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Abstract
AIM
To investigate whether the liver resection volume in a 
newly developed nonalcoholic steatohepatitis (NASH) 
model influences surgical outcome.

METHODS
For establishment of a NASH model, mice were fed a 
high-fat diet for 4 wk, administered CCl4 for the last 2 
wk, and administered T0901317 for the last 5 d. We 
divided these mice into two groups: A 30% partial 
hepatectomy (PH) of NASH liver group and a 70% PH 
of NASH liver group. In addition, a 70% PH of normal 
liver group served as the control. Each group was 
evaluated for survival rate, regeneration, apoptosis, 
necrosis and DNA expression after PH.

RESULTS
In the 70% PH of NASH group, the survival rate was 
significantly decreased compared with that in the 
control and 30% PH of NASH groups (P  < 0.01). 10 
of 32 mice in the NASH 70% PH group died within 48 
h after PH. Serum aspartate aminotransferase (AST) 
levels and total bilirubin (T-Bil) in the NASH 70% PH 
group were significantly higher than the levels in the 
other two groups (AST: P  < 0.05, T-Bil: P  < 0.01). In 
both PH of NASH groups, signaling proteins involved 
in regeneration were expressed at lower levels than 
those in the control group (P  < 0.01). The 70% PH 
of NASH group also exhibited a lower number of Ki-
67-positive cells and higher rates of apoptosis and 
necrosis than the NASH 30% PH group (P  < 0.01). In 
addition, DNA microarray assays showed differences in 
gene expression associated with cell cycle arrest and 
apoptosis.

CONCLUSION
The function of the residual liver is impaired in fatty 
liver compared to normal liver. A larger residual volume 
is required to maintain liver functions in mice with 
NASH.

Key words: Hepatectomy; Liver regeneration; Residual 
liver; Liver proliferation; Nonalcoholic steatohepatitis
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Core tip: We report whether the liver resection volume 
in the nonalcoholic steatohepatitis (NASH) model 
influences surgical outcome. The population of patients 
with NASH has been increasing. However, few animal 
models fully reflect both the histopathology and 
pathophysiology of NASH in humans. We established 
a novel experimental NASH model that exhibited the 
same characteristics as NASH in humans. This study 
elucidates the metabolism of the residual liver after a 
hepatectomy with NASH. Compared with normal liver, 
the residual NASH liver function is impaired, especially 
its regenerative ability. Therefore, a larger residual 
volume is required to maintain liver function in NASH 
liver after partial hepatectomy.

Ozawa Y, Tamura T, Owada Y, Shimizu Y, Kemmochi A, 
Hisakura K, Matsuzaka T, Shimano H, Isoda H, Ohkohchi N. 
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INTRODUCTION
Nonalcoholic fatty liver disease (NAFLD) is observed in 
20%-40% of the general population, and its incidence 
continues to increase in industrialized countries[1,2]. 
NAFLD includes several diseases, such as simple liver 
steatosis, nonalcoholic steatohepatitis (NASH), and 
cirrhosis. NASH is characterized by hepatic steatosis, 
lobular inflammation, and abnormal glucose tolerance. 
In NASH, continuous inflammation contributes to he-
patocellular carcinoma (HCC)[3,4]. The cause of HCC is 
frequently infection with hepatitis B virus and hepatitis C 
virus (HCV). New antiviral medications for hepatitis are 
currently being used in clinics; therefore, the number of 
patients with virus-related HCC is expected to decrease 
in the future[5-9]. By contrast, the number of patients with 
NASH-related HCC has been increasing recently, and 
this trend is expected to continue because no effective 
treatments are available[10].

Steatosis is a risk factor for postoperative liver 
failure[11,12]. A number of clinical studies revealed that 
steatosis caused severe mortality and morbidity after 
liver resection compared with normal liver following liver 
resection[11,12]. In experimental models, hepatectomy 
of fatty livers resulted in suppressed liver regeneration 
and survival rates[13-16]. However, the influence of 
hepatectomy on NASH livers has not been extensively 
evaluated.

