96, ns, 効果量 \eta^2 = .024$）の 2 要因の交互作用はみられなかった。

Fig.3.2_4 群別変化検出遂行の程度別
移動時注意不全エラーの平均尺度スコア
群×変化検出遂行の程度（$F(1.39)=4.57, p<.05$, 効果量 $\eta^2=.105$）の2要因の交互作用（Fig.3.2_5）は有意であった。変化検出遂行の程度別群の要因の単純主効果検定の結果、'変化検出遂行低'水準（$F(1.15)=47.82, p<.001$, 効果量 $\eta^2=.761$）の群の要因は有意であった。「変化検出遂行低」条件で、ADHD傾向群は比較対照群に比べ、注意不全の総スコアが高かった。「変化検出遂行高」水準（$F(1.24)=6.92, p<.05$, 効果量 $\eta^2=.224$）の群の要因でも効果があり、「変化検出遂行高」条件で、ADHD傾向群は比較対照群に比べ、注意不全の総スコアが有意に高かった。

ADHD傾向群（$F(1.18)=4.77, p<.05$, 効果量 $\eta^2=.210$）のみ変化検出遂行の程度の効果がみられ、ADHD傾向群は、「変化検出遂行低」条件が「変化検出遂行高」条件より有意に注意不全の総スコアが高かった。

Fig.3.2_5 群別変化検出遂行の程度別注意不全尺度の平均総スコア

[注] *$p<.05$, ***$p<.001$
群×移動時注意不全エラー

の2要因の交互作用は有意であった（Fig.3.2_6）。移動時注意不全エラー

別群の単純主効果検定では、「変更不全」尺度の水準以外、「制御不全」

（$F(1,39)=26.19, p<.001$，効果量 $\eta^2=.401$）、「水準低下」（$F(1,39)=29.11, p$

.<.001，効果量 $\eta^2=.427$）、「転導性」尺度（$F(1,39)=33.14, p<.001$，効果量

$\eta^2=.459$）の各水準における群の効果がみられた。ADHD 傾向群は比較

対照群に比べ、「制御不全」「水準低下」「転導性」の尺度スコアが高かっ

た。

また、群別移動時注意不全エラーの単純主効果検定では、ADHD 傾向

群の移動時注意不全エラー要因（$F(3,54)=6.00, p<.01$，効果量 $\eta^2=.250$）
が有意であり、下位検定において、「変更不全」（$t(18)=3.23, p<.05$）・「水
準低下」（$t(18)=4.36, p<.05$）・「転導性」（$t(18)=5.76, p<.05$）の尺度スコ
アは、有意に「制御不全」スコアより高かった。比較対照群の移動時注

意不全エラー要因の単純主効果（$F(3,63)=47.91, p<.001$，効果量 $\eta^2=.695$）
は有意であり、下位検定において、「制御不全」尺度スコアに比べ「変更
不全」（$t(21)=9.11, p<.05$）・「水準低下」（$t(21)=5.12, p<.05$）・「転導性」
（$t(21)=5.51, p<.05$）の尺度スコアは有意に高かった。「変更不全」尺度
スコアは、「水準低下」（$t(21)=6.32, p<.05$）・「転導性」（$t(21)=6.56, p<.05$）
に比べ有意に高かった。
図3.2-6 男女別移動時注意不全エラーの平均尺度スコア

【注】 *p < .05, **p < .001
3.2.4. 考察

本研究では、ADHD 傾向者の空間的注意遂行の程度が、移動時注意不全エラーとどのように関係するのかを明らかにすることを目的に、ADHD 傾向群と比較対照群の比較より無答率を指標とした②注意切替課題および③変化検出課題の遂行程度別、注意不全尺度の下位尺度について、3 要因の分散分析を行なった。分析の結果、どちらの課題でも 3 要因の交互作用はみられなかった。

ただし、③変化検出課題では、変化検出遂行の程度と群の要因に交互作用がみられた。単純主効果検定の結果、ADHD 傾向者の「変化検出遂行低」条件は「変化検出遂行高」条件より有意に注意不全尺度の総スコアが高かった。また群の要因における変化検出遂行の程度の条件では、遂行程度の高・低条件ともに効果を確認したが、F 値と効果量の大きさから、ADHD 傾向者は比較対照群に比べ「変化検出遂行低」条件において、有意に注意不全尺度の総スコアが高かった。

以上の結果から、③変化検出遂行の程度と移動時注意不全エラーの関係が分かり、ADHD 傾向者の移動時注意不全エラーのタイプと群の要因の関りは確認できなかったが、ADHD 傾向者の移動時注意不全エラーには、③変化検出遂行の程度が影響を及ぼすことが明らかとなった。
3.3. 【研究6】ADHD傾向者の危険感

3.3.1. 研究の背景と目的

小菅・志田・山下（2011）は静止画を用いて道路交通場面内の行人や車に直感的に抱く危険印象と選択的注意課題などの遂行成績との関係を分析し、実証的に道路交通場面の危険印象と注意パフォーマンスの関連性を指摘している。

研究4において、ADHD傾向者の②注意切替課題と③変化検出課題のパフォーマンスが、比較対照群と比べ非対称の空間的注意の働きが示唆された。この結果より、ADHD傾向者には特有の空間的注意の働きが示唆され、このような空間的注意の働きが主観的リスク反応に何かしら影響を及ぼすことが想定される。しかし、ADHD傾向者の交通リスクに対する直感的反応（危険感）は明らかにされていない。

そこで本研究では、研究2で作成した道路交通場面の動画を用いた感覚・感性レベルの印象反応の抽出を試みた危険印象評価課題を用いて、健常大学生を対象としたアナログ研究法により、ADHDの優勢状態別のADHD傾向における危険感の特徴を検討することを目的とする。
3.3.2. 方法

3.3.2_1. 対象者

（1）研究対象者

研究4と同様。関東近郊の複数の大学に通う大学生190名（平均年齢：19.62±1.56歳、男性85名、女性105名）のうち、回答不備等を除いた156名。

（2）分析対象者

ADHD傾向者の評価に用いたチェックリスト、教示、回答方法は研究4と同様であった。得点化は、それぞれ9問で評価される優勢状態（不注意/多動性・衝動性）毎に行なった（レンジ：0～36点）。

ADHDの不注意が優勢な状態像（以下、ADHD不注意優勢）は、9問のスコアの平均値15.20を基準に、平均値+1SDの者を「不注意スコア高群」の23名（平均年齢19.13±1.42歳、男性15名、女性8名）、平均値−1SDの者を「不注意スコア低群」の21名（平均年齢19.57±1.16歳、男性8名、女性13名）とした。

ADHDの多動性・衝動性が優勢な状態像（以下、ADHD多動性衝動性優勢）は、9問のスコアの平均値10.84を基準に、平均値+1SDの者を「多動性衝動性スコア高群」の25名（平均年齢19.12±1.01歳、男性16名、女性9名）、平均値−1SDの者を「多動性衝動性スコア低群」の19名（平均年齢19.26±1.05歳、男性7名、女性12名）とした。
3.3.2_2. 危険印象評価課題

(1) 課題
研究2で作成した危険印象評価課題。動画による8つの異なる道路交通場面について、まず場面状況を文章で提示し、その状況をイメージさせながら動画を観察させた。そして直感的に「危ない」「危なそう」と感じる対象・箇所などについて、自由に、直接複数箇所のタップを求め課題。合計8試行。

(2) 場面刺激
場面1：片側4車線で駐車車両の多い隣車線を直進している場面。
場面2：片側1車線のカーブの道路を走行している場面。
場面3：交通量の少ない片側2車線道路を直進している場面。
場面4：歩行者・自転車の多い商店街の生活道路を直進している場面。
場面5：車が走っていない住宅街の道路を直進している場面。
場面6：対向車線が渋滞している片側1車線の道路を直進している場面。
場面7：見通しの悪い住宅街の狭路を走行している場面。
場面8：片側5車線で交通量の多い道路を走行している場面。

3.3.2_3. 手続き

研究4の調査手続きにより収集された、危険印象評価課題のデータを分析した。
調査は、30名前後の集団に対し、フェイスシート、研究1で作成した注意不全尺度、ADHDチェックリストをまとめた冊子を配布し、集団全員の回答後に回収した。危険印象評価課題のデータは、課題を組み込む
iPad 4th generation（アップル社製）を1人1台配布し一斉に実施し記録されたデータを用いた。

3.3.2.4 倫理的配慮

本研究は、筑波大学人間系倫理審査委員会の承認を得て実施した（承認番号筑27-66）。
3.3.3. 結果

3.3.3.1. ADHD の優勢状態の高低別場面における危険印象評価数の分散

場面ごと、ADHD の優勢状態の高低が、どの程度危険印象評価のばらつきに違いを示すかを調べるため、8 場面のタップ数（危険印象評価数）について、ADHD の優勢状態像別に各スコアの高・低群の平均危険印象評価数、分散を算出し F 検定を行なった。

統計解析は、統計ソフトウェア R (3.3.2) を用いた。

(1) ADHD 不注意優勢

Tab.3.3_1 に、群別場面ごと危険印象評価数の基本統計量を示す。

<table>
<thead>
<tr>
<th>場面</th>
<th>n</th>
<th>M</th>
<th>Variance</th>
<th>場面</th>
<th>n</th>
<th>M</th>
<th>Variance</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>21</td>
<td>7.90</td>
<td>39.39</td>
<td>1</td>
<td>23</td>
<td>7.30</td>
<td>21.58</td>
</tr>
<tr>
<td>2</td>
<td>21</td>
<td>6.10</td>
<td>23.69</td>
<td>2</td>
<td>23</td>
<td>5.43</td>
<td>24.53</td>
</tr>
<tr>
<td>3</td>
<td>21</td>
<td>6.33</td>
<td>11.33</td>
<td>3</td>
<td>23</td>
<td>6.61</td>
<td>39.70</td>
</tr>
<tr>
<td>4</td>
<td>21</td>
<td>19.62</td>
<td>79.15</td>
<td>4</td>
<td>23</td>
<td>16.39</td>
<td>76.52</td>
</tr>
<tr>
<td>5</td>
<td>21</td>
<td>6.38</td>
<td>12.45</td>
<td>5</td>
<td>23</td>
<td>6.74</td>
<td>17.47</td>
</tr>
<tr>
<td>6</td>
<td>21</td>
<td>6.19</td>
<td>13.36</td>
<td>6</td>
<td>23</td>
<td>5.43</td>
<td>42.98</td>
</tr>
<tr>
<td>7</td>
<td>21</td>
<td>6.05</td>
<td>15.75</td>
<td>7</td>
<td>23</td>
<td>5.04</td>
<td>15.59</td>
</tr>
<tr>
<td>8</td>
<td>21</td>
<td>5.29</td>
<td>10.31</td>
<td>8</td>
<td>23</td>
<td>5.35</td>
<td>36.60</td>
</tr>
</tbody>
</table>
2群の分散の散らばりを検定した結果、場面3（$F(22,20)=3.50, p<.01$）、
場面6（$F(22,20)=3.22, p<.01$）、場面8（$F(22,20)=3.55, p<.01$）は、平均危険印象評価数の分散に差がみられ、「不注意スコア高群」の危険印象評価数のばらつきが有意に大きい場面であることが分かった。

(2) ADHD 多動性衝動性優勢

Tab.3.3_2に、群別場面ごと危険印象評価数の基本統計量を示す。

<table>
<thead>
<tr>
<th>場面</th>
<th>n</th>
<th>M</th>
<th>Variance</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>19</td>
<td>6.00</td>
<td>18.00</td>
</tr>
<tr>
<td>2</td>
<td>19</td>
<td>4.58</td>
<td>10.70</td>
</tr>
<tr>
<td>3</td>
<td>19</td>
<td>5.05</td>
<td>10.94</td>
</tr>
<tr>
<td>4</td>
<td>19</td>
<td>17.68</td>
<td>56.67</td>
</tr>
<tr>
<td>5</td>
<td>19</td>
<td>5.47</td>
<td>8.82</td>
</tr>
<tr>
<td>6</td>
<td>19</td>
<td>3.74</td>
<td>9.09</td>
</tr>
<tr>
<td>7</td>
<td>19</td>
<td>5.00</td>
<td>15.11</td>
</tr>
<tr>
<td>8</td>
<td>19</td>
<td>3.89</td>
<td>11.10</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>場面</th>
<th>n</th>
<th>M</th>
<th>Variance</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>25</td>
<td>7.08</td>
<td>23.99</td>
</tr>
<tr>
<td>2</td>
<td>25</td>
<td>5.12</td>
<td>23.61</td>
</tr>
<tr>
<td>3</td>
<td>25</td>
<td>6.28</td>
<td>38.04</td>
</tr>
<tr>
<td>4</td>
<td>25</td>
<td>15.60</td>
<td>72.75</td>
</tr>
<tr>
<td>5</td>
<td>25</td>
<td>6.84</td>
<td>21.89</td>
</tr>
<tr>
<td>6</td>
<td>25</td>
<td>5.88</td>
<td>47.11</td>
</tr>
<tr>
<td>7</td>
<td>25</td>
<td>5.20</td>
<td>23.17</td>
</tr>
<tr>
<td>8</td>
<td>25</td>
<td>5.72</td>
<td>48.29</td>
</tr>
</tbody>
</table>
2群の分散のばらつきを検定した結果、場面2（F(24,18)=2.21, p<.05）、場面3（F(24,18)=3.48, p<.01）、場面5（F(24,18)=2.48, p<.05）、場面6（F(24,18)=5.18, p<.01）、場面8（F(24,18)=4.35, p<.01）は、平均危険印象評価数の分散に差がみられ、「多動性衝動性スコア高群」の危険印象評価数のばらつきが有意に大きい場面であることが分かった。

3.3.3_2. ADHDの優勢状態の高低別場面の危険印象評価の時系列変化

3.3.3_1.の結果、ADHDの優勢状態の高低により危険印象評価のばらつきが場面で異なることが分かった。

そこで、場面の時系列変化に伴うADHDの優勢状態の高低別の危険印象評価数のばらつきの違いを検討するため、場面時間を「前半」「中盤」「後半」に3分割し、ADHDの優勢状態別に各スコアの高・低群の危険印象評価数の平均値、SD、変動係数：CV（標準偏差/平均×100）を算出した。なおCV値は50を基準値とし、数値が大きくなるとばらつきの大きさを示し、数値が小さくなるとばらつきの小ささをあらわすものである。

分析では、場面5〜8はADHD不注意優勢およびADHD多動性衝動性優勢のどちらの群でも、場面「中盤」時間の危険印象評価数が0であったり、「中盤」の時間は分析対象から除外した。
（1）ADHD 不注意優勢

Tab.3.3_3 に、群別場面時間ごと危険印象評価数の基本統計量を示す。

場面時間	不注意スコア低群			不注意スコア高群			
場面時間	M	SD	CV	場面時間	M	SD	CV
場面1							
前半	1.86	1.93	103.97	前半	1.43	1.56	108.84
中盤	2.48	2.18	88.13	中盤	2.39	1.67	69.91
後半	3.57	2.66	74.38	後半	3.48	2.33	67.07
計	7.90	6.28	79.40	計	7.30	4.65	63.61
場面2							
前半	1.33	1.43	106.95	前半	1.43	1.83	127.53
中盤	2.90	2.23	76.91	中盤	2.74	2.03	74.02
後半	1.86	1.77	95.24	後半	1.26	1.54	122.44
計	6.10	4.87	79.85	計	5.43	4.95	91.13
場面3							
前半	2.81	1.91	68.11	前半	2.48	2.52	101.70
中盤	0.76	0.89	116.69	中盤	0.96	2.01	210.22
後半	2.76	1.30	47.08	後半	3.17	2.19	68.93
計	6.33	3.37	53.16	計	6.61	6.30	95.35
場面4							
前半	7.48	3.41	45.68	前半	7.39	4.21	56.93
中盤	6.95	4.73	68.00	中盤	5.65	5.01	88.72
後半	5.19	3.23	62.32	後半	3.35	2.39	71.26
計	19.62	8.90	45.35	計	16.39	8.75	53.37
場面5							
前半	1.38	0.80	58.27	前半	1.43	1.38	95.90
後半	5.00	3.35	66.93	後半	5.30	3.24	61.07
計	6.38	3.53	55.29	計	6.74	4.18	62.03
場面6							
前半	1.76	1.79	101.38	前半	1.48	2.13	144.04
後半	4.43	2.36	53.23	後半	3.96	4.71	119.15
計	6.19	3.66	59.05	計	5.43	6.56	120.63
場面7							
前半	2.19	1.91	87.36	前半	2.00	1.93	96.53
後半	3.86	2.61	67.75	後半	3.04	2.25	73.79
計	6.05	3.97	65.62	計	5.04	3.95	78.28
場面8							
前半	2.33	1.43	61.11	前半	2.48	2.04	82.40
後半	2.95	2.56	86.67	後半	2.87	4.31	150.18
計	5.29	3.21	60.76	計	5.35	6.05	113.13
Fig.3.3-1 に、場面ごとの CV 値を示す。図の H 群は「不注意スコア高群」、L 群は「不注意スコア低群」を示す。

