経皮的冠動脈形成術を施行する虚血性心疾患における薬物治療に関する研究

<table>
<thead>
<tr>
<th>項目</th>
<th>内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>著者</td>
<td>星 智也</td>
</tr>
<tr>
<td>発行年</td>
<td>2015</td>
</tr>
<tr>
<td>学位授与大学</td>
<td>筑波大学</td>
</tr>
<tr>
<td>学位授与年度</td>
<td>2015</td>
</tr>
<tr>
<td>報告番号</td>
<td>修士論文第8号</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2241/00142062</td>
</tr>
</tbody>
</table>
筑 波 大 学

博士（医学）学位論文
経皮的冠動脈形成術を施行する虚血性心疾患における薬物治療に関する研究

2015年

筑波大学

星 智也
目次

第1章 序章………………………………………………………………………………………………… 4

1 虚血性心疾患 ……………………………………………………………………………………………… 4
 1.1 虚血性心疾患の臨床的背景と概要 …………………………………………………………………… 4
 1.2 虚血性心疾患に対する治療方法 ……………………………………………………………………… 5
 1.3 急性冠症候群に対するβ遮断薬治療 …………………………………………………………………… 5

2 造影剤腎症 ……………………………………………………………………………………………… 7
 2.1 造影剤腎症の概要 ……………………………………………………………………………………… 7
 2.2 造影剤腎症の発症予測 ………………………………………………………………………………… 8
 2.3 造影剤腎症の予防 ……………………………………………………………………………………… 9

第2章 研究の目的 ………………………………………………………………………………………… 15

第3章 ……………………………………………………………………………………………………… 16

研究1. 急性冠症候群症例に対するランジオロールの血行動態に及ぼす急性期効果 ……………… 16
 1 はじめに ………………………………………………………………………………………………… 16
 2 方法 ……………………………………………………………………………………………………… 17
 3 結果 ……………………………………………………………………………………………………… 19
 4 考察 ……………………………………………………………………………………………………… 21
 5 小括 ……………………………………………………………………………………………………… 27

研究2. 経皮的冠動脈形成術を受ける症例に対するスタチン前治療の造影剤腎症予防効果：傾向スコアを用いた検討 ………
第1章 序章

1 虚血性心疾患

1.1 虚血性心疾患の臨床的背景と概要

本邦における2012年（平成24年）の年間死因別死亡総数のうち、心疾患（高血圧性を除く）は19万8836人であり、死因別死亡数全体の15.8%を占めており、悪性新生物に続く第2位となっている。このうち急性心筋梗塞を含む虚血性心疾患は心疾患の約4割を占めている[1]。人口の高齢化、食生活の欧米化に伴って虚血性心疾患の罹患は日本においても増加しており、虚血性心疾患の予防および治療は今後も重要な問題である。

虚血性心疾患は、心筋の栄養血管である冠動脈の狭帯または閉塞によってひきおこされ、心筋に十分な酸素が供給できなくなる病態である。その程度により可逆的な虚血症状を示す狭心症と、不可逆的な虚血症状から心筋壊死に至る心筋梗塞に分類される。臨床的には安定狭心症、不安定狭心症、急性心筋梗塞に分類され、その主な原因は冠動脈に生じる粥状動脈硬化であるが、その他に冠拡縮を原因とする異型狭心症がある。また、その発症誘因から労作性狭心症と安静時狭心症に分類される。労作性狭心症は、冠動脈の粥状動脈硬化などにより器質的狭帯が存在するために労作時的心筋酸素需要増大に比較して酸素供給が不足するのが原因である。一方で夜間安静時などに発作を生じるものを安静時狭心症と称しており、冠動脈拡縮が主な原因である。
1.2 虚血性心疾患に対する治療方法

虚血性心疾患の治療は、薬物治療と血行再建治療に分類される。血行再建治療には、経皮的冠動脈形成術（Percutaneous Coronary Intervention, PCI）、冠動脈バイパス手術（Coronary Artery Bypass Graft, CABG）がある。虚血性心疾患の原因は、冠血流による酸素供給と心筋酸素需要のバランスの崩壊であり、PCI や CABG といった血行再建治療は血流改善により酸素供給量を増大させる効果がある。一方で、心筋酸素需要は主に心拍数、後負荷（血圧）、心筋収縮力によって規定される。狭心症発作に対しては、心筋酸素需要を減少させる目的で、β遮断薬、カルシウム拮抗薬、短時間作用型硝酸薬が治療薬として投与される。またプラーツの安定化や退縮など心筋梗塞への進展を阻止することも虚血性心疾患の薬物治療を行う目的の一つであり、抗血小板薬（アスピリン、クロピドグレル）やスタチンが治療薬として投与される。