Hepatectomy is a standard and most effective therapy 
for HCC patients. Postoperative liver failure is a serious 
complication after hepatectomy, and its occurrence 
correlates with the volume and function of the residual 
liver[17-20]. To prevent liver failure after hepatectomy, the 
liver resection volume is limited according to preoperative 
liver function[21-23]. For promotion of regeneration and 
maintaining liver function preserving sufficient residual 
liver volume enables the prevention of liver failure[24,25]. 
Thus, the degree of liver regeneration is dependent 
on the volume of the residual liver. Although several 
NASH models, such as the methionine- and choline-
deficient (MCD) model and high-fat (HF) diet model, 
have been reported, few models completely reflect 
the histopathology and pathophysiology of NASH in 
humans[26,27]. The disadvantages of the MCD model 
are that MCD mice exhibit severe body weight loss 
with the absence of insulin resistance. The HF diet 
model is not suitable for researching the pathogenesis 
of NASH because a longer period of time is required 
for presentation of NASH characteristics, and hepatic 
fibrosis is weaker than that observed in human NASH. 
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Thus, the ability of regeneration in the NASH liver has 
not yet been assessed in an experimental model. For 
the same reasons, the effect of hepatectomy on NASH 
liver has not been clearly elucidated in previous reports. 
We established a novel experimental NASH model that 
indicates similar histopathological and pathophysiological 
characteristics as those of NASH in humans[28]. The aim 
of this study was to investigate whether a difference in 
liver resection volume in a novel NASH model influences 
surgical outcomes.

MATERIALS AND METHODS
Animals
Six-week-old male C57BL/6J mice were obtained from 
Charles River Laboratories Japan, Inc. (Kanagawa, 
Japan) and were acclimated for one week before the 
start of the experiment. Mice were maintained under a 
12-h light-dark cycle and had free access to standard 
chow and tap water. The animal experiments were 
performed in a humane manner after receiving approval 
from the Institutional University Experiment Committee 
of the University of Tsukuba and in accordance with the 
Regulations for Animal Experiments at the university and 
Fundamental Guidelines for Proper Conduct of Animal 
Experiment and Related Activities in Academic Research 
Institutions under the jurisdiction of the Ministry of 
Education, Culture, Sports, Science, and Technology.

NASH mouse model protocol
NASH mice were fed an HF diet (60 kcal% fat; D12492, 
Research Diets, Inc., New Brunswick, NJ, United States) 
for 4 wk, intraperitoneally injected with CCl4 (Wako 
Pure Chemical Industries, Ltd., Osaka, Japan) twice a 
week for the final 2 wk, and intraperitoneally injected 
with T0901317 (Cayman Chemical Co., Ann Arbor, MI, 
United States) solubilized in DMSO for the final 5 d. The 
CCl4 dose was 0.1 mL/kg, and the T0901317 dose was 
2.5 mg/kg[28].

Surgical procedure and anesthesia
We categorized the mice into three groups: (1) 70% 
partial hepatectomy (PH) of normal liver mice as the 
control; (2) 30% PH of NASH liver group; and (3) 
70% PH of NASH liver group. The normal liver mice 
have been not added any reagent and the histology 
and pathology have been not change. In 30% PH and 
70% PH of the NASH liver group, liver specimens were 
evaluated by an experienced pathologist in a blinded 
fashion, the histology and pathology finding in the NASH 
severity of each groups have resulted in no difference 
in the NAFLD activity scores[28]. All mice received the 
hepatectomy 48 h after the final administration of CCl4 
and T0901317. In the 70% PH groups, the left and 
middle lobes of the liver were removed by using a single 
ligature, whereas only the left lobe was removed in the 
30% PH group[29]. Hepatectomy was performed under 
ether anesthesia.

Liver tissue collection
Blood samples were collected from the orbital capillary 
and centrifuged at 3000 rpm for 10 min to isolate the 
serum. Each sample was stored at -80 ℃ until analysis. 
Mice of each group were sacrificed at 6 h and 12 h 
after PH. Then, the liver was quickly removed and 
weighed. The liver specimen was immediately fixed in 
10% neutral-buffered formalin for further histological 
examination. Survival rates were evaluated in the 
NASH 70% PH group (n = 32) and NASH 30% PH 
group (n = 27).