場面 1・2・4・7 は群間の CV 値の差はなかった。場面 5 も群間の差はないが、「前半」は「不注意スコア高群」のばらつきが大きくあらわれた。

場面 3・場面 6・場面 8 では、「不注意スコア高群」は「不注意スコア低群」に比べ危険印象評価のばらつきが大きかった。場面内の時系列変化をみると、場面 3 は「中盤」のばらつきが大きく、「前半」「後半」のばらつきは小さくなる傾向であった。場面 6 は、「後半」のばらつきが小さくなる傾向があり、場面 8 は「前半」に比べ「後半」にばらつきが大きくなり、場面に一貫した危険印象評価ばらつきの共通性はみられなかった。

場面 3・場面 6・場面 8 において、「不注意スコア高群」は「不注意スコア低群」に比べ CV 値が大きく、個人間の危険印象評価のばらつきが大きい場面であることが分かった。また「不注意スコア高群」と「不注意スコア低群」で危険印象評価ばらつきの時系列変化は同様の傾向を示し、場面 3 は「前半」と「後半」、場面 6 と場面 8 は、「前半」のばらつきの差が小さく、ADHD 不注意優勢の高低で危険感のばらつきに大きな差がみられない場面時刻があることも分かった。
場面1 (CV)

場面2 (CV)

場面3 (CV)

場面4 (CV)

場面5 (CV)

場面6 (CV)

場面7 (CV)

場面8 (CV)

Fig.3.3_1 群別場面別場面時間ごとのCV値の変化
(2) ADHD 多動性衝動性優勢

Tab.3.3_4 に、群別場面時間ごと危険印象評価数の基本統計量を示す。

<table>
<thead>
<tr>
<th>场面時間</th>
<th>多動性衝動性スコア低群</th>
<th>多動性衝動性スコア高群</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>M</td>
<td>SD</td>
</tr>
<tr>
<td>場面1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>前半</td>
<td>1.21</td>
<td>1.32</td>
</tr>
<tr>
<td>中盤</td>
<td>1.89</td>
<td>1.10</td>
</tr>
<tr>
<td>後半</td>
<td>2.89</td>
<td>2.18</td>
</tr>
<tr>
<td>計</td>
<td>6.00</td>
<td>4.24</td>
</tr>
<tr>
<td>場面2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>前半</td>
<td>1.00</td>
<td>1.33</td>
</tr>
<tr>
<td>中盤</td>
<td>2.42</td>
<td>1.22</td>
</tr>
<tr>
<td>後半</td>
<td>1.16</td>
<td>1.12</td>
</tr>
<tr>
<td>計</td>
<td>4.58</td>
<td>3.27</td>
</tr>
<tr>
<td>場面3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>前半</td>
<td>2.21</td>
<td>1.87</td>
</tr>
<tr>
<td>中盤</td>
<td>0.47</td>
<td>0.70</td>
</tr>
<tr>
<td>後半</td>
<td>2.37</td>
<td>1.38</td>
</tr>
<tr>
<td>計</td>
<td>5.05</td>
<td>3.31</td>
</tr>
<tr>
<td>場面4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>前半</td>
<td>6.89</td>
<td>3.25</td>
</tr>
<tr>
<td>中盤</td>
<td>5.63</td>
<td>3.70</td>
</tr>
<tr>
<td>後半</td>
<td>5.16</td>
<td>2.19</td>
</tr>
<tr>
<td>計</td>
<td>17.68</td>
<td>7.53</td>
</tr>
<tr>
<td>場面5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>前半</td>
<td>1.11</td>
<td>0.88</td>
</tr>
<tr>
<td>後半</td>
<td>4.37</td>
<td>2.45</td>
</tr>
<tr>
<td>計</td>
<td>5.47</td>
<td>2.97</td>
</tr>
<tr>
<td>場面6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>前半</td>
<td>0.84</td>
<td>1.34</td>
</tr>
<tr>
<td>後半</td>
<td>2.89</td>
<td>2.26</td>
</tr>
<tr>
<td>計</td>
<td>3.74</td>
<td>3.02</td>
</tr>
<tr>
<td>場面7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>前半</td>
<td>1.79</td>
<td>1.96</td>
</tr>
<tr>
<td>後半</td>
<td>3.21</td>
<td>2.37</td>
</tr>
<tr>
<td>計</td>
<td>5.00</td>
<td>3.89</td>
</tr>
<tr>
<td>場面8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>前半</td>
<td>1.89</td>
<td>1.33</td>
</tr>
<tr>
<td>後半</td>
<td>2.00</td>
<td>2.45</td>
</tr>
<tr>
<td>計</td>
<td>3.89</td>
<td>3.33</td>
</tr>
</tbody>
</table>

143
Fig.3.3_2 に、場面ごとの CV 値を示す。図の H 群は「多動性衝動性スコア高群」、L 群は「多動性衝動性スコア低群」を示す。

場面 1・4・7 は群間にばらつきの違いはみられなかった。

場面 2・場面 3・場面 5・場面 6・場面 8 では、多動性衝動性スコア高群は低群に比べ危険印象評価のばらつきが大きかった。場面内の時系列変化をみると、場面 2 は「中盤」に比べ「前半」と「後半」のばらつきが大きくなる傾向がみられ、反対に場面 3 は「中盤」のばらつきが大きく、「前半」「後半」のばらつきは小さくなる傾向であった。場面 5 よび場面 6 は、「後半」のばらつきが小さくなり、場面 8 は「前半」に比べ「後半」にばらつきが大きくなるなど、危険印象評価ばらつきの場面に一貫した共通性はみられなかった。

場面 2・場面 3・場面 5・場面 6・場面 8 では、多動性衝動性スコア高群と低群でばらつきの時系列変化は同様の傾向を示し、場面 2・場面 6・場面 8 は、「前半」のばらつきの差が小さく、場面 3・場面 5 は「後半」に高群低群のばらつきの差が小さくなり、多動性衝動性優勢の高低で危険印象評価のばらつきに大きな差がみられない時間があることも分かった。
Fig.3.3_2 群別場面別場面時間ごとのCV値の変化
3.3.3_3. 場面印象分析

これまでの分析より、ADHD 不注意優勢・ADHD 多動性衝動性優勢で危険印象評価の個人間差の大きい場面が分かった。

各場面の特徴から ADHD 傾向者の危険感を詳細に検討するため、ここでは場面がどのような印象と関わるのかについて、分析を行なった。

場面印象は Russell（1980）の円環モデルに基づき、快・不快、覚醒・眠りの二次元から、①高覚醒・快、②低覚醒・快、③高覚醒・不快、④低覚醒・不快の 4 象限を設定した。8 場面は、研究 2 の危険印象評価課題の場面選定時に行なったプレテストの結果を参考に、二次元にマッピングしていった（Fig.3.3_3）。

Fig.3.3_3 快・不快・高覚醒・低覚醒次元と場面のマッピング
(1) 低覚醒・快象限の場面マッピング

研究2・場面選定時のプレテストでは、運転条件で「ゆったり」とした印象を抱く、見通しが良く道路幅員が広く交通量が少ない道路場面が付置されていた。広い空間による見通しの良い道路構造は、快や低覚醒の印象に関わると考えられる。

場面3と場面8は道路幅員が広く見通しの良い道路環境のため、この象限に付置した。

(2) 高覚醒・不快象限の場面マッピング

研究2・場面選定時のプレテストでは、運転条件で人通りの多い商店街の道路は「うんざり」「イライラ」「いやいや」など不快な印象場面や、交通量は少ないが見通しの悪い生活道路の路地の場面は「びくびく」「ひやひや」「びりびり」など高覚醒の印象場面が付置されていた。運転時の衝突を回避しなければ事故につながる顕在ハザードの多い場面や、歩行者、自転車など衝撃耐性の低い道路利用者が多いと想定できる見通しの悪い生活道路がこの象限に付置していると考えられる。

場面1は、交通量が多く駐車車両や交差する脇道が多い道路環境、場面2は交通量は少ないがカーブにより道路の先の見通しが悪い生活道路、場面4は人通りの多い商店街、場面5は住宅街の道路を設定し動画の後半に自転車の顕在ハザードが存在する場面、場面7は生活道路の路地のため、この象限に付置した。

(3) 低覚醒・不快象限の場面マッピング

場面6は、ときおり自転車が動画に出現し対向車線が渋滞しているという点でハザードが存在する場面であった。ただし走行速度は低速で、
赤信号により何度も停車する動画であり覚醒度は高くないと考えられ、この象限に付置した。

(4) 場面印象にもとづく場面の分類

快 - 不快、高覚醒 - 低覚醒の二次元・4象限と各場面のマッピングより、危険印象評価課題の8場面は、2つのグループに大別された。

一つ目のグループは、場面1・2・4・5・7から構成される、不快あるいは高覚醒の印象場面である。人や自転車など、衝突を回避しないと事故発生につながるハザードが多く存在し、又は、見通しが悪い生活道路のため、道路利用者の出現が予測される脇道が多く緊張を強いる場面で、いつ歩行者や自転車などがあらわれてもおかしくない潜在ハザードが多い場面であった。

二つ目のグループは、場面3・6・8から構成される、低覚醒の印象が共通する場面であった。
3.3.4. 考察

本研究では、ADHD 傾向者における危険感の特徴を検討することを目的に、危険印象評価課題の場面ごと、ADHD の優勢状態の高低が、どの程度危険印象評価のばらつきに違いを示すか、また場面の時系列変化に伴う ADHD の優勢状態の高低別危険印象評価のばらつきの違いを検討した。

「不注意スコア高群」「多動性衝動性スコア高群」に共通して、危険印象評価の個人間差が大きい場面は、場面 3・6・8 であった。3.3.3_3.の場面印象分析の結果、場面 3・6・8 は低覚醒場面と考えられる。これらの場面の共通性は、道路幅員は広く、道路景観として見通しが良いひらけた場面と言える。低覚醒な場面では、ADHD の優勢状態の高低によって危険印象のばらつきに差がみられやすいことが明らかになった。

「多動性衝動性スコア高群」では「多動性衝動性スコア低群」よりも、場面 2・場面 5 において危険印象評価数のばらつきが大きかった。場面 2・5 は、生活道路場面の設定が共通している。生活道路で予測される死角からのハザードの出現は、顕在ハザード（道路上で目に見えている衝突を回避しないと事故発生につながるハザード）とは異なり、通常発見は難しくなる。また場面 2・5 は、ときおり自転車の顕在ハザードが出現在する動画であった。場面 2・5 への危険印象評価のばらつきが、ADHD 不注意優勢傾向者では観察されず、ADHD 多動性衝動性優勢傾向者のみ観察されたことから、ADHD 多動性衝動性優勢傾向の危険感は、死角が多い道路などの構造で危険印象評価が変動しやすい可能性が示唆される。

一方、3.3.3_3.の場面印象分析の結果、危険印象評価のばらつきが
ADHDの優勢状態の高低群でみられなかった場面1・4・7は、高覚醒かつ不快な印象場面と考えられる。歩行者、自転車などの顕在ハザードや、駐車車両や走行車両の脇道からのハザードの出現、狭路など、いわゆる高リスクな場面では、ADHDの優勢状態の高低によって危険印象のばらつきに差はみられなかった。

場面ごと場面時間の危険印象の時系列変化をみると、ADHD不注意優勢・ADHD多動性衝動性優勢ともに、スコア高群はスコア低群と同様の変化傾向を示し、ADHD傾向者特有の危険印象評価の時間変化はみられなかった。また、「前半」にばらつきが大きくなる場面もあれば、「後半」にばらつきが大きくなる場面もあり、危険印象評価のばらつきの大小の場面時間は場面で異なり、場面に一貫した危険印象評価のばらつき傾向はみられなかった。危険印象評価は、その場に置かれた個人特性とその場の環境要因が相互に作用し、ある結果生じる心理反応であり、性格や態度のような場面に一貫した傾向性というよりは、むしろ個々の場面に収集される情報に基づき処理されるリスク対処の反応のため、場面の共通性がみられにくいと考える。

本研究の結果、ADHD不注意優勢・ADHD多動性衝動性優勢に共通して、危険印象評価は、顕在ハザードの少ない低覚醒の場面でばらつきが大きくなること、そしてADHD多動性衝動性優勢については、死角が多くなる生活道路場面で個人間差がより大きくあらわれた。ADHD不注意優勢・ADHD多動性衝動性優勢の状態像ともに、比較対照のスコア低群に比べ、道路交通場面に対する危険印象評価のばらつきは大きくあらわれ、ADHD傾向者は場面に抱く危険印象評価の個人間差が大きなことが明らかとなった。しかし、危険印象評価のばらつきの大きさは場面や場面内の時間変化で均一ではなく、それはスコア低群でも観察されており、
危険印象評価は、個人が置かれる個々の場面、その環境によって大きく異なることも分かった。

危険感は、環境情報の受動的補足とその後の印象評価による交通リスクの直感的反応傾向であり、ADHD 傾向者の危険印象評価のばらつきの大きさには、研究 4 および研究 5 で示唆される空間的注意の制御の困難さが背景にあると推察される。本研究で明らかとなった ADHD 傾向者の低覚醒の印象場面における危険印象のばらつきの大きさは、主体的な移動時の衝突対象の発見の遅れや見落としなど道路交通事故発生の危険因子となる可能性が考えられる。
第４章 健常高齢者の移動時注意不全に関する実験心理学的検討

第２章【研究３】移動時注意不全の差異の検討：ADHD 傾向者と健常高齢者・一般成人者の比較において、ADHD 傾向者と健常高齢者の移動時注意不全の差異が明らかとなった。

そこで第４章では、健常高齢者の移動時注意不全の心理的背景について、実験心理学的手法により検討を行なう。

4.1. 【研究７】健常高齢者の空間的注意機能
4.1.1. 研究の背景と目的

移動時の“不注意”な現象には、人間の最適な注意制御の失敗が背景にあると考えられ、人間の移動行動には空間的注意が関与すると考えられる。

研究３において、健常高齢者移動時注意不全エラーが ADHD 傾向者とは異なる傾向を示していたことから、ここでは健常高齢者を対象に、移動時の認知的活動と制御処理に関わる空間的注意の働きから実験心理学的に検討することを目的とした。
4.1.2. 方法

4.1.2_1. 対象者

(1) 調査対象者

東京都内シルバー人材センターの登録者および東京都郊外居住者。

都内シルバー人材センター登録者は、公益社団法人B区シルバー人材センターへ以下5つの募集要件に合致する実験参加者の募集を依頼し、参加の同意の得られた方。募集要件は①65歳以上の者、②金銭管理、買い物、食事、家事、事務など自立した日常生活を遂行できている者、③60分程度の机上の作業において健康上問題が無い者、④眼鏡など補助ツールを使用すれば日常生活で視覚に問題が無い者、⑤週3回以上自分で車を運転し移動する、あるいは徒歩やバス等を利用して移動を行なう者。

また謝礼として飲み物と交通費などを配布した。

郊外居住者は、H市老人クラブM会の会員を中心に、会員の縁故者に募集をかけ、参加の同意の得られた方。募集要件はシルバー人材センターと同様とした。また謝礼として飲食物を配布した。

