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The recently discovered spin Hall magnetoresistance (SMR) effect is a useful means
to obtain information on the magnetization process at the interface between a non-
magnetic metal and ferromagnetic insulators. We report the SMR measurements
at the interface between platinum and cobalt ferrite thin films for samples with
two different preferential directions of magnetization (out-of-plane and in-plane).
The directional difference of the magnetic easy axis does not seem to influence
the value of SMR. © 2017 Author(s). All article content, except where other-
wise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). [http://dx.doi.org/10.1063/1.4978582]

Spintronics is attracting many researchers from academia as well as industry.1,2 In order to control
the spin current, we have to develop techniques for the generation, transportation, and detection of the
spin current. Among the many phenomena related to spintronics, the interface spin physics between
magnetic and nonmagnetic materials is a field that is being actively researched. For example, spin
pumping is a technique used to generate spin current through the dynamics of magnetization.3,4

The spin Seebeck effect is a phenomenon used to convert thermal current to spin current.5,6 Both
phenomena originate from the spin Hall Effect (SHE) and can often be observed in a bilayer of non-
magnetic metal (NM) and ferromagnetic metal (FM), and even in NM/ferromagnetic insulator (FMI)
layers. SHE is a transport phenomenon used to convert the charge current to spin current through
spin-orbit coupling, and the inverse effect (ISHE) is simply the opposite effect, which is useful for
spin current detection.7,8 Both the effects are expected to be larger in metals with a strong spin–orbit
interaction such as Pt and Ta.9

A new type of magnetoresistance (MR) related to SHE was discovered in a Pt/YIG bilayer system
and was named spin Hall magnetoresistance (SMR).10,11 In the case of NM/FMI, which is a typical
SMR system, the charge current flowing through the NM layer produces spin current via SHE, and
the spins accumulate at the interface between the NM and FMI. Then, if the magnetization of FMI
at the interface is parallel to the spins, the spin current will be reflected backwards. This backflow of
spin current produces charge current via ISHE. On the other hand, the backflow will be suppressed if
the magnetization of FMI is normal to the spin accumulation because part of the accumulated spins
is transferred into the FMI layer through the interface. Therefore, the charge current via ISHE will
decrease. The difference of these two conditions appears as a change of electrical conductance in the
NM layer, depending on the magnetization orientations of the FMI layer. While the application of
the conventional magnetometry technique to the hysteresis loops provides the magnetic signal of an
entire sample, SMR can be a sensitive probe for interface magnetism.12

Many researchers have been studying SMR since its discovery.13–16 Most of the experimental
studies of SMR focus on a bilayer system with YIG as the FMI layer; YIG is one of the ideal FMI
materials because it exhibits a very small magnetic anisotropy and has a significantly low damping
factor. On the other hand, the physics of SMR in FMI with large magnetic anisotropy has not been
investigated in detail; therefore, it is not clear how the magnetic anisotropy affects the transport of
the spin angular momentum at the interface between NM/FMI.
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Among many ferromagnetic oxides, cobalt ferrite (CFO) shows a significantly large magnetoe-
lastic effect.17,18 The easy axis can be varied between the out-of-plane and in-plane directions by
changing the lattice distortion if CFO is in a film form. A previous report revealed that epitaxial CFO
on MgO (001) shows a large perpendicular magnetic anisotropy of Ku of over 1 MJ/m3 under a tensile
strain.19 Likewise, the in-plane magnetic anisotropy can be introduced by applying a compressive
strain. The SMR at the interface between Pt and CFO has previously been investigated, but they
did not focus on the magnetic anisotropy.20,21 In this study, we report the SMR effect at the inter-
face between Pt and Co0.75Fe2.25O4 (CFO) (001) epitaxial thin films with two different preferential
directions of magnetization (out-of-plane and in-plane) by controlling the magnetic anisotropy.