虚血性心疾患は糖尿病、高血圧、高脂血症などの生活習慣病に伴う冠動脈硬化がその原因の多くを占めており、原因の除去もしくは十分なコントロールが予防・進展の防止を行う上で重要である。これらの目的を達成するためには食事療法や運動療法、禁煙などを基本として動脈硬化対策を十分に行い、その上で薬物治療による管理をしていくことが重要である[2,3]。

1.3 急性冠症候群に対するβ遮断薬治療

急性心筋梗塞に対して再灌流療法が施行される以前に、発症後早期にβ遮断薬を
投与することで梗塞サイズの縮小および死亡、再梗塞、突然死を減少することが示され、β遮断薬の臨床的有用性が証明されてきた[4–8]。これらのメタ解析において、β遮断薬は心筋梗塞発症後1週間以内の死亡率を28％低下させ、また再梗塞を18％低下、突然死を15％低下させることが報告された[9,10]。海外のガイドラインでは、心不全や心原性ショックなどの禁忌がない限りβ遮断薬の投与を開始することをクラスⅠとして推奨しており[11–14]、特にAmerican College of Cardiology/American Heart Association（ACC/AHA）ガイドラインでは来院後24時間以内に開始することを推奨している[11]。日本循環器学会のガイドラインにおいても同様に、禁忌のない限り心筋梗塞発症早期のβ遮断薬投与を推奨している[15,16]。また急性心筋梗塞症例では、退院後にもβ遮断薬を継続投与することで長期予後の改善も証明されており[17,18]、β遮断薬は急性期のみならず慢性期治療においても重要な役割を担っている。しかしこれまでの臨床試験は再灌流療法が施行される以前に行われたものが多く、現在のようなPCIによる再灌流療法を施行した急性心筋梗塞症例でのβ遮断薬の有効性については、これまで十分に検討されてこなかった。2013年にMETCARD-CNIC試験の結果が報告され、PCI治療を施行する発症後6時間以内の急性前壁心筋梗塞に対してメトプロロール静脈内投与群において、急性期の梗塞サイズ縮小効果が示された[19]。またメトプロロール投与群では慢性期の左室駆出率も保たれており、心不全による入院の低減効果も示され[20]、PCI時代においても急性心筋梗塞に対する早期β遮断薬治療の重要性が示されたといえる。
2 造影剤腎症

2.1 造影剤腎症の概要

虚血性心疾患の診断および治療において、血管造影検査および経皮的冠動脈形成術（Percutaneous Coronary Intervention, PCI）は重要な位置を占めており、これらの手技にはヨード造影剤の使用が必須である。ヨード造影剤の投与後に時として急性腎機能障害を生じることがあり、造影剤腎症（contrast-induced acute kidney injury, CI-AKIもしくはcontrast-induced nephropathy, CIN）とよばれる。造影剤腎症の頻度は、PCI治療後において7〜15%と報告されている[21–23]。造影剤腎症の発症には、主に2つの機序が想定されている。造影剤投与直後に生じる血管攣縮に伴う腎虚血と造影剤による尿細管傷害である。前者については内皮傷害、NO産生低下などが影響し、後者については造影剤自体の細胞毒性、粘稠度、活性酸素などが影響していると考えられている[21,23,24]（図1）。

造影剤腎症の診断基準として、血清クレアチニン値の0.5 mg/dl以上の増加、1.0 mg/dl以上の増加、25%以上の増加、50%以上の増加などさまざまな基準が用いられ、腎機能低下を評価する時期も造影後24時間、48時間、72時間、4日、7日など一定していない。最も多く利用される造影剤腎症の定義は、造影剤投与後72時間以内に血清クレアチニン値が前値より0.5 mg/dl以上もしくは25%以上の増加を認めた場合である[21–23,25]。造影剤腎症の多くは48〜72時間後をピークとして可逆的であり、腎機能障害は通常回復することが多いが、維持透析を要する不可逆的な腎機能障害をきたすこ
ともある。また造影剤腎症の発症は生命予後に関連し、造影剤腎症を発症した症例では予後不良であると報告されている[23,26,27]。しかし造影剤腎症が生命予後にに関する規定因子であるのか、予後予測因子であるかは明らかになっていない。

2.2 造影剤腎症の発症予測

造影剤腎症発症のリスク因子として、検査前の腎機能障害（推定糸球体濾過率 [estimated glomerular filtration rate, eGFR] < 60 ml/min/1.73 m²）、糖尿病、高齢者、造影剤使用量、高浸透圧性造影剤の使用、うっ血性心不全、脱水、腎毒性物質（non-steroidal anti-inflammatory drugs, NSAIDs など）などが挙げられているが、腎機能障害は最も重要なリスク因子である[22,23,28–30]。造影剤腎症の発症には、上記の多くのリスク因子が相加的に作用することが知られており、Mehran risk score がリスク評価に有用であることが報告されている[31]。Mehran risk score は基礎疾患や治療にかかわる 8 個の因子をスコア化した合計点で示され、Mehran risk score が高いほど造影剤腎症の発症や透析導入のリスクが増加する[31]（図 2）。この Mehran risk score に基づく造影剤腎症のリスク、透析導入のリスクはそれぞれ 5 点以下では 7.5%, 0.04%, 6～10 点では 14.0%, 0.12%, 11～16 点では 26.1%, 1.09%, 16 点以上では 57.3%, 12.6% と報告されている[31]。また腎機能と造影剤量を考慮した CV/eGFR 比（contrast volume / estimated glomerular filtration rate ratio）も、造影剤腎症の発症を予測するのに有用であり、CV/eGFR 比が 2.6～3 を超えると造影剤腎症の発症率が上昇すると
2.3 造影剤腎症の予防