Histology and immunohistochemistry
Fixed liver tissues were processed and embedded in 
paraffin using standard methods. Then, liver tissues 
were sliced into 2-μm thick paraffin sections and stained 
with hematoxylin and eosin (HE) to evaluate necrosis. 
Necrotic areas were detected by morphological features, 
and the ratio of necrosis/total area was calculated in 
20 random intralobular fields. Liver proliferation was 
assessed by Ki-67 staining. Apoptosis was detected 
by TUNEL staining. TUNEL staining and Ki-67 staining 
were performed using an antibody kit (New History 
Science Laboratory Co., Ltd., Tokyo, Japan). The ratio of 
positive/total hepatocytes was calculated in 20 random 
intralobular fields.

Immunoblotting
Liver tissue extracts were prepared from specimens 
that were frozen in liquid nitrogen. We evaluated 
the expression of signaling proteins involved in liver 
regeneration, including AKT, STAT3, and ERK1/2, by 
western blotting. We compared the expression levels of 
these proteins in each group 6 h after PH. Immunoblots 
were developed using polyclonal antibodies against 
phospho-AKT (9271), total AKT (9272), phospho-STAT3 
(9131), total STAT3 (9132), phospho-ERK1/2 (9101), 
and total ERK1/2 (9102) (Cell Signaling Technology, 
Beverly, MA, United States).

Gene expression analysis
Liver tissue samples were freshly collected and 
immediately frozen at -30 ℃ until investigation. Frozen 
liver samples were homogenized, and total RNA was 
isolated from whole cells using a NucleoSpin® RNA kit 
(Takara Bio, Inc., Otsu, Japan). RNA concentrations were 
determined by measuring the absorbance at 260/280 
nm with a NanoDrop Spectrophotometer (Thermo 
Fisher Scientific, Inc., Wilmington, DE, United States). 
Synthesis of complementary DNA was performed using 
AMV Reverse Transcriptase (Promega, Corp., Madison, 
WI, United States) and random primers (Takara Bio, 
Inc., Otsu, Japan). Briefly, a mixture of 1 mmol/L dNTPs 
(Fermentas Life Sciences, Inc., Burlington, ON, Canada), 
0.025 μg/mL random primers, 0.25 U/mL reverse 
transcriptase, and 500 ng of total RNA was incubated at 
30 ℃ for 10 min, 37 ℃ for 60 min, 95 ℃ for 5 min and 
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and the resulting images were scanned using a 
GeneAtlas Imaging Station (Affymetrix). Probe-level 
analysis, including background subtraction and quantile 
normalization, was conducted using a robust multiarray 
average algorithm (RMA) using Affymetrix Expression 
Console Software 1.4 (Affymetrix). The gene expression 
profile of the novel NASH model was compared with the 
HF group. Genes exhibiting differences in expression 
with an increase of greater than 1.4-fold and a decrease 
of less than 0.65-fold were classified as differentially 
expressed genes[28].

Statistical analysis
All data are expressed as the mean ± SD. Statistical 
analyses were conducted using PRISM. Mann-Whitney 
U test was used for comparing between two groups. 
P-values less than 0.05 were considered significant. 
The Kaplan-Meier estimator was used for survival rate 
evaluation.

RESULTS
Survival rate
The survival rate of the NASH 70% PH group was 
significantly lower than that of the NASH 30% PH group 
(P < 0.01) (Figure 1), and 10 of 32 mice in the NASH 
70% PH group died within 48 h after PH. On the other 
hand, all mice in the NASH 30% PH group survived.

Liver function
At 6 and 12 h after PH, serum aspartate aminotrans 
ferase (AST) and alanine aminotransferase (ALT) levels 
were high in all three groups. AST levels in the NASH 
70% PH group were significantly higher than the levels 
in the other two groups (AST: P < 0.05). Total bilirubin 
(T-Bil) in the normal liver and NASH 30% PH groups did 
not change, but the values only significantly increased in 
the NASH 70% PH group (P < 0.01) (Table 1).