The CFO (001) thin films with two different preferential magnetic axes were grown on a MgO
(001) substrate (a = 0.421 (2 a = 0.842) nm) and a MgAl2O4 (MAO) (001) substrate (a = 0.808 nm)
by a reactive RF magnetron sputtering technique. We consider the lattice misfits depending on the
substrates and conclude that the CFO (001) films grown on MgO (MAO) suffer from tensile (com-
pressive) stress and exhibit a magnetically preferential axis parallel to the out-of-plane (in-plane)
direction. Both the substrates were cleaned in ethanol and acetone by ultrasonic treatment for 5 min.
After that, they were set into the sputtering chamber and heated to 773 K for 1 hour. A sputtering target
of Fe-Co (Fe:Co = 3:1) alloy with a diameter of 2 inches was used. Ar and O were flowed as process
gases. The flow rates (partial pressures) were 30 sccm (�0.5 Pa) and 6 sccm (�0.1 Pa) for Ar and
O, respectively. The temperatures of the substrates were maintained at 773 K during the sputtering
processes. The RF power was maintained at 100 W. After the CFO thin films were deposited, Pt Hall
bars (length: l = 1000 �m, width: w = 300 �m, thickness: t = 7 nm) were fabricated on the CFO film
with a metal mask by the DC sputtering technique at room temperature (RT). Ar was flowed at 30
sccm (�0.5 Pa) and the DC power was maintained at 20 W during the deposition.

The crystallinity and thickness of CFO thin films were evaluated by reflection high-energy elec-
tron diffraction (RHEED) and X-ray reflectivity. The MH-loops (-7 T< �0H < 7 T) were measured
by a magnetometer (Quantum Design, MPMS3) at RT. Angle dependent MR (ADMR, �0H = 9 T)
and field dependent MR (FDMR, -9 T< �0H < 9 T) measurements were also performed at RT using
the Physical Property Measurement System (Quantum Design).

The typical streak patterns of a spinel structure were observed by RHEED of CFO surfaces,
which indicated the epitaxial growth of CFO thin films. The distance between the streaks of CFO
films were almost half that of the MAO substrate despite the same crystal structure. This phenomenon
was also observed while growing epitaxial Fe3O4 thin films on MgO (001) substrates.22,23

Figure 1 shows the MH-curves of CFO on MgO (001) and on MAO (001). Here, we supposed
that the magnetization saturates over 6 T to subtract the background signal. The CFO film grown on
MgO (MAO) exhibits perpendicular (in-plane) magnetic anisotropy, and the saturation magnetization
is comparable to that of the bulk.

FIG. 1. MH-loops of (a) CFO/MgO and (b) CFO/MAO at 300K. Out-of-plane and in-plane magnetic anisotropy were
confirmed for CFO/MgO and CFO/MAO.
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The effective uniaxial magnetic anisotropy constant Ku evaluated by magneto-torque measure-
ments at RT, was Ku � 1 MJ/m3 and -5.2 MJ/m3 for CFO/MgO and CFO/MAO, respectively.17,24

Those values of Ku were extracted from the high-field torque data using Miyajima’s analysis.25 We
note that the easy axis is defined as perpendicular to the film; therefore, a positive value of Ku means
a perpendicular magnetization film.

The ADMR results are shown in Fig. 2. The SMR ratios for Pt/CFO/MgO (001) and Pt/CFO/MAO
(001) are 0.074% and 0.073%, respectively. The charge current flows along the x-axis, and the films
lie in the x-y plane in our configuration. The magnetic field (�0H = 9 T) was rotated in the x-y, y-
z, and z-x plane, which are termed �-scan, �-scan, and -scan, respectively. The temperature was
maintained at 300 K. According to the theory of SMR,11 the longitudinal resistivity �long = RL � t � w=l
can be expressed as

�long � �0 + �1

�
1 � my

2
�

, (1)

where �0 is a spin-independent term of the resistivity, �1 indicates the component of SMR, RL is the
experimentally obtained longitudinal resistance, and m = (mx, my, mz) represents the direction cosine
of the magnetization for each axis.

Since the estimated anisotropy field of CFO/MAO (001) is greater than 20 T, the SMR ratio in
the �-scan (Fig. 2(e)) is possibly underestimated. One can see no apparent MR in -scans, where the
geometry anisotropic magnetoresistance (AMR) can be observed in Fig. 2(c, f). This means that the
MR observed in �- and �-scans should be explained by the SMR model rather than by AMR. The
magnitude of the SMR is expressed by the following equation:11

�1

�0
� �2

s

2�2
Pt

�Pt tPt
Gr tanh2 tPt

2�Pt

1 +
�Pt
�Pt

Grcoth tPt
�Pt

. (2)

Here, �s, �Pt , tPt ,�Pt , and Gr stand for the spin Hall angle, spin diffusion length, film thickness, Pt
layer conductivity, and the real part of the spin mixing conductance at the interface, respectively.