造影剤腎症を発症した場合における有効な治療方法は確立されていないため、その発症予防が重要である。有効な造影剤腎症の予防方法としては、生理食塩水などの等張性輸液の経静脈投与、重炭酸ナトリウムの輸液が推奨されている。また造影剤の使用頻度と使用量が増えることにより造影剤腎症の発症リスクが高まるので、造影剤の使用は必要最小限とすべきである。高浸透圧性造影剤の投与を避け、非イオン性の低浸透圧性および等浸透圧性造影剤が推奨されている。造影剤による腎障害の発症機序は十分には解明されていないが、腎血管収縮、腎虚血、活性酸素による腎障害などが主な機序として想定されている。そのため、血管拡張作用のある薬剤や抗酸化作用のある薬剤（N アセチルシステイン、hANP、スタチン）が造影剤による腎障害を予防もしくは軽減するのではないかと期待され、臨床研究が行われているが、現時点では造影剤腎症の予防効果が確立している薬剤はない。

N アセチルシステインは抗酸化薬であり、造影剤腎症の予防効果が期待され、いくつかの小規模な無作為比較試験が実施されてきた。約 2300 例を対象にした大規模無作為比較試験（ACT 試験）にて N アセチルシステイン 1200 mg と対象群が比較され、造影剤腎症の発症率、30 日後の死亡率に有意差がなかったことが 2011 年に報告された[33]。現時点では、N アセチルシステインは造影剤腎症の予防薬として推奨されていない。
い。hANP は、ナトリウム利尿作用と糸球体輸入動脈拡張作用をもつ内因性ペプチドである。hANP は造影剤腎症の予防効果に関して、否定的な結果が報告されてきた[34,35]。しかし血圧低下をきたさないような低用量 hANP が有効であったという報告もある[36]。

スタチンは脂質異常症の治療薬であるが、抗酸化作用、抗炎症作用、血管内皮機能改善作用などの多面的効果が報告されている[37,38]。スタチンは脂質プロファイアルを改善させるのみでなく、プラクス安定化、生命予後改善の効果をもたらし、虚血性心疾患の管理においては二次予防のみでなく一次予防においても重要な位置を占める薬剤である[39–41]。近年、スタチンの多面的効果に期待して、造影剤腎症の発症予防を検証する無作為化比較試験が実施され、いくつかの試験ではその有効性が報告されている。

しかし日本人と欧米人では血清コレステロール値や冠動脈疾患の罹患率が異なっており[42]、日本人は欧米人に比較してスタチン感受性が高いことが報告されている[43]。

日本人においてはスタチン投与が造影剤腎症の発症を抑制するかどうかに関するかどうかの検証は行われておらず、特にスタチンの用量に関しては欧米人に投与される用量を日本人にそのまま適応することはできないと考えられる。
図1 造影剤腎症の発症機序

参考文献(21)より改変
図1：造影剤腎症の発症機序

造影剤腎症の発症には、主に2つの機序が想定されている。造影剤投与直後に生じる血管収縮に伴う腎虚血と造影剤による尿細管傷害である。前者については内皮傷害、NO産生低下などが影響し、後者については造影剤自体の細胞毒性、粘稠度、活性酸素などが影響していると考えられている。
図2 Mehran risk score

<table>
<thead>
<tr>
<th>リスク因子</th>
<th>スコア</th>
</tr>
</thead>
<tbody>
<tr>
<td>低血圧<90mmHg</td>
<td>5</td>
</tr>
<tr>
<td>IABPの使用</td>
<td>5</td>
</tr>
<tr>
<td>心不全</td>
<td>5</td>
</tr>
<tr>
<td>75歳以上</td>
<td>4</td>
</tr>
<tr>
<td>貧血</td>
<td>3</td>
</tr>
<tr>
<td>糖尿病</td>
<td>3</td>
</tr>
<tr>
<td>造影剤量</td>
<td>100ml/1</td>
</tr>
<tr>
<td>s-Cre >1.5</td>
<td>4</td>
</tr>
<tr>
<td>もしくは</td>
<td></td>
</tr>
<tr>
<td>GFR: 40-60</td>
<td>2</td>
</tr>
<tr>
<td>GFR: 20-40</td>
<td>4</td>
</tr>
<tr>
<td>GFR<20</td>
<td>6</td>
</tr>
</tbody>
</table>

