視覚特徴の結合と反応の連合に関する心理学的研究所・物体の空間的特徴を用いた検討

<table>
<thead>
<tr>
<th>著者</th>
<th>藤井 佑実子</th>
</tr>
</thead>
<tbody>
<tr>
<td>内容記述</td>
<td>筑波大学修士 情報学・学位論文・平成 30年 9月 10日授与 画像号</td>
</tr>
<tr>
<td>発行年</td>
<td>2016</td>
</tr>
<tr>
<td>学位授与年度</td>
<td>2016</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2241/00145429</td>
</tr>
</tbody>
</table>
視覚特徴の結合と反応の連合に関する
心理学的研究
—物体の空間的特徴を用いた検討—

筑波大学
図書館情報メディア研究科
2016年3月
藤井 佑実子
第1章 序論

1-1. 視覚特徴と反応の連合
1-2. 处理段階に応じた視覚像の表現
1-3. 脳の視覚情報処理経路
1-4. 記憶構造
1-5. 作業記憶における視覚特徴
1-6. 長期記憶における視覚特徴の結合表現と反応との連合
1-7. 本論文の目的

第2章 本論

2-1. 実験1A

2-1-1. 目的
2-1-2. 実験方法
2-1-2-a. 実験参加者
2-1-2-b. 実験環境
2-1-2-c. 手続き
2-1-2-d. 刺激
2-1-2-e. アイテムと反応キーの組み合わせ
2-1-2-f. デザイン
2-1-3. 実験結果
2-1-3-a. 学習ブロック、テストブロックの正答率
2-1-3-b. テストブロックの反応時間
2-1-3-c. 反応の傾向
2-1-4. 考察
2-1-4-a. 視覚特徴の統合表現と反応の連合
2-1-4-b. ノイズからの影響
2-1-4-c. 実験1Aのニューラルネットモデル

2-2. 実験1B

2-2-1. 目的
2-2-2. 実験方法
2-2-2-a. 実験参加者
2-2-2-b. 実験環境
2-2-2-c. 刺激
2-2-2-d. 手続き・デザイン
2-2-3. 実験結果
2-2-3-a. 正答率と弁別反応時間
2-2-3-b. 属性の弁別反応時間差による刺激反応マッピング学習への影響......................37
2-2-4. 考察...38
2-3. 実験 2A ..39
 2-3-1. 目的 ...39
 2-3-2. 実験方法 ...39
 2-3-2-a. 実験参加者 ...39
 2-3-2-b. 実験環境、手続き、デザイン ...40
 2-3-2-c. 刺激 ...40
 2-3-2-d. アイテムと反応キーの組み合わせ ...41
 2-3-3. 実験結果 ..41
 2-3-3-a. 学習ブロック、テストブロックの正答率..41
 2-3-3-b. テストブロックの反応時間 ...43
 2-3-3-c. 反応の傾向 ...44
 2-3-4. 考察 ...46
 2-3-4-a. 視覚特徴の統合表現と反応の連合 ...46
 2-3-4-b. ノイズからの影響 ..47
 2-3-4-c. 実験 2A のニューラルネットモデル ..47
2-4. 実験 2B ...51
 2-4-1. 目的 ...51
 2-4-2. 実験方法 ...51
 2-4-2-a. 実験参加者 ...51
 2-4-2-b. 実験環境、手続き・デザイン ...51
 2-4-2-c. 刺激 ...51
 2-4-3. 実験結果 ..51
 2-4-3-a. 正答率と弁別反応時間 ...52
 2-4-3-b. 属性の弁別反応時間差による刺激反応マッピング学習への影響...............53
 2-4-4. 考察 ...54
第 3 章 結論 ..55
 3-1. 総合考察 ...55
 3-2. 視覚特徴はどのような表現で反応と連合するか ..55
 3-3. 属性対と反応の連合強度 ...56
 3-4. 今後の課題 ...59
 3-4-1. 視覚特徴と反応の連合構造 ...59
 3-4-2. 属性対と反応の連合強度 ...59
 3-4-3. 記憶表現の抽象度 ...60
3.4.4. 単一属性内複数特徴の統合表現と反応の連合 60
3.4.5. 刺激反応マッピングにおける位置属性 61
3.5. まとめ .. 61

謝辞 .. 63

参考文献 .. 64
付録 .. 65
第1章 序論

1-1. 視覚特徴と反応の連合

我々は、日常的に物体を認知し、それに対する適切な行動をとるということを繰り返しながら生活をしている。例えば、畑で栽培されている赤く熟れたトマトを見て収穫するという行動をとることもある。また、信号などのサイン表現や情報端末におけるアイコン表現は、ユーザに適切な行動をとらせするために作られた情報提示方法である。このような日常生活にあふれる物体は、様々な視覚特徴を組み合わせることによって表現されており、この組み合わせによって対応づけられた意味も異なっている。前述のトマトの例で言えば、このトマトは色属性として「赤」、形属性として「丸型」、テシテスチャ属性として「つやつやしている」などといった視覚特徴を持っていて、「食べごろのトマト」という意味を持つ。しかし、このときに色属性が「緑」で形属性が「小さな丸型」といった視覚特徴を持っていた場合には「まだ食べごろではないトマト」と認識され、「収穫する」という行動に至らない。我々は、物体の視覚特徴を認知して、その物体に対応する行動を正しく記憶し、想起することで物体に対して適切な行動をとることができている。

このような、物体の視覚特徴と適切な反応の連合記憶は私たちが生活する上で欠かすことができない重要な機能である。本研究では、この記憶が脳の中でどのような表現で記憶されているのかを検討した。

1-2. 処理段階に応じた視覚像の表現

外界の知覚に基づいて適切な反応を生成するためには、まず正しく外界を認識しなければならない。我々が時間的に連続した視覚世界を認識するためには、外界からの刺激を処理し、脳の中に外界に対応する知覚世界を作り上げる必要がある。人間の視覚系では、まず外界の光エネルギーが網膜に投影され、その情報が電気信号に変換され、大脳皮質の視覚野で処理される。網膜に投影された視覚像は、視細胞の活動強度を2次元情報で表現したものであるが、その後の処理の中でも視覚像がそのまま2次元情報として表現されているわけではない。視覚像は視覚系の階層的な処理の中で、その処理段階に応じた適切な形で表現されている。

Treisman(1986)は、特徴統合理論を用いて人間の視覚情報処理システムについて説明している。この理論では、視覚情報は低次の処理段階において、色や線分の傾きなどの単純な視覚属性を抽出し、個別に並列処理した後、高次の処理段階でそれらを統合することによって認知対象としての視覚像を構築していると考えられている(図1.1)。このとき、属性の抽出は注意を必要とせずに無意識的に行われ、それぞれの属性が存在した空間位置の情報を取り扱うため、多くの研究が行われている。
報と併せて抽出される。次の段階では、スポットライトのように特定の空間位置に注意を向けることによって、その位置ごとに各属性が統合される。この位置ベースで構築される視覚像のことをオブジェクトファイルと呼ぶ。オブジェクトファイルを構築することにより、物体が何であるかというような記憶と照合し、物体を認知することができる。

図 1.1 特徴統合理論（Treisman(1986)より改変）

このように低次の視覚情報処理段階では、単純な視覚属性を独立的に抽出するモジュール構造が成り立っている。Cavanagh, Arguin & Treisman (1990)は、視覚刺激に含まれる色や輝度、テクスチャ、両眼視差、運動、形などの特徴がそれぞれ専門的に扱う特徴モジュールで処理され、各モジュールからの出力は形についての共通表現としてまとめられると考えた（図 1.2）。このことは、視覚探索課題におけるポップアウト現象で確かめることができる。ポップアウト現象とは、図 1.3のような妨害刺激(緑色のバー)から目標刺激(赤色のバー)を探す視覚探索課題において、個々の刺激を順々に探索しなくとも目標刺激が即座に目に飛び込んでくるような現象のことを言う。ポップアウト現象が生じる目標刺激は、妨害刺激にはない単一の特徴（色、方位、運動など）を持っている。これらの特徴は、低次の視覚情報処理で特徴モジュールにより独立に処理されているためにポップアップされると考えられる。この独立したモジュールで処理される特徴のことを、視覚特徴の基本的な属性と捉えることができる。
図 1.2 低次の視覚情報処理のモジュール構造（Cavanagh et al. 1990より改変）

図 1.3 ポップアウト現象

1-3. 脳の視覚情報処理経路

視覚情報は脳においてどのように分析され、認知対象としての視覚像を形成しているのだろうか。まず、網膜で電気信号に変換された視覚情報は、視神経によって脳へと伝達される。左右の眼の視神経の束は、視交叉で中央に集まり、それぞれの網膜の鼻側の視神経は反対側に、耳側の視神経は同側に分割される。そのため、外界視野の右半分の視覚情報は左脳に伝達され、外界視野の左半分は右脳に伝達される。だが、左脳と右脳の情報で密接な情報交換が行われているため、我々は左右連続した視覚世界を認識することができる。

視交叉を経た視覚情報は、LGN（外側膝状体）を中継して、後頭葉の大脳皮質 V1（一次視覚野）に伝達される。このとき、大細胞系と小細胞系の神経細胞は別の経路で並列的に処理する（Livingstone & Hubel, 1988）。大細胞系の経路では、明るさの信号を処理している。受容野が大きく空間解像度は低いが、時間解像度が高いので運動などの属性の検出に関する情報を提供している。一方、小細胞系の経路では色の信号を処理しており、高い空間解像度を持つが、時間解像度が低い。そのため、色や形状などの物体認知に関わる属性の検出に関する情報を提供している。このように、2つの細胞系では並列性を持って属性が
別々に処理されているが、これらは相補的に働いていると考えられている。
このような並列処理は、V1 以降の処理段階においても行われる。V1 で処理された視覚情報は V2 に到達するが、V2 以降の処理段階では大細胞系の経路と小細胞系の経路が大きく異なる。大細胞系の経路は、背側視覚経路と呼ばれるもので頭頂連合野へと投射される。一方、小細胞系の経路は、腹側視覚経路と呼ばれるもので下側頭連合野へと投射される。
ただし、大細胞系と小細胞系の神経細胞が完全に 2 つの経路に分離されるわけではない。視覚野では相互に連結している。なお、この 2 つの視覚経路は異なる機能を持っている。背側視覚経路では、空間位置や運動などの空間情報に関わる属性を処理すると考えられており、腹側視覚経路では色や形など物体認知に関わる属性を処理すると考えられている（Ungerleider & Haxby, 1994）。また、背側視覚経路は運動系への出力にも関与しており、頭頂連合野には体性感覚や腕の到達運動の処理に関連する神経細胞が存在する。
頭頂連合野と下側頭連合野からの出力は、前頭前野へと入力される。そのため、前頭前野で物体認知に関わる情報と空間情報の統合が行なわれているという見方もある（Rao, Rainer & Miller, 1997）。
以上のように、脳の視覚野では機能が局在化されており、各視覚特徴は並列処理されていると考えられている。
1-4. 記憶構造

我々は、日常生活の中で物体をただ知覚しているだけではなく、記憶している。例えば、青信号を見て道路を横断する際には、事前に青信号が示す意味を記憶している必要がある。また、買い物中に複数の商品の価札を見て、その合計金額を暗算する際には、頭の中で一時的にそれらの金額を記憶する必要がある。これらの記憶はどのように保持されているのでだろうか。

Atkinson & Shiffrin(1968)は、二重貯蔵モデルという記憶モデルを考案している。このモデルでは、記憶には大きく分けて3種類のコンポーネントがあると考えられている。外界から網膜に入力された視覚情報は、まず自動的に感覚記憶(アイコニックメモリ)として500ms以内のごく短時間だけ保持される。この感覚記憶に入力された情報の中で、選択的注意を向けられた情報だけが短期記憶として保持される。短期記憶に保持できる情報は容量に限界があるが、15〜30sほど保持される。そのため、さらに長い時間保持する必要がある情報はリハーサル(反復学習)などを行い、記憶処理をすることによって長期記憶に格納される。

さらに、Baddely & Hitch(1974)は、短期記憶はただ静的に情報を保持しているのではなく、認知的な課題を達成するために必要な情報を一時的に保持しているという発展的な考えを提唱し、この記憶を作業記憶と名付けた。作業記憶は、学習や思考などの認知機能に関わるメカニズムで、反応などの出力に役立つ。

図 1.5 二重貯蔵モデル

1-5. 作業記憶における視覚特徴

物体を認知し、その視覚情報を用いて適切な行動を返すためには、行動を選択するまで一時的にその視覚情報を保持する必要がある。作業記憶において視覚情報をどのように表現されているのだろうか。

Luck & Vogel(1997)は、作業記憶の保持容量や記憶表象の表現について調べるために遅
延対比較実験(図 1.6)を行っている。この実験では、初めに提示される視覚刺激(サンプル刺激)と、その後ブランク画面(何も表示されていない画面)を挟んで提示される視覚刺激(テスト刺激)が同じか異なっているかを実験参加者に答えさせる。この2つの視覚刺激には、複数のオブジェクトが含まれている。オブジェクトは色属性や方位属性といった特徴を持っている。この実験では、サンプル刺激とテスト刺激で同じ位置にある各オブジェクトがそれぞれ同じ特徴を持っているかどうかを判断することになる。テスト刺激は、サンプル刺激と比べてオブジェクトが変化する確率が50%であった。なお、実験は視覚刺激に含まれるオブジェクトの数を変えて行われた。実験の結果、色属性のみ、もしくは方位属性のみを用いた実験では、4個のオブジェクトまでほぼ確実に答えることができたが、それ以上オブジェクトの個数が増えると正答率が規則的に下がっていった。また、色属性と方位属性の両方を判断する実験を行った場合は、記憶しなければならない特徴の数が増えたにも関わらず、1種類の属性のみを判断する場合と比べて正答率に差が見られなかった。この実験結果から、保持容量の限界はオブジェクトの特徴の数ではなく、オブジェクトの数で決まると考えられた。しかし、これは、特徴の種類ごとに個別の記憶システムがあるということも考えられる。そこで、Luck & Vogelは色つきの大きな正方形の中に別の色で彩色された小さな正方形を重ねたオブジェクトを用いて同様の実験を行った。その結果、大きな正方形または小さな正方形だけが提示される条件と同様、4個のオブジェクトまでならほぼ確実に記憶することができた。つまり、この実験においては8つの色を記憶できたことになる。これらのことから、作業記憶では個々の特徴を個別に保持しているのではなく、オブジェクトの特徴を全てひとまとめにした表現で記憶表象を作り上げている可能性が考えられた。

しかしながら、これらの実験で用いられたのは色属性と形に関する属性の特徴のみであった。そのため、オブジェクトが3種類以上の属性を持つ場合にもこの考えが適用できるかどうかは疑問が残る。

図 1.6 遅延対比較実験の実験手続き
Morita, M., Morokami, S., & Morita, H. (2010)は、この疑問に対して検討するために、3種類の属性(色、形、運動属性)を用いた実験を行っている。実験の手続きを図1.7に示す。まず、サンプル刺激が提示され、ブランク画面を挟んだ後、1つのオブジェクトがテスト刺激として提示される。実験参加者は、このオブジェクトと同じ位置に提示されていたサンプル刺激内のオブジェクトを記憶の中で比較して、3属性のうちどの特徴に変化があったのかを回答する。実験の結果、変化した属性の数が2つのときに正答率が最も高かった。また、実際には1つの属性の特徴しか変化していないにもかかわらず、2つの属性の特徴が変化したと回答する誤答が多かった。反対に、2つの属性が変化した場合の誤答として、1つの属性の特徴のみが変化したと回答することはほとんどなかった。これらの実験結果から、Morita et al. (2010)は2つの属性の特徴を対象にした表現を段階的に統合して記憶を保持しているという可能性を示唆し、この考えを対属性仮説と呼んだ。また、この仮説と比較してLuck & Vogel (1997)が考えた、オブジェクトが持つ全ての特徴をひとまとめにした表現で記憶表象を作り上げるという考えを全属性仮説と呼んでいる。さらに、Morita et al. (2010)はこの実験結果をもとにニューラルネットモデルを作成している(図1.8)。入力層の3つの記憶ユニットは3つの属性対(色-形、形-運動、色-運動)に対応しており、同時にこの2つの特徴が提示された場合に活性化する。このユニットの活性と抑制の総和によって出力が決まる。3つの出力ユニットは、それぞれどの属性が変化したかという反応に対応している。このモデルを元に実験結果の数値的なシミュレーションを行ったところ、実際の実験結果とほぼ一致する結果が得られた。なお、全属性仮説に従ったモデルや、個々の特徴をそれぞれ別に記憶しているというモデルでは、実験結果を再現することができなかった。このように、モデルシミュレーションを用いても対属性仮説が支持された。

図 1.7 Morita et al. (2010)の実験手続き(Morita et al. (2010)より改変)
図 1.8 対属性仮説に基づくニューラルネットモデル(Morita et al. (2010)より改変)

1-6. 長期記憶における視覚特徴の結合表現と反応との連合

長期記憶において視覚情報はどのように記憶されているだろうか。日常生活において、我々は物体が持つ意味を理解し、それに対して反応をするということを繰り返しているが、これには長期記憶において事前にその物体が何であり、何を意味するのかを記憶している必要がある。そして、実際に適切な反応を生成するには、物体の視覚特徴を認知することでそれに応じる反応を正しく想起しなければならない。

