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Abstract: This paper is concerned with the embedding constant of the Sobolev type inequality
for fractional derivatives on Ω ⊂ R

N (N ∈ N). The constant is explicitly described using the
analytic semigroup over L2(Ω) generated by the Laplace operator. Some numerical examples
of estimating the embedding constant are also provided.
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1. Introduction
Let Ω be a domain in R

N (N ∈ N). For p ≥ 1, we denote the usual Lebesgue space by

Lp(Ω) :=

⎧⎨
⎩
{
f : Ω → R | ∫Ω |f(x)|pdx <∞} (1 ≤ p <∞),

{f : Ω → R | ess supx∈Ω |f(x)| <∞} (p = ∞)

with the norm

‖f‖Lp(Ω) :=

⎧⎨
⎩
(∫

Ω |f(x)|pdx) 1
p (1 ≤ p <∞),

ess supx∈Ω |f(x)| (p = ∞),

respectively. Let a function space

H1
0 (Ω) :=

{
u ∈ L2(Ω) | ∇u ∈ (L2(Ω))2 and u = 0 on x ∈ ∂Ω in the trace sense.

}
,

where the L2 inner product is denoted by (u, v)L2(Ω) =
∫
Ω u(x)v(x)dx. Let A : D(A) → L2(Ω) be an

operator defined by

(Au, v)L2(Ω) = (∇u,∇v)L2(Ω), ∀v ∈ H1
0 (Ω), (1)

∗Present affiliation: Faculty of Engineering, Information and Systems, University of Tsukuba

386

Nonlinear Theory and Its Applications, IEICE, vol. 7, no. 3, pp. 386–394 c©IEICE 2016 DOI: 10.1587/nolta.7.386



where D(A) :=
{
u ∈ H1

0 (Ω) | Au ∈ L2(Ω)
}

denotes the domain of A. For i ∈ N, let λi be an eigen-
value1 of A satisfying 0 < λ1 ≤ λ2 ≤ · · · . A function ψi ∈ D(A) denotes an eigenfunction of A
corresponding to λi satisfying (ψi, ψj)L2(Ω) = δi,j , where δi,j is Kronecker’s delta2. For u ∈ L2(Ω),
we express u =

∑∞
j=1 cjψj using the spectral decomposition, where ci = (u, ψi)L2(Ω). Then, since

A : D(A) → L2(Ω) is a positive definite and self-adjoint operator, the fractional power of A is defined
by

Aαu =
∞∑

i=1

λα
i ciψi ∈ L2(Ω) (2)

for 0 ≤ α ≤ 1, where D(Aα) =
{
u =

∑∞
i=1 ciψi ∈ L2(Ω) |∑∞

i=1 λ
2α
i c2i <∞} denotes the domain of Aα.

Let us define a function space3 Xα as Xα = D(Aα) endowed with the norm ‖u‖Xα
= ‖Aαu‖L2(Ω). We

note that X0 = L2(Ω) and X1 = D(A). For two function spaces Y and Z satisfying Y ⊂ Z endowed
with the norm ‖ · ‖Y and ‖ · ‖Z , the constant C > 0 is referred to as the embedding constant from Y

to Z if the following inequality holds:

sup
u∈Y \{0}

‖u‖Z

‖u‖Y
≤ C <∞. (3)

Note that C is independent of all functions in Y . Furthermore, the value of supu∈Y \{0} ‖u‖Z/‖u‖Y

is referred to as the best constant of C.
The main aim of this paper is to obtain the embedding constant Cp,α from Xα to Lp(Ω) such that

‖u‖Lp(Ω) ≤ Cp,α‖u‖Xα
, ∀u ∈ Xα (4)

for α > N(1/2 − 1/p)/2.
The inequality (4) is known as a Sobolev type inequality for fractional derivatives. The existence4

of the embedding constant for (4) has been studied and applied to a branch of partial differential
equations ([2–7], etc.). The embedding constant can be used in many different ways to show the
existence of solutions to partial differential equations. For example, the explicit value of the embedding
constant from H1

0 (Ω) to Lp(Ω) plays an essential role in numerical verification of the existence of
solutions to partial differential equations [8, 9].