合計

<table>
<thead>
<tr>
<th>リスクスコア</th>
<th>造影剤腎症リスク</th>
<th>透析導入リスク</th>
</tr>
</thead>
<tbody>
<tr>
<td>〜5</td>
<td>7.5%</td>
<td>0.04%</td>
</tr>
<tr>
<td>6-10</td>
<td>14.0%</td>
<td>0.12%</td>
</tr>
<tr>
<td>11-15</td>
<td>26.1%</td>
<td>1.09%</td>
</tr>
<tr>
<td>16〜</td>
<td>57.3%</td>
<td>12.6%</td>
</tr>
</tbody>
</table>

IABP (Intra-aortic balloon pumping): 大動脈内バルーンパンピング
s-Cre (serum creatinine): 血清クレアチニン値
GFR (glomerular filtration rate): 糸球体濾過量

参考文献(31)より改変
図 2: Mehran risk score

Mehran risk score は基礎疾患や治療にかかわる 8 個の因子をスコア化した合計点で示され、造影剤腎症の発症予測に有用である。Mehran risk score が高いほど造影剤腎症の発症や透析導入のリスクが増加する。Mehran risk score に基づく造影剤腎症のリスク、透析導入のリスクはそれぞれ 5 点以下では 7.5%, 0.04%, 6〜10 点では 14.0%, 0.12%, 11〜16 点では 26.1%, 1.09%, 16 点以上では 57.3%, 12.6%と報告されている。
第2章 研究の目的

PCI治療を施行する虚血性心疾患患者における薬物治療について、下記のランジオロールおよびスタチンの効果を検討する目的で、本研究を計画した。

研究1. PCI治療を施行する急性冠症候群症例に対するランジオロールの血行動態への影響を評価すること。

研究2. PCI治療に先行するスタチン前治療が造影剤腎症を低減する効果の有無について検証すること。
第3章

研究 1. 急性冠症候群症例に対するランジオロールの血行動態に及ぼす急性期効果

1 はじめに

心筋虚血の発症は、心筋への酸素供給量の減少と心筋の酸素消費量の増加の不均衡が生じることで発症する。β遮断薬は、心筋酸素需要を低下させ、心筋虚血を改善する目的で虚血性心疾患の治療に用いられ、急性期治療においても慢性期治療においても重要な薬物治療である[18,44–47]。再灌流療法が施行される以前の1980年代に、急性心筋梗塞に対するβ遮断薬の治療効果が検証され、これらの試験では急性期ないし慢性期ともにβ遮断薬において総死亡率の低減が示された[4–8]。また血栓溶解療法による再灌流療法が施行されるようになり、CAPRICORN試験やCOMMIT試験においても同様にβ遮断薬の有意性が証明された[18,48]。現在は急性心筋梗塞症例の治療戦略として、PCIによる再灌流療法が主流となっているため、過去の臨床試験とは治療戦略が大きく異なっている。近年、METOCARD-CNIC試験の結果が報告され、PCIによる再灌流療法時代においても発症早期からの積極的なβ遮断薬治療が急性期および慢性期予後の改善のために重要と考えられる[19,20]。ただし前述のCOMMIT試験では、メトプロロールのルーチン早期投与は心原性ショックなどの有害事象を増加させる結果となったため、β遮断薬の適応は慎重に検討する必要がある（日本ではメトプロロール静注薬
プロプラノロールは、古典的なβ遮断薬の静注薬であるが、低い心臓選択性と長い半減期のために現在の実臨床で急性期治療に使用される頻度は少ない。近年、ランジオロール塩酸塩が保険適応となった。ランジオロール塩酸塩は、超短時間作用型であり、高い心臓選択性を有する静注用β遮断薬である[49]。ランジオロール塩酸塩は、周術期や集中治療における頻脈に対して治療効果が多数報告され、その有効性が示されている[50–56]。調節性に優れるランジオロールが頻脈を呈する急性冠症候群に果たす役割は大きいと推察されるが、急性冠症候群のPCI治療中に使用した報告はない。本研究の目的は、PCI治療を施行する急性冠症候群症例に対するランジオロールの血行動態への影響を評価することである。

2 方法

1) 研究デザインと対象

対象は2007年8月から2008年4月までにPCI治療が行われた97例の急性冠症候群の症例であり、単一群、前向き観察研究である。本研究への登録基準は、ランジオロール投与前の心拍数が70回/分以上を呈する症例とした。急性冠症候群の定義は、10分以上持続する胸痛を有し、心電図で連続する2つ以上の誘導においてST上昇もしくは0.05mV以上のST低下を認め、冠動脈造影にて有意狭窄もしくは冠動脈閉塞を認められる症例とした。除外基準は、心原性ショック、心拍数70回/分未満、房室ブロック、Killip
分類 III もしくは IV の心不全、低血圧、喘息の既往を有する症例とした。来院前より
β 遮断薬を内服していた症例も除外した。本研究の実施計画は、倫理委員会にて承認を
受けた。