Ishizaki, T., Morita, H., & Morita, M. (2015)は、複数の視覚特徴と反応の連合がどのように記憶されているのかを調べるために刺激反応マッピング学習課題を用いた検討を行った。刺激反応マッピング学習課題とは、刺激とそれに対応する適切な反応の対応関係を学習する課題である。実験に用いられた刺激は、色属性と形属性、テクスチャ属性の 3 つの特徴を含んでいた。それぞれ色属性なら赤か緑、形属性なら三角形か四角形、テクスチャ属性なら斑模様か格子模様というような特徴値があり、その組み合わせによって 8 種類のアイテムが設定されている(図 1.9)。反応は、テンキーにおける上下左右の 4 種類のキーであった。実験では、いくつまでの視覚特徴がひとまとまりとなって反応と連合するのか(図 1.10)を調べるために、アイテムが持つ特徴のうち反応に関連する属性数を変化させている。もしも、全属性仮説のように全ての特徴を同時にひとまとまりにした反応と連合しているならば、各々の特徴が反応との対応に関係しているか否かはかわらず、必ず視覚特徴の統合表現と反応が 1 対 1 で結びつく。そのため、反応に関連する属性数が増える場合、正答率に差は出ないはずである。それに対して、対属性仮説のように属性対表現を基本として段階的に視覚特徴が統合し、反応と連合しているならば、反応に関連する属性数が 2 つであれば 1 つの属性対と 1 種類の反応との連合なので学習は容易と考えられる。そして
で、反応に関連する属性が3つ以上に増えると視覚特徵の結合表現が複雑になる分、学習が難しくなることが予測できる。実験では、3属性のうち2属性の特徴が反応と関連する2属性アイテム条件を3種類（色・形アイテム、形・テクスチャアイテム、色・テクスチャアイテム）と3属性全ての特徴が反応と関連する3属性アイテム条件1種類の学習の難しさを比較している。実験の結果、2属性アイテム条件に比べて3属性アイテム条件の学習が難しいことがわかった。また、3種類の2属性アイテム条件は同様の学習成績であった。この結果から、2つの属性の特徴をひとまとまりにして反応と連合していることが示唆された。つまり、色と形、形とテクスチャ、色とテクスチャの属性対が存在し、同じように反応と連合していることが考えられた。

図1.9 Ishizaki et al. (2015)の実験で用いられたアイテム
(Ishizaki et al. (2015)より改変)

図1.10 全属性仮説と対属性仮説における視覚特徴と反応との連合表現
また、個々の特徴がそれぞれ反応と連合しているという可能性も考えられる。Ishizaki et al. (2015)は、物体に注意を向けることによって、個々の視覚特徴が結合されて反応と結びつくのかどうかを検討するために、上記のような刺激反応マッピング学習課題においてアイテムが持つ属性を空間的に分離して提示する Separate 条件と分離せずに提示する Unified 条件の学習難易度を比較した（図 1.11）。もし、個々の特徴がそれぞれ反応と連合するならば、両条件に学習難易度の差は見られないはずである。実験の結果、Unified 条件に比べて Separate 条件の学習が難しいことがわかった。このことから、視覚刺激に注意を向けることによって個々の特徴は結合して、反応と連合することが示唆された。

図 1.11 Ishizaki et al.(2015)の実験のアイテム提示方法
(Ishizaki et al., 2015, p.3, Fig.1-B)

これらの一連の実験結果は、対属性仮説を支持する。しかし、先行研究では、視覚特徴として物体認知に関わる属性（脳の腹部視覚経路で処理される属性）を扱った検討が多く、空間属性（背部視覚経路で処理される属性）を扱った研究は少ない。身の回りの物体や情報表現（サインやアイコン）は、必ずしも物体認知に関わる属性だけで表現されているわけではない。例えば、青・黄・赤の3色の信号は全ての色が同一の位置に表示されるわけではなく、それぞれが別の位置に提示される。このサイン表現は、色と位置の属性で冗長に表現されているが、物体認知に関わる属性と空間属性の組み合わせによりとるべき行動が異なることもあり得る。例えば、図1.12のような駐車場の空車案内掲示は左に曲がったところにある駐車場には空車があるが、右に曲がったところにある駐車場は満車であることを示すためユーザは左折するという行動をとることになる。これがもし反対の組みあわせ（左側が満車で右側が空車）で提示されていれば、右折することになるだろう。このように提示位置と文字の組み合わせによって取るべき行動が異なるサイン表現も存在し、我々は日常的にそれを利用している。それ故に、空間属性を含む視覚特徴と反応の連合記憶に関して追求することも必要である。
1-7. 本論文の目的

私たちは、日常的に様々な物体と適切な反応の連合記憶を構築し、それを利用しながら生活をしている。特に、サインやアイコンなどの表現から適切な反応を行う場合には、複数属性の特徴の組み合わせによって表現される視覚刺激から特定の反応を引き起こしている。この視覚特徴は、低次の処理段階において単純な属性ごとに別々に処理されるが、視覚的注意を向けることによって同位置の特徴が統合され、物体として知覚される。そして、オブジェクトファイルは作業記憶上に保持される。このとき、オブジェクトファイルは属性のまったまりとして表現されると考えられる。これを基に長期記憶から行動を想起するが、特徴の組み合わせと行動の連合がどのように表現されて保持されているのかは未だ詳しく解明されていない。

Ishizaki et al. (2015)の研究では、物体認知に関わる属性（脳の腹側視覚経路で処理される属性）だけを扱った刺激反応マッピング学習課題を行い、対属性仮説を支持する結果を得ている。しかし、背側経路で処理される空間属性も同様の記憶構造で反応と連合するのかは明らかになっていない。色・形の属性対や色・テクスチャの属性対、形・テクスチャの属性対が形成されると同様に、例えば空間属性と物体認知に関わる属性の対（色・位置の属性対など）、空間属性同士の属性対（位置・運動の属性対など）も形成され、それぞれが反応と連合するのだろうか（表1.1）。もしも、空間属性と物体認知に関わる属性の属性対が形成されないのであれば、脳の背側視覚経路と腹側視覚経路で情報が処理される段階で属性対表現が形成され、異なる視覚経路の属性とは別の単位で反応と連合すると考えられる。一方で、空間属性と物体認知に関わる属性の属性対も空間属性同士の属性対も形成されるのであれば、異なる視覚経路で処理される視覚情報は、経路を越えたネットワークによって結び反応と連合することができる。また、空間属性を含んだ場合に属性対が形成されないのであれば、背側視覚経路で処理される属性は個別に反応と連合している可能性が考えられる。

そこで、本研究では刺激反応マッピング学習課題を用いて、視覚特徴に空間的特徴を含んだ場合、長期記憶において視覚特徴がどのような表現で統合し、反応と連合するのか解
明することを目指した。なお、空間属性は運動と位置属性を用いることとした。
実験 1 ではまず、特徴統合において重要な役割を担う位置属性が反応と結びつく際に他
の属性と同じように扱われるか検討することを目的とした。そして、位置・色・形で構成
される属性セットを用いた刺激反応マッピング学習課題を行った。位置属性が他の属性と
は別の単位で反応と連合するのか、他の属性と属性対表現を形成して反応と連合するのか
を検証している。
実験 2 では、空間属性を 2 種類含んだ属性セットを用いて刺激反応マッピング学習課題
(運動・位置・色)を行い、3 つの属性がどのような結合表現で反応と連合するかを検証して
いる。さらに、同じ視覚経路で処理される属性同士の属性対は、異なる視覚経路で処理さ
れる属性対に比べて反応との連合学習が容易なのか否かを考察した。
これらの実験を行うことによって、脳の異なる視覚経路で処理される複数属性の統合表
現と反応が連合するときの記憶構造モデルを提案する。

表 1.1 対属性仮説に従った場合の属性対表現と反応の連合

<table>
<thead>
<tr>
<th>物体認知に関わる属性同士の属性対表現と反応の連合</th>
<th>物体認知に関わる属性と空間属性の属性対表現と反応の連合</th>
<th>空間属性同士の属性対表現と反応の連合</th>
</tr>
</thead>
<tbody>
<tr>
<td>色形反応</td>
<td>色位置反応</td>
<td>位置運動反応</td>
</tr>
</tbody>
</table>

表 1.2 実験 1,2 で用いた属性セット

<table>
<thead>
<tr>
<th>実験</th>
<th>属性 1</th>
<th>属性 2</th>
<th>属性 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>実験 1</td>
<td>色</td>
<td>形</td>
<td>位置</td>
</tr>
<tr>
<td>実験 2</td>
<td>色</td>
<td>位置</td>
<td>運動</td>
</tr>
</tbody>
</table>

○：脳側視覚経路で処理される属性(物体認知に関わる属性)
□：脳側視覚経路で処理される属性(空間属性)
第2章　本論

2-1. 実験1A

2-1-1. 目的

人間の視覚系では物体の視覚特徴をまず、単純な特徴ごとに分けて処理をし、後に反応を生成するためにそれらを統合している（Treisman, 1986）。このとき、物体の位置属性に注意を向けることによって各特徴は統合されると考えられている。そこで、本実験では特徴統合において重要な役割を担う位置属性が、刺激反応マッピングにおいて他の属性と同じように扱われるのかを検証することを目的とし、位置・色・形で構成される属性セットを用いた刺激反応マッピング学習課題を行った。

もし、位置属性が他の属性とは別の単位で反応と連合するのであれば、位置以外の属性の統合表現が反応と連合し、位置はその統合表現や反応と別の次元で結びつくことになるだろう。記憶表象としては図 2.1 のように色・形の属性対は 1 単位で統合して 1 つのコネクションで反応と連合するが、形・位置のように位置を含む属性対や 3 属性は視覚特徴の統合表現が 2 単位で表され、2つのコネクションで反応と連合することが考えられる。そのため、この予想が正しければ、記憶負荷の大きさの差により、色・形反応連合に比べて色・位置反応連合や形・位置反応連合、3属性反応連合は学習が難しいはずである。

一方、位置属性が他の属性と同じように反応と連合する場合は、各 2 属性の組み合わせで属性対を形成し、反応と連合する（図 2.2）。Ishizaki et al. (2015) の色・形・テクスチャで構成される属性セットを用いた実験結果のように、各 2 属性アイテムが同程度の学習難易度となり、3 属性アイテムはそれらよりも学習が難しくなると予測することができる。

そこで、本実験では色・形反応連合と色・位置反応連合、形・位置反応連合、3属性反応連合の学習難易度や反応時間などを比較することにより検討を行った。

図 2.1 位置属性が他の属性と同じように扱われない場合の視覚特徴と反応の連合
図 2.2 位置属性が他の属性と同じように扱われる場合の視覚特性と反応の連合

2-1-2. 実験方法

8 種類のアイテムと 4 つの反応キーの対応関係を学習する刺激反応マッピング学習課題を行った。以下に実験内容について詳述する。

2-1-2-a. 実験参加者

実験参加者は、正常な視力（矯正視力を含む）で正常な色覚を有する 18 〜 28 歳までの大学生及び大学院生 28 名であった。実験参加者は全員、過去に同様の実験に参加したことはなく、実験の目的を知らなかった。

2-1-2-b. 実験環境

実験は、外乱による影響が少なくなるように簡易暗室内で行った。実験には、コンピュータ（DELL, Precision 390）と CRT ディスプレイ (TOTOKU, CV921X) を使用した。実験の制御プログラムは Matlab を用いて作成した。入力装置としては、テンキー（ELECOM, TK-UHBK）の縦並び 4 つのキー（「7」キー、「4」キー、「1」キー、「0」キー）を用いた。縦並びキーを使用した理由は、刺激の位置属性として左右の特徴を用いたため、それに合わせて反応において刺激反応適合性の効果を発生させないようにするためである。このテンキーは、暗室内でも素早く位置を間違えることなく押せるように、使用するキーに円形のシールを貼り、それ以外のキーにはカバーをかけて押せないようにした（図 2.3）。また、下から 2 番目のボタン（「1」キー）の中央に少し凹みを入れ目印にすることにより 4 つのボタンの押し分けをしやすくした。実験参加者は、CRT ディスプレイの正面に置かれた椅子に座って実験に参加した（椅子の高さは自由に調節してもらった）。さらに、顔面固定器具に頭部を固定して実験を行った。なお、CRT ディスプレイ上の 2cm が視角 1 度となるように、観察距離は 114.5cm とした。実験環境の概略図を図 2.4 に示す。
図 2.3 実験 1A で使用した入力装置

図 2.4 実験 1A の実験環境の概略

2-1-2-c.手続き
3属性2値の特徴の組み合わせで表現される8種類のアイテムと4つの反応キーの対応関係を学習する刺激反応マッピング学習課題を行った。1試行の流れは図 2.5 の通りである。まず、中央に注視点(白い十字)が提示されるブランク画面が1秒間提示され、その後にアイテム提示画面が提示される。アイテムが提示される前には必ず注視点に目を向けるように指示した。アイテム提示画面では、8種類のアイテムからランダムに選ばれたアイテムが1つだけ提示される。実験参加者はこの画面を見て、反応としてテンキーの4つのキーうち1つを選んで押す。この反応が正解であれば試行が終了し、次の試行に進む。しかし、不正解の場合は、400Hz のブザー音が鳴って試行が終了し、次の試行に進む。また、反応には制限時間が設定されており、制限時間内に反応できなかった場合には 900Hz のブザー音が鳴った後に強制的に次の試行に進む。なお、制限時間は初期設定が2秒で、その後10試行ごとの全アイテムの平均正答率が70%を超える場合は5%縮め、70%未満である場合には
5%延ばした。これは、学習が進んだときにじっくり考えて反応してしまうことを防ぎ、素早く正確に反応することができるようにするためである。

また、反応キーの押し方としては、テンキーをテーブルに置いた状態で、片手の人差し指を使って押すように指示した。

図 2.5 実験 1A の 1 試行の手続き

2-1-2-d. 刺激

実験に用いた 8 種類のアイテムは、色属性、形属性、位置属性の 3 つの属性を組み合わせて作成した(図 2.6)。色属性は赤か緑(5.7cd/m²)、形属性は三角形と四角形(視角が約 1.4 度)、位置属性は画面中央から見て左に提示されるか右に提示されるかという特徴を使用した。位置はそれぞれ、水平方向に画面を二分する中央線から左右に視角約 4.4 度離れたところにアイテムを配置した(図 2.7)。垂直方向は、画面を二分する中央線上にアイテムの中心座標が位置するように配置している。なお、アイテム提示画面の背景は黑色(輝度 0.0cd/m²)であった。

図 2.6 実験 1A で用いたアイテム
2-1-2-e.アイテムと反応キーの組み合わせ

8 種類のアイテムに対して、4 つ反応キーを対応づけた。図 2.8 に、本実験で設定したアイテムと正解キーの対応関係の一例を示す。対応関係通りにキーを押せば正反応ということになる。実験参加者にはこの対応関係を事前に教示せず、試行を重ねる中で試行錯誤して学習してもらった。なお、図中のキー名は縦並び 4 つのキーのうち、一番上から A キー、B キー、C キー、D キーという順で呼ぶこととする。対応関係の種類としては、2 つの属性の特徴が反応と関連する 2 属性アイテムと 3 つ全ての属性の特徴が反応と関係する 3 属性アイテムがある。2 属性アイテムは、色と形属性の特徴を反応キーと対応づける色・形アイテム条件と形と位置属性の特徴を反応キーと対応づける形・位置アイテム条件と、色と位置属性の特徴を反応キーと対応づける色・位置アイテム条件がある。例えば、図 2.8 に示した色・形アイテム条件ならば、赤い三角形が提示されれば位置属性の特徴にかかわらず、A キーを押すのが正解ということになる。このように、2 属性アイテムは、2 つの特徴から判断して正解キーを導き出す。一方、3 属性アイテム条件は、3 つの属性の特徴を考慮しなければ、正解キーを導き出すことができない。図 2.8 の例の場合は、赤色の四角形が左に提示されたときや、緑色の三角形が右に提示されたときに D キーを押すのが正解となる。このように、各アイテム条件は、2 つ以上のアイテムに対して 1 つのキーを対応づけてい る。なお、この対応関係は実験参加者ごとにアイテムの特徴の組み合わせを変えてカウンターバランスをとった。また、各アイテム条件に対する 4 つの反応キーの割り当てについても、実験参加者ごとにカウンターバランスをとって割り当てた。
図 2.8 実験 1A のアイテムと正解キーの対応関係の一例

2-1-2-f. デザイン
図 2.9 に実験の流れを示す。まず、練習を 8 試行行った（各アイテムにつき 1 試行）。その後に学習ブロックを 14 ブロック行った。次に、学習が十分できた後の反応時間を測定するために反応に制限時間のないテストブロックを 2 ブロック行った。このとき、1 ブロックは 80 試行からなる。この 80 試行は、8 種類の各アイテムにつき 10 試行ずつで構成されているが、アイテムの提示順番はランダマイズされている。しかし、同じアイテムセットのもう一方のアイテムが連続した試行で提示されないように調整している。これは、同じキーを押し続けた場合に、対応関係の規則にすぐに気づいてしまうことを防ぐためである。なお、学習ブロックの制限時間は、ブロックをこえて連続的に扱われる。また、学習ブロックの 7 ブロックが終了した後には約 15 分間の休憩を取った。学習ブロックが終了した後にも約 5 分間の休憩を取っており、休憩後にテストブロックを開始した。

図 2.9 実験 1A の流れ
2-1-3. 実験結果

実験参加者28名のデータのうち、1名のデータを除外してデータ分析を行った。除外した理由としては、この1名の学習ブロック全体の反応時間のデータが全実験参加者の平均値から標準偏差の3倍以上離れおり、全体の平均値を算出する際に、大きく影響を及ぼしてしまうためである。

また、反応時間は、アイテムが提示されてからキーを押すまでの時間のことである。反応時間は、データの分布が正規分布にならないため、幾何平均を取っている。

2-1-3-a. 学習ブロック、テストブロックの正答率

学習ブロックからテストブロックの正答率の推移を図2.10に示す。図2.10の縦軸はブロック数で、横軸は時間である。ブロック数は、数字のみの表記のものは学習ブロックで、Tで始まるものがテストブロックを示す（例：1は学習ブロックの1ブロック目）。この学習率は、記憶の記録、保持、想起のしやすさを示すと考えられる。

グラフから、学習ブロックの全ブロックを通して2属性アイテムに比べて3属性アイテムの正答率が低いことがわかる。また、2属性アイテムの中でも、色・形アイテムの正答率が最も高く、学習進度が早いことがわかる。色・形アイテムの正答率が、学習ブロック5ブロック目ほどおおよそ60%を超えていてもかかわらず、3属性アイテムの正答率は、60%程度のまま高くならない。これは、制限時間が原因と考えられる。全アイテムの平均正答率が70%を超えると制限時間を5%縮ませて、正答率が70%未満である場合には制限時間を5%伸ばす設定をしている。そのため、学習が早く進む色・形アイテムの正答率によって制限時間が縮められるが、3属性アイテムはその制限時間内に正しく反応することが困難なため正答率が伸びない可能性がある。しかしながら、テストブロックの正答率を見ると、3属性アイテムも2属性アイテムと同じように90%ほどに到達しているため、3属性アイテムの学習が制限時間の短縮によって進まなかったというわけではないことがわかる。