If we consider (4) in R
N , the best constant of the embedding constant from Xα to Lp(RN ) has

been shown. The best constant for p = 2N/(N − 2), α = 1/2, and N ≥ 3 was given by Aubin [10]
and Talenti [11]. Later, the best constant for p = 2N/(N − 4α) and 0 < α < N/4 was also obtained
by Lieb [12].

Some embedding constants were obtained for the inequality (4) on the bounded domain, for example,
Nakao and Yamamoto [8] derived the embedding constant for p ∈ (2,∞) and α = 1/2 using the best
constant given by [10, 11]. Xiao and Zhai [13] provided a formula for the embedding constant for
2 ≤ p < ∞ and α = N/4 imposing some assumptions on the function u ∈ Xα by using the Riesz
kernel and the classical Lorentz space.

For a bounded or unbounded domain with a Lipschitz boundary, Plum [9] has proposed a formula
that also provides the embedding constant for α = 1/2. The details of these embedding constants are
sketched in Section 2.

In this paper, we investigate the embedding constant on a bounded domain for α > N(1/2−1/p)/2
using two lemmas, which are presented as in Lemma 1 and Lemma 2, with respect to the analytic
semigroup5 e−tA over L2(Ω) generated by −A. Our main theorem provides a formula for obtaining
the embedding constant.

1As the inverse of the operator A is a compact and self-adjoint operator, the spectral theorem shows that the operator
A has positive discrete spectrum (cf. [1]).

2Namely, λi and ψi satisfy (∇ψi,∇v)L2(Ω) = λi(ψi, v)L2(Ω), ∀v ∈ H1
0 (Ω).

3The operator Aα is a closed and invertible operator. The closeness of Aα implies that Xα endowed with the graph
norm: ‖u‖L2(Ω) + ‖u‖Xα

is a Banach space. Because Aα is invertible, the graph norm is equivalent to the norm ‖u‖Xα

(c.f. [4]).
4The existence of Cp,α for α > N(1/2 − 1/p)/2 has been shown (e.g., [4]).
5We note that the operator −A generates the analytic semigroup e−tA (c.f. [4]).
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Theorem 1. Let Ω ⊂ R
N (N ∈ N) be a bounded domain. The minimum eigenvalue of A is denoted

by λmin. For 2 < p ≤ ∞, let r and α be real values such that 1/r = 1/2 − 1/p and N/(2r) < α ≤ 1,
where 1/p = 0 if p = ∞. Then,

‖u‖Lp(Ω) ≤ Cp,α‖u‖Xα
,∀u ∈ D(Aα), (5)

holds for

Cp,α =
ααΓ

(
α− N

2r

)
(4π)

N
2r ( N

2r )
N
2r (α− N

2r )α− N
2r Γ(α)

λ
−(α− N

2r )
min , (6)

where Γ(x) is the Gamma function defined by Γ(x) =
∫∞
0 tx−1e−tdt for x > 0. Furthermore, if p = 2

and 0 ≤ α ≤ 1, the inequality (5) also holds for

Cp,α = λ−α
min. (7)

Moreover, the following corollary is obtained by combining the best constant described in [12]:

Corollary 1. Let Ω ⊂ R
N (N ∈ N) be a bounded domain. The minimum eigenvalue of A is denoted

by λmin. For 2 < p < ∞, let r and α be real values such that 1/r = 1/2 − 1/p and N/(2r) < α ≤ 1.
We impose u = 0 on ∂Ω in the trace sense on D(Aα). Then,

‖u‖Lp(Ω) ≤ C̃p,α‖u‖Xα
, ∀u ∈ D(Aα),

holds for

C̃p,α =
Γ
(

N
p

) 1
2

Γ(N)
1
r

(4π)
N
2r Γ

(
N(p−1)

p

) 1
2

Γ(N
2 )

1
r

λ
−(α− N

2r )
min ,

where Γ(x) is the Gamma function defined by Γ(x) =
∫∞
0 tx−1e−tdt for x > 0.