2) PCI 治療手技

PCI 治療の開始前に、2 割の抗血小板薬の投与（アスピリン 200 mg およびクロピ
ドグレル 300 mg 初回負荷投与の後に 75mg の維持投与）を行い、活性化全血凝固時
間（Activated Clotting Time, ACT）300 秒以上を維持するようにヘパリン投与を行っ
た。大腿動脈もしくは橈骨動脈から穿刺を行い、6Fr ガイディング・カテーテルを用い
て PCI 治療を行った。全例で PCI 治療を開始する前に、書面による説明を行い、同意
を得た。

3) ランジオロール投与方法

ランジオロール投与の開始時期は、救急外来から血管造影室に移動する直前もしく
は移動した直後とし、PCI 治療開始より前に投与を開始することとした。ランジオロー
ールは、末梢静脈から持続投与を行った。治療目標心拍数を投与前の心拍数から 15%低下
とした。投与プロトコールは、初期投与量を 20 μg/kg/min とし、治療目標値に達しな
い場合には投与 5 分後以降に 5～10 μg/kg/min 毎に投与量を漸増し、最大投与量を 40
μg/kg/min とした。初回の負荷投与は行わなかった。PCI 治療が終了したのちに、ラン
ジオロール静脈内投与から内服の β 遮断薬に切り替えを行った。

4) 血行動態評価と生化学検査
心拍数、収縮期血圧、拡張期血圧をランジオロール投与の前、1分後、2分後、5分後、10分後、20分後に記録した。心拍数測定は、心電図モニターの測定値を用いて行い、血圧測定はマンジェットによる非観血的もしくは観血的動脈圧モニターの測定値を用いた。採血をPCI治療前、6時間後、12時間後、24時間後に行い、心筋逸脱酵素（CPK、CPK-MB）の測定を行った。PCI治療後の1週間以内に心エコー図を用いて、左室駆出率を計測した。

5）統計解析

連続変数は平均値 ± 標準偏差で示し、名義変数は標本数およびパーセンテージで示した。反復測定分散分析（repeated ANOVA）を用いて、ランジオロール投与前と投与後の血行動態指標について経時的変化を検討した。統計的有意差を認める場合にはpost hocとしてScheffe検定を用いた。ランジオロール投与前心拍数と投与20分後的心拍数低下については、Pearson相関係数を用いてそれらの関連を検討した。すべての検定は両側検定であり、統計的有意水準をP < 0.05とした。統計学的解析にはSPSS Statistics 18.0（IBM SPSS Statistics Inc.）を用いた。

3 結果

97例の急性冠症候群症例のうち、登録基準を満たした22例にランジオロール投与を行った。表1に患者背景を示す。平均年齢は63 ± 9歳、男性は15例（68%）であった。急性冠症候群の内訳は、急性心筋梗塞が13例（59%）、不安定狭心症が9例（41%）
責任血管は、左前下行枝16例（73%）、左回旋枝5例（23%）、右冠動脈1例（4%）であった。来院時の収縮期血圧は133±22 mmHg、拡張期血圧は76±18 mmHg、心拍数は87±11回/分であった（表2）。図3Aおよび図3Bにランジオロール投与後の心拍数および血圧の経時的変化を示す。投与5分後には有意な心拍数低下を認め、20分後の平均心拍数は72±8回/分であった。一方で、収縮期血圧および拡張期血圧には有意な変化を認めなかった。さらにランジオロール投与前の心拍数と心拍数低下には正の相関が観察された（r = 0.687, P < 0.001, 図4）。

ランジオロールの開始用量は、すべての症例で20 μg/kg/minであり、13例（59%）では維持用量として20 μg/kg/minで継続した。治療目標心拍数にしたがって7例（32%）では10μg/kg/minに減量し、2例（9%）では高用量を投与した（図5）。平均の維持用量は17.8±6.0 μg/kg/minであり、投与時間は平均44±14分（中央値：45分、四分位範囲：38－52分）であった。ランジオロール投与後に開始したβ遮断薬は、カルベジロール11例、メトプロロール7例、ビソプロロール3例であり、残り1例はβ遮断薬を投与しなかった。図6に不安定狭心症に対してランジオロール投与による治療を行った一例を示す。

22例中の2例において、再灌流後に生じた反応性徐脈のためランジオロール投与の中断を要した。1例は右冠動脈が責任病変であり、残り1例は優位な灌流領域を有する左回旋枝が責任病変の症例であったが、いずれも一時的ペーシングを要さなかった。高度房室ブロック、著明な血圧低下、心原性ショック、心不全の増悪などの重大な有害事
象は観察されなかった。ランジオロールを投与した症例では、院内死亡は認めなかった。