制限時間の推移を図2.11に示す。横軸はブロック数、縦軸は制限時間を示している。これを見ると、制限時間は学習ブロック3ブロックあたりから下がっている。このことから、学習ブロック3ブロックほどには全アイテム条件と正解キーの対応関係を学習できていると推測できる。
図 2.10 実験 1A の正答率の推移

また、正答率の推移に関して数値的な比較をするために、学習の初期、中期、後期という 3 つの学習期間に分けて分析を行った。学習の初期は学習ブロックの 1〜3 ブロック、中期は学習ブロックの 7〜9 ブロック、後期は学習ブロックの 12〜14 ブロックとし、それぞれの平均値を比較した（図 2.12）。図 2.12 の横軸は学習期間（初期、中期、後期）、縦軸は正答率を示している。正答率について、アイテム条件（4 水準）と学習期間（3 水準）を要因とする被験者内 2 要因の分散分析を行った。その結果、アイテム条件の主効果と学習期間の主効果が共に有意であったが、それらの交互作用は有意ではなかった（アイテム条件：F(3,78)=17.839, p<0.001, 学習期間：F(2,52)=71.587, p<0.001, 交互作用：F(6,156)=0.540,
下位検定を行うと、アイテム条件においては、各2属性アイテムと3属性アイテムの間に有意差があった（それぞれp<0.001）。さらに、色・形アイテムと形・位置アイテムの間に有意傾向があったが（p<0.10）、色・形アイテムと色・位置アイテムの間には有意な差がなかった。

しかし、図2.12の学習の初期と後期は、被験者間でデータのばらつきが出にくい。初期については、制限時間の推移からわかるように3ブロックまでは全てのアイテム条件を学習していなかったためである。後期については、制限時間がかなり縮まっていることで、全アイテムの平均正答率を70%程度に維持するように調整されているためである。そこで、学習の中期における各2属性アイテムの正答率に差があるのかを調べた。正答率についてアイテム条件（3水準）を要因として被験者内1要因3水準の分散分析を行ったところ、主効果が有意であった（F(2,52)=5.107, p<0.01）。多重比較をすると、色・形アイテムと形・位置アイテム、色・形アイテムと色・位置アイテムの間にそれぞれ有意差があった（それぞれp<0.05）。

図2.12 実験1Aの学習期間ごとの正答率

2-1-3-b.テストブロックの反応時間

制限時間がないテストブロックの平均反応時間を算出したものが図2.13である。このグラフは、横軸がアイテム条件、縦軸が反応時間を示している。テストブロックの反応時間は、一連の連合関係の学習を終えた後に刺激の視覚特徴から反応を想起し、反応を生成するまでの処理時間を表すと考えられる。グラフから、3属性アイテムの反応時間が各2属性アイテムの反応時間に比べて遅いことがわかる。反応時間について、アイテム条件を要因とする被験者内1要因4水準の分散分析を行ったところ、アイテム条件の主効果が有意であった（F(3,78)=7.999, p<0.001）。多重比較をすると、3属性アイテムと色・形アイテム、3
属性アイテムと色・位置アイテムの間に有意差があった（それぞれ p＜0.01, p＜0.001）。また、3属性アイテムと形・位置アイテムの間にも有意傾向が見られた（p＜0.10）。

図 2.13 実験1Aのテストブロックにおける反応時間

2-1-3-c. 反応の傾向

学習ブロック 10〜14 ブロックにおける提示されたアイテムと押下したキーの関係を表2.1に示す。ここで学習ブロック10〜14ブロックを分析対象とした理由は、反応にかかる制限時間がかなり縮まり、実験参加者が素早く正確に反応しようとすることがによって発生するエラーの傾向を調べるためである。この表から、提示アイテムごとの全反応のうちの正反応の割合と誤反応の割合や種類、制限時間をオーバーしてしまった割合を見て取ることができる。表中の提示アイテムの視覚特徴は、色属性をR（赤）とG（緑）、形属性を△（三角形）と□（四角形）、位置属性を右（画面右に提示される）と左（画面左に提示される）で表現している。例えば、色・形アイテム条件の「R△左」という表記は、赤色の三角形が画面左に表示されるアイテムのことを表す。反応キーは、提示アイテムに対して実際に実験参加者が押したキーを表している。カッコ内は、その反応キーに対して割り当てられた特徴を示している。例えば、Aキーであれば赤い三角形が提示されたときに押せば正解であるため、「R△」と表記している。なお、これらのカッコ内の視覚特徴の表記は一例であり、実験参加者全員がこの組み合わせでアイテム条件と正解キーが対応づけられていたわけではない。塗りつぶしをした箇所は、正反応をした割合である。

また、押下した反応キーの確率の横に表記している属性は、提示アイテムに含まれる特徴と反応キーに割り当てられた特徴で異なる属性である（表2.1）から、2つ以上の属性が異なるものは表
記していない。この属性は、誤反応をしてしまった際に混同、または見落とした視覚特徴と考えることができる。図2.14では、色・形アイテムの「R□左」が提示されたとき、「R□右」が提示されたときに押下するDキーを押した誤反応の例を示した。この例の場合、本来ならば実験参加者はアイテムの形属性「口」で、位置属性「左」という特徴から、Bキーを押すことを想起しなければならない。しかし、位置属性「左」を混同してしまうことによって、3属性反応連合の色属性「R」と形属性「口」を位置属性の「右」という特徴から誤った反応としてDキーを想起してしまったと考えることができる。これは、3属性反応連合の中の色・形の属性対(R□)と反応Dの連合につられてしまったと考えることもできる。また、図2.15には3属性アイテムの「R□右」が提示されたときに、「□左」が提示されたときに押下するBキーを押した誤反応の例を示した。この場合、本来は色属性と反応との連合からDキーを想起しなければならない。しかし、位置属性「右」という属性を「左」と混同することによって、形・位置反応連合の「□・左」からBキーを想起してしまうと考えることができる。もしくは、位置属性を見落とすことで、色・形反応連合の「R・□」に注目してしまいBキーを想起した可能性も考えられる。

表2.1の結果を見ると、まず、制限時間内に反応できなかった（タイムオーバー）確率は、2属性アイテムに比べて3属性アイテムが高いことがわかる。また、全体的に位置属性を混同した誤反応の割合が多い。そして、混同してしまったと思われる属性の表記がないセルにおける押下の確率は低いことがわかる。図2.16は、学習ブロック10〜14ブロックでの3属性アイテムの割合を示す。混同した割合について、属性を要因とする被験者内1要因3水準の分散分析を行い、主効果が有意であった(F(2,52)=4.498, p<0.05)。多重比較をすると、形と位置の間に有意差があった(p<0.05)。さらに詳しく分析するために、アイテム条件ごとにどの属性の特徴を混同したかを比較した。これによって、表2.1の各条件につき2種類の提示アイテムにおける混同したと思われる属性の割合を平均し、比較したものである。各2属性アイテムについては、混同した割合について属性間で繰り返しあるt検定を行い、3属性アイテムについては、混同した割合について属性を要因とする被験者内1要因3水準の分散分析を行った。その結果、形・位置アイテムは2つの属性間に有意差があり(t(26)=-2.411, p<0.05)、位置属性の特徴を混同する割合が高いことがわかった(図2.17-B)。色・形アイテムや色・位置アイテム、3属性アイテムでは各属性間で有意差がなかった(色・形アイテム：t(26)=1.061, ns、色・位置アイテム：t(26)=-1.082, ns、3属性アイテム：F(2,52)=1.480, ns)。
表 2.1 実験 1A の学習ブロック 10〜14ブロックにおける押下した反応キーの傾向

<table>
<thead>
<tr>
<th>提示アイテム</th>
<th>反応キー</th>
<th>Aキー（R△）</th>
<th>Bキー（口左）</th>
<th>Cキー（G右）</th>
<th>Dキー（G△左orR口右）</th>
<th>TimeOut</th>
</tr>
</thead>
<tbody>
<tr>
<td>色-形(R△左)</td>
<td>80%</td>
<td>5% :形</td>
<td>2%</td>
<td>6% :色</td>
<td>8%</td>
<td></td>
</tr>
<tr>
<td>色-形(R△右)</td>
<td>78%</td>
<td>1%</td>
<td>6% :色</td>
<td>6% :形</td>
<td>10%</td>
<td></td>
</tr>
<tr>
<td>形-位置(R口左)</td>
<td>4% :形</td>
<td>72%</td>
<td>2%</td>
<td>11% :位置</td>
<td>11%</td>
<td></td>
</tr>
<tr>
<td>形-位置(G口左)</td>
<td>1%</td>
<td>69%</td>
<td>9% :位置</td>
<td>10% :形</td>
<td>11%</td>
<td></td>
</tr>
<tr>
<td>色-位置(G口右)</td>
<td>2%</td>
<td>7% :位置</td>
<td>75%</td>
<td>5% :色</td>
<td>10%</td>
<td></td>
</tr>
<tr>
<td>色-位置(G△右)</td>
<td>7% :色</td>
<td>2%</td>
<td>70%</td>
<td>9% :位置</td>
<td>13%</td>
<td></td>
</tr>
<tr>
<td>3属性(G△左)</td>
<td>7% :色</td>
<td>10% :形</td>
<td>8% :位置</td>
<td>58%</td>
<td>16%</td>
<td></td>
</tr>
<tr>
<td>3属性(R口右)</td>
<td>4% :形</td>
<td>14% :位置</td>
<td>9% :色</td>
<td>54%</td>
<td>18%</td>
<td></td>
</tr>
</tbody>
</table>

※塗りつぶし箇所は正反応の割合

図 2.14 実験 1A の誤反応の傾向の判定方法 (2 属性アイテムの場合)
図2.15 実験1Aの誤反応の傾向の判定方法（3属性アイテムの場合）

図2.16 実験1Aの全アイテムの誤反応において混同したと思われる属性
図 2.17 実験 1A のアイテム条件ごとの誤反応において混同したと思われる属性

2-1-4. 考察

2-1-4-a. 視覚特徴の統合表現と反応の連合

学習ブロック全体を通して、各 2 属性アイテムの正答率に比べて 3 属性アイテムの正答率が有意に低いことから、3 属性アイテムは 2 属性アイテムよりも記憶の負荷が大きいと考えられる。また、学習ブロックにおいて 3 属性アイテムのタイムアウトが多かったことや、テストブロックにおける反応時間が各 2 属性アイテムに比べて 3 属性アイテムの方が長いうちからは、3 属性アイテムは適切な反応と結びつくのに時間がかかることがわかる。このことにより、2 属性アイテムに比べて 3 属性アイテムは複雑な統合表現を持って反応と結びついていると考えることができる。また、提示アイテムに含まれる特徴と反応キーに割り当てられた特徴が 2 つ共通しているキーを押下してしまうことが多かった。これらのことから、属性を全て同時にひとまとまりにするわけではなく、属性対を対して表現を基本と
して反応と連合すると考えると今回の実験結果を上手く説明することができる。この結果は、Ishizaki et al. (2015)の研究と同じく対属性仮説を支持する結果と考えられる。3 属性反応連合の記憶表象としては、属性対表現を 2 つ以上組み合わせることによって反応と連合することが考えられ、図 2.18 のような連合表現のいずれかを用いて反応を生成すると考えられる。同時に、このことから刺激反応マッピングにおいて位置属性が色や形と同じように扱われることが示唆された。

また、2 属性アイテムの学習ブロックにおける正答率を見ると、形-位置反応連合や色-位置反応連合に比べて色-形反応連合の学習がしやすく、より正確に反応を生起できる可能性が示唆された。この色-形反応連合の学習が容易であることから、色-形反応連合の連合強度が強い可能性(表 2.2)、または、刺激反応マッピングを行う際に色-形の属性対に注意を向けやすい可能性が考えられる。まず、ここでいう連合強度とは、属性と反応との結びつきの強さを示す。この連合強度の要因としては、属性間の結びつきの強さが影響していると考えたくなる。しかしながら、今回の実験からはどちらの影響が強いのかを特定することはできなかったため、仮に両方が影響していると考えることとする。また、色-形の属性対に注意を向けやすいのであれば、提示アイテムを認知する段階で色-形属性対に強く注意を向けることにより、長期記憶から反応を想起する段階で色-形アイテムの反応を生起してしまうと考えることができる。これは、既存のサインやアイコンといった表現は物体認知に関わる属性のみで表現されることが多い、日常的に見慣れている可能性が高く、本実験においても物体認知に関わる属性の色-形の属性対に注意を向けてしまいがちになっていたという可能性が考えられる。

連合の学習のしやすさには脳の視覚情報処理経路の違いが影響している可能性がある。つまり、脳側視覚経路で処理される物体認識に関わる属性と脳側視覚経路で処理される空間属性から成る属性対は、同じ視覚経路で処理される属性同士の属性対に比べて反応との連合記憶を形成しにくい可能性が考えられる。この理由としては、別の視覚経路で処理される属性は互いに脳の離れた領域で処理されるため、各属性同士で情報のやりとりをしようとすると、多くのニューロンを経由する必要があり、アクセスが比較的困難になるため属性間の結びつきの強度が弱くなると考えることもできるだろう。もしくは、位置属性を処理するニューロンに比べて色や形の属性を処理するニューロンが運動系のニューロンと密接に連絡する可能性も考えられる。しかし、脳側視覚経路の方が運動系への出力に関与していることを考えるとこの可能性は低いかもしれない。実験 2 では、空間属性同士の属性対と反応の連合も、物体認知に関わる属性同士の属性対と反応の連合と同じように学習がしやすいのかを検証した。
図 2.18 実験 1A の 3 属性反応連合における記憶表象

表 2.2 属性対と反応の連合強度の違い

<table>
<thead>
<tr>
<th>連合強度が高い</th>
<th>連合強度が低い</th>
</tr>
</thead>
<tbody>
<tr>
<td>色-形反応</td>
<td>色-位反応</td>
</tr>
<tr>
<td>形-色反応</td>
<td>形-位反応</td>
</tr>
</tbody>
</table>

2-1-4-b. ノイズからの影響

どの視覚特徴を混同、もしくは見落とすことによって誤反応が生成されたかを調べると、全てのアイテムを総合した場合と、形・位置アイテムにおいて位置属性を混同した確率が多くかった。このことから、色・形・位置属性と反応が結びつく際には、位置属性を混同、もしくは見落とすことで間違った反応と連合したり、本来注目すべきではない連合関係を想起してしまう可能性があると考えることができる。しかし、色・位置アイテムにおいては数値的に見ると位置の方が混同した割合が若干高かったが、これは有意な差ではなかった。そのため、両属性間に差があると言い切ることはできない。しかし、これらの結果は刺激反応マッピングにおいて位置属性が、完全に色や形属性と同様に扱われているというわけではない可能性を示唆している。

位置属性を混同、もしくは見落とすことが多い可能性があるということは、位置属性が本来の入力信号とは異なるノイズ特徴からの影響を受けやすい可能性がある。ここで言うノイズとは、信号伝達の際に生じる予期できない偶然の誤った信号のことを示す。もしも、属性対の種類によって連合強度の差があるのであれば、このノイズ特徴による影響を強く受けやすいことが、色・位置反応連合や形・位置反応連合の連合強度を弱める原因となっているかもしれない。
2-1-4-c. 実験1Aのニューラルネットモデル

実験結果を基に、図2.19のような単純なニューラルネットモデルを考える。入力層の6つのユニットは、それぞれ色・形・位置の各特徴に対応している。「色1」と「色2」はそれぞれ「赤」と「緑」を、「形1」と「形2」はそれぞれ「三角形」と「四角形」を、「位置1」と「位置2」はそれぞれ「左」と「右」のことを示す。そして、これらの特徴を結合し属性対を形成するニューロンを中間層として考えることができる。提示される刺激によってこれらの中間層のユニットが活性化し、出力層の4つのユニット、A、B、C、Dキーに反応するニューロンに向けて入力信号を出す。このとき、中間層のユニットと出力層のユニットの結合荷重は、正しい反応と結びつく見込み（表2.3）によって決定した。例えば、「色1形1」を含む属性が提示されたときは必ず「反応A」が正解になるので、中間層の「色1形1」から出力層の「反応A」への結合荷重は+1となる。それに比べて「色1形2」を含む属性が提示されたときは、「反応B」でも「反応D」でも同程度に正解の可能性があるため、中間層の「色1形2」から出力層の「反応B」と「反応D」への結合荷重はそれぞれ+0.5となる。また、実験結果から色・位置反応連合と形・位置反応連合は、色・形反応連合よりも学習がしにくく、連合強度が弱い可能性が示唆された。これは、位置属性がノイズ特性による影響を受けやすいことが原因となっている可能性がある。ノイズが発生すると活動電位の伝達を妨げてしまうため、本来の入力を歪ませてしまう。このことをモデルに反映させると、中間層の形・位置ユニットから出力層のユニットへの結合荷重は色・形ユニットから出力層のユニットへの結合荷重より若干低い値になる。モデルではこれらの結合荷重を実験結果から逆算し、+0.74と+0.37とした。中間層の各ユニットと出力層の各ユニットの結合荷重を表2.4にまとめた。また、表2.4から各アイテムと出力ユニットへの荷重和(u)を計算したものを表2.5に示す。これは、例えば「色1形1位置1」のアイテムが提示されたときは、中間層の「色1形1」と「形1位置1」と「色1位置1」のユニットが活性し、出力層の「反応A」と「反応B」と「反応D」に対してそれぞれ+1.74、+0.37、+0.37の入力信号を送るということになる。さらに、この各出力ユニットに送られる入力信号の和から、反応の生起確率をシグモイド関数\(F(u) = \frac{a}{1+\exp(-b-u)}\)を用いて計算し（パラメータa=92.9, b=3.9, c=3.3と設定した）、結果を表2.6にまとめた。シグモイド関数は、ニューロンの内部状態を出力値に変換する関数として使用している。出力ユニットに送られる入力信号の和がニューロンの活性化閾値を超えるとニューロンは発火し活動電位を送るが、超えないならば何も起きない。このモデルでは、色・形ユニットからの重み付けされた入力が一番大きいため色・形ユニットが活性する場合が一番ニューロンの活性化閾値を超えやすいということになる。