(2) 分析対象者

研究3の健常高齢群と同様。都内シルバー人材センターの登録者および郊外居住者46名（平均年齢70.74±5.73歳、男性23名・女性23名）。
4.1.2_2. 要因計画

(1) ①空間的情報選択課題
2×2 の被験者内計画。第 1 要因は、先行刺激の感情手がかりで、「ネガティブ感情手がかり」「ポジティブ感情手がかり」の 2 水準。第 2 要因は手がかり刺激と標的刺激の刺激提示位置の一致で、「一致」「不一致」の 2 水準。

(2) ②注意切替課題
①2 水準（全体文字・部分文字）の階層文字を要因とした 1 要因被験者内計画。
②3 水準（全体→部分・部分→全体・切り替え無し）の階層の切替方向を要因とした 1 要因被験者内計画。

(3) ③変化検出課題
①2 水準（注意集中場面・注意分散場面）の場面特性を要因とした 1 要因被験者内計画。
②3 水準（消失・追加・位置移動）の変化の種類を要因とした 1 要因被験者内計画。

4.1.2_3. 空間的注意課題

(1) ①空間的情報選択課題
研究 4 と同様。画面上、ランダムな位置に提示される標的刺激(target)については先行する感情手がかり(cue)刺激を無視して出来るだけ早く正確にタッチを求める課題。合計 24 試行。
(2) ②注意切替課題

研究4と同様。同時に提示される2枚の階層文字の形の一致・不一致を、ランダムなタイミングで切り替わるルールに従って、出来るだけ速く正確に一致性を判断する課題。合計40試行。

(3) ③変化検出課題

研究4と同様。交互に提示される一組の写真内の構成要素の変化に気づいたら、その対象や箇所を出来るだけ速く選択する課題。合計18試行。

4.1.2_4. 手続き

全体の手続きは研究4と同様であった。最大10名までの小集団に対し、フェイスシート、研究1で作成した注意不全尺度、ADHDチェックリストをまとめた冊子を配布した。配布後、それぞれの質問紙実施の前に、実験者が質問紙の目的と回答の仕方を説明し、集団全員の回答が終了後、空間的注意課題と危険印象評価課題を組み込んだiPad 4th generation（アップル社製）を1人1台配布した。

iPadによる課題は一斉に実施した。「筑波大学アプリ（本試験用）」と名付けたアプリケーションを開かせ、IDを入力してもらい、各課題実施へ移行した。

4.1.2_5. 倫理的配慮

本研究は、筑波大学人間系倫理審査委員会の承認を得て実施した（承認番号筑27-66)。
4.1.3. 結果

加齢と共に低下を示す注意の中で、健常高齢者の空間的注意のパフォーマンスの特徴を検討するため、①空間的情報選択課題、②注意切替課題、③変化検出課題ごと、正答率、無答率、正答試行のRTおよび回数について分析を行なった。

統計解析は、統計ソフトウェアR（3.3.2）を用いた。

4.1.3_1. ①空間的情報選択課題

Tab.4.1_1に、指標ごと感情手がかり別手がかりと標的刺激の提示位置別の基本統計量を示す。

| Tab.4.1_1 ①空間的情報選択課題の指標ごと 感情手がかり別刺激提示位置別基本統計量 |
|-------------------------------|-------------------------------|
| | 順列 | 不順列 | 順列 | 不順列 |
| 指標 | n | M | SD |
| 正答率 | 46 | .57 | .37 | .57 | .40 |
| 無答率 | 46 | .39 | .34 | .38 | .37 |
| 正答試行のRT | 28 | 814 | 118.75 | 855 | 101.53 | 801 | 137.09 | 778 | 194.68 |

156
① 空間情報選択課題の標的刺激の正答率、無答率、正答試行の RT について、感情手がかり（ネガティブ感情手がかり・ポジティブ感情手がかり）×刺激提示位置（一致・不一致）の 2 要因分散分析を行なった。

正答率では、感情手がかりの主効果（F(1,45)=9.74, p < .01, 効果量 ηp²=.128）が有意であった。

無答率では、感情手がかりの主効果（F(1,45)=11.12, p < .01, 効果量 ηp²=.198）が有意であった。

正答試行の平均 RT では、感情手がかり×刺激提示位置の 2 要因の交互作用（F(1,27)=3.86, p < .10, 効果量 ηp²=.125）が有意傾向であった（Fig.4.1_1）。単純主効果検定の結果、刺激提示位置の「一致」水準における感情手がかり要因（F(1,27)=11.27, p < .01, 効果量 ηp²=.295）、「ネガティブ感情手がかり」水準における刺激提示位置要因（F(1,27)=6.50, p < .05, 効果量 ηp²=.194）が有意であった。「ネガティブ感情手がかり」は「不一致」条件では RT が速まり、「一致」条件では遅延することが分かった。
①空間的情報選択課題において、健常高齢者では「ネガティブ感情手がかり」は「ポジティブ感情手がかり」に比べ、標的刺激の遂行成績が低いことが分かった。「ネガティブ感情手がかり」と標的刺激の提示位置が「一致」する場合、「不一致」に比べ標的刺激のRTが遅延することも分かった。

Fig. 4.1_1 ①空間的情報選択課題の感情手がかり別刺激提示位置別正答試行の平均RT

[注] *p < .05, **p < .01
4.1.3_2．②注意切替課題

②注意切替課題の正答率、無答率、正答試行の RT について、階層文字要因、階層の切替方向要因それぞれで分散分析を行なった。

(1) 階層文字要因

Tab.4.1_2 に、②注意切替課題の指標ごと階層文字別の基本統計量を示す。

<table>
<thead>
<tr>
<th>指標</th>
<th>全体文字</th>
<th>部分文字</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>n</td>
<td>M</td>
</tr>
<tr>
<td>正答率</td>
<td>46</td>
<td>.64</td>
</tr>
<tr>
<td>無答率</td>
<td>46</td>
<td>.24</td>
</tr>
<tr>
<td>正答試行のRT</td>
<td>46</td>
<td>2226</td>
</tr>
</tbody>
</table>
1要因の分散分析の結果、②注意切替課題の階層文字の効果について、
正答率 \(F(1,45)=3.53, p<.10 \)、効果量 \(\eta^2=0.073 \) と無答率 \(F(1,45)=3.28, p < .10 \)、効果量 \(\eta^2=0.068 \) は有意傾向であった。

正答試行の RT \(F(1,45)=9.49, p<.01 \)、効果量 \(\eta^2=0.174 \)（Fig.4.1_2）は有意であり、「部分文字」に比べ「全体文字」の反応時間が遅延した。

健常高齢者は②注意切替課題において、「全体文字」は「部分文字」に比べ正答率が低く、無答率が高い傾向があり、正答試行の RT は「全体文字」が「部分文字」に比べ遅いことが分かった。

Fig.4.1_2 ②注意切替課題の階層文字別正答試行の平均 RT

[注] **\(p<.01 \)
(2) 階層の切替方向要因

Tab.4.1_3 に、②注意切替課題の指標ごと階層の切替方向別的基本統計量を示す。

②注意切替課題の正答率、無答率、正答試行の RT について、3 水準（全体→部分・部分→全体・切り替え無し）の 1 要因分散分析を行なった。

結果、全ての指標において階層の切替方向の効果はみられなかった。

Tab.4.1_3 ②注意切替課題の指標ごと階層の切替方向別基本統計量

<table>
<thead>
<tr>
<th>指標</th>
<th>全体→部分</th>
<th>部分→全体</th>
<th>切り替え無し</th>
</tr>
</thead>
<tbody>
<tr>
<td>正答率</td>
<td>n</td>
<td>M</td>
<td>SD</td>
</tr>
<tr>
<td>46</td>
<td>.65</td>
<td>.29</td>
<td></td>
</tr>
<tr>
<td>無答率</td>
<td>46</td>
<td>.22</td>
<td>.21</td>
</tr>
<tr>
<td>正答試行のRT</td>
<td>43</td>
<td>2182</td>
<td>254.55</td>
</tr>
</tbody>
</table>
4.1.3_3. ③変化検出課題

③変化検出課題の正答率、無答率、正答試行の回数について、場面特性要因、変化の種類要因それぞれで分散分析を行なった。

(1) 場面特性要因

Tab.4.1_4 に、③変化検出課題の指標ごと場面特性別の基本統計量を示す。

<table>
<thead>
<tr>
<th>指標</th>
<th>計測</th>
<th>正答率</th>
<th>無答率</th>
<th>正答試行の回数</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>n</td>
<td>M</td>
<td>SD</td>
<td>M</td>
</tr>
<tr>
<td>正答率</td>
<td>46</td>
<td>.58</td>
<td>.21</td>
<td>.62</td>
</tr>
<tr>
<td>無答率</td>
<td>46</td>
<td>.35</td>
<td>.19</td>
<td>.32</td>
</tr>
<tr>
<td>正答試行の回数</td>
<td>43</td>
<td>7.09</td>
<td>2.06</td>
<td>6.28</td>
</tr>
</tbody>
</table>

Tab.4.1_4 ③変化検出課題の指標ごと場面特性別基本統計量
要因の分散分析の結果、変化検出課題の場面特性の効果について、正答試行の回数（$F(1,45)=4.94, p < .05$, 効果量 $\eta^2 = .099$）のみ有意であった（Fig.4.1_3）。

健常高齢者は変化検出課題において、「注意集中場面」は「注意分散場面」に比べ試行回数が多く、変化検出に時間がかかることが分かった。
（2）変化の種類要因

Tab.4.1_5に、③変化検出課題の指標ごと、変化の種類別の基本統計量を示す。

Tab.4.1_5 ③変化検出課題の指標ごと変化の種類別基本統計量

<table>
<thead>
<tr>
<th>指標</th>
<th>消失</th>
<th>追加</th>
<th>位置移動</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>n</td>
<td>M</td>
<td>SD</td>
</tr>
<tr>
<td>正答率</td>
<td>46</td>
<td>.60</td>
<td>.19</td>
</tr>
<tr>
<td>無答率</td>
<td>46</td>
<td>.35</td>
<td>.18</td>
</tr>
<tr>
<td>正答試行の回数</td>
<td>42</td>
<td>5.40</td>
<td>2.69</td>
</tr>
</tbody>
</table>
1. 要因の分散分析の結果、③変化検出課題の変化の種類の主効果は、全ての指標で有意であった。

正答率（\(F(2,90)=17.495, p < .01 \), 効果量 \(\eta^2=.280 \)）（Fig.4.1_4）では、Holm-Bonferroni 法の多重比較の結果、「追加」変化は「位置移動」（\(t(45)=5.95, p < .05 \））と「消失」（\(t(45)=2.82, p < .05 \））の変化に比べ正答率が低く、「消失」変化は「位置移動」（\(t(45)=3.12, p < .05 \））に比べ、正答率が低いことが分かった。

![Fig.4.1_4 ③変化検出課題の変化の種類別平均正答率](image)

[注] * \(p < .05 \)
無答率（$F(2,90)=16.008, p < .01$, 効果量 $\eta_p^2=.262$）（Fig.4.1_5）では、「追加」変化は「位置移動」（$t(45)=5.39, p < .05$）と「消失」（$t(45)=2.09, p < .05$）変化に比べ無答率が高く、「消失」変化は「位置移動」（$t(45)=3.74, p < .05$）に比べ、無答率が高いことが分かった。

Fig.4.1_5 ③変化検出課題の変化の種類別平均無答率

[注] *$p < .05$
正答試行の回数 ($F(2,82)=12.156, p < .01$, 効果量 $\eta^2=.229$) (Fig.4.1_6) では、「追加」変化は「位置移動」 ($t(41)=2.62, p < .05$) と「消失」 ($t(41)=5.07, p < .05$) 変化に比べ試行回数が多く、「位置移動」は「消失」変化に比べ ($t(41)=2.22, p < .05$) 試行回数が多いことが分かった。

③変化検出課題において、健常高齢者は、「追加」変化の遂行成績が最も低いことが分かった。

Fig.4.1_6 ③変化検出課題の変化の種類別平均正答試行の回数

[注] *$p < .05$
4.1.4. 考察

本研究では、加齢により注意機能の低下が報告される健常高齢者を対象に、空間的注意機能に関連する課題として、①空間的情報選択課題、②注意切替課題、③変化検出課題の3タイプを設定し、健常高齢者の各課題の遂行成績を探索的に検討した。

①空間的情報選択課題の分析結果では、健常高齢者は、「ネガティブ感情手がかり」の刺激が先行すると、空間上の標的を探索する成績が低下し、さらに、「ネガティブ感情手がかり」刺激と標的刺激の提示位置が「一致」する場合には、正答試行の反応時間が遅延した。このように、先行手がかり刺激と標的刺激の提示位置が「一致」した場合に、「不一致」に比べ反応時間がかかる現象は、手がかりによって一度その位置へ捕捉された注意が、再度同じ空間位置に戻らないよう抑制的に働く復帰抑制（Klein, 2000）から考えられる。健常高齢者は、ポジティブ感情よりもネガティブ感情の刺激に注意が補足されやすく、ネガティブ感情の刺激が提示された位置への再注意が抑制され、ネガティブ感情が先行すると同じ位置への情報探索の時間が遅延するのではないかと推測される。高齢者を対象とした研究では、若齢者に比べ抑制機能の低下（e.g., Hasher, Zacks, & Rypma, 1991）が報告されているが、ネガティブ感情が手がかりとなる位置への注意の再定位を抑制する働きは保持されている可能性が考えられる。また、高齢者は道路交通場面に直感的に抱く危険印象評価数が多い方が探索的課題のパフォーマンスが良いこと（小菅, 2015）が報告されている。空間的注意がネガティブ感情に補足される働きが関係するのかもしれない。
②注意切替課題の分析結果では、健常高齢者は「部分文字」よりも「全体文字」が提示された課題の遂行成績が悪かった。これは、②注意切替課題で提示される刺激の大きさと、加齢による有効視野のサイズの縮小が関係するのかもしれない。本研究では、実験参加者は椅子に座り、机の上に設置した、参加者から約50cm程度離した場所に設置したiPadのディスプレー（縦約20cm、横約15cm）上に刺激を提示した。プレテストにおいて、50cmの距離では、「全体文字」と「部分文字」の視認性は同程度であることが口頭報告されている。しかし有効視野は加齢と共に縮小をしていくため、健常高齢者においては、「全体文字」よりも「部分文字」が目につきやすい可能性が考えられる。また階層の切替方向については、大橋・行場・守川（2000）は、Navon図形を用いた課題で年代に関わらず、「部分→全体」への切替の検出の困難さが頑健な現象であり、加齢効果も報告している。本研究と大橋ら（2000）の研究では刺激の大きさ・提示方法・課題そのもののが異なる点もあるが、本研究では「部分→全体」への切り替え時の効果はみられなかった。

③変化検出課題の分析結果では、「注意集中場面」の変化検出時間の遅延と、「追加」変化の検出の困難さが明らかとなった。加齢による急な飛び出し等の見落としには、「追加」の変化を検出する処理の困難さが関与することが考えられる。
4.2. 【研究8】認知的加齢における空間的注意機能と移動時注意不全の関係

4.2.1. 研究の背景と目的

健常高齢者の移動時注意不全エラーについては、注意不全尺度（小菅・熊谷, 2017a）を用いた研究3において、健常高齢者のエラー特性がADHD傾向者とは異なること、また一般成人と同様の傾向を示し、エラーのタイプの中では「変更不全」エラーを最も認識しやすいことが明らかとなった。

健常高齢者の空間的注意のパフォーマンスについては、研究7において、①空間的情報選択課題では、「ネガティブ感情手がかり」と標的刺激の提示位置が「一致」する場合、標的刺激のRTが遅延し、「ネガティブ感情手がかり」による注意の復帰抑制が示唆された。②注意切替課題では、「全体文字」は「部分文字」に比べ遂行成績が悪く、正答試行のRTも遅延することが分かった。③変化検出課題では、「注意集中場面」は「注意分散場面」に比べ正答試行の変化検出に時間がかかり、「追加」変化の検出の遂行成績が「消失」「位置移動」の変化に比べ低いことが分かった。