Liver proliferation assay
Many more Ki-67-positive hepatocytes were observed 
in the NASH 30% PH group than in the preoperative 
NASH liver (P < 0.05). On the other hand, fewer Ki-
67-positive cells were noted in the NASH 70% PH 
group than in the preoperative NASH liver (P < 0.01). 
Additionally, significantly fewer Ki-67-positive cells were 
noted in the 70% PH group than in the NASH 30% PH 

4 ℃ before storage at -80 ℃.
RT-PCR primers were designed using Primer Express 

Software for Real-time PCR ver. 3.0 (Applied Biosystems, 
Inc., Foster City, CA, United States) based on the sequ-
ences available in GenBank. Primers were purchased 
from Takara Bio, Inc. (Otsu, Japan). GADD45A primer 
sequences were 5’-CCTGCACTGTGTGCTGGTGA-3’ and 
5’-CCACTGATCCATGTAGCGACTTTC-3’. PDE4B primer 
sequences were 5’-CCCATCAGCAGTTAAGGACAGGA-3’ 
and 5’-TGGGCAGAACTAGGGACTCAAGA-3’.

Glyceraldehyde-3-phosphate dehydrogenase 
(GAPDH) was used as an endogenous control. RT-
PCR was performed using SYBR-Green Real-Time PCR 
Master Mix-Plus (Toyobo Co., Ltd., Osaka, Japan) and an 
Applied Biosystems 7300 real-time PCR system (Applied 
Biosystems, Inc., Foster City, CA, United States) as 
recommended by the manufacturer’s instructions[28].

Microarray analysis
DNA microarray analysis was conducted on RNA samples 
isolated from liver tissue in the control group and novel 
NASH model group. Labeled cRNA was synthesized 
from 100 ng of total RNA using a GeneChip® 3’ IVT 
Plus Reagent Kit (Affymetrix, Inc., Santa Clara, CA, 
United States) according to the manufacturer’s protocol. 
Fragmented and labeled cRNA (7.5 μg) was hybridized to 
an Affymetrix Mouse MG-430 PM Array Strip (Affymetrix) 
for 16 h at 45 ℃. The strips were washed and stained 
using a GeneAtlas Fluidics Station 400 (Affymetrix), 
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Figure 1  Survival rate after partial hepatectomy. Survival rates of the 30% 
PH and 70% PH groups were evaluated by the Kaplan-Meier method. All mice 
in the 30% PH group survived. In contrast, 80% of the NASH 70% PH group 
died by 20 d. n = 27 in NASH 30% PH group; n = 32 in NASH 70% PH group. 
bP < 0.01. PH: partial hepatectomy; NASH: nonalcoholic steatohepatitis.

Data are presented as the mean ± SD (n = 5-7). aP < 0.05, bP < 0.01 vs other groups. NASH: Nonalcoholic steatohepatitis; ALT: Alanine aminotransferase; 
AST: Aspartate aminotransferase; PH: Partial hepatectomy; T-Bil: Total bilirubin; IL-6: Interleukin-6. 

Table 1  Serum parameters of normal liver and nonalcoholic steatohepatitis groups after partial hepatectomy

6 h after PH 12 h after PH

AST ALT T-Bil IL-6 AST ALT T-Bil IL-6
Normal 70%PH 2343.3 ± 6160.4 1828.3 ± 990.4 1.43 ± 0.5 2036.0 ± 1470.9 2976.7 ± 1395.7 2053.3 ± 886.2 2.0 ± 0.9 731.5 ± 483.7
NASH 30%PH 1610.0 ± 3700.6 1507.1 ± 563.5 0.76 ± 0.2 1511.5 ± 284.8 1841.3 ± 619.1 1522.9 ± 537.9 0.9 ± 0.7 692.8 ± 211.1
NASH 70%PH 3064.3 ± 1289.8a 2422.9 ± 1194.8 2.57 ± 1.36b 3026.2 ± 2127.5 4067.5 ± 2059.2a 2403.8 ± 1111.8 3.85 ± 0.96b 987.9 ± 550.7
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group (P < 0.01) (Figure 2).