実際の実験結果（表2.1）とモデルから割り出した反応生起の配分を比べると、かなり一致していることがある。したがって、図2.19のような対属性仮説に基づいたモデルで、実験データを再現できることができた。
図 2.19 実験 1A のモデル

表 2.3 実験 1A の提示アイテムと反応キーの関係

<table>
<thead>
<tr>
<th>提示アイテム</th>
<th>反応A (色1形1)</th>
<th>反応B (形2位置1)</th>
<th>反応C (色2位置2)</th>
<th>反応D (色2形1位置1 or 色1形2位置2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>色1形1位置1</td>
<td>正解</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>色1形1位置2</td>
<td>正解</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>色1形2位置1</td>
<td>正解</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>色2形2位置1</td>
<td>正解</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>色2形2位置2</td>
<td>正解</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>色2形1位置2</td>
<td>正解</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>色1形2位置2</td>
<td>正解</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
表 2.4 実験 1A の属性対から反応への結合の重み

<table>
<thead>
<tr>
<th></th>
<th>反応A</th>
<th>反応B</th>
<th>反応C</th>
<th>反応D</th>
</tr>
</thead>
<tbody>
<tr>
<td>色1形1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>色1形2</td>
<td>0</td>
<td>0.5</td>
<td>0</td>
<td>0.5</td>
</tr>
<tr>
<td>色2形1</td>
<td>0</td>
<td>0</td>
<td>0.5</td>
<td>0.5</td>
</tr>
<tr>
<td>色2形2</td>
<td>0</td>
<td>0.5</td>
<td>0.5</td>
<td>0</td>
</tr>
<tr>
<td>形1位置1</td>
<td>0.37</td>
<td>0</td>
<td>0</td>
<td>0.37</td>
</tr>
<tr>
<td>形1位置2</td>
<td>0.37</td>
<td>0</td>
<td>0.37</td>
<td>0</td>
</tr>
<tr>
<td>形2位置1</td>
<td>0</td>
<td>0.74</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>形2位置2</td>
<td>0</td>
<td>0</td>
<td>0.37</td>
<td>0.37</td>
</tr>
<tr>
<td>色1位置1</td>
<td>0.37</td>
<td>0.37</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>色1位置2</td>
<td>0.37</td>
<td>0</td>
<td>0</td>
<td>0.37</td>
</tr>
<tr>
<td>色2位置1</td>
<td>0</td>
<td>0.37</td>
<td>0</td>
<td>0.37</td>
</tr>
<tr>
<td>色2位置2</td>
<td>0</td>
<td>0</td>
<td>0.74</td>
<td>0</td>
</tr>
</tbody>
</table>

表 2.5 実験 1A の提示アイテムから反応への結合の重み

<table>
<thead>
<tr>
<th></th>
<th>反応A</th>
<th>反応B</th>
<th>反応C</th>
<th>反応D</th>
</tr>
</thead>
<tbody>
<tr>
<td>色-形アイテム</td>
<td>色1形1位置1</td>
<td>1.74</td>
<td>0.37</td>
<td>0</td>
</tr>
<tr>
<td>色-形アイテム</td>
<td>色1形1位置2</td>
<td>1.74</td>
<td>0</td>
<td>0.37</td>
</tr>
<tr>
<td>形-位置アイテム</td>
<td>色1形2位置1</td>
<td>0.37</td>
<td>1.61</td>
<td>0</td>
</tr>
<tr>
<td>形-位置アイテム</td>
<td>色2形2位置1</td>
<td>0</td>
<td>1.61</td>
<td>0.5</td>
</tr>
<tr>
<td>色-位置アイテム</td>
<td>色2形2位置2</td>
<td>0</td>
<td>0.5</td>
<td>1.61</td>
</tr>
<tr>
<td>色-位置アイテム</td>
<td>色2形1位置2</td>
<td>0.37</td>
<td>0</td>
<td>1.61</td>
</tr>
<tr>
<td>3属性アイテム</td>
<td>色2形1位置1</td>
<td>0.37</td>
<td>0.37</td>
<td>0.5</td>
</tr>
<tr>
<td>3属性アイテム</td>
<td>色1形2位置2</td>
<td>0.37</td>
<td>0.5</td>
<td>0.37</td>
</tr>
</tbody>
</table>
表2.6 実験1Aのモデルからシミュレートした反応の生起確率

<table>
<thead>
<tr>
<th>色・形アイテム</th>
<th>色1形1位置1</th>
<th>反応A</th>
<th>80.2</th>
<th>反応B</th>
<th>6</th>
<th>反応C</th>
<th>0</th>
<th>反応D</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>色1形1位置2</td>
<td>80.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>形・位置アイテム</td>
<td>色1形2位置1</td>
<td>6</td>
<td>74.7</td>
<td>反応C</td>
<td>0</td>
<td>反応D</td>
<td>8.8</td>
<td>反応D</td>
<td>6</td>
</tr>
<tr>
<td>色2形2位置1</td>
<td>6</td>
<td></td>
<td>74.7</td>
<td>8.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>色2形2位置2</td>
<td>0</td>
<td></td>
<td>8.8</td>
<td>74.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>反応D位置アイテム</td>
<td>色2形1位置2</td>
<td>6</td>
<td>0</td>
<td>74.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3属性アイテム</td>
<td>色2形1位置1</td>
<td>6</td>
<td>6</td>
<td>8.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>色1形2位置2</td>
<td>6</td>
<td>8.8</td>
<td>6</td>
<td>50.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

表2.1（再掲）実験1Aの学習ブロック10〜14ブロックにおける押下した反応キーの傾向

<table>
<thead>
<tr>
<th>提示アイテム</th>
<th>反応キー</th>
<th>Aキー(R△)</th>
<th>80%</th>
<th>Bキー(□左)</th>
<th>5% : 形</th>
<th>5% : 形</th>
<th>Cキー(□右)</th>
<th>2%</th>
<th>Dキー(R△左orR□右)</th>
<th>6% : 位置</th>
<th>6% : 形</th>
<th>TimeOut</th>
</tr>
</thead>
<tbody>
<tr>
<td>色・形(R△左)</td>
<td>78%</td>
<td></td>
<td>1%</td>
<td>形</td>
<td>6% : 形</td>
<td>6% : 形</td>
<td>形</td>
<td>2%</td>
<td>位置</td>
<td>11%</td>
<td>11%</td>
<td></td>
</tr>
<tr>
<td>形・位置(R□左)</td>
<td>4% : 形</td>
<td></td>
<td>72%</td>
<td>形</td>
<td>2%</td>
<td>2%</td>
<td>形</td>
<td>11%</td>
<td>T</td>
<td>11%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>形・位置(G□左)</td>
<td>7% : 形</td>
<td></td>
<td>69%</td>
<td>形</td>
<td>9% : 位置</td>
<td>9% : 位置</td>
<td>形</td>
<td>10%</td>
<td>位置</td>
<td>11%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>色・位置(G□右)</td>
<td>2%</td>
<td></td>
<td>7% : 形</td>
<td>形</td>
<td>75%</td>
<td>5% : 形</td>
<td>形</td>
<td>10%</td>
<td>形</td>
<td>13%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>色・位置(G△左)</td>
<td>7% : 形</td>
<td></td>
<td>2%</td>
<td>形</td>
<td>70%</td>
<td>9% : 位置</td>
<td>形</td>
<td>13%</td>
<td>位置</td>
<td>16%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3属性(G△左)</td>
<td>7% : 形</td>
<td></td>
<td>10%</td>
<td>形</td>
<td>8% : 位置</td>
<td>58%</td>
<td>形</td>
<td>16%</td>
<td>位置</td>
<td>20%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3属性(R□右)</td>
<td>4% : 形</td>
<td></td>
<td>14%</td>
<td>形</td>
<td>9% : 形</td>
<td>54%</td>
<td>形</td>
<td>18%</td>
<td>形</td>
<td>18%</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

※塗りつぶし箇所は正反応の割合
次に、このニューラルネットモデルから図 2.15 の 3 属性アイテムの誤反応の傾向について説明する（図 2.20）。この例では、3 属性アイテムの「R□右(色1形2位置2)」が提示されたときに、B キーを押した誤反応の例を示した。このアイテムが提示されると、それぞれの中間層の属性対ユニットから反応 A、反応 B、反応 C、反応 D に向けてそれぞれ +0.37、+0.5、+0.37、+1.24 の活性信号が送られる（図 2.20 の左図）。そのため、本来は最も大きな信号が送られる反応 D の出力値が最も高くなる。ただし、このときには必ず中間層の全ての該当ユニットが強く活性するというわけではない。理論的には少なくとも 2 つのユニットが活性すれば、正反応に結びつけることができる。図 2.20 の右図に、誤った反応が想起される場合について示した。実験結果より位置属性はノイズ特徴による影響を受けやすい可能性があった。ノイズ特徴からの影響を強く受けると、入力が歪み、本来の入力を担当していないニューロンが活性化する確率が増えると考えられる。この例においては、入力層においてノイズ特徴「位置1」からの影響を受け、中間層の「形2位置1」や「色1位置1」が活性化し、その結果入力信号の和が一番大きい反応 B が生起してしまうと考えることができる。また、色-形の属性対に注意を向けやすいならば、単純に色-形反応連合「R□(色1形2)」から反応 B への連合を採用してしまったという可能性も考えられる。以上のように、提案したニューラルネットモデルを用いて誤反応の生起について説明することができる。

図 2.20 3 属性アイテムの誤反応(図 2.15)の説明
2-2. 実験 1B

2-2-1. 目的
実験 1A では、色・形・位置で構成される属性セットを用いて刺激反応マッピング学習課題を行った。そしてその結果、色・形の属性対と形・位置の属性対、色・位置の属性対の表現があり、それぞれが反応と連合することが示唆された。さらに、色・形反応連合に比べて形・位置反応連合や色・位置反応連合は学習が難しい可能性が示唆された。しかし、これは、位置属性が色や形属性に比べて弁別する時間が遅かったり困難だったりするために、属性対表現が作りにくく、適切な反応との連合がしにくかったという可能性がある。また、各属性の弁別反応時間に差がなかったならば、各属性対と反応の連合の学習難易度の差は、視覚特徴と反応の連合記憶を形成するメカニズムに由来すると考えることができるだろう。
そこで、本実験では、このことを検証するために、実験 1A で用いた 8 種類のアイテムを用いて、各属性の弁別反応時間と正答率を比較した。

2-2-2. 実験方法
実験 1A で用いた 8 種類のアイテムを用い、色・形・位置属性の特徴を弁別する弁別課題を行った。以下に実験内容について詳述する。

2-2-2-a. 実験参加者
実験 1A と同様である。実験 1A 終了後に、引き続き本実験にも参加してもらった。

2-2-2-b. 実験環境
実験 1A と同様である。入力装置も、実験 1A と同じものを使用しているが、実際の反応には継並び 4 つのキー（「7」キー、「4」キー、「1」キー、「0」キー）のうち下の 2 つのキー（「1」キー、「0」キー）のみを使用している。

2-2-2-c. 刺激
実験 1A と同様である。

2-2-2-d. 手続き・デザイン
本実験では、アイテムが持つ 3 種類の属性の特徴を弁別する。
実験の 1 試行の流れは図 2.21 の通りである。まず、中央に注視点（白い十字）が提示されるブランク画面が提示される。実験参加者には必ずこの注視点に目を向けるように指示し
ている。また、ブランク画面は、実験参加者が試行を繰り返すことで一定のタイミングでキーを押してしまうことを防ぐために、ランダムな提示時間（1.4, 1.5, 1.6秒）にしている。ブランク画面提示後には、8種類のアイテムからランダムに選ばれたアイテムが1つだけ提示される（アイテム提示画面）。実験参加者はこのアイテム提示画面を見て、反応としてテンキーの2つのキーうち1つを選んで押す。反応が正解であれば試行が終了し、次の試行に進む。しかし、不正解の場合は、400Hzのブザー音が鳴った後に試行が終了し、次の試行に進む。

図2.21 実験1Bの1試行の手続き

実験を開始する前には、これから何の属性を弁別し、どの特徴に対してどのキーを押すかを、説明画面を用いて教示した（図2.22）。図2.22では、形属性を弁別するブロックの説明画面を示した。この例の場合では、三角形が提示された場合には2つのキーのうち上のキーを押し、四角形が提示された場合には下のキーを押すことになる。なお、この特徴と反応キーの組み合わせについては、実験参加者間でカウンターバランスをとっている。実験参加者には、この反応の仕方を覚えてもらった後に、練習を8試行（各アイテム1試行ずつ）行ってもらった。その後に、本試行として各属性につき96試行（これを1ブロックと表す）行ってもらった。

本実験は、実験1A終了後に5分間程度の休憩を挟んで開始している。1ブロックは96試行からなる（ブランク画面提示時間3種類×8種類のアイテムを4回提示）。ブロックごとに弁別する属性の種類が異なるため、合計3ブロック行っている。3種類の属性の弁別の順番は、実験参加者間でカウンターバランスをとっている。
2-2-3. 実験結果

まず、実験参加者28名のデータのうち、実験1Aで除外した1名のデータを省いた。その27名のデータから1名のデータを除してデータ分析を行った。除外した理由としては、この1名の位置属性の反応時間のデータが全実験参加者の平均値から標準偏差の3倍以上離れており、全体の平均値を算出する際に、大きく影響を及ぼしてしまうためである。

また、反応時間は、アイテムが提示されてからキーを押すまでの時間を示す。反応時間は、データの分布が正規分布にならないため、幾何平均を取っている。

2-2-3-a. 正答率と弁別反応時間

属性ごとの正答率と反応時間を図2.23に示す。図2.23の横軸は属性を示しており、左側の縦軸は反応時間、右側の縦軸は正答率を示している。この弁別時間は、3つの属性が含まれる視覚特徴から特定の1つの属性の特徴値を見分ける時間を示し、正答率はその処理を行う正確さを表す。まず、正答率について見ると、どの属性も98%を超えており、かなり正確に反応できていた。そこで、正答率について属性を要因とする被験者内要因3水準の分散分析を行った。その結果、主効果が有意傾向であり(F(2,50)=2.826, p<0.10)、多重比較を行うと、色属性と形属性の間の差が有意傾向であった(p<0.10)。これは、データの分散がかなり小さかったため(全データの標準偏差は、約0.01程度)有意傾向が出たと考えられ、どの属性も98%以上の高い正答率であったので、この差は今回の分析上問題視するほ
どの差ではないと考えられる。

次に反応時間について見てみると、位置属性を弁別する反応時間が他の属性に比べて短いことがわかる。反応時間について属性を要因とする被験者内 1 要因 3 水準の分散分析を行った。その結果、主効果が有意であり (F(2,50)=36.765, p<0.001)、位置属性と他の属性の間に有意な差があった(色と位置、形と位置ともに p<0.001)。

図 2.23 実験 1B の正答率と反応時間

2-2-3-b. 属性の弁別反応時間差による刺激反応マッピング学習への影響

3 属性の弁別反応時間に差があることによって、各属性対反応の連合を学習しにくくなるのか検証するために、本実験で扱った 26 名の実験データを属性間の弁別時間差が大きいグループと小さいグループに分けて実験 1A の学習成績を比較した。このグループ分けは、各実験参加者の 3 つの属性の弁別反応時間の標準誤差を算出することで決定している。標準誤差の値を順に並べ、前半 13 名分を弁別時間差が大きいグループとし、後半 13 名分を小さいグループとしている。実験 1A の学習ブロック 7〜9 ブロック(学習の中期)の 2 属性アイテム条件の正答率をこの 2 つのグループ間で比較した。その結果を図 2.24 に示す。

図 2.24 のグラフは、それぞれ横軸がアイテム条件、縦軸が正答率を示している。エラーバーは標準偏差を示す。グラフから、両グループで概ね同じような学習成績であることが見えてとれる。正答率について、グループとアイテム条件を要因とする混合計画 2 要因の分散分析を行った。被験者内要因としては、アイテム条件の主効果が有意であった (F(4,48)=4.956, p<0.05)。被験者間要因としては、グループの主効果が有意ではなかった (F(1,24)=0.008, ns)。そして、グループとアイテム条件の交互作用は有意ではなかった (F(2,48)=1.191, ns)。アイテム条件について多重比較をすると、色・形アイテムと形・位置ア
イテムの間(p<0.05)に有意差があり、色・形アイテムと色・位置アイテムの間が有意傾向であった(p<0.10)。このことから、属性間の弁別時間差が大小いか小さいかで、属性対と反応との連合学習の成績に差がないことが示唆された。

図 2.24 3 属性の弁別反応時間差のグループ分けにおける実験 1A の学習難易度の比較

2-2-4. 考察

属性間の正答率の差は有意傾向であったが、データの分散がかなり小さいことやどの属性も98%以上の高い正答率であったことから、この差は僅差であり、今回の分析においては問題視するほどの差ではないと考える。そのため、各属性の弁別反応での差は、反応時間に有ると考えた。反応時間の結果から、位置属性は他の属性と比べて弁別に時間がかかるところか、反対に早く弁別できることがわかった。それに加え、位置属性の正答率は他の属性と大きく違わない。そのため、弁別反応時間が短いのは、速さと正確さのトレードオフが起きたためではないことがわかる。また、刺激の提示位置が左右のどちらであったのに対して入力装置のキー配列は上下であったため、刺激反応適合性の効果が発生しているとは考えられない。

そして、3 つの属性間で知覚時間の差があるため、それが属性対と反応との連合の学習に影響するかを調べた。分析方法としては、本実験で扱った26名の実験データを属性間の弁別反応時間差が大きいグループと小さなグループに二分して、実験 1A の 2 属性アイテムの学習成績を比較した。その結果、2 つのグループ間に学習成績の差はなかった。これにより、3 つの属性の知覚時間差は、属性対と反応との連合の学習のしやすさには影響しないことが示唆された。連合学習のしやすさの差の発生原因は、弁別(知覚)段階にあるのではなく、視覚特徴と反応の連合記憶を形成するメカニズムにあると考えられる。
2-3. 実験 2A