本研究では、認知的加齢における移動時注意不全の発現に至る情報処理過程、およびその制御処理過程との関係を明らかにすることを目的に、②注意切替課題、③変化検出課題の無答率の遂行成績の程度と、研究1で作成した下位尺度のスコアとの関係から、空間的注意機能のどのような加齢変化がどのように移動時注意不全エラーに影響を及ぼすのかを探索的に分析する。
4.2.2. 方法

4.2.2_1. 対象者

(1) 調査対象者

研究7と同様。東京都内シルバー人材センターの登録者および東京都郊外居住者。

(2) 分析対象者

研究7と同様。都内シルバー人材センターの登録者および郊外居住者46名（平均年齢70.74±5.73歳、男性23名・女性23名）。

4.2.2_2. 要因計画

2×4の混合計画。第1要因は空間的注意遂行の程度で、各課題の遂行成績の高・低の2水準。第2要因は移動時注意不全エラーで、注意不全尺度の4つの下位尺度を用い、制御不全・変更不全・水準低下・転導性の4水準。第1要因は被験者間、第2要因は被験者内計画。
4.2.2_3. 空間的注意課題

(1) ②注意切替課題

研究4と同様、同時に提示される2枚の階層文字の形の一致・不一致を、ランダムなタイミングで切り替わるルールに従って、出来るだけ速く正確に一致性を判断する課題。合計40試行。

(2) ③変化検出課題

研究4と同様、交互に提示される一組の写真内の構成要素の変化に気づいたら、その対象や箇所を出来るだけ速く選択する課題。合計18試行。

4.2.2_4 移動時注意不全

研究1で作成した注意不全尺度で、全30項目・4つの下位尺度（制御不全・変更不全・水準低下・転導性）から構成。場面想定法により、普段の移動手段による車両の運転や歩行をイメージしながら、過去1年間に生じた移動時の不注意の頻度を6段階評定（全く無かった：1～非常によくあった：6）で求める。

4.2.2_5 手続き

研究7の調査手続きにより収集された、移動時注意不全と空間的注意課題のデータを分析した。

移動時注意不全データは、最大10名までの小集団に対し、フェイスシート、研究1で作成した注意不全尺度、ADHD チェックリストをま
とめた冊子を配布し、集団全員の回答後に回収した。空間的注意課題のデータは、課題を組み込んだ iPad 4th generation（アップル社製）を1人1台配布し一斉に実施し記録されたデータを用いた。手続きにより、空間的注意課題と移動時注意不全のデータを収集した。

4.2.2_6. 倫理的配慮

本研究は、筑波大学人間系倫理審査委員会の承認を得て実施した（承認番号筑27-66）。
4.2.3. 結果

健常高齢者の空間的注意遂行の程度が、移動時注意不全エラーに及ぼす影響を検討するため、各課題の無答率の基本統計量を算出し、健常高齢者の中で無答率の平均値以上を各課題の「注意機能低群」、すなわち当該注意機能の認知的加齢のみられる群とした。無答率の平均値以下を各課題の「注意機能高群」、すなわち認知的加齢のみられない群とした。

分析では、注意不全尺度の尺度スコアについて、各課題の「注意機能低群」と「注意機能高群」の比較を行なった。分散分析の下位検定では Holm の多重比較を行なった。

統計解析は、統計ソフトウェア R (3.3.2) を用いた。

4.2.3.1 注意切替遂行の程度と移動時注意不全エラーの関連

Tab.4.2_1 に、注意切替遂行の程度別移動時注意不全エラーごと尺度スコアの基本統計量を示す。

<table>
<thead>
<tr>
<th></th>
<th>注意切替遂行低群</th>
<th>注意切替遂行高群</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>n</td>
<td>M</td>
</tr>
<tr>
<td>制御不全</td>
<td>17</td>
<td>1.50</td>
</tr>
<tr>
<td>変更不全</td>
<td>17</td>
<td>3.03</td>
</tr>
<tr>
<td>水準低下</td>
<td>17</td>
<td>1.67</td>
</tr>
<tr>
<td>転導性</td>
<td>17</td>
<td>1.71</td>
</tr>
</tbody>
</table>
注意切替遂行の程度（注意切替遂行低・注意切替遂行高）×移動時注意不全エラー（制御不全・変更不全・水準低下・転導性）の2要因分散分析の結果、2要因の交互作用は有意（$F(3,132)=4.48, p<.01$、効果量は$\eta^2=.092$）であった（Fig.4.2_1）。

![Fig.4.2_1 注意切替遂行の程度別移動時注意不全エラーごとの平均尺度スコア](image)

[注] $^*p < .05$
移動時注意不全エラー別注意切替遂行の程度要因の単純主効果検定では、「変更不全」尺度水準における注意切替遂行の程度要因（$F(1,44)=5.64, p<.05$, 効果量 $\eta^2=.114$）の主効果がみられた。②注意切替課題の遂行成績が低いと「変更不全」尺度スコアが高いことが分かった。

注意切替遂行の程度別移動時注意不全エラーの単純主効果検定の結果、「注意切替遂行高」水準の移動時注意不全エラー要因（$F(3,48)=15.50, p<.001$, 効果量 $\eta^2=.492$）が有意であり、Holm-Bonferroni の多重比較の結果、「注意切替遂行高」条件の「変更不全」は、「制御不全」（$t(16)=4.63, p<.05$）・「転導性」（$t(16)=3.87, p<.05$）・「水準低下」（$t(16)=3.73, p<.05$）に比べ、尺度スコアは有意に高かった。また「注意切替遂行低」水準の単純主効果（$F(3,84)=22.79, p<.001$, 効果量 $\eta^2=.449$）が有意であった。Holm-Bonferroni の多重比較の結果、「制御不全」尺度スコアに比べ「変更不全」（$t(28)=7.11, p<.05$）・「転導性」（$t(28)=4.94, p<.05$）・「水準低下」（$t(28)=4.08, p<.05$）の尺度スコアは有意に高かった。「変更不全」尺度スコアは「水準低下」（$t(28)=4.94, p<.05$）・「転導性」（$t(28)=3.18, p<.05$）に比べ有意に高かった。「注意切替遂行高」「注意切替遂行低」条件に共通して、「変更不全」尺度スコアは最も高く、「注意切替遂行低」条件では、さらに「制御不全」尺度スコアが他のエラーに比べ最もスコアが低かった。
4.2.3_2. 変化検出遂行の程度と移動時注意不全エラーの関連

Tab.4.2_2 に、変化検出遂行の程度別移動時注意不全エラーごと尺度スコアの基準統計量を示す。

<table>
<thead>
<tr>
<th>移動時注意不全エラー</th>
<th>変化検出遂行低群</th>
<th>変化検出遂行高群</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>n</td>
<td>M</td>
</tr>
<tr>
<td>制御不全</td>
<td>23</td>
<td>1.55</td>
</tr>
<tr>
<td>変更不全</td>
<td>23</td>
<td>2.64</td>
</tr>
<tr>
<td>水準低下</td>
<td>23</td>
<td>1.69</td>
</tr>
<tr>
<td>転導性</td>
<td>23</td>
<td>1.78</td>
</tr>
</tbody>
</table>
変化検出遂行の程度（変化検出遂行低・変化検出遂行高）×移動時注意不全エラー（制御不全・変更不全・水準低下・転導性）の2要因分散分析の結果、2要因の交互作用はみられなかった（$F(3,132)=0.136, ns$, 効果量 ηp²=.003) (Fig.4.2_2)。

Fig.4.2_2 変化検出遂行の程度別注意不全エラーごとの平均尺度スコア

[注] *p < .05
移動時注意不全エラーの主効果（$F (3,132)=32.48, p<.001$, 効果量 $\eta^2=.425$）は有意であった。Holm-Bonferroniの多重比較の結果、「制御不全」尺度スコアに比べ「変更不全」（$t (44)=7.37, p<.05$）・「転導性」（$t (44)=5.10, p<.05$）・「水準低下」（$t (44)=4.40, p<.05$）の尺度スコアは有意に高かった。「変更不全」尺度スコアは「水準低下」（$t (44)=5.57, p<.05$）・「転導性」（$t (44)=4.73, p<.05$）に比べ有意に高かった。「変更不全」尺度スコアは最も高く、「制御不全」尺度スコアが他のエラーに比べ最もスコアが低かった。
4.2.4. 考察

本研究では、②注意切替課題、③変化検出課題の無答率の遂行成績の程度と、研究1で作成した下位尺度のスコアとの関係から、空間的注意機能のどのような加齢変化がどのように移動時注意不全エラーに影響を及ぼすのかを探索的に分析した。

分析の結果、「注意切替遂行低」条件は、健常高齢者が自覚しやすい「変更不全」エラーにネガティブな影響を及ぼすことが分かった。一方で「変化検出遂行低」条件は、健常高齢者の移動時注意不全エラーと関係がみられなかった。

②注意切替課題は、時々刻々と変化する状況の中でその場の目標に応じて、注意の重点を刺激の複数階層に次々に切り替える課題である。また「変更不全尺度」は、ハザードの素早い気づきや察知、リスクの高い状況における能動的な注意・意識の切り替え、移動中の同時並行作業の注意配分などに関する質問項目から構成される。

健常高齢者の移動時注意不全エラーには、加齢の影響による個別の注意の機能低下ではなく、トップダウン制御に密接な注意切替の遂行能力が関わる可能性が示された。トップダウン制御は、Baddeley（1996）のワーキングメモリの中央実行系が関わり、加齢に伴う認知活動の管理監督系の困難が示唆される。また②注意切替課題の遂行程度の違いと変更不全尺度のスコアに差がみられたことから、健常高齢者個々人で異なる注意切替遂行の程度が、特に移動時の「変更不全」エラーに負の影響を及ぼすことが示される。
4.3. 【研究9】健常高齢者の危険感：注意機能からの考察

4.3.1. 研究の背景と目的

高齢者の危険印象は、静止画による危険印象評価の多い群は少ない群に比べ、注意選択課題のパフォーマンスが向上する（小菅, 2015）ことが報告されている。しかし動画を用いた危険感について、加齢により注意機能が低下する健常高齢者が、どのような危険感の特徴を示すのかは明らかになっていない。

健常高齢者の空間的注意に関しては、研究7において、健常高齢者は「ネガティブ感性手がかり」による注意の復帰抑制効果が示唆された。ネガティブ感性の復帰抑制の効果は、健常高齢者において、ネガティブ感性に対する反応が保たれている事、また感性が手がかりとなり同じ位置に対して再度注意が向くことを抑制する機能は保たれている可能性を示している。このような健常高齢者のネガティブ感性と抑制の働きは、環境から「危ない」「危なそう」と感じる情報を受容する危険感との関係性が仮定される。

本研究では、研究2で作成した道路交通場面の動画を用いた感覚・感性レベルの印象応反応の抽出を試みた危険印象評価課題を用いて、健常高齢者の危険感を評価する。ADHD傾向群、比較対照群のデータと照らし合わせながら、危険印象評価の場面間の関係、および場面ごとの危険印象評価数について検討し、研究7で明らかとなった健常高齢者の空間的注意の特徴から考察することを目的とする。
4.3.2. 方法

4.3.2.1. 対象者

(1) 調査対象者

健常高齢者：研究7と同様。東京都内シルバー人材センターの登録者および東京都外居住者。
ADHD傾向者、比較対照者：研究4と同様。関東近郊の複数の大学に通う大学生190名（平均年齢：19.62±1.56歳、男性85名、女性105名）のうち、回答不備等を除いた156名。

(2) 分析対象者

健常高齢者：研究7と同様。都内シルバー人材センターの登録者および郊外居住者46名（平均年齢70.74±5.73歳、男性23名・女性23名）。
ADHD傾向者と比較対照者：研究4と同様の方法で、大学生のDSM-5・ADHDチェックリスト日本語版全18項目の自記式スコアの平均値±1SDの該当者をADHD傾向者20名（平均年齢19.05±1.50歳、男性11名、女性9名）、平均値-1SDの該当者を比較対照者23名（平均年齢19.48±0.99歳、男性8名、女性15名）とした。

4.3.2.2. 危険印象評価課題

(1) 課題

研究2で作成した危険印象評価課題。動画による8つの異なる道路交通場面について、まず場面状況を文章で提示し、その状況をイメージさせてながら動画を観察させた。そして直感的に「危ない」「危なそう」と感じる対象・箇所などについて、自由に、直接複数個所のタップを求める課題。合計8試行。
(2) 場面刺激

場面 1 : 片側 4 車線で駐車車両の多い隣車線を直進している場面。
場面 2 : 片側 1 車線のカーブの道路を走行している場面。
場面 3 : 交通量の少ない片側 2 車線道路を直進している場面。
場面 4 : 歩行者・自転車の多い商店街の生活道路を直進している場面。
場面 5 : 車が走っていない住宅街の道路を直進している場面。
場面 6 : 対向車線が渋滞している片側 1 車線の道路を直進している場面。
場面 7 : 見通しの悪い住宅街の狭路を走行している場面。
場面 8 : 片側 5 車線で交通量の多い道路を走行している場面。

4.3.2_3. 手続き

健常高齢者は研究 7、ADHD 傾向者と比較対照者は研究 4 の手続きにより、危険印象評価課題のデータを収集した。

健常高齢者の調査では最大 10 名までの集団、ADHD 傾向者と比較対照者の調査では 30 名前後の集団に対し、フェイスシート、研究 1 で作成した注意不全尺度、ADHD チェックリストをまとめた冊子を配布し、集団全員の回答後に回収した。危険印象評価課題のデータは、課題を組み込んだ iPad 4th generation（アップル社製）を 1 人 1 台配布し一斉に実施し記録されたデータを用いた。

4.3.2_4. 倫理的配慮

本研究は、筑波大学人間系倫理審査委員会の承認を得て実施した（承認番号 筑 27-66)。
4.3.3. 結果

4.3.3.1. 場面間の関連性

Tab.4.3.1 に、対象者別場面別危険印象評価数の基本統計量を示す。

<table>
<thead>
<tr>
<th></th>
<th>場面1</th>
<th>場面2</th>
<th>場面3</th>
<th>場面4</th>
<th>場面5</th>
<th>場面6</th>
<th>場面7</th>
<th>場面8</th>
</tr>
</thead>
<tbody>
<tr>
<td>健常高齢者</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M</td>
<td>6</td>
<td>4</td>
<td>5</td>
<td>17</td>
<td>6</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Mdn</td>
<td>5</td>
<td>4</td>
<td>4</td>
<td>16</td>
<td>5</td>
<td>2</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>SD</td>
<td>4.20</td>
<td>2.41</td>
<td>3.68</td>
<td>7.47</td>
<td>2.66</td>
<td>3.00</td>
<td>2.24</td>
<td>2.58</td>
</tr>
<tr>
<td>SE</td>
<td>0.63</td>
<td>0.36</td>
<td>0.55</td>
<td>1.11</td>
<td>0.40</td>
<td>0.45</td>
<td>0.33</td>
<td>0.38</td>
</tr>
<tr>
<td>Max</td>
<td>20</td>
<td>11</td>
<td>19</td>
<td>36</td>
<td>13</td>
<td>12</td>
<td>10</td>
<td>12</td>
</tr>
<tr>
<td>Min</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>N</td>
<td>45</td>
<td>45</td>
<td>45</td>
<td>45</td>
<td>45</td>
<td>45</td>
<td>45</td>
<td>45</td>
</tr>
</tbody>
</table>

ADHD傾向者

<table>
<thead>
<tr>
<th></th>
<th>場面1</th>
<th>場面2</th>
<th>場面3</th>
<th>場面4</th>
<th>場面5</th>
<th>場面6</th>
<th>場面7</th>
<th>場面8</th>
</tr>
</thead>
<tbody>
<tr>
<td>M</td>
<td>7</td>
<td>5</td>
<td>6</td>
<td>16</td>
<td>7</td>
<td>6</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>Mdn</td>
<td>7</td>
<td>3</td>
<td>5</td>
<td>15</td>
<td>6</td>
<td>3</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>SD</td>
<td>5.13</td>
<td>5.38</td>
<td>6.75</td>
<td>8.75</td>
<td>4.52</td>
<td>6.95</td>
<td>4.41</td>
<td>6.52</td>
</tr>
<tr>
<td>SE</td>
<td>1.15</td>
<td>1.20</td>
<td>1.51</td>
<td>1.96</td>
<td>1.01</td>
<td>1.55</td>
<td>0.99</td>
<td>1.46</td>
</tr>
<tr>
<td>Max</td>
<td>18</td>
<td>21</td>
<td>31</td>
<td>29</td>
<td>20</td>
<td>28</td>
<td>17</td>
<td>27</td>
</tr>
<tr>
<td>Min</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>N</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
</tr>
</tbody>
</table>