Liver regeneration signal
In the normal 70% PH liver group, i.e., the control group, 
expression of AKT, STAT3, and ERK1/2 phosphorylation 
was observed. In the both NASH 30% PH and 70% 
groups, phosphorylation of AKT, STAT3, and ERK1/2 was 
significantly lower than in the control group (P < 0.01) 
(Figure 3).

Histological assay
The number of TUNEL-positive cells in the NASH 70% 
PH group was significantly higher than in the other 
groups (P < 0.01). The TUNEL-positive rate of normal 
liver was significantly higher than that in the NASH 30% 
PH group (P < 0.01) (Figure 4A). The area of necrosis 
in the NASH 70% PH group was significantly larger than 
that in the NASH 30% PH group (P < 0.01). In both 
NASH groups, the necrotic area was significantly larger 
than that in the normal liver group (P < 0.01) (Figure 
4B).

Microarray assay
mRNAs in the NASH 70% PH group with the highest 
fold-change (> 1.4 or < 0.70) in expression and with 
P-values <0.05 were selected and compared with 
those in the NASH 30% PH group (Table 2). PDE4B, 
SLC20A1, CXADR, GADD45A, ZSWIM6, and C15orf39 
were expressed at higher levels in the NASH 70% PH 
group. PDE4B and GADD45A are associated with cell 
cycle arrest and apoptosis. Using qPCR, GADD45A and 
PDE4B mRNA expression was significantly different 

between the two groups (GADD45A: P < 0.01, PDE4B: 
P < 0.05) (Figure 5).

DISCUSSION
NAFLD/NASH is a common hepatic disorder that causes 
HCC[1-4]. Recently, the population of patients with NASH 
and NASH-related HCC has been increasing[1,2,10]. 
Hepatectomy is the first-line treatment for patients with 
HCC[21]. After hepatectomy, the incidences of mortality 
and morbidity are dependent on the volume and 
function of the residual liver[17-20]. Previous reports have 
demonstrated that steatosis impaired liver regeneration 
and caused liver dysfunction after hepatectomy[11,12]. 
NASH has been proposed to cause liver failure rather 
than steatosis because NASH presents with not only 
steatosis but also fibrosis, inflammation, and insulin 
resistance. However, regarding NASH animal models, 
few models completely reflect the histopathology and 
pathophysiology of NASH in humans. Therefore, the 
effect on the residual liver under NASH conditions has 
not been appropriately evaluated[26,27]. In our previous 
study, we established a novel experimental NASH model 
that exhibited histopathological and pathophysiological 
findings similar to that of NASH in humans[28]. In this 
study, new NASH mice were received 30% PH or 70% 
PH, and the influence of liver resection volume on the 
residual liver function in NASH liver was investigated. 
Our results indicated that the survival rate after PH 
in NASH liver strongly correlated with resected liver 
volume and was attributed to the proliferative ability 
and the rates of apoptosis and necrosis compared 

Normal 70% PH-6h                   NASH 30% PH-6h                    NASH 70% PH-6h

Ki67-positive rate

Normal 70% PH NASH 30% PH NASH 70% PH
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Figure 2  Ki-67 staining and proliferation score. Proliferation was evaluated by Ki-67 staining. We compared preoperative nonalcoholic steatohepatitis (NASH) groups 
with NASH 30% PH and NASH 70% PH groups 6 h after PH. Ratios of Ki-67-positive/total hepatocytes were calculated. Signiýcantly fewer Ki-67-positive cells were 
noted in the 70% PH group than in the NASH 30% PH group. Ratios (%) are expressed as the mean ± SD. n = 2 per groups, 10 ýelds per sample. aP < 0.05; bP < 0.01. 
Scale bar: 100 μm. PH: partial hepatectomy; NASH: nonalcoholic steatohepatitis.
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with those in the normal liver. Even 30% of PH NASH 
residual liver could not offer sufficient liver function, and 
the volume of the functional residual liver significantly 
decreased due to less cell proliferation, apoptosis and 
necrosis after hepatectomy. Based on these results, we 
hypothesized that the residual liver volume that can 
support sufficient function in a normal liver could not 
maintain liver function in NASH. Our results suggested 
that to avoid liver dysfunction after hepatectomy in 
NASH, resection volume should be carefully determined 
and not the same as that in patients with normal liver.