This paper is organized as follows: we provide some results of previous studies about embedding
constants in Section 2. We prove Theorem 1 and Corollary 1 in Section 3. We present numerical
examples of estimating the embedding constants including some results of previous studies in Section 4.

2. Some previous studies related to Cp,α

Here we briefly describe previous studies of embedding constants from Xα to Lp(Ω). We note that
X1/2 = H1

0 (Ω) and ‖u‖X1/2 =
√

(∇u,∇u)L2(Ω) hold (cf. [14]). If the domain is R
N (N ∈ N), the

best constant of the Sobolev type inequality was that given by Aubin [10] and Talenti [11]. They
independently derived the following estimate:

Theorem 2 ([10, 11]). For N ≥ 2, let q be a real number satisfying 1 < q < N . Let p = Nq/(N − q).
For any point x = (x1, · · · , xN ) ∈ R

N , we define |x|2 :=
√|x1|2 + · · · + |xN |2. Then,

(∫
RN

|u(x)|pdx
) 1

p

≤ Tp

(∫
RN

|∇u(x)|q2dx
) 1

q

(8)

holds for

Tp = π− 1
2N− 1

q

(
q − 1
N − q

)1− 1
q

(
Γ(1 + N

2 )Γ(N)
Γ(N

q )Γ(1 +N − N
q )

) 1
N

(9)

and Tp is the best constant of (8).

Lieb [12] also obtained the best constant as follows:
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Theorem 3 ([12]). For N ∈ N, let α be a real number satisfying 0 < α < N/4. Then,

‖u‖
L

2N
N−4α (RN )

≤ Eα‖Aαu‖L2(RN ), ∀u ∈ D(Aα) (10)

holds for

Eα = 2−2απ−α

√
Γ(N−4α

2 )
Γ(N+4α

2 )

(
Γ(N)

Γ(N/2)

) 2α
N

(11)

and Eα is the best constant of (10).

If Ω is any bounded domain, some embedding constants were obtained. By using a zero-extension
and Theorem 2, the embedding constant from X1/2 (= H1

0 (Ω)) to Lp(Ω) can be given as follows:

Theorem 4 ([8, 15]). Let Ω ⊂ R
N (N ≥ 2) be a bounded domain. Let p be a real number such that

p ∈ (N/(N − 1), 2N/(N − 2)) if N ≥ 3 and p ∈ (2,∞) if N = 2. Moreover, let q = Np/(N + p).
Then,

‖u‖Lp(Ω) ≤Mp

∥∥∥A 1
2u
∥∥∥

L2(Ω)
, ∀u ∈ D(A

1
2 )

holds for

Mp = |Ω| 2−q
2q Tp,

where |Ω| is the measure of Ω and Tp is a constant in (9).

Xiao and Zhai [13] obtained the following embedding constant:

Theorem 5 ([13]). Let Ω ⊂ R
N (N ∈ N) be a bounded domain and 2 ≤ p < ∞. Let real numbers r

and γ satisfying 1/r = 1/2+1/p and (1−γ)/r = 1/2. For u ∈ D(AN/4) satisfying supp (AN/4u) ⊂ Ω,

‖u‖Lp(Ω) ≤ Jp

∥∥∥AN
4 u
∥∥∥

L2(Ω)
(12)

holds for

Jp =
N

γ−1
r ω

1−γ
r

N−1|Ω| γ
r

2
N
2 π

N
2 γ

1
r

, (13)

where ωN−1 is the surface area of the unit sphere in R
N .

Remark 1. Theorem 5 is obtained by substituting q = p and p = 2 into (2) of Theorem 2.1 in [13].

For cases in which the bounded or unbounded domain Ω have a Lipschitz boundary, Plum [9]
provided the embedding constant using the minimum eigenvalue of A.