2-3-1. 目的

実験 1A の結果から、色・形反応連合は形・位置反応連合と色・位置反応連合に比べて学習が容易である可能性が示唆された。この連合学習の難易度の差は、脳の視覚情報処理経路の違いが影響している可能性がある。

大脳の視覚情報処理経路には、脳側視覚経路と脳側視覚経路という 2 つの経路がある。脳側視覚経路は色や形などの物体認知に関わる属性の処理に関わっており、脳側視覚経路は位置や運動などの空間属性の処理に関わっていると考えられている。そのため、異なる視覚経路で処理される属性から成る属性対（例えば、色・位置の属性対）は、同じ視覚経路で処理される属性同士の属性対（例えば、色・形の属性対）に比べて属性対を形成しにくく、素早く正しい反応と連合することが難しくなる可能性が考えられる。しかし、これまでの研究では空間属性同士の属性対と反応の連合については検討されていない。

そこで、本実験では、空間属性同士の属性対と反応の連合も、物体認知に関わる属性同士の属性対と反応の連合と同じように学習が容易であるのかを明らかにすることを目的に、運動・位置・色の属性セットを用いた刺激反応マッピング学習課題を行った。もし、空間属性同士の属性対と反応の連合も学習が容易であるならば、運動・位置反応連合が色・位置反応連合や運動・色反応連合よりも学習が容易であるはずである。しかし、同じ視覚経路で処理される属性同士の属性対だから学習が容易であるというわけではなければ、運動・位置反応連合と色・位置反応連合や運動・色反応連合が同じような学習成績になるはずである。この場合は、実験 1A における色・形反応連合の学習が容易である理由は他にあると考えられる。

2-3-2. 実験方法

8 種類のアイテムと 4 つの反応キーの対応関係を学習する刺激反応マッピング学習課題を行った。刺激は、運動・位置・色で構成される属性セットを用いた。

2-3-2-a. 実験参加者

実験参加者は、正常な視力（矯正視力を含む）で正常な色覚を有する 18～24 歳までの大学生及び大学院生 29 名であった。実験参加者は全員、実験 1 や同様の実験に参加したことはなく、実験の目的を知らなかった。
2-3-2-b. 実験環境、手続き、デザイン
実験1Aと同様である。

2-3-2-c. 刺激
実験に用いた8種類のアイテムは、運動属性、位置属性、色属性の3つの属性を組み合わせて作成した（図2.25）。色属性と位置属性については、実験1Aと同じ特徴を使用した。運動属性は、左右に動くか上下に動くかのどちらかである。移動範囲は、図2.26に示した通り、アイテムの初期提示位置の中心点から垂直方向もしくは水平方向に視角2.2度の距離を持った範囲とした。なお、60fpsのフレームレートで1フレームあたりおよそ視角0.0316度ずつ動く（移動速度としては1.89度/秒）。なお、アイテム提示画面の背景色は実験1Aと同様である。

図2.25 実験2Aで用いたアイテム

図2.26 実験2Aで用いた運動属性の特徴
2-3-2-d.アイテムと反応キーの組み合わせ
アイテムと正解キーの対応関係は、実験1Aと同様の方法で設定した。実験で使用した対応関係の一例を図2.27に示す。

図 2.27 実験 2A のアイテムと正解キーの対応関係の一例

2-3-3. 実験結果
実験参加者29名のデータのうち、3名のデータを除外してデータ分析を行った。除外した理由としては、この3名のテストブロックでの全アイテムの平均正答率が65%を下回ており、学習ができていないと判断したからである。なお、この3名は、事後調査において全てのアイテム条件と正解反応キーの対応関係の規則性に気づかなかったと回答している。
また、反応時間はアイテムが提示されてからキーを押すまでの時間となっている。反応時間は、データの分布が正規分布にならないため、幾何平均を取っている。

2-3-3-a.学習ブロック、テストブロックの正答率
学習ブロックからテストブロックの正答率の推移を図2.28に示す。図2.28のグラフの横軸はブロック数で、縦軸は正答率である。
グラフから、学習ブロックとテストブロックを通じて、各2属性アイテムに比べて3属性アイテムの正答率が低いことがわかる。また、各2属性アイテムは、概ね同じような学習の推移をたどっていることがわかる。実験1A同様、3属性アイテムの正答率は学習が進んだ後でも60%程度のまま高くならないが、これはやはり制限時間が原因と考えられる。学習が早く進む2属性アイテムの正答率によって反応の制限時間が縮められるが、3属性アイテムはその制限時間内に正しく反応することが困難なため、正答率が60%程度のまま伸
びないと考えることができる。本実験においても、反応の制限時間がないテストブロックの正答率を見ると、3属性アイテムも90%以上に到達しているため、3属性アイテムの学習ができていなかったというわけではないことがわかる。

制限時間の推移を図2.29に示す。横軸はブロック数、縦軸は制限時間を示す。図2.29のグラフを見ると、制限時間は学習ブロック3ブロックの途中あたりから下がっている。このことから、学習ブロック3ブロック半ばには全アイテムセットと正解キーの対応関係を学習できていると推測できる。

図2.28実験2Aの正答率の推移

図2.29実験2Aの学習ブロックの制限時間の推移
また、実験 1A と同様の分け方で学習ブロックを学習の初期、中期、後期という 3 つの学習期間に分けてその平均正答率を比較した（図 2.30）。図 2.30 の横軸は学習期間、縦軸は正答率を示している。正答率について、アイテム条件 (4 水準) と学習期間 (3 水準) の被験者内 2 要因の分散分析を行った。結果、アイテム条件の主効果と学習期間の主効果が共に有意であったが、それらの交互作用は有意ではなくかった。アイテム条件: F(3,75)=9.304, p<0.001、学習期間: F(2,50)=76.412, p<0.001、交互作用: F(6,150)=1.368, ns。そこで、下位検定を行うと、アイテム条件においては、各 2 属性アイテムと 3 属性アイテムの間に有意差があった（運動・色アイテムと 3 属性アイテム: p<0.01、色・位置アイテムと 3 属性アイテム: p<0.05）。

実験 1A と同様に学習の中期における各 2 属性アイテムの正答率に差があるのかを調べた。正答率についてアイテム条件を要因として被験者内 3 要因 3 水準の分散分析を行ったところ、主効果が有意ではなかった（F(2,50)=1.314, ns）。

図 2.30 実験 2A の学習期間ごとの正答率

2-3-3-b. テストブロックの反応時間

テストブロックの平均反応時間を図 2.31 に示す。このグラフは、横軸が各アイテム条件、縦軸が反応時間を示している。グラフを見ると、3 属性アイテムの反応時間が各 2 属性アイテムの反応時間に比べて長いことがわかる。そこで、反応時間について、アイテム条件を要因とする被験者内 1 要因 4 水準の分散分析を行ったところ、主効果が有意であった（F(3,75)=6.975, p<0.001）。さらに、多重比較をすると、3 属性アイテムと各 2 属性アイテムの間にそれぞれ有意差があった（運動・色アイテムと 3 属性アイテム: p<0.01、色・位置アイテムと 3 属性アイテム: p<0.05、運動・位置アイテムと 3 属性アイテム: p<0.05）。
2-3-3-c.反応の傾向

学習ブロック10〜14ブロックにおいて、どのキーをどのくらいの割合押下したかを表2.7に示す。表中の提示アイテムの視覚特徴は、運動属性を↑（上下運動）と←（左右運動）で表現している。色属性と位置属性の特徴については、実験1Aと同じように表現した。

表2.7から2属性アイテムに比べて3属性アイテムは制限時間内に反応できなかった確率が高いことがわかる。また、実験1A同様、提示アイテムに含まれる特徴と反応キーに割り当てられた特徴が2つ以上該当するキーを押下してしまうことが多いことがわかった。

学習ブロック10〜14ブロックで全てのアイテムを総合してみたとき、誤反応においてどの属性の特徴を混同、または見落とした割合が多かったのかを比較した（図2.32）。図2.32の横軸は属性を、縦軸はその属性を混同した割合を示しており、エラーバーは標準偏差を示す。混同した割合について属性を要因とする被験者内1要因3水準の分散分析を行ったところ、主効果が有意ではなかった（F(2,42)=2.130, ns）。さらに詳細な分析をするために、アイテム条件ごとに、どの属性の特徴を混同した割合が多かったのかを比較した（図2.33）。各2属性アイテムについては、混同した割合について属性間で繰り返しのあるt検定を行い、3属性アイテムについては、混同した割合について属性を要因とする被験者内1要因3水準の分散分析を行った。その結果、運動・色アイテムと色・位置アイテムは2つの属性間に有意差があり（運動・色アイテム：t(25)=2.375, p<0.05, 色・位置アイテム：t(25)=2.145, p<0.05）、空間属性の特徴を混同する割合が高いことがわかった（図2.33-A,B）。それに比べて、運動・位置アイテムは属性間に有意な差はなかった（t(25)=1.542, ns）。また、3属性アイテムでも属性間で有意な差はなかった（F(2,50)=1.189, ns）。
表 2.7 実験 2A の学習ブロック 10〜14 ブロックにおける押下した反応キーの傾向

<table>
<thead>
<tr>
<th>提示アイテム</th>
<th>Aキー（1R）</th>
<th>Bキー（G左）</th>
<th>Cキー（→右）</th>
<th>Dキー（→R左orG右）</th>
<th>TimeOut</th>
</tr>
</thead>
<tbody>
<tr>
<td>運動-色（H左）</td>
<td>75%</td>
<td>5%:色</td>
<td>1%</td>
<td>8%:運動</td>
<td>10%</td>
</tr>
<tr>
<td>運動-色（H右）</td>
<td>77%</td>
<td>2%</td>
<td>7%:運動</td>
<td>6%:色</td>
<td>9%</td>
</tr>
<tr>
<td>色-位置（H左）</td>
<td>4%:色</td>
<td>72%</td>
<td>2%</td>
<td>9%:位置</td>
<td>12%</td>
</tr>
<tr>
<td>色-位置（→G左）</td>
<td>1%</td>
<td>71%</td>
<td>9%:位置</td>
<td>7%:色</td>
<td>12%</td>
</tr>
<tr>
<td>運動-位置（→G右）</td>
<td>1%</td>
<td>7%:位置</td>
<td>75%</td>
<td>7%:運動</td>
<td>10%</td>
</tr>
<tr>
<td>運動-位置（→R右）</td>
<td>4%:運動</td>
<td>1%</td>
<td>78%</td>
<td>6%:位置</td>
<td>11%</td>
</tr>
<tr>
<td>3属性（→R左）</td>
<td>7%:運動</td>
<td>7%:色</td>
<td>9%:位置</td>
<td>60%</td>
<td>17%</td>
</tr>
<tr>
<td>3属性（HG右）</td>
<td>7%:色</td>
<td>11%:位置</td>
<td>10%:運動</td>
<td>55%</td>
<td>17%</td>
</tr>
</tbody>
</table>

※塗りつぶし箇所は正反応の割合

図 2.32 実験 2A の全アイテムの誤反応において混同したと思われる属性
図 2.33 実験 2A のアイテム条件ごとの誤反応において混同したと思われる属性

2-3-4. 考察

2-3-4-a. 視覚特徴の統合表現と反応の連合

学習ブロックにおいて、各 2 属性アイテムは 3 属性アイテムに比べて正答率が有意に低かった。また、学習後半において 3 属性アイテムのタイムアウトが多く、テストブロックにおける反応時間は各 2 属性アイテムよりも 3 属性アイテムの方が長かった。これらのことから、やはり 3 属性アイテムは 2 属性アイテムよりも記憶の負荷が大きいと考えられる。また、提示アイテムに含まれる特徴と反応キーに割り当てられた特徴が 2 つ共通しているキーを押下してしまうことが多かった。これらの結果は対属性仮説で説明できる。

また、各 2 属性アイテムでは、正答率や反応時間に差が見られなかった。運動-位置反応連合と色-位置反応連合、運動-色反応連合は同程度の記憶量で保持され、同程度の学習難易度であったと考えられる。そのため、同じ視覚経路で処理される属性同士の属性対であれば反応との連合関係を学習しやすいわけではないことが示唆された。
2-3-4-b. ノイズからの影響

学習ブロックの後半において、どの視覚特徴を混同、もしくは見落とすことによって誤反応が生起したのかを調べると、色・位置アイテムと運動・色アイテムは、それぞれ位置と運動属性の特徴を混同する割合が高い傾向があった。しかし、運動・位置アイテムについては、運動と位置の両属性間に差がなく、それぞれの属性を同程度混同してしまうことがわたった。また、色・形・位置の属性セットを用いた実験1Aにおいては、比較的位置属性を混同してしまうことによって起こるエラーが多かった。これらのことから、空間属性の特徴が物体認知に関わる属性の特徴と結びついて反応と連合する場合には、空間属性の特徴を混同してしまうことによって誤った反応を生起してしまうことが多い可能性があることが示唆された。このことから、運動や位置属性が反応と結びつくときに、これらの属性がノイズ特徴からの影響を受けやすいと考えることができる。

2-3-4-c. 実験2Aのニューラルネットモデル

実験1A同様、実験2Aについても実験結果を基に同じ要領で単純なニューラルネットモデルを考えた(図2.34)。実験2Aにおける色・位置反応連合と運動・色反応連合、運動・位置反応連合の属性対と反応の結びつきの強さは、実験1Aにおける色・位置反応連合と形・位置反応連合のそれと同等だと考えたため、実験2Aにおける中間層のユニットと出力層のユニットの結合荷重は、+0.74か+0.37とした(表2.9)。また、各アイテムが提示された時の出力ユニットへの荷重和(u)を計算したものを表2.10に示す。さらに、出力層の4つのユニットの出力値として、反応の生起確率をシグモイド関数 \(F(u) = \frac{a}{1+\exp(b-cu)} \) を用いて計算し(パラメタは \(a=90.9, b=3.5, c=3.4 \) と設定した)、表2.11にまとめた。実際の実験結果(表2.7)と比べると、反応生起の配分がかなり一致していることがわかる。したがって、図2.34のような対属性仮説に基づいたモデルで、実験データを再現できることが分かった。
図 2.34 実験 2A のモデル

表 2.8 実験 2A の提示アイテムと反応キーの関係

<table>
<thead>
<tr>
<th>提示アイテム</th>
<th>反応A(運動1色1)</th>
<th>反応B(色2位置1)</th>
<th>反応C(運動2位置2)</th>
<th>反応D(運動2色1位置1 or 運動1色2位置2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>運動1色1位置1</td>
<td>正解</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>運動1色1位置2</td>
<td>正解</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>運動1色2位置1</td>
<td>正解</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>運動2色2位置1</td>
<td>正解</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>運動2色2位置2</td>
<td>正解</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>運動2色1位置2</td>
<td>正解</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>運動2色1位置1</td>
<td>正解</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>運動1色2位置2</td>
<td>正解</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

結合係数

0.74
0.37
表 2.9 実験 2A の属性対から反応への結合の重み

<table>
<thead>
<tr>
<th></th>
<th>反応A</th>
<th>反応B</th>
<th>反応C</th>
<th>反応D</th>
</tr>
</thead>
<tbody>
<tr>
<td>運動1色1</td>
<td>0.74</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>運動1色2</td>
<td>0</td>
<td>0.37</td>
<td>0</td>
<td>0.37</td>
</tr>
<tr>
<td>運動2色1</td>
<td>0</td>
<td>0</td>
<td>0.37</td>
<td>0.37</td>
</tr>
<tr>
<td>運動2色2</td>
<td>0</td>
<td>0.37</td>
<td>0.37</td>
<td>0</td>
</tr>
<tr>
<td>色1位置1</td>
<td>0.37</td>
<td>0</td>
<td>0</td>
<td>0.37</td>
</tr>
<tr>
<td>色1位置2</td>
<td>0.37</td>
<td>0</td>
<td>0.37</td>
<td>0</td>
</tr>
<tr>
<td>色2位置1</td>
<td>0</td>
<td>0.74</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>色2位置2</td>
<td>0</td>
<td>0</td>
<td>0.37</td>
<td>0.37</td>
</tr>
<tr>
<td>運動1位置1</td>
<td>0.37</td>
<td>0.37</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>運動1位置2</td>
<td>0.37</td>
<td>0</td>
<td>0</td>
<td>0.37</td>
</tr>
<tr>
<td>運動2位置1</td>
<td>0</td>
<td>0.37</td>
<td>0</td>
<td>0.37</td>
</tr>
<tr>
<td>運動2位置2</td>
<td>0</td>
<td>0</td>
<td>0.74</td>
<td>0</td>
</tr>
</tbody>
</table>

表 2.10 実験 2A の提示アイテムから反応への結合の重み

<table>
<thead>
<tr>
<th></th>
<th>反応A</th>
<th>反応B</th>
<th>反応C</th>
<th>反応D</th>
</tr>
</thead>
<tbody>
<tr>
<td>運動-色アイテム</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>運動1色1位置1</td>
<td>1.48</td>
<td>0.37</td>
<td>0</td>
<td>0.37</td>
</tr>
<tr>
<td>運動1色1位置2</td>
<td>1.48</td>
<td>0</td>
<td>0.37</td>
<td>0.37</td>
</tr>
<tr>
<td>色-位置アイテム</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>運動1色2位置1</td>
<td>0.37</td>
<td>1.48</td>
<td>0</td>
<td>0.37</td>
</tr>
<tr>
<td>運動2色2位置1</td>
<td>0</td>
<td>1.48</td>
<td>0.37</td>
<td>0.37</td>
</tr>
<tr>
<td>運動-位置アイテム</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>運動1色2位置2</td>
<td>0</td>
<td>0.37</td>
<td>1.48</td>
<td>0.37</td>
</tr>
<tr>
<td>運動2色1位置2</td>
<td>0.37</td>
<td>0</td>
<td>1.48</td>
<td>0.37</td>
</tr>
<tr>
<td>3属性アイテム</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>運動1色1位置1</td>
<td>0.37</td>
<td>0.37</td>
<td>0.37</td>
<td>1.11</td>
</tr>
<tr>
<td>運動1色2位置2</td>
<td>0.37</td>
<td>0.37</td>
<td>0.37</td>
<td>1.11</td>
</tr>
</tbody>
</table>
表 2.11 実験 2A のモデルからシミュレートした反応の生起確率