In patients with PH, fatty liver causes a high rate of 
mortality and morbidity compared with normal liver[11]. 
In NAFLD patients, postoperative complications also 
increase in a manner that is similar to patients with fatty 
liver[12,30]. In animal models with PH, the survival rate of 
a fatty liver model decreased compared with a normal 
liver even with the same residual volume[13,15,16,31]. 
In this study, the survival rate after PH remarkably 
decreased in the NASH 70% PH group, and 30% of 
the deaths occurred within the first 48 h after PH. This 
result supported the previous reports, i.e., outcome 
of PH significantly influences the survival rate of fatty 
mice[13,15,16,31]. In NASH liver, it was assumed that other 
characteristics, i.e., fibrosis, inflammation, and insulin 
resistance, caused increased liver function deterioration. 
It was hypothesized that the residual liver volume of 
the small group, i.e., 30% of residual volume of the 

NASH liver, could not maintain sufficient liver function for 
survival after PH.

Liver regeneration occurred in cases with acute injury 
and/or liver resection[19]. In normal liver after PH, cell 
proliferation was observed in a small residual liver but 
not in a large residual liver[24]. Large residual livers have 
sufficient volume to maintain liver function, whereas 
small residual livers are unable to maintain liver function. 
Therefore, promotion of cell proliferation occurs in the 
small residual liver[24]. Ki-67 protein is expressed during 
the G1, G2, and S phases of cell division[32,33]. In this 
study, the number of Ki-67-positive cells in the residual 
liver in the 30% PH of NASH liver group was higher than 
in the preoperative NASH liver. On the other hand, the 
number of Ki-67-positive cells in the residual liver of the 
70% PH of NASH liver group was significantly decreased. 
These results suggested that NASH hepatocytes would 
not have insufficient proliferation ability after large 
amount of PH, such as 70%.

Signaling pathways of liver regeneration are pro-
moted by cytokines, i.e., interleukin (IL)-6 and tumor 
necrosis factor (TNF)-alpha, and growth factors[20]. The 
expression of AKT, STAT3, and ERK1/2 protein play an 
important role in liver regeneration, and the IL-6/STAT3 
signaling pathway accelerates liver proliferation[16,24,34-36]. 
STAT3 was expressed at high levels in a liver with 
steatosis; however, these phenomena did not induce 
liver regeneration[37]. The NASH liver received continuous 

Figure 3  Protein assay. Expression of phosphorylated (A) Akt, (B) STAT3, and (C) ERK1/2 in normal and nonalcoholic steatohepatitis liver groups 6 h after PH. 
Expression levels were detected by western blot analysis. Ratios of densitometry were calculated by each score/score of control 70% PH (D). Data are expressed as 
the mean ± SD. n = 5-7 per groups. bP < 0.01 vs other groups.
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Although we need to confirm these findings in future 
studies, the consistent decrease in liver proliferation 
exists, especially in the 70% PH of NASH liver group, i.e., 
a large hepatectomy volume, which reduces the survival 
rate.

In general, the stress of liver resection promotes 
apoptosis in the residual liver[13,39], and liver damage 
after hepatectomy is considered to be the result of 
apoptosis to some degree[38]. The degree of liver 
damage also depends on the extent of the liver resection 
volume[37,39]. The STAT3 and AKT signaling pathways 
not only promote liver regeneration but also inhibit 
apoptosis[38]. In this study, STAT3 and AKT expression 
was significantly suppressed, and the number of TUNEL-
positive cells was higher in the NASH PH groups than in 
the control. These results suggest that the difference in 
the expression of regenerative signaling proteins affected 
the degree of apoptosis. Resection of a large volume 
of the liver also enhanced necrosis[38]. In this study, 
microarray analysis revealed GADD45A upregulation in 
the NASH 70% PH group. GADD45A promotes apoptosis 
and cell cycle arrest[13]. The differences in the survival 
rate between 30% or 70% PH in the NASH groups are 
inversely proportional to the incidence of Ki-67-positive 
cells, apoptosis, and necrosis. GADD45A upregulation 
correlates with the differences between the NASH groups 
and the low survival rate in small residual NASH liver 
after 70% PH.