4 考察

本研究では、PCI 治療を行う急性冠症候群の症例においてランジオロールは血圧を低下させることなく速やかに心拍数を低下させる効果が示され、ランジオロール投与前の心拍数と心拍数低下には正の相関が観察された。さらに心拍数 70 回/分以上を呈する急性冠症候群の症例において、約 90%の症例で安全に投与可能であったことが示された。

再灌流療法が施行される以前の 1980 年代に、急性心筋梗塞に対する β 遮断薬の治療効果が検証され、これらの試験では急性期ないし慢性期とともに β 遮断薬投与において総死亡率の低減が示された[4–8]。これらの無作為化比較試験をもとにしたメタ解析において、β 遮断薬は心筋梗塞発症後 1 週間以内の死亡率を 28%低下させ、また再梗塞を 18%低下、突然死を 15%低下させることが報告された[9,10]。大規模比較試験をもとに行われたメタ解析の結果においても急性心筋梗塞に対する β 遮断薬の有効性を支持するものであり[9]、β 遮断薬は急性心筋梗塞患者の予後改善のための必須の薬剤として推奨されるようになった。

2000 年以降、血栓溶解療法が施行されるようになってから行われた CAPRICORN (Carvedilol Post-Infarction Survival Control in LV Dysfunction) 試験では、急性心筋梗塞を発症し左室駆出率 (Ejection fraction: EF) ≤40%の症例に対して、退院時のカ
ルベジロール内服治療が慢性期死亡率を有意に低減されたことが示された（総死亡率：カルベジロール群 11.8%，対照群 15.3%，P = 0.031）[18]。また症例数 45,852 例と過去最大規模である COMMIT（Clopidogrel and Metoprolol in Myocardial Infarction Trial）試験は、急性心筋梗塞の急性期に β 遮断薬をルーチン投与することの有効性を検証した試験であるが、この試験ではメトプロロール静脈内投与が再梗塞や突然死を低減させたが総死亡率の低減効果は示されなかった（28 日死亡率：メトプロロール群 7.7%，対照群 7.8%，P = 0.69）[48]。この原因として急性期のルーチン投与が、徐脈、低血圧などの有害事象を増加させたことが一因と考えられ、β 遮断薬による有害事象が軽視できない問題であることが示された。

しかし急性心筋梗塞に対する β 遮断薬の有効性が報告された 1900 年代後半には再灌流治療は広く普及しておらず、2000 年以降に報告された CAPRICORN 試験や COMMIT 試験においては、血栓溶解療法に再灌流が施行されたのは約半数であった。現在は PCI による再灌流療法が主流となっているため、これまでの臨床試験とは治療戦略が大きく異なっており、過去の臨床試験の結果をそのまま当てはめることはできないと考えられる。急性心筋梗塞に対する治療戦略が変遷する中で、PCI 治療による再灌流療法を施行する場合において β 遮断薬の有効性については再検証する必要があると考えられるようになった。発症後 6 時間以内の急性前壁心筋梗塞症例を対象とした METOCARD-CNIC（The Effect of Metoprolol in Cardioprotection During an Acute Myocardial Infarction）試験が計画され、2013 年にその結果が報告された。急性期の
メトプロロール静脈内投与群では、対照群に比較して心筋梗塞サイズの縮小効果が示された[19]。また慢性期予後に関しても、急性期にメトプロロール静脈内投与を施行した群において、慢性期の左室駆出率が保たれており、心不全による入院の低減効果が示された[20]。PCI時代においても発症6時間以内の急性前壁心筋梗塞症例に対しては、心不全、低血圧、徐脈などの除外基準に該当しなければ急性期β遮断薬投与による急性期および慢性期の有効性が示されたといえる。