Theorem 6 ([9]). Let λmin be the minimum eigenvalue of the Laplace operator for Ω ⊂ R
N (N ≥

2) with a Lipschitz boundary. Specify p ∈ [2, 2N/(N − 2))) and s = N(1/p − 1/2 + 1/N), where
2N/(N − 2) = ∞ if N = 2. Then,

‖u‖Lp(Ω) ≤ Lp

∥∥∥A 1
2u
∥∥∥

L2(Ω)
, ∀u ∈ D(A

1
2 ) (14)

holds for

Lp =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(
1
2

) 1
2+ 2ν−3

p [p
2

(p
2
− 1
)
· · ·
(p

2
− ν + 2

)] 2
p

λ
− 1

p

min (N = 2),(
N − 1√
N(N − 2)

)1−s

λ
− s

2
min (N ≥ 3),

(15)

respectively, where ν is the maximum integer such that ν ≤ p/2 and the term in brackets is 1 if ν = 1
and N = 2.
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3. Proofs of Theorem 1 and Corollary 1
We introduce two fundamental lemmas in order to prove Theorem 1 and Corollary 1. The following
lemma holds by using the fundamental theory of a semigroup:

Lemma 1 (cf. [4, 14]). Let Ω ⊂ R
N (N ∈ N) be a bounded domain. For 0 ≤ β ≤ 1, Aβ : D(Aβ) →

L2(Ω) is invertible and

(Aβ)−1u = Γ(β)−1

∫ ∞

0
tβ−1e−tAu dt (16)

is expressed for u ∈ L2(Ω)6.

Moreover, some properties of the Dirichlet heat kernel give the following lemma:

Lemma 2 (cf. [16]). Let Ω ⊂ R
N (N ∈ N) be a bounded domain. For 1 ≤ p < q ≤ ∞, put

1/r = 1/p− 1/q, where 1/q = 0 if q = ∞. For all t ∈ (0,∞),

‖e−tAu‖Lq(Ω) ≤ (4πt)−
N
2r ‖u‖Lp(Ω), ∀u ∈ Lp(Ω)

holds.

For 0 ≤ α < 1, A−α denotes (Aα)−1. For any bounded operator T : Lp(Ω) → Lq(Ω) (1 ≤ p, q ≤ ∞),
let

‖T‖Lp,Lq = sup
u∈Lp(Ω)\{0}

‖Tu‖Lq(Ω)

‖u‖Lp(Ω)
.

First, we prove Theorem 1.

Proof of Theorem 1. First, we show that Theorem 1 holds for 2 < p ≤ ∞. Let r and α be real values
such that 1/r = 1/2 − 1/p and N/(2r) < α ≤ 1, where 1/p = 0 if p = ∞. Put u ∈ D(Aα). From
Lemma 1,

‖u‖Lp(Ω) = ‖A−αAαu‖Lp(Ω)

≤ Γ(α)−1

∫ ∞

0
tα−1‖e−tAAαu‖Lp(Ω)dt

≤ Γ(α)−1

∫ ∞

0
tα−1‖e−tA‖L2,Lp‖Aαu‖L2(Ω)dt

≤ Γ(α)−1

∫ ∞

0
tα−1‖e−βtA‖L2,Lp‖e−(1−β)tA‖L2,L2‖Aαu‖L2(Ω)dt

holds for 0 < β < 1. The spectral mapping theorem and Lemma 2 state that

‖u‖Lp(Ω) ≤ Γ(α)−1

∫ ∞

0
tα−1(4πβt)−

N
2r e−t(1−β)λmin‖Aαu‖L2(Ω)dt

= (4πβ)−
N
2r Γ(α)−1

∫ ∞

0
tα−1− N

2r e−t(1−β)λmindt‖Aαu‖L2(Ω)

= (4πβ)−
N
2r Γ(α)−1

(
1

(1 − β)λmin

)α−1− N
2r
∫ ∞

0
sα−1− N

2r e−s

(
1

(1 − β)λmin

)
ds‖Aαu‖L2(Ω)

=
Γ
(
α− N

2r

)
(4π)

N
2r g(β)Γ(α)

λ
−(α− N

2r )
min ‖Aαu‖L2(Ω) (17)

holds, where g(β) := β
N
2r (1− β)α− N

2r (0 < β < 1) and Γ (α−N/2r) <∞ from α > N/(2r). Because
the function g admits the maximal value at β = N