<table>
<thead>
<tr>
<th>運動-色アイテム</th>
<th>運動1色1位置1</th>
<th>反応A</th>
<th>反応B</th>
<th>反応C</th>
<th>反応D</th>
</tr>
</thead>
<tbody>
<tr>
<td>運動1色1位置2</td>
<td>74.7</td>
<td>8.7</td>
<td>0</td>
<td>8.7</td>
<td></td>
</tr>
<tr>
<td>色-位置アイテム</td>
<td>運動1色2位置1</td>
<td>8.7</td>
<td>74.7</td>
<td>0</td>
<td>8.7</td>
</tr>
<tr>
<td>運動2色2位置1</td>
<td>0</td>
<td>74.7</td>
<td>8.7</td>
<td>8.7</td>
<td></td>
</tr>
<tr>
<td>運動-位置アイテム</td>
<td>運動2色2位置2</td>
<td>0</td>
<td>8.7</td>
<td>74.7</td>
<td>8.7</td>
</tr>
<tr>
<td>3属性アイテム</td>
<td>運動2色1位置1</td>
<td>8.7</td>
<td>8.7</td>
<td>8.7</td>
<td>51.6</td>
</tr>
<tr>
<td>運動1色2位置2</td>
<td>8.7</td>
<td>8.7</td>
<td>8.7</td>
<td>51.6</td>
<td></td>
</tr>
</tbody>
</table>

表 2.7（再掲）実験 2A の学習ブロック 10〜14ブロックにおける押下した反応キーの傾向

<table>
<thead>
<tr>
<th>提示アイテム</th>
<th>Aキー（1R）</th>
<th>Bキー（G左）</th>
<th>Cキー（R右）</th>
<th>Dキー（R左orG右）</th>
<th>TimeOut</th>
</tr>
</thead>
<tbody>
<tr>
<td>運動-色（#R左）</td>
<td>75%</td>
<td>5% ：色</td>
<td>1%</td>
<td>8% ：運動</td>
<td>10%</td>
</tr>
<tr>
<td>運動-色（#R右）</td>
<td>77%</td>
<td>2%</td>
<td>7% ：運動</td>
<td>6% ：色</td>
<td>9%</td>
</tr>
<tr>
<td>色-位置（#G左）</td>
<td>4% ：色</td>
<td>72%</td>
<td>2%</td>
<td>9% ：位置</td>
<td>12%</td>
</tr>
<tr>
<td>色-位置（#G右）</td>
<td>1%</td>
<td>71%</td>
<td>9% ：位置</td>
<td>7% ：色</td>
<td>12%</td>
</tr>
<tr>
<td>運動-位置（#G右）</td>
<td>1%</td>
<td>7% ：位置</td>
<td>75%</td>
<td>7% ：運動</td>
<td>10%</td>
</tr>
<tr>
<td>運動-位置（#R右）</td>
<td>4% ：運動</td>
<td>1%</td>
<td>78%</td>
<td>6% ：位置</td>
<td>11%</td>
</tr>
<tr>
<td>3属性（#R左）</td>
<td>7% ：運動</td>
<td>7% ：色</td>
<td>9% ：位置</td>
<td>60%</td>
<td>17%</td>
</tr>
<tr>
<td>3属性（#G右）</td>
<td>7% ：色</td>
<td>11% ：位置</td>
<td>10% ：運動</td>
<td>55%</td>
<td>17%</td>
</tr>
</tbody>
</table>

※塗りつぶし箇所は正反応の割合
2-4. 実験 2B

2-4-1. 目的
実験 1A では色・形・位置で構成される属性セットを、実験 2A では運動・位置・色で構成される属性セットを用いてそれぞれ刺激反応マッピング学習課題を行った。その結果、2つの属性がひとまとまりになった表現(属性対)を基本として反応と連合することが示唆された。そして、他の属性対と反応の連合に比べて色・形反応連合は学習が容易であるように、各属性対と反応を連合する難易度には差がある可能性が考えられた。これは、それぞれの属性の特徴を弁別する時間に差があるために、属性対表現が作りにくく、適切な反応との連合がしにくかったという可能性と考えられる。
そこで、本実験では、運動・位置・色の各属性の特徴を弁別する時間に差があるかを検証するために、実験 2A で用いた 8 種類のアイテムを使って、3つの属性の弁別反応時間と正答率を比較した。そして、弁別する時間に差があるのならば、その差が属性対と反応の連合の学習のしやすさに影響するのかを検討する。

2-4-2. 実験方法
実験 2A で用いた 8 種類のアイテムを用い、運動・位置・色属性の特徴を弁別する弁別課題を行った。

2-4-2-a. 実験参加者
実験 2A と同様である。実験 2A 終了後に、引き続き本実験にも参加してもらった。

2-4-2-b. 実験環境、手続き・デザイン
実験 1B と同様である。

2-4-2-c. 刺激
実験 2A と同様である。

2-4-3. 実験結果
まず、実験参加者 29 名のデータのうち、実験 2A で除外した 3 名のデータを省いた。その 26 名のデータから 1 名のデータを除外してデータ分析を行った。除外した理由としては、この 1 名の運動属性と色属性の反応時間のデータが、全実験参加者の平均値から標準偏差
の 3 倍以上離れた値であったため、全体の平均値を算出する際に、大きく影響を及ぼしてしまうためである。
また、反応時間とは、アイテムが提示されてからキーを押すまでの時間のことである。反応時間は、データの分布が正規分布にならないため、幾何平均を取っている。

2-4-3-a. 正答率と弁別反応時間
属性ごとの正答率と反応時間を図 2.35 に示す。図 2.35 の横軸は属性を示しており、左側の縦軸は反応時間、右側の縦軸は正答率を示している。まず、正答率は 3 属性とも 98% 以上であり、かなり正確に反応できていることがわかった。そこで、正答率について属性を要因とする被験者内 1 要因 3 水準の分散分析を行ったところ、主効果が有意であり（F(2,48)=5.829, p<0.01）、多重比較を行うと、運動属性と位置属性の間と、運動属性と色属性の間に有意差があった（p<0.05）。これは、実験 1B 同様、データの分散がかなり小さかったため（全データの標準偏差は約 0.01 程度）多少の差でも有意差が出たと考えられる。そして、どの属性も 98%以上の高い正答率であったのでどの属性に対しても高精度で反応できていたと考えられる。
次に反応時間について見てみると、運動属性を弁別する反応時間が他の属性に比べて長く、位置属性を弁別する反応時間が短いことがわかる。反応時間について属性を要因とする被験者内 1 要因 3 水準の分散分析を行ったところ、主効果が有意であった（F(2,48)=73.584, p<0.001）。さらに多重比較を行うと、運動属性と色属性の間と、運動属性と位置属性の間に有意な差があった（p<0.001）。また、色属性と位置属性との間に有意差があった（p<0.01）。

図 2.35 実験 2B の正答率と反応時間
2-4-3-b. 属性の弁別反応時間差による刺激反応マッピング学習への影響

各属性の弁別反応時間に差があることによって、各属性対反応の連合を学習しにくくなるのか検証するために、本実験で扱った25名の実験データを属性間の弁別時間差が大きいグループ(13名)と小さいグループ(12名)に分けて実験2Aの学習成績を比較した。このグループ分けは実験1Bと同様の方法で行った。実験2Aの学習ブロック7〜9ブロック(学習の中期)の2属性アイテム条件の正答率を2つのグループ間で比較した(図 2.36)。図2.36のグラフは、それぞれ横軸がアイテム条件、縦軸が正答率を示している。エラーバーは、標準偏差を示している。グラフを見ると、3属性の弁別反応時間差が小さいグループの方が、運動-色アイテムの正答率が高く、色-位置アイテムの正答率が低いように見える。正答率についてグループとアイテム条件を要因とする混合計画2要因の分散分析を行った。被験者内要因としては、アイテム条件の主効果が有意でなかった(F(2,46)=1.997, ns)。被験者間要因としては、グループの主効果が有意ではなかった(F(1,23)=0.173, ns)。そして、アイテム条件とグループの交互作用は有意であった(F(2,46)=3.856, p<0.05)。下位検定を行うと、弁別時間差が大きいグループにおけるアイテム条件の単純主効果は有意ではないが、小さいグループにおけるアイテム条件の単純主効果は有意であった(p<0.05)。そこで、小さいグループの場合は重比較を行うと、運動-色アイテムと色-位置アイテムの間の有意差があり(p<0.05)、色-位置アイテムと運動-位置アイテムの間のは有意傾向であった(p<0.10)。さらに、各アイテム条件におけるグループの単純主効果を調べると、運動-色アイテムのみ有意傾向であった(p<0.10)。このことから、3属性の弁別時間差が小さいと、運動-色アイテムの正答率が高くなる可能性が示唆された。

図 2.36 3属性の弁別反応時間差のグループ分けにおける実験2Aの学習難易度の比較
2-4-4. 考察

実験1B同様、3つの属性の正答率の差は有意であったが、データの分散がかなり小さいことや、どの属性も98%以上の高い正答率であったことから、この差は僅差であると考えられる。弁別反応時間は、運動属性がもっとも長く、位置属性がもっとも短いことがわかった。しかしどの属性もほぼ正確に反応ができていたので、速さと正確さのトレードオフはいずれの属性においても起きていないことがわかる。

そのため、この弁別時間の差によって各属性対ができにくく、反応と連合しにくくなる可能性を考えられた。そこで、この点を調べるために、本実験で扱った25名の実験データを属性間の弁別反応時間差が大きいグループと小さいグループに二分して、グループ間で実験2Aの2属性アイテムの学習成績を比較した。その結果、3属性の弁別時間差が小さいと（最も弁別反応時間差のある運動属性と位置属性の差が縮まると）、刺激反応マッピングにおける運動-色アイテムの正答率が高くなる可能性が示唆された。これに加え、弁別反応時間差が小さいと、色-位置アイテムに比べて運動-色アイテムと運動-位置アイテムの正答率が高くなることがわかった。これらのことを考えると、3属性の弁別時間差が小さいと運動-色アイテムと運動-位置アイテムの学習が容易になる可能性が示唆され、弁別反応時間差が刺激反応マッピングの学習難易度に影響する可能性が考えられた。しかしながら、他の属性に比べて運動の知覚が遅れるということは本実験に限ったことではない。運動属性の知覚は、時系列上の複数点を観察することによって成立するため、どうしても他の属性の知覚より時間がかかってしまう。そのため、たとえ各属性の弁別反応時間を揃うように刺激のデザインを調節したとしても、その結果を一般化できるとは考えにくいだろう。

また、今回の統計分析は被験者間の比較であったため、検定力が弱いという問題がある。この問題に関してはっきりとした答えを出すためには、実験参加者数を増やした検討を行う必要があるだろう。
第3章 結論

3-1. 総合考察

我々は、物体を見てそれに反応をとるということを繰り返しながら生活をしている。そして、物体は様々な視覚特徴の組み合わせによって表現される。そのため、我々は視覚特徴の組み合わせから判断して適切な反応を取っているのである。サインやアイコンといった情報表現は、そのことを上手く利用している。例えば、信号機のサイン表現であれば、青信号が提示すれば進む、赤信号が提示されれば止まる。電車の踏切などの信号であれば、赤い信号が点滅することにより一時停止する。我々が日常的にこのような行動を取るためには、視覚特徴と適切な反応の対応関係をあらかじめ学習し記憶し、必要なときに素早く想起できる必要がある。それでは、どのような記憶構造で物体が持つ視覚特徴から適切な反応が結びつくのか。本研究では、複数の属性の特徴の結合表現と反応との連合記憶がどのような表現で記憶されているかを、刺激反応マッピング学習課題を用いて検討した。特に、空間的特徴と反応との連合について調べた。なお、刺激反応マッピング学習課題では、反応と関連する視覚特徴の数や組み合わせを変えることで学習率や反応時間、エラー傾向などを比較し検討を行った。実験1においては、色・形・位置で構成される属性セットを用いた実験を行い、特徴統合において重要な役割を担う位置属性が刺激反応マッピング学習においてどのように扱われるのかを検討した。実験2においては、空間属性を2種類含んだ運動・位置・色で構成される属性セットを用いた実験を行い、空間属性同士の属性対と反応の連合の記憶構造について検討した。

3-2. 視覚特徴はどのような表現で反応と連合するか

長期記憶において視覚特徴がどのような表現で反応と連合するのかという問題に対して、先行研究では、対属性仮説と全属性仮説という仮説が提案されていた。対属性仮説とは、2つの属性をひとまとめにした表現を基本として反応と結びつける考え方である。一方、全属性仮説は物体に含まれる全ての属性を同時にひとまとめにした表現が反応と結びつくという考え方である。

本研究で行った実験1,2から、次の結果が得られた。まず、2属性を反応と連合するよりも3属性を反応と連合する方が、学習が難しいことがわかった。次に、学習が完了した後にこれらの連合記憶を想起させると、2属性反応連合よりも3属性反応連合の方が反応するのに時間がかかることがわかった。この2点の結果から、3属性反応連合は2属性反応連合に比べて記憶の負荷が大きくかかると考えることができる。したがって、3属性アイテムは
2 属性反応連合に比べて複雑な統合表現を持って複雑に反応と連合すると考えられる。そのため、視覚特徴に含まれる属性の種類がいくら増えても、1 単位で反応と結びつくという全属性仮説では、今回の実験結果は説明できない。全属性仮説の考えが正しければ、反応に関連する属性数がいくら増えても記憶の負荷量は変わらず、必ず視覚特徴の結合表現と反応が1 対1 で結びつくはずである。また、個々の属性がそれぞれ反応と連合している可能性も考えられるが、この仮説は先行研究(Ishizaki et al., 2015 など)にて否定されている。それに対して、対属性仮説の考えに従うと今回の結果を上手く説明することができる。属性仮説が形成されて反応と結びついているのであれば、2 属性反応連合では1 対1 で視覚特徴と反応が結びつく。それに対し、3属性反応連合では少なくとも2 つの属性対を組み合わせて視覚特徴を表現して反応と結びつけなければならないために、学習が遅くなり、記憶の想起にも時間がかかると考えられ、今回の結果と合致する。また、この考察から単純なニューラルネットモデルを考案した(2-1-4-ε, 2-3-4-ε 参照)。入力層の6 つのユニットは、それぞれの特性に該当し、これらの特性を結び置属性対を形成するニューロンを中間層として考えた。そして、提示される刺激によってこれらのニューロンが活性化し、出力層のユニットに向けて入力信号を出し、反応が生成する。以上のような構造で、視覚特徴と反応の連結記憶が構築されることが示唆された。

3-3. 属性対と反応の連合強度

属性対の種類によって反応との連合記憶を形成する難易度が異なることが示唆された。これにより、各属性対と反応の連合強度（属性対と反応の結びつきの強さ）が異なる可能性、または刺激反応マッピングにおいて特定の属性対（色・形）に注意を向けやすい可能性が考えられた。色・形の属性対に注意を向けやすい場合は、作業記憶において提示アイテムを認知する段階で色・形属性対に強く注意を向けることにより、長期記憶から反応を生成する段階で色・形アイテムの反応を想起してしまうと考えることができる。これは、既存のサイオンやアイコンといった表現が物体認識に関わる属性ののみで表現されていることが多いために日頃から見慣れており、注目してしまうという可能性が考えられる。しかし、今回は仮性対と反応の連合強度が異なると考え、以降これについて考察することとする。

実験 1A では、形・位置反応連合と色・位置反応連合に比べて色・形反応連合の連合強度が強い可能性を考えられた。色と形という側視覚経路で処理される属性（物体認識関する属性）同士の属性対と反応との連合強度が強かったことから、脳の同一視覚情報処理経路で処理される属性同士の属性対は反応との連合強度が強い可能性が考えられた。しかし、実験 2A において、背側視覚経路で処理される属性（空間属性）同士の属性対である運動・位置反応連合は、色・位置反応連合及び運動・色反応連合と同程度の連合強度であることが示唆された。実験 1A と 2A で共通して設定されていた色・位置反応連合を基準として考えると、色・形反
応連合に比べて運動・位置反応連合は連合強度が弱いと考えることができる。このことから、属性対と反応との連合強度は、同じ視覚経路で処理される属性同士の属性対であれば強くなるというわけではないことがわかる。

また、Ishizaki et al. (2015)では、物体認知に関わる属性同士の属性対である色・形反応連合と色・テクスチャ反応連合、形・テクスチャ反応連合は同程度の連合強度であることが報告されている。この結果と本研究の結果を総合して考えると、物体認知に関わる属性同士の属性対よりも空間属性が含まれる属性対の方が反応との連合強度が弱いと一般化することができるだろう（図3.2）。