比較対照者

<table>
<thead>
<tr>
<th></th>
<th>場面1</th>
<th>場面2</th>
<th>場面3</th>
<th>場面4</th>
<th>場面5</th>
<th>場面6</th>
<th>場面7</th>
<th>場面8</th>
</tr>
</thead>
<tbody>
<tr>
<td>M</td>
<td>8</td>
<td>6</td>
<td>6</td>
<td>19</td>
<td>6</td>
<td>5</td>
<td>6</td>
<td>5</td>
</tr>
<tr>
<td>Mdn</td>
<td>7</td>
<td>5</td>
<td>5</td>
<td>19</td>
<td>6</td>
<td>5</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>SD</td>
<td>6.09</td>
<td>4.73</td>
<td>3.60</td>
<td>8.21</td>
<td>3.07</td>
<td>4.08</td>
<td>3.57</td>
<td>3.23</td>
</tr>
<tr>
<td>SE</td>
<td>1.27</td>
<td>0.99</td>
<td>0.75</td>
<td>1.71</td>
<td>0.64</td>
<td>0.85</td>
<td>0.74</td>
<td>0.67</td>
</tr>
<tr>
<td>Max</td>
<td>25</td>
<td>22</td>
<td>17</td>
<td>35</td>
<td>13</td>
<td>14</td>
<td>15</td>
<td>11</td>
</tr>
<tr>
<td>Min</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>N</td>
<td>23</td>
<td>23</td>
<td>23</td>
<td>23</td>
<td>23</td>
<td>23</td>
<td>23</td>
<td>23</td>
</tr>
</tbody>
</table>
Fig.4.3_1～3に、対象者別場面間の危険印象評価数をプロットした図を示す。

Fig.4.3_1 健常高齢者の場面間危険印象評価数のプロット図

Fig.4.3_2 ADHD傾向者の場面間危険印象評価数のプロット図
健常高齢者の危険印象評価数について場面間の関係性を図からみると、どのような場面間でも一貫した正の関係性が目視で読み取れる。一方、比較対照者の危険印象評価数の場面間の関係性をみると、「場面5」と「場面8」の場面間、さらに「場面7」と「場面6」および「場面8」の場面間には正の関係は弱かった。ある場面で危険感を感じても、別の場面では同様に感じないといった、一部の場面で異なる危険感が確認された。ADHD傾向者は他の値から大きく外れた危険印象評価が存在しており、場面間の危険印象評価数のばらつきの大きさが特徴的であった。
4.3.3.2. 場面間の比較

Fig.4.3.4 に、対象者別場面別危険印象評価数の箱ひげ図を示す。

Fig.4.3.4 場面ごと危険印象評価数の箱ひげ図
健常高齢者の危険印象評価数を場面間で比較すると、場面によって危険印象評価数とばらつきが異なる傾向が示された。またADHD傾向者、比較対照者の場面間の危険印象評価数と比較すると、健常高齢者は全体的にどの場面でも危険印象評価数が少ない傾向が読み取れた。

次に場面と対象者間の危険印象評価数の関係を調べた。統計解析は、統計ソフトウェアR（3.3.2）を用いた。

危険印象評価数について、群（健常高齢群・ADHD傾向群・比較対照群）×場面（場面1・場面2・場面3・場面4・場面5・場面6・場面7・場面8）の2要因分散分析を行なった結果、2要因の交互作用是有意傾向（$F(14,595)=1.54, p<.10$、効果量ηp²=.035）であった（Fig.4.3_5）。
場面別群要因の単純主効果検定では、「場面6」における群の主効果に有意傾向（$F(2,85)=2.52, p<.10$, 効果量 $\eta^2=.056$）、「場面7」（$F(2,85)=3.95, p<.05$, 効果量 $\eta^2=.085$）、「場面8」（$F(2,85)=3.57, p<.05$, 効果量 $\eta^2=.077$）における群の主効果は有意であった。Holm-Bonferroniの多重比較の結果、「場面7」では「健常高齢群」($t(85)=2.80, p<.05$)に比べ、「比較対照群」の危険印象評価数は有意に高かった。

群別場面要因の単純主効果検定の結果、「健常高齢群」（$F(7,308)=134.08, p<.001$, 効果量 $\eta^2=.753$）、「ADHD傾向群」（$F(7,133)=19.04, p<.001$, 効果量 $\eta^2=.501$）、「健常高齢群」（$F(7,154)=47.81, p<.001$, 効果量 $\eta^2=.685$）すべての群の場面要因が有意であった。

Holm-Bonferroniの多重比較の結果、健常高齢群の「場面4」は、「場面8」（$t(44)=15.37, p<.05$）、「場面7」（$t(44)=14.91, p<.05$）、「場面6」（$t(44)=14.80, p<.05$）、「場面2」（$t(44)=13.88, p<.05$）、「場面3」（$t(44)=13.78, p<.05$）、「場面4」（$t(44)=11.16, p<.05$）、「場面1」（$t(44)=12.85, p<.05$）に比べ、危険印象評価数は有意に多かった。「場面5」は、「場面8」（$t(44)=8.56, p<.05$）、「場面7」（$t(44)=7.35, p<.05$）、「場面6」（$t(44)=6.25, p<.05$）、「場面2」（$t(44)=5.30, p<.05$）に比べ、危険印象評価数は有意に多かった。「場面1」は、「場面8」（$t(44)=5.96, p<.05$）、「場面7」（$t(44)=5.31, p<.05$）、「場面6」（$t(44)=5.03, p<.05$）、「場面2」（$t(44)=3.94, p<.05$）に比べ、危険印象評価数は有意に多かった。「場面3」は、「場面8」（$t(44)=5.82, p<.05$）、「場面6」（$t(44)=4.56, p<.05$）、「場面7」（$t(44)=3.70, p<.05$）に比べ、危険印象評価数は有意に多かった。「場面2」は、「場面8」（$t(44)=4.12, p<.05$）に比べ、危険印象評価数は有意に多かった。

ADHD傾向群のHolm-Bonferroniの多重比較の結果、「場面4」は、「場
面 7」（$t(19)=7.15, p < .05$）・「場面 2」（$t(19)=6.80, p < .05$）・「場面 4」（$t(19)=6.32, p < .05$）・「場面 8」（$t(19)=6.25, p < .05$）・「場面 6」（$t(19)=5.60, p < .05$）・「場面 1」（$t(19)=5.56, p < .05$）・「場面 3」（$t(19)=5.42, p < .05$）に比べ、危険印象評価数は有意に多かった。

比較対照群の Holm-Bonferroni の多重比較の結果、「場面 4」は、「場面 7」（$t(22)=10.13, p < .05$）・「場面 2」（$t(22)=9.58, p < .05$）・「場面 6」（$t(22)=9.45, p < .05$）・「場面 8」（$t(22)=9.38, p < .05$）・「場面 5」（$t(22)=9.29, p < .05$）・「場面 3」（$t(22)=9.00, p < .05$）・「場面 1」（$t(22)=7.69, p < .05$）に比べ、危険印象評価数は有意に多かった。「場面 1」は「場面 2」（$t(22)=3.57, p < .05$）に比べ危険印象評価数は有意に多かった。

健常高齢群は比較対照群比べ、場面 7 の危険印象評価数が少なかった。ADHD 傾向群と比較対照群では危険印象評価数は「場面 4」が他の場面と比べると多い点が特徴としてみられたが、健常高齢群は、場面 4 以外の場面間でも、危険印象評価数が有意に異なることが分かった。
4.3.4. 考察

健常高齢者の危険感の特徴を調べるため、場面間の危険感評価の関係を分析し、ADHD傾向者と比較対照者の場面に対する危険感評価数との比較を行なった。

場面間の危険感について、場面間の危険感評価数をプロットした相関図を目視で確認したところ、健常高齢者・ADHD傾向者・比較対照者のどの対象者においても、危険感評価数の少ない人と多い人が存在しており、動画を用いた危険感は静止画と同様に個人差があることを確認した。

場面間の危険感評価について、比較対照者では、「場面5」と「場面8」、「場面7」と「場面6」および「場面8」の場面間で正の関係性は弱かった。研究6の場面印象分析より「場面8」は低覚醒な場面、「場面5」や「場面7」は高覚醒な場面と位置付けられるが、このような注意要求が異なる場面間の危険感評価の関係性の弱さは、受動的な注意の補足と能動的な情報収集の注意の制御が、状況に応じて上手く制御されている過程と考えられる。

一方、健常高齢者では比較対照者に比べると、どの場面間でも一貫した危険感評価の関係が読み取れた。研究7では、健常高齢者は「ネガティブ感情手がかり」の復帰抑制効果が示されたが、健常高齢者は環境内のネガティブ情報を自動的に引き付けられてしまい、状況に応じて受動的注意と能動的注意を制御する働きが困難となるため、場面の注意要求特性に関わらず、一貫した危険感を示すのかもしれない。

群と場面とのかかわりについては、健常高齢群は「場面7」の危険感評価が比較対照群に比べ少なかった。「場面7」は研究6の場面分
析で、高覚醒場面に位置づけられ、生活道路のため、歩行者や自転車の路地からの飛び出しなど、潜在ハザードが多く想定される場面である。高齢者を対象とした道路交通場面のハザード知覚の研究では、高齢者は目に見えない衝突対象が潜在する死角ハザードの発見が、目に見えやすい顕在ハザードの発見に比べ弱い（蓮花・向井・小川・太田, 2007; 多田・飯田・中西・安時・山田・蓮花, 2015）ことが明らかになってい る。「危ない」「危なそう」といった危険感においても、健常高齢者はハ ザードが潜在する場面は危険を感じにくいことが示された。

危険感は、環境情報の受動的補足とその後の印象評価による交通リスクの直感的反応傾向である。健常高齢者は場面の注意要求特性に応じた注意制御が難しく、環境内の顕在するネガティブ情報に対し注意が自動的に引き付けられると考えられる。健常高齢者は、移動時に何かしば「危ない」「危なそう」と感じれば、その位置へ注意が向きやすく、本来注意を向けなければならない別の情報への注意が払われない可能性が推測される。
第3部 結論
第3部では、本研究の目的と各研究で得られた知見を整理し、また、本研究の意義と課題について述べる。まず、人間の移動時注意不全の情報処理過程と注意制御のモデル化を行ない、本研究で得られた知見とADHDおよび加齢を説明するモデルに基づき、ADHD傾向者と健常高齢者の注意不全に至る情報処理過程の差異を論じる。

第1章 本研究の目的と各研究の成果

【研究全体の目的】
本研究は、高リスクで時々刻々と変化し、注意が要求される道路交通場面における移動時の注意不全の発現について、「空間的注意」および「危険感」の要因から、ADHD傾向者や健常高齢者における移動時注意不全エラーの特性を検討し、ADHD傾向や加齢の影響による移動時注意不全について認知的活動とその制御処理過程を解明することを目的とした。

【研究1】
道路交通事故の多くはヒューマンエラーに起因する（Treat et al., 1979）。その中でも、注意散漫（driver distraction）や不注意（driver inattention）といった人間の“不注意”は、道路交通事故発生の直接的な因子として指摘されてきた（e.g., Klauer et al., 2006）。道路を利用するすべての者の交通事故発生の心理的背景には注意の問題があり、主体的な移動時にあらわれやすい“不注意”傾向、すなわち移動時注意不全エラーの特徴から道路交通事故防止を考えることとは意義が大きい。ADHD者は運転時の操縦の変動（e.g., Barkley & Cox, 2007）
など、定型発達者と比べ危険性の高い交通行動が報告されているが、その背景には注意不全の障害特性が想定される。また高齢者の道路交通事故の高さ（内閣府，2018）が社会問題となっているが、背景要因に加齢に伴う注意機能の低下（e.g., Kramer et al., 1999）による不注意が考えられている。ADHD 者と高齢者は道路交通場面において、同じ“不注意”な現象が数多く観察される。しかし、注意が要求される道路交通場面において、定型発達成人と比べ、どのような“不注意”があらわれやすいのかは明らかになっていない。その理由の一つには、移動という人間の目的指向的行動に関わる不注意を主としたエラーを評価するための適切な尺度そのものが無いことにある。

そこで【研究 1】では、ADHD 者や高齢者の移動時注意不全にかかる特性解明に用いるための定型発達成人の特徴と比較・照合可能なツールとして、高リスクでかつ時々刻々と変化する道路交通場面で求められる注意要求に対する“不注意”を主としたエラー特性を評価可能な一般成人の「移動時注意不全尺度」の作成を目的とした。

一般成人（N=208）を対象とした試作尺度の因子分析の結果、「制御不全」「変更不全」「水準低下」「転導性」の 4 つの下位尺度を確認した。「制御不全」「水準低下」「転導性」の下位尺度スコアと、DSM-5 の ADHD チェックリストのスコアに関係がみられ、日常生活全般で不注意の頻度が多い者は道路交通交通場面でも不注意の頻度が多く、構成概念妥当性を確認した。また車両の運転時や歩行時の事故、および、あと少しで道路交通事故になりそうな危険体験あり群はなし群に比べ「水準低下」「転導性」の尺度スコアが高いことから、基準関連妥当性を確認した。
【研究2】

人間のリスクに対する個人の反応の質的な差は、刺激に関連する急速で自動的に生じる主観的感情が主であると言われている（Slovic et al., 2004）。人間の主観的リスク反応には、「直感的反応傾向」である「危険感」が考えられるが、従来は運転課題の遂行に伴う「認知技能」である「危険予測」からのみアプローチされており、交通リスクに対する主観評価の形成過程は実証的に明らかにされていない。また、Michon（1979）は道路交通事故に関わる人間行動について、行動とリスクの両面を考慮する必要性を述べ、認知活動の制御過程すなわち空間的な注意などの「基礎的能力」である＜行動制御＞の側面と、「脅威への対処」である＜主観的リスク反応＞の両側面からアプローチする重要性を論じている。したがって、道路交通場面における移動時の注意不全の発現を検討していくには、道路交通場面の主観的リスク反応についても検討していくことが重要である。

そこで【研究2】では、「脅威への対処」反応を測定するツール作成を試みるため、まず、道路交通場面のリスクに対する主観評価の形成過程を実証的に明らかにすることを目的とした。社会人（N=97）を対象に、危険が潜在する道路交通場面の静止画に対する危険印象評価のクラスター分析を行ない、クラスターの階層構造から交通リスクの主観評価が「直感的処理」と「分析的処理」という異なる処理過程から形成されることを示した。

分析の結果を受け、交通リスクの主観評価に「直感的処理」の関与が示されたため、次に道路交通場面に直感的に抱く「危険感」の測定手法を吟味検討し、感覚・感性レベルの印象反応の抽出に有効と考えられる動画を用いた「危険印象評価課題」の作成を行なった。
【研究3】

より効果的な道路交通事故防止対策を検討する上で、ADHD者と高齢者の道路交通事故発生の背景として指摘される“不注意”な現象に違いはみられるのか、その不注意の背景にあるプロセスは同じなのか、あるいは異なるのか、異なるとすればどのように異なるのかなどを明らかにしていく必要がある。

そこで【研究3】では、移動時の“不注意”現象が異なるか否かを検証するため、大学生のDSM-5・ADHDチェックリストの自己評価による高スコア者をADHDのアナログとみなし、ADHD傾向群（N=20）と健常高齢群（N=46）および一般成人群（N=40）について、研究1で作成した注意不全尺度のスコアを比較した。