2rα(< 1), it follows that

‖u‖Lp(Ω) ≤
ααΓ

(
α− N

2r

)
(4π)

N
2r ( N

2r )
N
2r (α− N

2r )α− N
2r Γ(α)

λ
−(α− N

2r )
min ‖Aαu‖L2(Ω). (18)

6The function (Aβ)−1u can be expressed by using the Dunford integral (e.g., [14]). The resulting expression corresponds
with the right hand of (16) (e.g., [4]).
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Next, we prove Theorem 1 for p = 2. For 0 ≤ α ≤ 1 and u ∈ D(Aα), the spectral mapping theorem
and Lemma 1 yield

‖u‖L2(Ω) = ‖A−αAαu‖L2(Ω)

≤ Γ(α)−1

∫ ∞

0
tα−1‖e−tAAαu‖L2(Ω)dt

≤ Γ(α)−1

∫ ∞

0
tα−1‖e−tA‖L2,L2dt ‖Aαu‖L2(Ω)

≤ Γ(α)−1

∫ ∞

0
tα−1e−tλmindt ‖Aαu‖L2(Ω)

= λ−α
min‖Aαu‖L2(Ω). (19)

From (19), ‖A−α‖L2,L2 ≤ λ−α
min and C2,α = λ−α

min hold for 0 ≤ α ≤ 1.

Next, we provide the proof of Corollary 1 by using Theorem 3 and (19).

Proof of Corollary 1. For β = N(p − 2)/4p (< N/4), let Eβ be defined by (11). As a results of
extension by zero and Theorem 3, it follows for u ∈ D(Aα)

‖u‖Lp(Ω) = ‖u‖Lp(RN )

≤ Eβ‖Aβu‖L2(RN )

= Eβ‖Aβu‖L2(Ω),

where β = N(p− 2)/4p = N/2r < α and D(Aα) ⊂ D(Aβ) for β < α (cf. [4]). Moreover, (19) gives

‖u‖Lp(Ω) ≤ Eβ‖Aβ−α‖L2,L2‖Aαu‖L2(Ω)

≤ Eβλ
β−α
min ‖Aαu‖L2(Ω). (20)

The inequality (20) implies that Corollary 1 holds.

Remark 2. All elements u ∈ Xα do not always satisfy u = 0 on ∂Ω in the trace sense. For example,
we consider the regularity of functions in Xα if Ω is bounded and convex. Then, it is well known that
the function space Xα is equivalent to the fractional Sobolev space H2α(Ω) for 0 ≤ α < 1/4 [17]. Note
that all elements u ∈ Xα satisfy u = 0 on ∂Ω in the trace sense for 1/4 < α ≤ 1 and α �= 3/4 [17].
Moreover, if Ω ⊂ R

2 is a convex polygon, it is proved that all elements u ∈ Xα satisfy u = 0 on ∂Ω
even for α = 3/4 [18].

4. Numerical examples
In this section, we provide some numerical examples to estimate the embedding constant Cp,α in
Theorem 1 and C̃p,α in Corollary 1. All computations were carried out on computer running Windows
7 Professional with an Intel (R) Core (TM) i7-5600U CPU and 16GB RAM. We used MATLAB
R2012a with INTLAB ver. 7.1 [19]. Let Ω := (0, 1) × (0, 1) and α = 1/2. We note λmin = 2π2. We
computed Cp,1/2 in Theorem 1, C̃p,1/2 in Corollary 1, Mp in Theorem 4, Jp in Theorem 5, and Lp in
Theorem 6, respectively. The values of these constants are displayed in Table I.

In Table I, Cp,1/2 is a rough estimate compared with the other estimates. However, C̃p,1/2 is tighter
than the other values except for Mp.

Varying p = 3, 4 , 5 , 6, and α such that 1/2 − 1/p < α ≤ 1, Cp,α in Theorem 1 and C̃p,α in
Corollary 1 are plotted on the domain Ω = (0, 1) × (0, 1) in Figs. 1, 2, 3, and 4, respectively. The
plots in the four figures indicate that the estimate in Corollary 1 is sharper than that in Theorem 1.
However, as can be seen in Fig. 1, C̃p,α is not plotted for 1/6 < α < 1/4 because the estimate in
Corollary 1 does not hold for α < 1/4 (e.g., Remark 2 of this paper).