以上の臨床試験結果から、急性心筋梗塞に対するβ遮断薬の効果としては、死亡率の低減、再梗塞の低減、致死的不整脈の予防が挙げられる。また、急性心筋梗塞の発症後早期にβ遮断薬を投与する際には、β遮断薬の有害事象を発現させないように適応症例や投与方法に留意する必要性があることも同時に示されたといえる。急性心筋梗塞に対するβ遮断薬の機序は抗虚血作用と考えられている[57]。β遮断薬は心拍数や後負荷の低下により心筋酸素需要を低下させる。梗塞周辺部虚血心筋の心筋酸素需要を低下させることで梗塞サイズを縮小する効果が期待される。またβ遮断薬は、交感神経活性を抑制することで致死的不整脈を予防する効果が期待される（図7）。急性心筋梗塞に対する再灌流療法は、梗塞サイズを縮小させ、慢性期心機能を改善することは明らかにされており、再灌流までの時間が短ければ短いほどその効果が大きいことが示されている[58,59]。しかしながら閉塞した冠動脈に対して血栓溶解療法もしくはPCIによる再灌流療法を施行すること自体は有意義であるが、時に血流の回復過程において再灌流障害による心筋障害が生じることがある。再灌流障害には再灌流性不整脈、心筋スタンニン
グ、No flow 現象、心筋細胞壊死の拡大が含まれる。心筋細胞壊死の機序は、虚血心筋の再灌流に伴って細胞内 Ca^{2+} 過負荷と活性酸素の産生が生じ、ミトコンドリア透過性遷移孔（mitochondrial permeability transition pore, mPTP）を開口させることが key と考えられている。ミトコンドリア透過性遷移孔はミトコンドリア膜に存在する非選択的チャネルであり、このチャネルが開口することでミトコンドリア膜電位が消失、ATP 産生を枯渇させ、心筋細胞の浮腫やアポトーシスを誘導すると考えられている[60–63]。この再灌流障害をターゲットに臨床研究も行われているが（hANP[64]、アデノシン[65]、シクロスポリン[66,67]、ニコランジル[64,68]、エリスロポエチン[69]、GIK [Glucose-insulin-K⁺] 療法[70]など）、現時点では実臨床に応用されるには至っていない。

虚血・再灌流障害に関連する動物実験では、β 遮断薬は虚血心筋におけるフリーラジカルのスカベンジャー効果[71]、ミトコンドリア機能の保持[72]などが示されており、虚血再灌流障害の低減に関与する可能性も示唆されている[73]。

ランジオロール塩酸塩は、高い心臓選択性を有する超短時間作用型 β 遮断薬である。ランジオロールはエスモロールの側鎖を変えることによって β₁ 選択性を高めた薬剤である。ランジオロールは、エスモロールと比較してより β₁ 選択性が高く（ランジオロール 255 倍、エスモロール 33 倍）、より半減期が短い（ランジオロール 4 分、エスモロール 9 分）という特徴を有する[49,74]。さらに陰性変時作用が陰性変力作用に先行するため、心拍数低下に比べて血圧低下を来しにくい特徴を有する[75]。これらの薬理学的特徴から、頻脈を呈する急性冠症候群の急性期治療に対して血行動態の面から有利で
あると考えられる。

周術期および集中治療管理における心房細動をはじめとする頻脈性不整脈に対して、ランジオロールは心拍数調整や洞調律回復効果に優れており、安全に投与可能であることが報告されている[50–54]。心臓血管手術領域では、術後に生じた心房細動に対して、ランジオロールは洞調律回復効果が高いことが報告された[55]。また心臓血管手術後の低用量ランジオロール投与（2～5 μg/kg/min）は術後の心房細動発症予防にも有効であることも報告された[56,76]。しかしながら急性冠症候群の PCI 治療中に投与したランジオロールの血行動態に対する急性期効果はこれまでに報告されておらず、本研究の報告が初めてである。本研究では、ランジオロール投与の 20 分後における心拍数低下は平均 15 回/分であり、投与前の心拍数が高値であるほど、より高い心拍数低下効果が観察され、それらには正の相関を認めた。頻脈を呈する急性冠症候群に対して血行動態再建治療前の早期からランジオロールを投与することにより、心拍数の低下が得られ心筋酸素需要を低下させる効果が期待できる。また再灌流に伴う反応性徐脈のためランジオロールを中断した症例を 2 例認めたが、いずれも一時的ペーシングは要さなかった。本研究では、ランジオロール投与中は連続的に心拍数および観血的血圧をモニタリングしており、PCI 施行中の連続モニタリング管理において急性冠症候群に対して安全に投与できると考えられる。

ランジオロールの添付文書では、手術中の頻脈性不整脈に対して 1 分間 125 μg/kg/min で静脈内持続投与の後、40 μg/kg/min の速度で静脈内持続投与することが記
載されている。本研究のプロトコールでは、初回負荷投与をおこなわずに20 μg/kg/minを開始用量として設定し、投与後の心拍数に応じて用量調節を行った。近年、心臓手術後の心房細動発症予防に低用量ランジオロール（2～5 μg/kg/min）が有効であることが報告された[56,76]。また低心機能症例における頻脈性心房細動に対して、ランジオロールを1 μg/kg/minの低用量から開始して10 μg/kg/minまで漸増する方法（平均用量：6.3 ± 3.5 μg/kg/min）がジゴキシンと比較して心拍数コントロールに有効であったことも報告され[77]。日常臨床において使用される機会が増加している。しかしながらランジオロールの至適投与量については、病態や目的によって異なる可能性も考えられ、今後の検討課題である。