群（ADHD傾向群・健常高齢群・一般成人群）と移動時注意不全エラー（制御不全・変更不全・水準低下・転導性）の要因間の関係を分析した結果、「水準低下」と「転導性」尺度のスコアは、ADHD傾向群と一般成人群および健常高齢者群を区別することが明らかとなった。観察される“不注意”な現象は同じであっても、ADHD傾向者と健常高齢者では、移動時の“不注意”の性質は異なり、ADHD傾向者は移動時に「水準低下」エラーと「転導性」エラーを生じやすいことが示された。また健常高齢者は一般成人者と比べて全ての尺度スコアが低く、移動時注意不全エラーの自覚が乏しいこと、その中では「変更不全」エラーは自覚されやすいことが分かった。
【研究 4】

道路利用者の“不注意”は、人間の情報処理全体の最適な注意制御の失敗と考えられる。注意は多くの刺激の中から特定の刺激や情報にのみ受動的、能動的に働くことができ、視線とは独立的に特定の空間位置に向けることもできる。人間がある地点からある地点へ主体的に空間を移動する際の行動では、注意をある地点から別の地点へ移動させ、その地点に注意をとどめ、ある地点に留まる注意を解放し、また別の地点へ注意を移すという「空間的注意の移動」（Posner & Cohen, 1984）を繰り返す。こうした人間の主体的な移動行動に関わる空間上のある特定の場所に注意を移す働きを、本研究では「空間的注意」（spatial attention）と定義する。

移動時の認知的活動にはそれを制御する空間的注意の働きが関わる。移動時の注意不全に至るメカニズムを検討していくには、研究3の結果明らかとなったADHD傾向者と健常高齢者のそれぞれの空間的注意の特徴を検証していくことが重要である。

そこで【研究4】では、実験心理学的にADHD傾向者の空間的注意の特徴を検討することを目的とした。研究3と同様の方法で、大学生を対象に自己評価によるADHDチェックリストの合算スコアを高低で群分けし、高スコア者をADHDのアナログであるADHD傾向群（n=20）、低スコア者を比較対照群（n=23）とした。空間的注意課題は、①空間的情報選択課題、②注意切替課題、③変化検出課題の3種のタイプを設定し、各課題の遂行成績を群間比較した。

①空間情報選択課題では、ADHD傾向者は、比較対照群でみられた「ポジティブ感情手がかり」による情報選択の遂行成績の低下はみられず、感情情報へのアクセスの弱さや、感情手がかりを使った情報探
索を方略として用いないことが推測された。

② 注意切替課題では、課題の一般的特徴として「部分文字」条件、「全体→部分」と切り替え条件で、2枚の階層文字の一一致判断の遂行成績は良いが、ADHD傾向群では反対に「全体文字」条件の遂行成績が良く、「全体→部分」への切り替え条件で遂行成績が低下した。ADHD傾向者は、注意の切り替え時に全体情報の強い干渉を受けることが示唆された。

③ 変化検出課題では、比較対照群では「追加」変化より「消失」変化の検出成績が高いが、ADHD傾向群では「消失」変化の遂行成績が悪かった。ADHD傾向者は、刺激変化の検出に関わる視覚的記憶、ワーキングメモリ、課題遂行に視覚的注意を払い続ける注意の持続性の困難が推測された。

【研究5】

道路交通事故発生に関わる道路利用者の移動時注意不全エラーについて、人間の情報処理過程とその注意の制御過程に着目し、どのような空間的注意が関与し移動時注意不全が発現するのかを明らかにするることは極めて重要である。

そこで【研究5】では、研究4で用いた②注意切替課題および③変化検出課題の遂行程度別、研究1で作成した注意不全尺度の下位尺度について、群（ADHD傾向群：n=20／比較対照群：n=23）×空間的注意遂行の程度×移動時注意不全エラーの3要因分散分析を行なった。

結果、③変化検出課題において、変化検出遂行の程度と群の交互作用効果がみられ、ADHD傾向者は、「変化検出遂行低」条件が「変化
検出遂行高」条件に比べ注意不全尺度の総スコアが高いこと、またADHD傾向者は「変化検出遂行低」条件で、比較対照者に比べ、注意不全尺度の総スコアが高いことが分かった。②注意切り替え課題の注意切り替え遂行の程度と移動時注意不全エラーの間には関係がみられなかった。ADHD傾向者の移動時注意不全エラーには、変化検出の注意機関の関与が示唆された。

【研究6】
研究3の結果からADHD傾向者の移動時注意不全エラーが健常高齢者と相違することが明らかとなり、また、研究4の結果、ADHD傾向者に特有の空間的注意の働きが示された。

先行研究（小菅ら, 2011）では静止画を用いた道路交通場面の直感的危険印象評価と注意課題のパフォーマンスの関連性を指摘しており、ADHD者は何らかの危険感の特徴を持っていると推測できる。しかし、ADHD者を対象に、動画を用いた危険感の特徴は明らかにされていない。

そこで【研究6】では、DSM-5・ADHDチェックリストの優勢状態ごとに、これまでと同様のアナログ研究法により、不注意スコア高群（n=23）とスコア低群（n=21）、多動性衝動性スコア高群（n=25）とスコア低群（n=19）に群分けし、研究2で作成した危険印象評価課題の場面ごと、危険印象評価数のばらつきの比較を行なった。

ADHDの不注意優勢・多動性衝動性優勢傾向者に共通して、低覚醒な道路交通場面では危険感の個人間差が大きく、その背景に空間的注意の制御の困難さがあると推察された。多動性衝動性優勢傾向者は、
死角が多い場面でも個人間差が大きくあらわれ、死角などの構造で危険感が変動する可能性が示唆された。また、ADHD傾向者と比較対照者では、顕在ハザードが多く含まれるリスクの高い場面の危険感は差がみられないことが分かった。

【研究7】

移動時の“不注意”な現象の心理的背景には、人間の最適な注意制御の失敗が考えられ、人間の移動行動には空間的注意が関与すると考えられる。研究3の結果、健常高齢者の移動時注意不全エラーがADHD傾向者とは異なる傾向が明らかとなったことから、健常高齢者の空間的注意の特徴を検討することは重要である。

そこで【研究7】では、健常高齢者の移動時の認知的活動と制御処理の空間的注意の働きについて、実験心理学的に検討することを目的とした。

日常の移動や生活に支障のない健常高齢者(N=46)を対象に、研究4で作成した①空間的情報選択課題、②注意切替課題、③変化検出課題の遂行成績を分析した。

①空間的情報選択課題では、健常高齢者は「ネガティブ感情手がかり」が先行すると空間情報選択の遂行成績が低下し、感情手がかりによる復帰抑制の効果がみられた。これは、ネガティブ感情が提示された位置への再注意が抑制され、先行するネガティブ感情と同じ位置への情報探索の時間が遅延した結果と推測された。

②注意切替課題では、健常高齢者は2枚の階層文字の一致判断が「部分文字」よりも「全体文字」で遂行成績の低下がみられたが、こ
それは課題の刺激の大きさと有効視野のサイズが関係する可能性が考えられた。また健常高齢者は階層の切替方向の効果はみられなかった。

③変化検出課題では、健常高齢者は、「注意集中」場面の変化検出時間の遅延と、「追加」変化の遂行成績の低さが明らかとなった。

【研究8】
道路交通事故発生に関わる高齢者の移動時注意不全エラーの発現解明に向けて、どのような空間的注意が関与するかを明らかにすることは極めて重要である。
そこで【研究8】では、健常高齢者の空間的注意のパフォーマンスが移動時注意不全に及ぼす影響を検討することを目的に、健常高齢者（N=46）を対象として、研究4で用いた②注意切替課題、③変化検出課題の遂行成績の程度と、研究1で作成した注意不全尺度のスコアとの関係を分析した。
結果、健常高齢者は、②注意切替課題の遂行成績が低いと「変更不全」の尺度スコアが高いことが分かった。一方、③変化検出課題の遂行の程度と移動時注意不全エラーの間には関係がみられなかった。健常高齢者の移動時の「変更不全」エラーには、注意切替の注意機構の関与が示唆された。健常高齢者の移動時の注意不全には、加齢の影響による個々の注意の機能低下ではなく、加齢に伴う認知活動全般を司る管理監督系の困難が示唆された。
【研究9】

先行研究（小菅, 2015）では、高齢者の静止画に対する危険印象について、危険評価の多い群は少ない群に比べ、注意選択課題のパフォーマンスが向上することが報告されている。危険感と注意は密接な関りが想定されるため、加齢により注意機能が低下する高齢者では、どのような危険感の特徴を示すのかを明らかにすることは重要である。

そこで【研究9】では、健常高齢者（N=46）を対象に、研究2で作成した危険印象評価課題を用いて、ADHD傾向者（N=20）と比較対照者（N=23）の危険印象評価と照らし合わせながら、健常高齢者の場面ごとの危険感を検討し、研究7で明らかとなった健常高齢者の空間的注意の特徴から考察することを目的とした。

分析の結果、健常高齢者、ADHD傾向者、比較対照者のどの群においても、動画を用いた危険感は静止画と同様に個人差があることを確認した。比較対照群では、低覚醒場面と高覚醒場面で危険印象の関連が弱いことから、状況に応じて受動的な注意の補足と能動的な情報収集の注意の制御がコントロールされていることが推測された。しかし健常高齢群では、覚醒の程度が異なる場面にも関わらず、どの場面でも一貫した危険印象評価が観察されたことから、健常高齢者は状況に応じた受動的注意と能動的注意の制御の困難さが推測された。
第2章 得られた成果に基づく移動時注意不全の情報処理過程と
注意制御の関係

2.1 人間の移動時注意不全の情報処理過程と注意制御

従来の道路交通場面のヒューマンファクターの研究では、運転者の注意散漫（driver distraction）のように、人間の注意からアプローチされることはあっても、研究の関心は注意を散漫にさせる脇見という行為や、速度をあげた運転操作や歩行者の斜め横断など、道路利用者の振る舞いや行為そのものが研究されてきた。しかし、これら道路利用者の振る舞いや行為は、外界から入力され処理され効果器を通して出力された一連の情報処理過程を経た反応であり、観察される振る舞いや行為の背景には、情報の入力・処理・出力の認知活動すべてに関わる注意の最適な制御不全による“不注意”の影響が考えられる。

人間の認知活動については、知覚、記憶など各機能をボックス的に説明する情報処理モデルが数多く存在し、注意の性能についても多くの仮説が存在する。しかし、注意が要求される主体的な道路交通場面の移動時注意不全エラーについて、情報処理過程における注意の制御の側面、注意の資源や容量の性能、移動時のエラーに関わる各情報処理の機能から、統合的に説明するモデルは見当たらない。

本章では、本研究の目的であるADHD特性や加齢の影響による移動時注意不全の解明に向けて、まず従来の情報処理モデルや注意の知見をもとに、本研究の課題遂行に関わる情報処理過程を整理、統合し、Fig.3.1に人間における移動時注意不全の情報処理過程と注意制御のモデル化を試みた。
Fig.3.1 人間の移動時注意不全の情報処理と注意制御の関係モデル

移動時の注意不全の発現に至る情報処理には、①下位の情報処理系を管理する、最も上位に位置する「管理監督システム」、②注意の2つの性能でありFig.3.1に紫色で示した「注意資源」と「注意フィルター」、③情報の入力から出力に至るまでの下位の情報処理過程が考えられる。

以下に、想定したボックスの各機能と、それぞれの関りを述べる。

「管理監督システム」では、Norman and Shallice（1986）の「注意監督システム」（Supervisory Attentional System: SAS）で想定されている管理監督機能、またはBaddeley（e.g.,1996）のワーキングモデルの中央実行系（central executive）と同じ役割が想定される。入力前の情報をスク
リーニングする「注意フィルター」や、各認知活動の遂行に関わる「注意資源」、そして下位の各認知活動の全ての機能制御に関わる。

「注意資源」は、通常、認知心理学では心的エネルギーと定義されるものであり、Wickens（2002）の多重資源理論から考えられる。多重資源理論は、入力モダリティ、処理、出力においてそれぞれ貯蔵された注意資源を想定する。視覚と視覚のように同じモダリティでの処理のように同じプールされた資源を使わなければ、注意資源が干渉することは無い。この注意資源は、上位の「管理監督システム」の命令を受け、下位の各活動に割り当てられる。「注意フィルター」は焦点的注意と同義であり、情報の選択に関わる。外界の情報は、この注意フィルターを通して、次の処理過程へ移行する。

下位の情報処理系では、「注意フィルター」によって「ふるい」にかけられた情報だけが入力される。どの情報が入力されるのかはトップダウン制御の処理を受けるため、「管理監督システム」の命令、および、「注意資源」の配分や容量によっても影響を受ける。入力された感覚刺激は意味処理に変換され、この「符号化」の過程を通して、道路交通場面内の個々の構成要素が認識される。そのため、感覚刺激から特徴を検出した特徴を分析するには「注意フィルター」が関わる。道路交通場面内の個々の構成要素の「特徴検出」や「特徴分析」がなされた後、その情報は「長期記憶」に保管されている過去の記憶や体験と「比較照合」され、いまこの場での行為に関する「分析・判断」がなされ、反応の構えである「反応の体制化」の後、効果器を通して反応が出力される。外界から入力された情報は、認知活動に必要な「注意資源」が十分に確保され、かつ「管理監督システム」によって注意資源が配分可能な問題解決状況では、このような情報処理過程を経ると考えられる。また、情報
の処理は、各処理系で分散型の処理が考えられ、入力された情報の処理は直列的には進行しない。

「注意資源」とエラーの関係においては、混雑時など認知的負荷が高い状況、あるいは個人の特性や加齢などにより「注意資源」の総量が少ない場合は、「注意フィルター」を通した情報・刺激の入力、符号化、特徴検出と特徴分析、比較照合と分析・判断、反応の体制化などの全ての処理系で雑音が生じエラーが生じる。
2.2. ADHD 傾向の影響による情報処理過程と移動時注意不全エラー

ADHD 傾向の影響による情報処理と注意制御の処理過程で発現する移動時注意不全エラーは、Fig.3.1 のモデルと、ADHD の状態像を説明する CEM モデル（Sergeant, 2000, 2005）、そして本研究の ADHD 傾向者の研究結果から、Fig.3.2 の関係が考えられる。

Fig.3.2 ADHD 傾向の影響による情報処理過程と移動時注意不全エラー
本研究で明らかとなったADHD傾向者の特徴の一つは、③変化検出課題の遂行成績の低いADHD傾向者は、遂行成績の高いADHD傾向者と比べても有意に移動時注意不全の総スコアが高く、変化検出遂行の低いADHD傾向者は移動時に不注意を生じやすい傾向を示したことであった。

ADHD傾向者は障害特性から、「管理監督システム」の重要な役割である、課題目標や課題関連情報を維持する管理特有の弱さがあると言える。 「管理監督システム」は、各認知活動の遂行に必要な「注意資源」の配分も司る。ADHD傾向者は、移動という活動の維持そのものの優先順位が低いため、移動活動に配分される「注意資源」が少なくなると考えられる。その結果Fig.3.2に赤色の線で示すように、上位の「管理監督システム」は障害特性ゆえに課題目標や課題関連情報の維持が難しく、そのため、移動活動に対し「注意資源」を視覚的に維持し続ける努力（effort）、すなわち移動活動への視覚的注意の維持が困難となると考えられる。

Rensink (2000)によれば、道路交通場面内の個々の構成要素の変化に素早く気づくには、変化が生じる前後の情景や個々のオブジェクトの配置を記憶しておくことが必要である。ADHD傾向者は、移動活動に必要な注意資源が行き渡らず、投入されたシーンの個々の構成要素の配置や、シーン全体の雰囲気（文脈）の「符号化」すなわち意味変換が困難となり、その後の「従属検出や特徴分析」の処理に負の影響があらわれ、シーン内の構成要素の変化の検出が困難になると考えられる。ADHD傾向者の移動時注意不全の情報処理の特徴として、移動活動への視覚的注意の維持の困難さが、符号化やその後の特徴検出、特徴分析の処理に負の影響を及ぼしていることが考えられる。