しかし、本研究で行った刺激反応マッピング学習課題は、学習の進度によって反応の制限時間が変わり、学習が進むと全アイテムの平均正答率を70%程度に維持するように調整されているため、色・位置反応連合を基準として実験1Aと2Aで得られた結果を直接比較することができない可能性がある。実験結果を見ると、実験1Aと2Aにおいて同じ難易度であるべき色・位置アイテムの学習進度が、実験1Aの学習の中期では74%程度であるのに対し、実験2Aの学習の中期では70%程度となっており異なっている。これを基準として比較して良いのか検討する必要があるだろう。学習の中期における正答率について実験1Aと2A間で差があるのか調べるために独立したt検定を行うと有意差はなかった（t(45.151)=0.283, ns）。また、4つの条件の正答率の平均値が70%程度に維持するように制約を受けているために、3属性アイテムの正答率が非常に低ければ、天井効果により3通りの2属性アイテムは全て70%に近いところでほぼ同程度の正答率になるだろう。一方、3属性アイテムの正答率があまり低くなければ、4条件の間には実際にはそれほど大きさの差がなくても、反応できるぎりぎりの制限時間になるため、感度よく正答率に差が現れるだろう。そこで、2つの実験で3属性アイテムと2属性アイテム（3条件の平均）の正答率の関係が一致しているかどうかを調べた。学習ブロック7〜9ブロック（学習の中期）の2属性アイテム（3条件の平均）と3属性アイテムの正答率を比較した（図3.1）。もしも、この差がなければ、2つの実験の結果を直接比較しても問題ないと考えられる。図3.1の横軸はアイテム条件、縦軸は正答率を示す。エラーバーは標準偏差を示す。グラフを見ると、両実験の結果は同じような傾向を示している。正答率について実験の種類（2水準）とアイテム条件（2水準）を要因とする混合計画2要因の分散分析を行った。被験者内要因としては、アイテム条件の主効果が有意であった（F(1,51)=74.229, p<0.001）。被験者間要因としては、実験の種類の主効果は有意ではなかった（F(1,51)=1.852, ns）。そして、アイテム条件と実験の種類の交互作用は有意ではなかった（F(1,51)=0.034, ns）。このことから、2つの実験の結果に有意な差はないと考えられ、実験結果の比較が可能であると考えることができる。
図 3.1 実験 1A と 2A の学習ブロックにおける正答率の比較

今回の実験結果から導いた、視覚特徴と反応との連合強度の比較を図 3.2 に示す。図 3.2 では、数直線上で Ishizaki et al. (2015) の実験と実験 1A、2A の各アイテム条件の反応との連合強度を表現しており、右側に位置するものほど連合強度が強いことを示している。なお、数直線を挟んで上側に実験 1A のアイテム条件を、下側に実験 2A のアイテム条件を配置した。さらに、実験 1A の上に Ishizaki et al. (2015) の 2 属性アイテム条件を配置している。実験 1A と 2A に共通するアイテム条件は、網掛けした角丸四角形内に条件名を表記している。この共通アイテム条件を基準とし、各アイテム条件を数直線上に配置している。

空間属性を含む属性対が物体認知に関わる属性に比べて反応との連合強度が弱いのは、刺激反応マッピングにおいて空間属性がノイズの影響を強く受けやすいということが原因となっている可能性がある。ノイズが強く発生すると、本来の活動電位の伝達を妨げてしまい、その分本来の入力を担当しないニューロンが活性化する確率が増大してしまう。この本来の活動電位の伝達が妨げられてしまうことは、2-1-4-c, 2-3-4-c で提案した 2 つのニューラルネットモデルにおける中間層から出力層への結合荷重の値で表現した。空間属性がノイズの影響を受けることによって色-形から出力層への結合の強度よりも、色-位置や形-位置、色-運動、運動-位置から出力層への結合の強度が弱くなると考えられる。

それでは、なぜ空間属性はノイズの影響を受けやすいのだろうか。1 つの可能性としては、物体認知に関わる属性に比べて、空間属性の脳内表象は 1 つ 1 つの特徴がはっきりと別のものとして表現されることが原因の可能性がある。例えば、物体認知に関わる属性である色の特徴は赤・緑・青の値の加減によって表現される。そのため、色の特徴は拮抗関係にある。それに対し、位置や運動の特徴は拮抗的ではなく、独立して表現されている。それゆえに、ノイズからの刺激を受けると大きく影響されてしまうのではないか。
図 3.2 8 つのアイテム条件の連合強度

3-4. 今後の課題

3-4-1. 視覚特徴と反応の連合構造

本研究では、属性対を形成し、反応と連合するという対属性仮説を支持する記憶構造モデルを提案した。この記憶構造モデルから考えると、オブジェクトが持つ特徴が 4 属性に増えれば 6 つの属性対が形成されるし、5 属性に増えれば 10 個の属性対が形成されることになる。しかし、この属性対が全て反応と連合していると考えるのは、記憶構造として冗長であるため少々問題があるように思われる。本研究において検討した 3 属性アイテムの場合は、少なくとも 2 つの属性対を 2 段階で反応と連合している可能性が考えられるが、4 属性、5 属性と属性数が増えた場合はどのような段階を経て反応と連合するのだろうか。属性数を増やし、より複雑な特徴を持つオブジェクトを用いた検討も今後行っていきたい。

3-4-2. 属性対と反応の連合強度

本研究では、背側視覚経路で処理される空間属性が視覚特徴に加わると、反応との連合強度が弱くなる可能性が示唆された。しかし、この差が属性対間の結びつきの強度の違いからくるものなのか、反応(運動系)との結びつきの強度の違いからくるものなのか、それともこの両方が影響しているのかを明らかにすることはできなかった。そこで、今後はこの
点を明らかにするために、まずは属性の組み合わせによって結合強度が異なるのか調べることを目指す。先行研究より、属性対は作業記憶の段階で作られていると考えられる。そのため、属性間の結合について調べるためには、作業記憶における記憶を扱う実験を行う必要があるだろう。そして、単属性と反応（運動系）との結合の強さを調べることを目指す。運動属性と反応や位置属性と反応は、色属性と反応などと比べて結びつきが弱いのだろうか。

また、この連合強度の違いは学習の効果の持続時間に影響するのだろうか。つまり、連合強度が強ければ強いほど、より長い期間覚えておくことができるのだろうか。視覚特徴と反応との連合記憶を一度十分な試行を行って学習させ、ある程度の期間をおいて想起できるかを確かめたいと考えている。

3-4-3. 記憶表象の抽象度

視覚特徴と反応のマッピング関係は、どの程度の抽象度で記憶されているのだろうか。例えば、実験1Aで用いた色×形反応連合を、「色と形が正反応に関わる場合は反応Aを行う」というふうに抽象的な枠組みとして連合関係を記憶しているのだろうか。それとも、「赤い三角形が提示された場合は反応Aを行う」というふうに具体的な表現が反応を想起させるのだろうか。試行の途中でマッピングルールを変更するような刺激反応マッピング学習課題を行うことで、この点を検証したい。

3-4-4. 単一属性内複数特徴の統合表現と反応の連合

本研究では、異なる属性の組み合わせで表現される視覚特徴を研究対象として用いた。しかしながら、世の中に溢れる物体は、1つの属性に対して複数の特徴を併せて持っていることも多く、その組み合わせによって対応する意味が異なっている。例えば、「白地に赤い斜線」の道路標識は「車両通行止め」を表すが、「青地に赤い斜線」の道路標識は「駐車禁止」を表す。これは、色属性の2種類の特徴の組み合わせによって対応する意味が異なっている。先行研究では、Luck & Vogel(1997)が、異なる色で彩色されたサイズの異なる2つの正方形を重ねたオブジェクトを用いて遅延対比較実験を行い、作業記憶の中で2色の正方形を統合した状態で記憶していることを示唆している。では、長期記憶において、単一属性の複数特徴の組み合わせはどのように結合され、どのような単位で反応と連合するのだろうか。例えば、色属性であれば、1色と反応を連合する場合と複数色と反応を連合する場合では学習のしやすさに差があるのかなどを確かめることによって検討したい。
3-4-5. 刺激反応マッピングにおける位置属性

実験2A、2Bにおいて属性間の弁別反応時間差が小さいと、色・位置アイテムに比べて運動・色アイテムと運動・位置アイテムの正答率が高くなることがわかった。このことから、属性間の弁別反応時間差が小さいと、形・位置反応連合や色・位置反応連合に比べて運動・色反応連合や運動・位置反応連合の連合強度が高くなる可能性が示唆された。つまり、物体認知に関する属性と位置の反応連合は、他の反応連合に比べて連合強度が低くなる可能性がある。このことは、刺激反応マッピングにおいて位置属性が他の属性とは違う性質を持つ可能性があることを示唆しているのかもしれない。今後、刺激反応マッピングにおける位置の性質についてさらに検討する必要があるだろう。

3-5. まとめ

本研究では、視覚特徴に空間属性を含む場合に視覚特徴がどのような表現で統合し、どのような単位で反応と統合するのか解明するために刺激反応マッピング学習課題を用いた検討を行った。そして、脳の異なる視覚経路で処理される複数属性と反応との連合についての記憶構造モデルを考案した。

まず、実験1では特徴統合において重要な役割を担う位置属性が刺激反応マッピングにおいて他の属性と同じように扱われるのかを検討した。その結果、各2属性反応連合(色・形反応連合、色・位置反応連合、形・位置反応連合)よりも3属性反応連合の方が学習が難しく、反応生成に時間がかかることがわかった。このことから、3属性は2属性よりも複雑な表現で反応に連合すると考えられ、属性対表現を2つ以上組み合わせることによって反応と連合することが示唆された。そして、位置属性も他の属性と属性対表現を形成して反応と連合することが示唆された。実験2では、空間属性を2種類用いて、脳の異なる視覚経路で処理される複数属性が反応とどのように連合するかを検討した。その結果、やはり2属性を対にした表現を基本として反応と統合することが示唆され、異なる視覚経路で処理される属性同士でも属性対を形成して反応と連合することができると考えられた。そして、色・形の属性対と反応に対応する学習よりも、色・位置や運動・色や運動・位置などの属性対と反応に対応する学習の方が難しいことがわかった。このことから、属性対の種類によって反応と連合記憶の形成のしやすさが異なる可能性が考えられる。空間属性が含まれる属性対は、物体認知に関わる属性同士の属性対よりも反応との連合記憶を形成しにくい可能性が示唆された。

以上より、サインやアイコンなどの情報表現から人々に特定の行動をとらせたい場合には、物体認知に関わる属性のみを用いてデザインすると、記憶しやすく、素早く適切な反応を取れるのではないかと考える。一方で、一拍おいて反応させたい場合には、空間属性
を含ませてデザインすると良いかもしれない（操作ボタンなどで、他のボタンとは区別したいボタンなど）。また、操作ボタンなどのデザインに位置属性を用いる場合には、物体認識に関わる属性のみを用いてデザインされた複数のボタンを空間的に分けて配置し、位置ごとに段階的に反応させるとより素早く正確に反応できるかもしれない。例えば、図 3.3のように最初の状態では左の領域に配置された複数ボタンから反応させ、次の段階では右の領域に配置されたボタンから反応させるといった具合である。

図 3.3 操作ボタンのデザインに関する提案
謝辞

本論文は多くの方々からのご支援、ご助言により完成させることができました。
森田ひろみ先生には、終始懇切丁寧なご指導を賜りました。研究に行き詰まったときや、実験結果の考察に悩んだときに、お忙しい中でもいつも熱心に相談にのっていただきました。また、研究以外にも学生生活や進学についての様々なご助言をいただきました。深く感謝するとともに、厚く御礼申し上げます。
西岡貞一先生には、ご多忙にも関わらず副研究指導教員を快く引き受けていただき、研究や学生生活に関するご助言をいただきました。心より感謝申し上げます。
また、研究室のメンバーにも大変お世話になりました。研究に関するご助言や、研究に関する議論はいつも大変参考になりました。
最後に、本論文を完成するにあたり、たくさんの方に実験協力をしていただきました。お忙しい中、貴重なお時間をいただき心より感謝申し上げます。
参考文献

付録

・付録 1：実験 1A、1B の教示文
・付録 2：実験 2A、2B の教示文
付録1：実験1A、1Bの教示文

手順書・教示文

1．事前準備
・PCを起動する
・CRTの電源を入れる（30分前）
・実験参加者IDの確認
・「同意書」、「事後アンケート」、「実験記録表」にIDを記入
・「実験予定表」を参考に、提示パターンの組み合わせを「実験記録表」に記入する
・スピーカーの接続、音量の確認
・キーボードの接続、Num lockがオン（ランプ点灯）になっているかを確認する。
・テーブルの位置を確認する。
・matlabの起動
・実験用プログラムを「実験記録表」を元に起動する。
・「実験記録表」を元に弁別課題のプログラム用実行コマンドを用意しておく。
・「中にお入りください」の掲示をドアに設置する。
・プリンタの電源を落とす。
・参加者用のボールペンを用意しておく。
・書類の記入や説明をするディスクを片付けておく。
・謝金を準備する。
・飲み物を準備する。

実験参加者が訪れたら、
・「中にお入りください」の掲示を「実験中」の掲示に貼り替える。

2．はじめに
実験を担当します、森田研究室の藤井です。本日は実験に参加していただきありがとうございます。
今回行う実験についてですが、刺激反応学習課題と弁別課題の2つの実験を行ってもらいます。これらの課題の方法については、後ほど詳しく説明させていただきますが、簡単に説明すると、刺激反応学習課題とは提示される刺激とそれに対する正しい反応を学習していただくものです。刺激となる図形を提示しそれに対する反応を繰り返し行っていたので、1つ1つの反応ごとにそれが正しい反応か誤った反応かの判定が返ってくるので、それを元に試行錯誤しながら正しい反応が行えるように学習していただきます。弁別
課題は、提示された刺激の色や形や位置といった属性から判断してボタンを押していただく実験になります。なお、実験自体は全体を通じておよそ2時間で終わる予定です。

3．同意書と事前アンケート
それでは、これから心理実験を開始するにあたってこちらの「同意書」の内容をご確認いただき、同意していただける場合は署名をお願いいたします。

＜記入後の「同意書」を受け取り、必要事項が記入されているかを確認する＞
ありがとうございます。では、続いてこちらの「実験記録表」と書いてある紙をご覧ください。

＜「実験記録表」を渡す＞
事前調査といたしまして、こちらの「事前アンケート」という欄の設問にご回答ください。
視力の欄は、めがねやコンタクトを着用されている方は、矯正とかかれた横の有／無の有に丸をつけていただき、裸眼の場合は無に丸をつけてください。その隣の左、右という欄にはそれぞれの視力をご記入ください。矯正有のかたは矯正した状態での視力をご記入ください。

＜記入後の「実験記録表」を受け取り確認する＞
眼鏡、コンタクトを不使用の場合、普段それらを着用しているかを尋ねる。
ご協力ありがとうございます。

4．実験参加者の準備
それでは、実験を始める前に、携帯電話をお持ちでしたら電源をお切りくださいますようお願い致します。

＜「実験記録表」に開始時刻を記入する＞

5．色覚の検査
本実験では色を扱うため、色覚の検査を行わせていただきたいのですが、よろしいでしょうか。なお、本色覚検査は簡易的なものであり、責任を負いかねますので、色覚の異常ありなしに関わらず結果をお伝えすることではできません。

＜石原色覚検査表を使用し、検査をする＞※このとき、本人からの色覚異常の申告が無い限り実験は執り行う。

6．実験内容の説明（刺激反応連合学習課題）
次に実験内容について説明をさせていただきます。実験はあちらの暗室の方で行いますので移動をお願いします。

＜暗室に移動してもらう＞
まず1つ目の実験、刺激反応学習課題について説明致します。この実験では、目の前のディスプレイの中央に白い十字が表示された後に、刺激となる図形を1個ずつ提示し、その図形に対する反応としてキーを押していただきます。提示された図形に対して誤ってキーを押した場合は、ブザー音が鳴った後に次の図形が提示され、正しいキーを押した場合は何も起こらず、次の図形が提示されます。この図形の提示と反応を繰り返す中で提示図形に対する正解キーを学習していって下さい。なお、図形が表示される前には、必ず中央に表示される白い十字に目を向けるようにしてください。

提示される図形は、形・色・位置の特徴が組み合わさってできています。同じ形の図形でも色が異なると違うパターンの図形として扱われますし、位置が異なる場合も違うパターンの図形として扱います。
反応に使用するキーは、こちらのキーボードの丸いシールのついている縦一列の4つのキーですので、いずれかを押してください。このキーボードはテーブルにおいた状態で、片手でキーを押すようにしてください。左右どちらの手を使用していたいかもしれませんら、人差し指で押すようにしてください。また、キーを押すとき以外、指は常に中央付近に置いておくようにして下さい。中央の目印として、キーの隣の厚紙に切れ込みが入っていますので、キー位置がわからなくなればそれを中央の目安にするようにして下さい。また、キーを押したときにキーボードが動いてしまわないように、もう片方の手でキーボードを押さえてください。
なお、反応時間には制限時間があります。図形が提示されてから一定時間内にキーを押せない場合は反応なしとみなされ、誤った反応をした時はまた別のブザー音が鳴って次の図形が提示されます。ですので、制限時間内でできるだけ正しく、そしてなるべく早く反応してください。ここまでで何か質問はありますか？

7. 練習（刺激反応連合学習課題）
それでは、まず実験に入る前に練習を行いたいと思います。
実験では目の前のあご台に顔を固定した状態で行います。まず、椅子の高さをあご台に合うように調節してください。
高さを調節したら、あご台にあごをのせてキーボードを押しやすい位置に置いてください。
練習では、本番で表示する各図形をランダムな順番で8回表示しますので、ディスプレイに図形が提示されたらキーを押してみてください。ここまでで何か質問はありますか？それでは練習を開始しますので、暗幕をセットします。
＜暗幕をセットし、光漏れないか確認する＞
＜PC：クリックをし、練習用プログラムを開始する＞
では、練習を始めます。4つのキーのうち一番下のキーを押すと練習が始まりますので、好きなタイミングで始めてください。
＜練習終了後、暗幕をあける＞
以上で練習は終了ですが、実験について何か質問はありますか？

8. 本番の説明＆注意（刺激反応連合学習課題）
では、これから本番を始めます。1回の図形提示と反応の組み合わせを1試行とし、今回は80試行からなるものを1セットとします。これを、まず14セット行っています。その後に、制限時間がないセットを2セット行っていただきます。この2セットではなるべく正確で素早い反応を行うことを目指してもらいます。
小休憩はセットとセットの間に自由に取ることができます。1セットが終了すると数秒後に次のセットの開始画面が出ますので、次のセットは好きなタイミングで開始してください。なお、7セット後に15分間程度、14セット後に5分間程度の休憩を挟みます。

最初のうちは間違いを繰り返しても構いません。ある程度学習したら、正しく反応するだけではなく、できるだけ素早く反応するようにしてください。ここまでで何か質問はありませんか？それでは、本番試行を始めます。
＜暗幕をセットし、光漏れがないか確認する＞
＜PC：クリックする→本番用プログラムが開始＞