In conclusion, residual NASH liver dysfunction after 
hepatectomy is attributed to a reduction in liver regene-
ration and cell proliferation. These findings suggest 
that the resection volume is a more limiting factor in 
patients with NASH than in those with a normal liver. 
Regarding liver surgery, the risk of complications for 
patients diagnosed with NASH by liver biopsy should 
be determined before hepatectomy. Further studies are 
needed to clarify therapeutic agents for NASH using our 
novel NASH model.

ARTICLE HIGHLIGHTS
Research background
The population of patients with nonalcoholic steatohepatitis (NASH) and 
NASH-related hepatocellular carcinoma (HCC) has been increasing. However, 

few animal models fully reflect both the histopathology and pathophysiology 
of NASH in humans, therefore, the metabolism of the residual liver after a 
hepatectomy with NASH has not been clarified. We succeeded to establish 
a novel experimental NASH model that had same characteristics of 
histopathology and pathophysiology of NASH in humans.

Research motivation
In NASH, continuous inþammation contributes to HCC. The cause of HCC is 
frequently infection with hepatitis B virus and hepatitis C virus (HCV). New 
antiviral medications for hepatitis are currently being used in clinics; therefore, 
the number of patients with virus-related HCC is expected to decrease in the 
future. By contrast, the number of patients with NASH-related HCC has been 
increasing recently, and this trend is expected to continue because no effective 
treatments are available

Research objectives
The aim of this study was to investigate whether a difference in liver resection 
volume in a novel NASH model inþuences surgical outcomes.

Research methods
To establishment of a NASH model, mice were fed a high-fat diet for 4 wk, 
administered CCl4 for the last 2 wk and administered T0901317 for the last 5 
d. These mice were divided into two groups: A 30% partial hepatectomy (PH) 
of NASH liver group and a 70% PH of NASH liver group (control). Evaluate the 
survival rate, regeneration, apoptosis, necrosis and DNA expression level after 
PH.

Research results
In the 70% PH of NASH group, the survival rate was signiýcantly decreased 
compared with that in the control and 30% PH of NASH groups (P < 0.01). 10 of 
32 mice in the NASH 70% PH group died within 48 h after PH. serum aspartate 
aminotransferase (AST) levels and total bilirubin (T-Bil) in the NASH 70% PH 
group were signiýcantly higher than the levels in the other two groups (AST: P 
< 0.05, T-Bil: P < 0.01). In both PH of NASH groups, signaling proteins involved 
in regeneration were expressed at lower levels than those in the control group 
(P < 0.01). The 70% PH of NASH group also exhibited a lower number of Ki-67-
positive cells and higher rates of apoptosis and necrosis than the NASH 30% 
PH group (P < 0.01). In addition, DNA microarray assays showed differences in 
gene expression associated with cell cycle arrest and apoptosis.

Research conclusions
The residual NASH liver dysfunction after hepatectomy is attributed to a 
reduction in liver regeneration and cell proliferation. A larger residual volume is 
required to maintain liver functions in mice with NASH.

Research perspectives
This study suggests that the resection volume is a more limiting factor in 
patients with NASH than in those with a normal liver. Regarding liver surgery, 
the risk of complications for patients diagnosed with NASH by liver biopsy 
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Figure 5  Gene expression of microarray. GADD45A and PDE4B expression correlated with the cell cycle. RT-PCR demonstrated a signiýcant difference between 
the groups. Data are expressed as the mean ± SD. n = 5-7 per groups. aP < 0.05; bP < 0.01. PH: partial hepatectomy; NASH: nonalcoholic steatohepatitis.
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should be determined before hepatectomy. Further studies are needed to clarify 
therapeutic agents for NASH using our novel NASH model.
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