エラーの観点では、ADHD傾向者の特徴として、一般成人などと比べ、「水準低下」エラー、「転導性」エラーが確認された。移動時注意不全エ
ラーに関わる注意制御は、最も上位の「管理監督システム」が担い、本研究で作成した空間的注意課題では、②注意切替課題がこのシステムに関わる。ADHD傾向群は比較対照群に比べ、②注意切替課題の遂行成績が悪かった。ADHD傾向者は、情報処理過程とそのエネルギーの側面を管理する基盤となる「管理監督システム」の働きが弱いことが示される。移動行動は目標試行的な認知的活動であり、「注意資源」が使われる努力（effort）を要する。ADHD傾向者は移動活動に視覚的な注意を維持し続けることが困難であると考えられ、高リスクで注意要求が高い道路交通場面であっても、安全な移動に必要な覚醒水準を維持し続けることが困難であると考えられる。よって「水準低下」エラーを経験しやすいことが考えられる。またADHD傾向者の危険感が比較対照群に比べ個人間のばらつきが大きいこと、①空間的情報選択課題では感情情報へのアクセスの悪さが考察され、これらの背景には、ADHD傾向者の視覚的注意の維持の困難さがあると推測され、移動時の注意不全としては「転導性」エラーとしてあらわれるのでないかと考えられる。ADHD傾向者の「水準低下」「転導性」エラーは、「管理監督システム」におけるその場に適した注意制御の不全が背景にあると考えられる。
2.3. 加齢の影響による情報処理過程と移動時注意不全エラー

加齢の影響による情報処理と注意制御の処理過程で発現する移動時注意不全エラーは、Fig.3.1のモデルと、認知的加齢を説明する注意資源容量の低下（Craik & Byrd, 1982）と抑制機能の低下（Hasher et al., 1999）仮説、そして本研究の健常高齢者の研究結果から、Fig.3.3の関係が考えられる。

Fig.3.3 加齢の影響による情報処理過程と
移動時注意不全エラー
本研究で明らかとなった健常高齢者の特徴の一つは、②注意切替課題の遂行成績の低い健常高齢者は遂行成績の高い者と比べて、「変更不全」エラーを生じやすい傾向を示したことであった。

②注意切替課題は、時々刻々と変化する状況の中でその場の目標に応じて、注意の焦点を刺激の複数階層に次々に切り替える課題である。また「変更不全」エラーを測る下位尺度の質問項目は、道路交通場面内のハザードの素早い気づきや察知、リスクの高い状況における能動的な注意・意識の切り替え、移動中の同時並行作業の注意配分などに関する質問項目から構成される。

移動時、人間は限界のある「注意資源」を上手く使いながら、必要な情報には注意を向け、不要な情報は差し当たって無視をし、目標に関係した情報の取捨選択を行なう作業をしながら、「歩く」「車両を操作する」といった作業も行ってしまい、同時並行で様々な作業の遂行を行なっている。このような同時並行作業の遂行調整などトップダウンの制御は「管理監督システム」で担われる。また「注意資源」は加齢により資源そのものが減少し、注意資源の容量を多く使う認知的負荷の高い課題の処理では、多くの注意資源が必要となるため、同時並行作業が求められるような認知の負荷の高い状況で、注意資源低下の加齢効果が大きくあらわれるのが健常高齢者の移動時注意不全の認識は、一般成人群などと比べて相対的に低いが、「変更不全」エラーは自覚しやすかった。それは、変更不全エラーの質問項目に移動中の同時並行作業の注意配分に関わる項目があり、減少している注意資源の容量による同時並行作業の処理に関わる移動時注意不全エラーは、自覚しやすいと考えられる。

また健常高齢者の特徴として、移動時注意不全エラー、空間的注意課
題の遂行成績は、一般成人と類似の傾向を示していた。ただし、空間的注意課題の遂行成績は低く、場面に一貫した危険感を示しており、潜在ハザード場面で危険感が弱い特徴がみられた。こうした健常高齢者の危険感の背景には、Baddeley の中央実行系で仮定されているような、トップダウン制御を担う状況に応じた注意切替の弱さと、一度活性化した課題関連情報の不要な情報の抑制が難しくなることが考えられる。健常高齢者の移動時注意不全エラーは、加齢により低下する「注意資源」容量の減衰による各認知活動の処理と、上位の「管理監督システム」の機能低下が背景にあると考えられ、加齢による移動時注意不全エラーは下位の情報処理系のすべてで生じることが考えられる。
2.4. 移動時注意不全のADHD傾向と加齢による処理の違い

ADHD傾向者の移動時注意不全は、いま進行している移動活動への視覚的注意の維持の困難さがあり、環境から情報を収集し感覚刺激を意味処理へ変換する符号化と、その後の特徴検出、特徴分析で負の影響を受けやすいことが推測された。また危険感の個人間差が大きいことが分かった。移動時注意不全へのADHD傾向の影響は、「水準低下」 「転導性」エラーとして発現しやすいことが分かった。

健常高齢者の移動時注意不全は、加齢によるトップダウン制御を司る管理監督系の機能低下と、加齢により減少する注意資源の容量の影響が推測された。また場面に一貫した危険感を示し、状況に応じた最適な注意制御の困難が推測された。高齢者は移動時注意不全エラーを自覚しくないが、「変更不全」エラーは自覚されやすく、移動時注意不全エラーへの加齢による影響は、個別の認知機能の処理系に影響をするよりはむしろ、同時並行作業の遂行調節の困難さと注意資源容量の低下から、あらゆる処理系でエラーが生じる可能性が考察された。

本研究より、ADHD傾向者と健常高齢者の移動時注意不全の発現に、それぞれ異なる情報処理過程の特徴が背景にあることが示唆された。
第3章 今後の課題と展望

本研究では、ADHD者と加齢により注意機能が低下する高齢者の移動時注意不全の解明を目的に、移動に関する「空間的注意」、注意に密接な「危険感」、「移動時注意不全エラー」に着目し、ADHD傾向並びに加齢の影響による情報処理過程と移動時注意不全エラーを検討した。

本章では、本研究の問題点、限界と今後の課題を述べる。

(1) ADHD傾向者の研究結果の一般化

本研究ではADHD者の特徴を研究するため、アナログ研究法を用いた。すなわち、ADHDの診断がある人々とADHDの診断が無い非臨床群は「等価」「連続」であるとみなし、ADHD傾向が強いと考えられる一般成人をADHDの診断がある人の「アナログ」とみなしして研究の対象とした。

アナログ研究法は、臨床群と異なり治療を受けておらず薬の影響が無いデータを扱えること、臨床群を対象とした研究はデータの収集が難しいが一度に多くの変数について多数の研究対象者を集められること、通常臨床群は特定の基準で集められているため個人差が小さくなるが、“不注意”によるエラーは極めて個人差が大きく、非臨床のデータを使うことで幅広い個人差を確認することができるなど、多くの利点がある。

一方で、ADHDの診断が無い集団を対象としているため、ADHDの診断がある集団とは、移動時注意不全に至る過程が異なる可能性を否定できない。今後はADHDの臨床群も対象として、移動時注意不全を研究することも必要だろう。
(2) 移動時注意不全エラーと実際の道路交通場面の行動との関係

本研究では、道路交通事故に関わるヒューマンファクターの中で、注意不全の観点から研究を行ない、ADHD 傾向および加齢の影響による情報処理とその制御の過程で発現する移動時注意不全エラーを検討した。

認知心理学の情報処理モデルに基づけば、道路交通事故発生の引き金となる道路利用者の行動の背景には情報処理の活動があり、道路利用者の特徴に応じた交通事故防止対策の検討に向けて、本研究で明らかになったエラー背後の情報処理過程に関わる基礎的新見は重要である。

交通事故発生は「人間要因」だけでなく、道路を構成する「環境要因」や「車両要因」を含めた道路交通システムの齟齬から生じ、多様なそれぞれの要因が、相互に、そして複雑に関係しあい発生する現象である。したがって、ヒューマンファクターの中で、本研究で扱った移動時注意不全のエラー特性と道路交通事故発生の関係を検証することは難しい。

しかし、本研究で明らかとなった ADHD 傾向者や健常高齢者の移動時注意不全エラーが、実際の道路交通場面でどのような振る舞いとしてあらわれるのか、またどのような振る舞いとエラー特性の関連が強いのかは検証する必要があると考える。

(3) ADHD 者の自動車交通事故の実態把握

本研究では、研究 4 から研究 6 の結果から、ADHD 傾向の影響による情報処理とその制御の過程で発現する移動時注意不全エラーを検討し、ADHD 傾向者の事故発生に影響を及ぼすエラー特性を示した。
このような ADHD 傾向者のエラー特性から、道路交通事故や事故に至るヒヤリハットなど負の影響が考えられるが、我が国において、診断のある ADHD 者の自動車交通事故の実態は調査されていない。

今後、ADHD 者がどの程度実際に自動車交通事故を体験しているのか、それはどのような事故実態なのか、調査する必要があると考える。

(4) ADHD 傾向および加齢のエラー特性に応じた交通事故防止対策の検討

道路交通事故防止は公衆衛生上の重要な解決すべき課題の一つであり、対象者の特徴に応じた予防対策の推進が望まれる。

本研究では、ADHD 傾向と加齢では、「空間的注意」「危険感」「移動時注意不全エラー」の特徴に違いがあることを実証し、第 3 部では、移動時注意不全エラーに至る情報処理過程の特徴の違いを考察した。これらから、ADHD 特性、加齢に応じた効果的な交通事故防止対策が検討できるだろう。

移動は日常生活の要となる重要なライフスキルの一つと言える。ADHD 傾向者では危険感の個人間差が大きいことから、たとえば個別にどのような場面や衝突対象に危険を感じにくいのかを把握し、本人に情報をフィードバックして、移動の時間帯や目的地までの道順など、戦略的に安全な移動の計画を立てることが考えられる。運転時は「転導性」エラー防止として、たとえば注意が逸れやすい携帯電話は運転者の手の届く範囲や直接見える場所に置かない、同乗者に気が散ってしまう場合は後部座席に移ってもらうなど、車内環境の整備が考えられる。
高齢者では、加齢によって減少する注意資源の容量の影響を受け、情報選択、意思決定など、個々の認知機能への負の影響が想定される。よって、高齢者には過去と比べ現在の認知機能の状態がどれだけ低下しているかをチェックする機会を持たせることが重要となるだろう。高齢者は自身の機能低下に気づきにくいことがあげられるが、本研究では移動時の「変更不全」エラーは自覚されやすいことが示された。そこで高齢者が苦手となる「運転しながら音楽を聴く」「歩きながら会話する」など、普段行なう同時並行作業を例に出し、そこを手がかりとして普段の移動行動にあらわれる老化による不注意エラーの気づきを促していくことが考えられる。

本研究で得られた知見は、ADHD傾向者と健常高齢者にとって、どのような道路交通事故防止の方向性が考えられるのか、事故予防対策検討の基礎資料を提供するものである。今後は知見を活用し、実践で展開可能な対策の検討につなげていく必要がある。
第4章 本研究の意義

ADHD 者は海外の研究で交通事故発生リスクの一つとみなされており、ADHD 者が実際の道路交通場面でどのような危険な振る舞いを生じているのか、またどのような振る舞いが定型発達と異なるのかについて研究されてきた。

しかし、人間の情報処理過程とヒューマンエラーの視点から、なぜ移動時に注意不全が生じるのか、そのメカニズムを検討した研究は見当たらない。

本研究では、ADHDについてアナログ研究法を用い、「空間的注意」と「危険感」に着目し、情報処理過程から移動時注意不全のメカニズムの解明を試みた。本研究の心理学的アプローチは、脳機能と心理の側面がどのように関係するのかを明らかにするためには欠かせないアプローチであると考える。

また、発達障害は定型発達と「連続」していると考えられている。ADHD傾向者の移動のリスクと認知制御に関わるヒューマンエラー現象の解明は、ADHD者に向けた道路交通事故防止対策の検討に寄与するだけではなく、一般的な人間の移動時注意不全エラー現象についても示唆を与えるものと考えられるため、研究の意義は大きい。

さらに本研究では、ADHD傾向者と健常高齢者の移動時注意不全エラーの違いを実証し、それぞれのエラーに至る情報処理過程の特徴を検討したことで、道路交通事故防止対策の検討に向けた基礎資料を提供できましたものと考え、今後の防止対策への展開が期待できる。

小菅英恵 (2013) 交通リスクシーンを用いた危険感測定に関する研究：「危険感受性チェック」の定量的検討,産業・組織心理学会第 29 回
大会発表論文集, 218-221.
小菅英恵（2015）高齢者の危険印象と処理効率. 日本応用心理学会第 82 回大会発表論文集, 46.
小菅英恵（2018）高齢歩行者の交通事故未然防止に向けた事故分析：高齢期の交通行動と情報処理特性, 日本交通学会誌, 18, 3-8.
小菅英恵・熊谷恵子（2017a）運転時・歩行時の注意不全尺度の作成と信頼性・妥当性の検討. 障害科学研究, 41(1), 23-32.
小菅英恵・熊谷恵子（2017b）動画を用いた交通場面の危険印象評価：成人 ADHD 傾向者を対象として. 日本 LD 学会第 1 回研究集会論文集, 42-43.
小菅英恵・熊谷恵子（2018a）移動時の注意不全に及ぼす空間的注意の影響：成人 ADHD 傾向者を対象として. 日本交通心理学会第 83 回大会発表論文集, 38-39.
小菅英恵・熊谷恵子（2018b）成人 ADHD 傾向における主体的な移動時の不注意傾向：健常高齢者および一般成人群との比較から. 日本応用心理学会第 85 回大会発表論文集, 107.
小菅英恵・西田泰・山下富美代（2008）運転行動のエラーに関する分析的研究. 日本心理学会第 72 回大会発表論文集, 1367.
小菅英恵・佐藤七瀬・熊谷恵子（2016）高齢者の交通場面における注意機能. 日本応用心理学会第 83 回大会発表論文集, 92.
小菅英恵・志田政也・山下富美代（2011）交通場面の評価からみた危険
感受性と注意機能の関連について．日本交通心理学会第76回大会発表論文集，87-90。
小菅英恵・藤平純也・志田政也・山下富美代（2010）若年者の「危険感受性チェック」を通してみた傾向について．日本交通心理学会第75回大会発表論文集，67-70。
黒田勲（1996）航空機のヒューマンエラーから見た人間の特性と限界．計測と制御, 35(8), 597-600。
松浦常夫（2000）運転技能の自己評価に見られる過大評価傾向．心理学評論, 42(4), 419-437。
三沢良・稲富健・山口裕幸（2006）鉄道運転士の不安全行動を誘発する心理学的要因．心理学研究, 77(2), 132-140。
長山泰久・蓮花一己・東京海上火災保険株式会社（1992）危険感受度診断テストTOK実施の手引き.株式会社企業開発センター交通問題研究室.
長山泰久監訳・蓮花一己訳(1990) クレベルスベルク：交通心理学.企業開発センター交通問題研究室.
仁平義明（2013）急速反復書字によるスリップの発生メカニズム: ADHD傾向のアナログ研究. 自鳴大学教育学部論集, 7(1), 127-141.
19-64.

小川和久（1993）リスク知覚の構造と機能に関する実証的研究. 応用心理学研究, 18, 37·54.

小川和久 (1993) ハザード知覚の構造と機能に関する実証的研究. 応用心理学研究, 18, 37·54.

大橋智樹・行場次郎・守川伸一（2000）複合数字抹消検査を用いた注意切り替え特性の加齢変化.日本心理学会第 64 回大会発表論文集, 609.

approach to attention-deficit hyperactivity disorder.

Neuroscience & Biobehavioral Reviews, 24(1), 7-12.

Biological psychiatry, 57(11), 1248-1255.

柴崎宏武 (2017) 高齢運転者事故の特徴と発生要因. 公益財団法人交通事故総合分析センター

https://www.itarda.or.jp/ws/pdf/h29/20_01eldrly%20Dr.pdf (2018.9.1)

篠原一光 (2011) 第 8 章 注意とヒューマンエラー: 交通安全と注意問題を中心として. 日本認知心理学会(監), 現代の認知心理学 4 注意と安全. 北大路書房, 186-208.