9. 本番（刺激反応連合学習課題）
あご台にあごをのせてください。先ほどの練習と同様に、一番下のキーを押すと実験がスタートしますので、好きなタイミングで始めてください。

～刺激反応連合学習課題スタート～
○3ブロック終了後
小休憩もとることができますので、もし疲れているようでしたら暗室内で少し休んでから開始していただいても大丈夫です。

○7ブロック終了時
7セットが終了いたしましたので、ここで休憩を挟みます。暗室から出て15分間の休憩を取っていただいてから、次のセットを開始していただきます。お手洗いを行っていただいていたりしても構いません。
＜暗幕から出てもらう＞
＜テーブルの位置確認＞
それでは、実験を再開したいと思います。暗室の方に移動をお願い致します。

〜休憩（15分）〜
それでは、実験を再開したいと思います。暗室の方に移動をお願い致します。

〜休憩〜
それでは、実験を再開したいと思います。暗室の方に移動をお願い致します。

〜休憩〜
それでは、実験を再開したいと思います。暗室の方に移動をお願い致します。

14ブロック終了後
14セットが終了いたしました。これから暗室から出て5分間の休憩をとっていただきます。

〜休憩〜
それでは、実験を再開したいと思います。暗室の方に移動をお願い致します。

〜休憩〜
それでは、実験を再開したいと思います。暗室の方に移動をお願い致します。

テストブロック1ブロック終了後
テストブロック1ブロック終了後
テストブロック1ブロック終了後
テストブロック1ブロック終了後
テストブロック1ブロック終了後

〜休憩〜
それでは、実験を再開したいと思います。暗室の方に移動をお願い致します。

実験内容の説明（弁別課題）
これから行う実験内容について説明をしますので、暗室の方に移動してください。
この実験でも、先ほどと同様目の前のあご台に顔を固定した状態で行い、目の前のディスプレイに刺激となる図形が提示されますので、それを見て反応として手元にあるキーを押してください。先ほど同じく図形が提示される前には、ディスプレイの中央に白い十字が表示されますので、その十字が表示されたらそこに目を向けるようにしてください。この実験では、提示された図形の色や形や位置といった属性から判断してボタンを押してください。例えば、色に関して反応していただく場合は、赤色の図形が提示されたら上キー、緑色の図形が提示されたら下キーを押すといった具合です。どの特徴にどのキー
で反応するかは、実験の区切りごとにお伝えいたします。
なお、反応として押していただくキーは、先ほどの実験とは異なり、丸いシールのついている4つのキーのうち下の2つのキーだけです。上から数えて2つ目までのキーは使用しません。なお、先ほどと同様実験を開始するボタンは一番下のキーになります。

図形が順次表示されますので、できるだけ早く、正しく反応してください。また、誤ったキーを押した場合にはブザー音がなります。1つの図形の提示とそれに対する反応を行うことを1試行とし、96試行からなるものを1セットとします。これを3セット行っていただきます。セットごとに反応していただく属性の種類が変わります。

先ほどと同様、キーボードはテーブルにおいた状態で、片手でキーを押してください。左右どちらの手を使用いただいてもかまいませんが、人差し指でキーを押すようにしてください。繰り返しになりますが、もう片方の手でキーボードを押さえてください。

ここまででなにか質問はありますか？それでは実験に移りたいと思います。
＜暗幕をセットし、光漏れがないか確認する＞
＜実験プログラムを実行する＞

11. 本番の説明、練習—本番（弁別課題）
＜待機画面に8個のアイテムと反応の仕方が表示される＞
○「初回のみ」
実験が開始すると、画面に表示されている8個の図形から1つ選ばれて画面に表示されますので、この説明画面で指示されている通りキーを押してください。

「色属性セットの場合」
（まずはor 次は）色の弁別になります。赤色の図形が出た場合は[上 or 下]のキー、緑色の図形が出た場合は[上 or 下]のキーを押してください。
なにか質問がありますか？それでは、一番下のキーを押して次へ進んでください。

「形属性セットの場合」
（まずはor 次は）形の弁別になります。三角形の図形が出た場合は[上 or 下]のキー、四角形の図形が出た場合は[上 or 下]のキーを押してください。
なにか質問がありますか？それでは、一番下のキーを押して次へ進んでください。

「位置属性セットの場合」
（まずはor 次は）位置の弁別になります。図形が左に示された場合は[上 or 下]のキー、
右に呈示された場合は[上 or 下]のキーを押してください。なにか質問がありますか？それでは、一番下のキーを押して次へ進んでください。

○練習
まずは練習を 8 試行行います。一番下のキーを押したら練習が始まりますので、好きなタイミングで始めしてください。
○練習終了時
次は本番になります。なにか質問はありますか？なければ、好きなタイミングでキーを押して実験を開始してください。

１２．事後アンケート
お疲れ様です。以上で実験は全て終了となります。テーブルにお戻りください。
＜テーブルに戻ってもらう＞
もしよろしければこちらの「事後アンケート」にご協力をお願いいたします。書き終わりましたら、お声掛けください。
＜アンケートを回収する＞
ご協力ありがとうございました。

１３．最後に
＜謝礼を渡す＞
本日は実験に参加していただき、誠にありがとうございました。

１４．片付け
＜「実験中」の掲示を回収する＞
＜「実験記録表」に終了時刻を記入する＞
＜CRT ディスプレイの電源を落とす＞
＜スピーカーの接続を外し、電源を落とす＞
＜「実験時間管理表」に実験実施時間と謝礼金支払額を記入する＞
付録 2：実験 2A、2B の教示文

手順書・教示文

1. 事前準備
・PC を起動する
・CRT の電源を入れる（30 分前）
・実験参加者 ID の確認
・「同意書」、「事後アンケート」、「実験記録表」に ID を記入
・「実験予定表」を参考に、提示パターンの組み合わせを「実験記録表」に記入する
・スピーカーの接続、音量の確認
・キーボードの接続、Num lock がオン（ランプ点灯）になっているかを確認する。
・テーブルの位置を確認する。
・matlab の起動
・実験用プログラムを「実験記録表」を元に起動する。
・「実験記録表」を元に弁別課題のプログラム用実行コマンドを用意しておく。
・「中にお入りください」の掲示をドアに設置する。
・プリンタの電源を落とす。
・参加者用のボールペンを用意しておく。
・書類の記入や説明をするディスクを片付けておく。
・謝金を準備する。
・飲み物を準備する。

実験参加者が訪れたら、
・「中にお入りください」の掲示を「実験中」の掲示に貼り替える。

2. はじめに
実験を担当します、森田研究室の藤井です。本日は実験に参加していただきありがとうございます。

今回行う実験についてですが、刺激反応学習課題と弁別課題の 2 つの実験を行ってもらいます。これらの課題の方法については、後ほど詳しく説明させていただきますが、簡単に説明すると、刺激反応学習課題とは提示される刺激とそれに対する正しい反応を学習していただくものですから、刺激となる図形を提示しそれに対する反応を繰り返し行っていましたのが、1 つ 1 つの反応ごとにそれが正しい反応か誤った反応かの判定が返ってくるのです。
で、それを元に試行錯誤しながら正しい反応が行えるように学習していただきます。弁別課題は、提示された刺激の色や運動方向や位置といった属性から判断してボタンを押していただく実験です。なお、この実験は全体を通じておよそ２時間で終わる予定です。

３．同意書と事前アンケート
それでは、これから心理実験を開始するにあたってこちらの「同意書」の内容をご確認いただき、同意していただける場合は署名をお願いします。
＜記入後の「同意書」を受け取り、必要事項が記入されているかを確認する＞
ありがとうございます。では、続いてこちらの「実験記録表」という紙をご覧ください。事前調査といたしまして、こちらの「事前アンケート」という欄の質問にご回答ください。視力の欄は、めがねやコンタクトを着用されている方は、矯正かかった横の有／無の有に丸をつけていただき、裸眼の場合は有に丸をつけてください。その隣の左、右という欄にはそれぞれの視力をご記入ください。矯正有のかたは矯正した状態での視力をご記入ください。
＜記入後の「実験記録表」を受け取り確認する＞
→眼鏡、コンタクトを不使用の場合、普段眼鏡やコンタクトを着用しているかを尋ねる。
　ご協力ありがとうございます。

４．実験参加者の準備
それでは、実験を始める前に、携帯電話をお持ちでしたら電源をお切りくださいようお願い致します。
＜「実験記録表」に開始時刻を記入する＞

５．色覚の検査
本実験では色を扱うため、色覚の検査を行わせていただきたいためですが、よろしいでしょうか。なお、本色覚検査は簡易的なものであり、責任を負いかねますので、色覚の異常ありなしに関わらず結果をお伝えすることはできません。
＜石原色覚検査表を使用し、検査をする＞※このとき、本人からの色覚異常の申告が無い限り実験は執り行う。
これで終了です。

６．実験内容の説明（刺激反応連合学習課題）
次に実験内容について説明をさせていただきます。実験はあちらの暗室の方で行いますので移動をお願いします。
まず1つ目の実験、刺激反応学習課題について説明致します。この実験では、目の前のディスプレイの中央に白い十字が表示された後に、刺激となる図形が1個提示されますので、その図形に対する反応としてキーを1つ押していただきます。提示された図形に対して誤ったキーを押した場合は、ブザー音が鳴った後に次の図形が提示され、正しいキーを押した場合は何も起きて、次の図形が提示されます。この、図形の提示と反応を繰り返す中で提示図形に対する正解キーを学習していって下さい。なお、図形が表示される前には、必ず中央に表示される白い十字に目を向けるようにしてください。

提示される図形は、色・運動方向・位置の特徴が組み合わさってできています。同じ色の図形でも運動方向や提示位置が異なると違うパターンの図形として扱います。
反応に使用するキーは、こちらのキーボードの丸いシールのついている縦一列の4つのキーです。このキーボードはテーブルにおいた状態で、片手でキーを押すようにしてください。左右どちらの手を使用いただいてもかまいませんが、人差し指で押すようにしてくださ。また、キーを押すとき以外、指は常に中央付近に置いておくようにしてください。目印として一番下から2番目のボタン上に少しへこみがありますので、キーの位置がわからなくなったらそれを中央の目安にするようにしてください。また、キーを押したときにキーボードが動いてしまわないように、もう片方の手でキーボードを押さえてください。
なお、反応時間には制限時間があります。図形が提示されてから一定時間内にキーを押せない場合は反応なしとみなされ、誤った反応をした時はまた別のブザー音が鳴って次の図形が提示されます。ですので、制限時間内でできるだけ正しく、そしてなるべく早く反応してください。ここまでで何か質問はありますか？

7. 練習（刺激反応連合学習課題）
それでは、まず実験に入る前に練習を行いたいと思います。
実験では目の前のあご台に顔を固定した状態で行います。まず、椅子の高さをあご台に合うように調節してください。
高さを調節したら、あご台にあごをのせてキーボードを押すやすい位置に置いてください。

練習では、本番で表示する各図形をランダムな順番で8回表示しますので、ディスプレイに図形が提示されたらキーを押してみてください。
ここまでで何か質問はありますか？それでは練習を開始しますので、暗幕をセットします。
＜暗幕をセットし、光漏れがないか確認する＞
＜PC：クリックをし、練習用プログラムを開始する＞
では、練習を始めます。４つのキーのうち一番下のキーを押すと練習がスタートしますので、好きなタイミングで始めてください。
＜練習終了後、暗幕をあける＞
以上で練習は終了ですが、実験について何か質問はありますか？

8．本番の説明＆注意（刺激反応連合学習課題）
では、これから本番を始めます。１回の図形提示と反応の組み合わせを１試行とし、今回は８０試行からなるものを１セットとします。これを、まずは１４セット行っていただきます。その後に、制限時間がないセットを２セット行っていただきます。この２セットではなるべく正確で素早い反応を行うことを目指してもらいます。
小休憩はセットとセットの間に自由に取ることができます。１セットが終了すると数秒後に次にセットの開始画面が出ますので、次のセットは好きなタイミングで開始してください。なお、７セット後に１５分間程度、１４セット後に５分間程度の休憩を挟みます。
最初のうちは間違いを繰り返しても構いません。ある程度学習したら、正しく反応するだけではなく、できるだけ素早く反応することにしてください。ここまでで何か質問はありませんか？それでは、本番試行を始めます。
＜暗幕をセットし、光漏れがないか確認する＞
＜PC：クリックする→本番用プログラムが開始＞

9．本番（刺激反応連合学習課題）
あご台にあごをのせてください。先ほどの練習と同様に、一番下のキーを押すと実験がスタートしますので、好きなタイミングで始めてください。

～刺激反応連合学習課題スタート～
○３ブロック終了後（適宜）
小休憩もとることができますので、もし疲れているようでしたら暗室内で少し休んでから開始してくださいでも大丈夫です。

○７ブロック終了時
７セットが終了いたしましたので、ここで休憩を挟みます。暗室から出て１５分間の休憩を取っていただいてから、次のセットを開始していただきます。お手洗いを行っていたらしたりしても構いません。
＜暗幕から出てもらう＞
＜テーブルの位置確認＞
～休憩（１５分）～
それでは、実験を再開したいと思います。暗室の方に移動をお願いします。
＜暗幕をセットし、光漏れないか確認する＞
＜PC：クリックする→8ブロック目→開始する＞
好きなタイミングで実験を開始してください。

○１４ブロック終了後
１４セットが終了しました。これから暗室から出て５分間の休憩をとっています。
この休憩が終わりましたら制限時間がないセットを２セット行います。
＜暗幕から出てもらう＞
＜テーブルの位置確認＞
～休憩（５分）～
それでは、実験を再開します。暗室の方に移動をお願い致します。
＜暗幕をセットし、光漏れないか確認する＞
＜PC：クリックする→テストブロック１ブロック目→開始する＞
このセットでは反応に制限時間がありませんが、できるだけ正確にそして素早く回答することを意識してください。それでは好きなタイミングで始めてください。

○テストブロック２ブロック終了後
おつかれさまでした。以上で一つ目の実験「刺激反応学習課題」は終了です。次に、もう一つの実験「弁別課題」に移りたいと思いますが、その前に暗室の外で５分間の休憩をとっています。なお、この実験は１５〜２０分間程度で終了します。
＜暗室から出てもらう＞
＜テーブルの位置確認＞
～休憩～

１０．実験内容の説明（弁別課題）
これから行う実験内容について説明をしますので、暗室の方に移動してください。
この実験でも、先ほどと同様目の前のあご台に顔を固定した状態で行い、目の前のディスプレイに刺激となる図形が提示されましたら、それを見て反応として手元にあるキーを押してくださいます。先ほどと同じく図形が提示される前には、ディスプレイの中央に白い十字が表示されますので、そこに目を向けるようにしてください。
この実験では、提示された図形の色や運動方向や位置といった属性から判断してボタンを押していただきます。例えば、色に関して反応していただく場合は、赤色の図形が提示されたら上キー、緑色の図形が提示されたら下キーを押すといった具合です。どの特徴にどのキーで反応するかは、実験の区切りごとに伝えています。
なお、反応として押していただくキーは、先ほどの実験とは異なり、丸いシールのついている4つのキーのうち下の2つのキーだけです。上から数えて2つ目までのキーは使用しません。なお、先ほどと同様実験を開始するボタンは一番下のキーになります。
図形が順次表示されますので、できるだけ早く、正しく反応してください。反応に制限時間はありません。また、誤ったキーを押した場合にはブザー音がなります。1つの図形の提示とそれに対する反応を行うことを1試行とし、96試行からなるものを1セットとします。これを3セット行っていただきます。セットごとに反応していただく属性の種類が変わります。
先ほどと同様、キーボードはテーブルにおいた状態で、片手でキーを押してください。左右どちらの手を使用していただいてもかまいませんが、人差し指でキーを押すようにしてください。繰り返しになりますが、もう片方の手でキーボードを押さえてください。
ここまででなにか質問はありますか？それでは実験に移りたいと思います。
＜暗幕をセットし、光漏れがないか確認する＞
＜実験プログラムを実行する＞

11．本番の説明、練習～本番（弁別課題）
＜待機画面に2個のアイテムと反応の仕方が表示される＞
○「初回のみ」
実験が開始すると、画面に表示されているような図形がランダムに選ばれて画面に1つだけ表示されますので、この説明画面で指示されている通りキーを押してください。なお、この画面に表示されている図形は一例です。図形は全部で8種類あります。

「色属性セットの場合」
（まずはor次は）色の弁別になります。赤色の図形が出た場合は[上 or 下]のキー、緑色の図形が出た場合は[上 or 下]のキーを押してください。
なにか質問はありますか？それでは、一番下のキーを押して次へ進んでください。

「運動属性セットの場合」
（まずはor次は）運動方向の弁別になります。上下運動の図形が出た場合は[上 or 下]のキー、左右運動の図形が出た場合は[上 or 下]のキーを押してください。
なにか質問はありますか？それでは、一番下のキーを押して次へ進んでください。
「位置属性セットの場合」
（まずは or 次は）位置の弁別になります。図形が左に示された場合は[上 or 下]のキー、
右に示された場合は[上 or 下]のキーを押してください。なにか質問はありますか？それ
では、一番下のキーを押して次へ進んでください。

○練習
まずは練習を 8 試行行います。一番下のキーを押したら練習が始まりますので、好きなタ
イミングで始めてください。
○練習終了時
次は本番になります。なにか質問はありますか？
なければ、好きなタイミングでキーを押して実験を開始してください。

1 2. 事後アンケート
お疲れ様です。以上で実験は全て終了となります。テーブルにお戻りください。
＜テーブルに戻ってもらう＞
もしよろしければこちらの「事後アンケート」にご協力をお願いいたします。書き終わり
ましたら、お声掛けください。
＜アンケートを回収する＞
ご協力ありがとうございました。

1 3. 最後に
＜謝礼を渡す＞
本日は実験に参加していただき、誠にありがとうございました。

1 4. 片付け
＜「実験中」の掲示を回収する＞
＜「実験記録表」に終了時刻を記入する＞
＜CRT ディスプレイの電源を落とす＞
＜スピーカーの接続を外し、電源を落とす＞
＜「実験時間管理表」に実験実施時間と謝礼金支払額を記入する＞