Let Ω = (0, 2) × (0, 2) \ [1, 2] × [1, 2] and α = 1/2. Then, the minimum eigenvalue over the domain
Ω is included in [9.639717, 9.639724] [20]. We compute Cp,1/2, C̃p,1/2, Mp, Jp, and Lp, respectively.
The value of these constants are displayed in Table II. Similar to the results in Table I, Cp,α is the
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Table I. Comparison of each value on the domain Ω = (0, 1) × (0, 1).

p Cp,1/2 C̃p,1/2 Mp Jp Lp

3 0.504227914 0.298833496 0.279911047 0.605357242 0.329648994
4 0.728930690 0.356352736 0.318309887 0.643037069 0.398942281
5 0.934611867 0.406084557 0.357803885 0.678020304 0.489090310
6 1.129584278 0.450720364 0.395853999 0.710834333 0.552669458

Fig. 1. Values of C3,α and C̃3,α on the domain
Ω = (0, 1) × (0, 1).

Fig. 2. Values of C4,α and C̃4,α on the domain
Ω = (0, 1) × (0, 1).

Fig. 3. Values of C5,α and C̃5,α on the domain
Ω = (0, 1) × (0, 1).

Fig. 4. Values of C6,α and C̃6,α on the domain
Ω = (0, 1) × (0, 1).

Table II. Comparison of each value on the domain Ω = (0, 2)×(0, 2)\ [1, 2]×
[1, 2].

p Cp,1/2 C̃p,1/2 Mp Jp Lp

3 0.640297840 0.379476099 0.403701587 0.8730762213 0.418607405
4 0.871972121 0.426281476 0.418919370 0.8462843754 0.477228565
5 1.078659524 0.468672602 0.445727370 0.8446308696 0.564471670
6 1.272905652 0.507907653 0.475395696 0.8536672189 0.622792022

rough estimate and the value of C̃p,α is tighter than the other constants except for Mp. Varying
p = 3, 4 , 5 , 6 and α such that 1/2 − 1/p < α ≤ 1, Cp,α in Theorem 1 are plotted on the domain
Ω = (0, 2)× (0, 2) \ [1, 2]× [1, 2] in Figs. 5, 6, 7, and 8, respectively. On the other hand, the values of
C̃p,α are not plotted. This is because the domain Ω is a non-convex domain; therefore, it is difficult
for us to judge the range of α in which all elements u ∈ D(Aα) satisfy u = 0 on ∂Ω in the trace sense.

Moreover, we recall that our main theorem enables us to obtain the embedding constant from Xα to
L∞(Ω) for α > 1/2 by Theorem 1. Figures 9 and 10 show the embedding constant C∞,α in Theorem 1
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Fig. 5. Values of C3,α on the domain
Ω = (0, 2) × (0, 2) \ [1, 2] × [1, 2].

Fig. 6. Values of C4,α on the domain
Ω = (0, 2) × (0, 2) \ [1, 2] × [1, 2].

Fig. 7. Values of C5,α on the domain
Ω = (0, 2) × (0, 2) \ [1, 2] × [1, 2].

Fig. 8. Values of C6,α on the domain
Ω = (0, 2) × (0, 2) \ [1, 2] × [1, 2].

Fig. 9. Values of C∞,α on the domain
Ω = (0, 1) × (0, 1).

Fig. 10. Values of C∞,α on the domain
Ω = (0, 2) × (0, 2) \ [1, 2] × [1, 2].

for 1/2 < α ≤ 1 on Ω = (0, 1) × (0, 1) and Ω = (0, 2) × (0, 2) \ [1, 2] × [1, 2], respectively. The results
in these two figures indicate that each embedding constant C∞,α seems to grow up if α tends to 1/2,
respectively. Note that we cannot obtain the embedding constant Xα to L∞(Ω) using Corollary 1.
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