篠原一光・山田尚子・神田幸治・臼井伸之介 (2007) 日常生活における注意経験と主観的メンタルワークロードの個人差. 人間工学, 43, 201-211.

Risk as analysis and risk as feelings: Some thoughts about affect,

梅林薰 (2013) 漢字表象が空間的注意に及ぼす影響. 岐阜女子大学紀要,
230

42, 69-75.

財団法人交通事故総合分析センター（2004）二輪車事故. イタルダ・インフォメーション, 52.
謝辞

本論文の執筆にあたり、筑波大学大学院博士後期課程よりご指導をいただきました熊谷恵子教授に記して深く感謝申し上げます。大学院修士課程で認知心理学を学び、社会人として 10 年以上、事故防止や安全教育に関する心理学検査や教育教材の開発研究に携わっていた私にとって、「障害科学」の世界は無知に等しいものでした。仕事として関わっていた事故防止の現場は、対策の実施が先行するため、事故発生に至る人間のメカニズムの基礎研究を行ない、基礎的知見を基にその応用として効果のある対策などの介人が行なう流れはほぼ皆無です。交通事故の原因が人間の“不注意”に止る以上、本質的な事故防止や事故減少を望むならば、やはり「なぜ不注意が生じるのか」そのメカニズムの解明は不可欠だと考えていました。その果て、熊谷先生と出会い、発達障害を抱える方々が社会生活に困難を抱えていること、特に ADHD の方々が障害特性から移動時に不注意となりやすいことを知るに至り、自身の博士論文の研究テーマが決まりました。

また熊谷研究室の「SST」の活動の場を通して、自ら発達障害の診断ある成人の方々などと関わることで研究の多くの示唆を得ることができ、代えがたい貴重な体験となりました。SST では、直接成人の ADHD の診断ある方々の交通場面での困難をヒアリングでき、また発達障害児の保護者の方とも関わり、現実にどのような困難が生じているのかを知る事ができました。こうした臨床経験は、社会に応用するための本研究の意義や、「基礎的研究」と実践に活用する「応用的研究」の連携の重要性を強く実感することにつながり、研究活動のモチベーションにつながりました。

232
副査の岡崎慎治准教授には、研究計画の段階から、本研究で扱う注意の変数、定義などをはじめ、統計解析の内容など、細かくご指導いただき深くお礼申し上げます。また、副査の植田雅義教授には、研究知見を現場に展開する応用的視座をご教授いただきました。なお当時、副査をお引き受けくださった大六一志先生には研究デザインの構成について、また塩田宏輝先生（実践女子大学教授）には、本研究の今後の実践や展開に関しご助言をいただきました。先生方にはここに記してお礼申し上げます。

各研究を整理していく過程では、さまざまな研究会の場で発表させていただき、多くの有益なご助言を賜りました。特に、生活行動心理学研究会では、学部、修士課程の頃からご指導いただいていた山下富美代先生（立正大学名誉教授）をはじめ、井上隆二先生（旧立正大学教授）、井田政則先生（立正大学教授）、山村豊先生（帝京大学教授）、高橋一公先生（東京未来大学教授）、そして研究会の皆さまと議論を重ね、各研究を整えていくことができました。厚くお礼申し上げます。

また多くの先生方から、快くデータ収集の場を提供いただき、大変お世話になりました。山村豊先生（帝京大学教授）、松田美登子先生（東京富士大学教授）、岩崎智史先生（東京未来大学講師）、田邊資章先生（関東学院大学非常勤講師）のお力をお借りし、大学生の貴重なデータを収集することができました。実験に参加してくださった大学生の皆さま、そして日野市老人クラブ会員の皆さまなど、多くの方々のご協力によって、研究活動の源となる貴重なデータを収集できましたこと、この場をお借りして深く感謝申し上げます。

最後に、夫をはじめ、父と妹、そして本年7月に他界した母の温かい励ましと実質的な家族の支えがなければ、本研究を最後まで完成させる
ことは不可能でした。研究開始時から終わりまで支援してくれた家族に、
ここに記して感謝の意を表します。

2018年12月

小菅 英恵
Appendix 1. 質問紙・フェイスシート

アンケートA

・それぞれ記入もれのないよう回答をお願いいたします。
・以下の各問いに従い、記入あるいは該当する数字に○をつけてください。

【問1】年齢は？歳
【問2】性別は？①男性②女性
【問3】学校への通学、バイト先までの通勤、買い物など、あなたが普段移動するときの主な移動手段を選んで下さい（日常よく使う移動手段）
①徒歩②自転車③バス・電車など交通公共機関④自分の運転
自分の運転の方は、次のページ【問4'】へ進んで下さい
【問4】【問3】で回答した普段の外出頻度はどのくらいですか？
①ほぼ毎日②週3〜4回③週1〜2回④月1〜2回⑤ほとんど外出しない
【問5】【問3】で回答した普段の外出時に、事故や、あと少しで事故になりそうな危険な状況を経験した事はありますか？
また、ある場合は、あてはまる回数に○をつけてください
①なし②あり1回2回3回4回5回以上
【問6】【問5】でありと回答した方は、それはどのような状況でしたか？
右下の記入例のように、直近に経験したその状況を簡単に図で示して下さい

記入が終わりましたら、記入漏れがないか見直して下さい。合図があるまで、ペンを置いてお待ちください。
【問4’】普段あなたが運転する車両の免許は何ですか？
①普通自動車（セダン、ワンボックス等） ②バイク（50cc以上）
③大型自動車（トラック等） ④原付 ⑤その他特殊車両

【問5’】運転での外出頻度はどのくらいですか？
①ほぼ毎日 ②週3～4回 ③週1～2回
④月1～2回 ⑤ほとんど外出しない

【問6’】自分の運転での外出時に、事故やあと少しで事故になりそうな危険な状況を経験した事はありませんか？
また、ある場合は、あてはまる回数に○をつけてください
①なし
②あり 1回 2回 3回 4回 5回以上

【問7’】【問6’】で あり と回答した方は、それはどのような状況でしたか？
右下の記入例のように、直近に経験したその状況を簡単に図で示して下さい

記入が終わりましたら、記入漏れがないか見直して下さい。
合図があるまで、ペンを置いてお待ちください。
Appendix2. 質問紙・ADHD チェックリスト

アンケートB

・大学生活やアルバイトなど、あなたの日常生活において、過去6カ月のあいだ、次のような出来ごとがどのくらいの頻度でありましたか。

・普段の行動や感じ方に最もあてはまるものを1つだけ選んで○で囲んで下さい。

<table>
<thead>
<tr>
<th>問</th>
<th>全く無かった</th>
<th>むっと怒られた</th>
<th>ときどきあった</th>
<th>頻繁にあった</th>
<th>非常に頻繁にあった</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>つまらなかったり、難しかったりする課題や仕事をする際に、集中できず、集中し続ける事が困難な事がある</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>打ち合わせなどで長時間座っていけなければならない時に、手足をそわそわと動かしたり、もぞもぞする事がある</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>つくったおものは、難しかったりする課題や仕事をする際に、集中できず、集中し続ける事が困難な事がある</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>打ち合わせなどの席に座っている時、席を離れてしまう事がある</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>直接相手が話しかけられているにもかかわらず、会話を集中し続ける事が困難な事がある</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>6</td>
<td>落ち着かない感じ、あるいはソワソワする感じを感じる事がある</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>7</td>
<td>調査や仕事をするにあたって、難所は乗り越えたのに、詰めが甘くて最後までやり遂げる事が困難な事がある</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>8</td>
<td>打ち合わせなどの着席していなければならない状況で、席を離れてしまう事がある</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>9</td>
<td>時間に余裕があったとしても、急ぎたいたり、ゆったりとくつろぐ事が困難な事がある</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>10</td>
<td>計画性が必要な課題や仕事を行なう際に、作業を順序立てるのが困難だった事がある</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>11</td>
<td>まったりと考える必要のある課題や仕事に取り掛かるのを避けたかったり、遅らせたりする事がある</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>12</td>
<td>家や職場に物を置き忘れたり、物をどこに置いたかわからなくなってしまう事がある</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>13</td>
<td>社交的な場面でしゃべりすぎてしまう事がある</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>14</td>
<td>会話を交わしている相手が話し続ける前に、会話をさえぎってしまった事がある</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>15</td>
<td>外からの刺激や音が飛び交っても落ち着かず、落ち着かない事がある</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>16</td>
<td>会話を交わしている相手が話し続ける前に、会話をさえぎってしまった事がある</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>17</td>
<td>約束を、しなければならない用事を忘れている事がある</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>18</td>
<td>忙しくしている人の邪魔をしてしまう事がある</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
</tbody>
</table>

記入が終わりましたら、記入漏れがないか見直して下さい。
記入漏れの確認が終わりましたら、ページをめくって下さい。
Appendix3. 質問紙・移動時注意不全尺度の項目

アンケートC

・通学、通勤、買い物など、普段の移動しているところをイメージして下さい

・普段の移動中、過去1年のあいだに、次のような出来ごとがどのくらいの頻度でありましたか。

最もあてはまるものを1つだけ選び○で囲んで下さい。

<table>
<thead>
<tr>
<th>1</th>
<th>周囲に気を配らなければならないので、どうしても気になる方に注意が向いてしまう</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>前方の車や人の移動に気づかず、突然、右から左へ移動したように感じる事がある</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>3</td>
<td>道が混雑していても、到着の時間を読み違えて遅刻する事がある</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>4</td>
<td>移動中に敢えて、寝不足なような状態でぼんやりする事がある</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>5</td>
<td>移動しながら、これから自分がやるべき事を色々考えたり、作業の段取りをつける事ができる</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>6</td>
<td>松の出现のごとに高く、信号や標識・表示などを見落とす事がある</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>7</td>
<td>言語がわるさなように感じること、睡眠不足のような状態でぼんやりする事がある</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>8</td>
<td>交差点や横断歩道で信号の変化に気づかず見落としたり、気がついた時の後、気づくのが遅れる事がある</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>9</td>
<td>ポートとしていた時、去った今通りの道をひっきり覚えていない事がある</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>10</td>
<td>聴かる事があると、周囲の交通状況に注意を向け直せなくなってしまう</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>11</td>
<td>信号を見る事で、どうしてもそこに注意が遮られて目が離せなくなる事がある</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>12</td>
<td>交差点や横断歩道で信号の変化に気づかず見落としたり、気づくのが遅れる事がある</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>13</td>
<td>普段慣れている道なので、途中で道に迷う事がある</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>14</td>
<td>移動中に意識が別の世界へ転移してしまう事がある</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>15</td>
<td>移動中に気になる事があっても、すぐに意識を切り替えられる</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>16</td>
<td>音楽や人の会話が聞こえると、注意が向きづらい無視をする事ができない</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>17</td>
<td>後方の車のベルやクラクションなど、わずかな音でもすぐに察知できる</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>18</td>
<td>聴覚は直ぐに覚えられる</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>19</td>
<td>意識がぼんやりしてしまい、信号を無視しようになったり、無視する事がある</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>20</td>
<td>混雑している道など周囲に気を配らなければならない状況では、自分の思う通りに注意を切り替えられる</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
</tbody>
</table>

ページをめくってください。
余計なものが見えると、どうしてもそれに目が向き、前方の道路から注意が逸れてしまう

路地や障害物の陰から出てくる人や車などに、素早く気づくことができる

ルート案内などの「右（左）に曲がる」指示とは逆に、「左（右）」に曲ってしまう事がある

ぼんやりしてしまい、前方の人や車などにぶつかったり、ぶつかりそうになる事がある

移動中でも気になる事があると、そのこと以外に注意が向かなくななる

どうしても周囲の出来ごとに目がとまってしまい、人や車とぶつかりそうになる事がある

前の車や歩く人の速度が減速したことに気づかず、ぶつかったり、ぶつかりそうになる事がある

どこに向かおうとしているのか目的地がわからなくなり、道に迷ったり、知らない場所に到達する事がある

ふと気づくと、ポーっとしたまま移動している事がある

移動中に何か邪魔が入ると、安全確認や前方を見忘れてしまう

周囲の出来ごとに目がとまって、人や車とぶつかりそうになる事がある

緊急車などのサイレン音に気がつかない事がある

対向してくれる人や車をうまく避けられず、ぶつかったり、ぶつかりそうになる事がある

上の空で移動している事がある

いったん注意がそれると、交通状況に注意を向け直す事が困難な時がある

周囲に気を配らなければならない状況でも、気になる事があるとどうしてもそれに目が向けてしまう

周囲の変化に気が払わなかったり、気づくのが遅い事がある

移動中に人が物にぶつかる事がある

気がついた時には、道路から逸脱していた事がある

移動しながら左右を見ると、前方を見忘れる事がある

ページをめくってください。
通学、通勤、買い物など、普段の移動しているところをイメージして下さい。
普段の移動中、過去1年のあいだに、次のような出来事がどのくらいの频度でありましたか。
最も当てはまるものを1つだけ選び、〇で囲んで下さい。

<table>
<thead>
<tr>
<th>問</th>
<th>状況</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>41</td>
<td>車のナンバーーやワイパーの動きなどに目がとまってしまい、周囲に気を配れなくなってしまう</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>42</td>
<td>気がつくと、人や車が自分の真後ろに異常に接近している事がある</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>43</td>
<td>予定通りに目的地に着くことが難しい</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>44</td>
<td>予定通りに目的地に着くことが難しい</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>45</td>
<td>予定通りに目的地に着くことが難しい</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

記入が終わりましたら、記入漏れがないか見直して下さい。
アンケートはこれで終わりです。
Appendix 4. 数量化理論第Ⅲ類から質的数間の距離の算出式

・Xk, Yk＝k軸の項目Xと項目Yのカテゴリースコア
・ak＝k軸の寄与率
・n＝軸数

とすると、項目Xと項目Yとの距離l_{xy}は(1)の式で表せる。

\[l_{xy} = \sqrt{\sum_{k=1}^{n} a_k (X_k - Y_k)^2} \quad (1) \]
Appendix5. ①空間的情報選択課題・刺激

(1) 手がかり感情刺激

＜ポジティブ感情＞
＜ネガティブ感情＞

希幸明死危苦

(2) 標的刺激

[画像表示]
Appendix6. ①空間的情報選択課題・刺激提示のエリア

中心エリア：1〜4 周辺エリア：5〜8
上エリア：1・5 下エリア：3・7
左エリア：4・8 右エリア：2・6
Appendix7. ②注意切替課題・刺激

（１）数字

（２）アルファベット
Appendix8. 变化検出課題・刺激 - 注意集中場面

<table>
<thead>
<tr>
<th>写真A</th>
<th>基準</th>
<th>会議室</th>
<th>寝室</th>
<th>パーティ</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>写真A'</th>
<th>消失</th>
<th>会議室</th>
<th>寝室</th>
<th>パーティ</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>追加</th>
<th>会議室</th>
<th>寝室</th>
<th>パーティ</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>位置移動</th>
<th>会議室</th>
<th>寝室</th>
<th>パーティ</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Appendix9. ③変化検出課題・刺激 - 注意分散場面

<table>
<thead>
<tr>
<th>写真A</th>
<th>写真A'</th>
<th>追加</th>
<th>位置移動</th>
</tr>
</thead>
<tbody>
<tr>
<td>基準</td>
<td>消失</td>
<td>追加</td>
<td>位置移動</td>
</tr>
<tr>
<td>歩道</td>
<td>牧場</td>
<td>ヨット</td>
<td></td>
</tr>
<tr>
<td>写真A</td>
<td>写真A'</td>
<td>追加</td>
<td>位置移動</td>
</tr>
<tr>
<td>基準</td>
<td>消失</td>
<td>追加</td>
<td>位置移動</td>
</tr>
<tr>
<td>歩道</td>
<td>牧場</td>
<td>ヨット</td>
<td></td>
</tr>
</tbody>
</table>

附：歩道、牧場、ヨットの変化検出課題・刺激 - 注意分散場面

1. 写真A（基準）
 - 歩道
 - 牧場
 - ヨット

2. 写真A'（消失）
 - 歩道
 - 牧場
 - ヨット

3. 追加
 - 歩道
 - 牧場
 - ヨット

4. 位置移動
 - 歩道
 - 牧場
 - ヨット