Using plausible values of �s = 0.056 and �Pt = 3.4nm for Pt, used in the previous research of
which the conductivity of Pt layer is of the same order as our result (2.8 � 3.2 � 106 (
 -1 �m-1)),26 the
values of Gr are calculated to be 20.8 � 1014 
�1 � m�2 and 21.1 � 1014 
�1 � m�2 for Pt/CFO/MgO
and Pt/CFO/MAO, respectively. These are an order of magnitude larger than the previously reported
value for the Pt/CFO system if the estimation of �s and �Pt is appropriate.20,27 Additionally, Gr could
possibly be affected by the magnetic anisotropy energy strength and the preferential axis direction,

FIG. 2. Angle dependent MR (T = 300K, �0H = 9 T) for Pt/CFO/MgO (a-c) and Pt/CFO/MAO (d-f). The schematic con-
figuration is shown above, where the charge current flows along the x-axis and the longitudinal resistance RL represents the
resistance along the charge current direction. The typical angular dependence for SMR was confirmed for both samples.
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FIG. 3. Field dependent MR for Pt/CFO/MgO (a) and Pt/CFO/MAO (b) at 300K. The inset in Fig. 3(a) shows the magnetic
field direction. The longitudinal resistance RL represents the resistance along Hx. The Hanle MR signal was compared to RL

(Hz) curve of Pt/CFO/MAO as the base resistance RL0 is 145.068 
 and parabolic purple line is the fitting curve for the HMR
signal. In addition, an AHE-like signal was detected for Pt/CFO/MgO in the Hall geometry (d). The intercept of blue line at
the vertical axis represents �2 term (d).

because magnon gaps are dependent on those parameters. However, we cannot find any significant
difference between the two highly anisotropic CFO samples with a different easy axis.

The field-dependent values of RL for both samples are shown in Fig. 3. The variations in RL for
all three directions are qualitatively consistent with the magnetic anisotropy shown in the MH-loops.
We note that RL is dominated not only by SMR but also by the Hanle MR (HMR) arising from the
dephasing of spin accumulation by the external field.28 In the case of FDMR of Pt/CFO/MAO (001)
shown in Fig. 3(b), one can see the asymmetry between RL (Hx) and RL (Hy). The inverted RL (Hy)
with respect to RL (0) is plotted as a yellow curve. One can see the difference between RL (Hx) and
the inverted RL (Hy). This difference can be attributed to the Hanle effect and the estimated MR ratio
is 7 � 10-5 between �0H = 0 and 9 T. In Fig. 3(c), RL (Hz) and the difference of RL (Hx) and the
inverted RL (Hy) are plotted. The resistance corresponding to HMR exhibits less variation than the
RL (Hz) curve, suggesting that RL (Hz) was determined by not only HMR but also SMR. In the case
of Pt/CFO/MgO (001) shown in Fig. 3(a), both RL (Hx) and RL (Hz) exhibit positive MR even in the
high field region, which mainly originates from HMR.

Finally, we would like to discuss the imaginary part of the spin-mixing conductance Gi. The
transverse resistivity of Pt/CFO/MgO was obtained under Hall geometry. The non-zero value of the
transverse resistivity at zero field can be seen in Fig. 3(d), which is similar to the coexistence situation
of the anomalous Hall effect (AHE) on the ordinary Hall effect. The transverse resistivity driven by
the AHE-like phenomenon is expressed as

�SHAHE
trans � ��2mz. (3)

�2 is the contribution of the imaginary part of the spin mixing conductance Gi
11 and corresponds to

the intercept of the blue line at the vertical axis in Fig. 3(d). The estimated Gi is 3.9 � 0.3 � 1014 
�1

� m�2. Therefore, the ratio of Gi/Gr = 0.19, which is larger than the values in the previous studies of
Pt/YIG.13,14

In summary, we showed the SMR at the interface between Pt and CFO (001) thin films with two
types of magnetic anisotropy (out-of-plane and in-plane). The MH-loop of CFO/MgO (001) indicated
that the preferential axis is out-of-plane while that of CFO/MAO (001) is in-plane. The SMR ratios
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of these samples are nearly the same, meaning that the strong anisotropy does not directly affect
the SMR. The FDMR of Pt/CFO on MgO and MAO indicated that HMR appears as a comparable
contribution to SMR. In this way, our results suggest that the SMR can be a probe to detect the
magnetic anisotropy at the surface of FMI. Gi was approximately ten times smaller than Gr , and this
indicated that the perpendicular magnetic anisotropy does not have any notable influence on Gi.
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H. Jaffrès, Phys. Rev. Lett. 112, 106602 (2014).
27 E. Sagasta, Y. Omori, M. Isasa, M. Gradhand, L. E. Hueso, Y. Niimi, and Y. Otani, Phys. Rev. B 94, 060412 (2016).
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