研究の限界

本研究の限界は、1 点目はプラセボ群をおかない単一群の観察研究である。2 点目は、急性期の血行動態評価を行ったのみであり、中長期的予後や心機能の経過については検討していない。血行動態評価は心拍数・血圧に限られており、Swan-Ganz カテーテルを用いた心拍出量・肺動脈圧・肺動脈楔入圧の評価は行っていない。急性期のランジオロール投与が慢性期の予後や心機能を改善するかどうかについては、臨床上の重要な課題であり、今後の検討が必要である。3 点目は、本研究が心拍数70回/分以上で心原性ショックを呈していない急性冠症候群を対象としており、すべての急性冠症候群症例に適応することはできない。ランジオロールは陽性変時作用に比較して陰性変力作用
が少ないため、過度な血圧低下をきたしにくいと考えられる。しかし心原性ショックを呈するような重症症例に対しては、血行動態を悪化させる可能性が考えられるため、ランジオロールの適応を慎重に検討する必要がある。その他に右冠動脈を責任血管とする急性心筋梗塞症例に対しては、再灌流に伴う反応性徐脈をきたす可能性があるためランジオロール投与の適応は慎重に判断するべきであると考えられる。

5 小括

急性冠症候群の PCI 治療中にランジオロール投与を行い、超短時間作用型という特徴から、速やかな心拍数低下効果が確認された。血行動態の安定した急性冠症候群症例において、急性期 PCI 治療に際してランジオロールは安全に投与可能であると考えられた。
表 1. 患者背景

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>N = 22</th>
</tr>
</thead>
<tbody>
<tr>
<td>年齢（歳）</td>
<td>63 ± 9</td>
</tr>
<tr>
<td>男性, n (%)</td>
<td>15 (68%)</td>
</tr>
<tr>
<td>冠リスク, n (%)</td>
<td></td>
</tr>
<tr>
<td>高血圧症</td>
<td>16 (73%)</td>
</tr>
<tr>
<td>脂質異常症</td>
<td>11 (50%)</td>
</tr>
<tr>
<td>糖尿病</td>
<td>9 (41%)</td>
</tr>
<tr>
<td>喫煙</td>
<td>13 (59%)</td>
</tr>
<tr>
<td>Killip 分類, n (I/II/III/IV)</td>
<td>18/4/0/0</td>
</tr>
<tr>
<td>来院時心電図, n (%)</td>
<td></td>
</tr>
<tr>
<td>洞調律</td>
<td>22 (96%)</td>
</tr>
<tr>
<td>心室頻拍</td>
<td>1 (4%)</td>
</tr>
<tr>
<td>来院時診断, n (%)</td>
<td></td>
</tr>
<tr>
<td>急性心筋梗塞</td>
<td>13 (59%)</td>
</tr>
<tr>
<td>不安定狭心症</td>
<td>9 (41%)</td>
</tr>
<tr>
<td>責任冠動脈, n (%)</td>
<td></td>
</tr>
<tr>
<td>左前下行枝</td>
<td>16 (73%)</td>
</tr>
<tr>
<td>左回旋枝</td>
<td>5 (23%)</td>
</tr>
<tr>
<td>右冠動脈</td>
<td>1 (4%)</td>
</tr>
<tr>
<td>発症から再灌流までの時間, (分)</td>
<td>367 ± 301</td>
</tr>
</tbody>
</table>

Data are presented as absolute value (percentage) or mean ± SD.
表 2. 血行動態指標および生化学検査

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>N = 22</th>
</tr>
</thead>
<tbody>
<tr>
<td>ランジオロール投与前</td>
<td></td>
</tr>
<tr>
<td>収縮期血圧 (mmHg)</td>
<td>133 ± 22</td>
</tr>
<tr>
<td>拡張期血圧 (mmHg)</td>
<td>76 ± 18</td>
</tr>
<tr>
<td>心拍数 (回/分)</td>
<td>87 ± 11</td>
</tr>
</tbody>
</table>

心筋逸脱酵素、急性心筋梗塞症例のみ (n = 13)

<table>
<thead>
<tr>
<th>前</th>
<th>U/L</th>
<th>前</th>
<th>U/L</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peak CPK</td>
<td>2900 ± 2234</td>
<td>Peak CPK-MB</td>
<td>301 ± 236</td>
</tr>
</tbody>
</table>

左室駆出率

<table>
<thead>
<tr>
<th>前</th>
<th>例, %</th>
<th>急性心筋梗塞症例, %</th>
</tr>
</thead>
<tbody>
<tr>
<td>全症例</td>
<td>55 ± 10</td>
<td>49 ± 7</td>
</tr>
</tbody>
</table>

Data are presented as mean ± SD.
図3.A 心拍数の変化

ランジオロール投与後の経過時間

図3.B 収縮期血圧および拡張期血圧の変化

ランジオロール投与後の時間経過
図3A：心拍数の変化

ランジオロール投与前および投与20分までの心拍数の変化を示す。投与前と比較して、
投与5分後から有意な心拍数低下を認めた（Repeated ANOVA, \(P<0.001 \)）。

図3B：収縮期血圧および拡張期血圧の変化

ランジオロール投与前および投与20分までの収縮期血圧および拡張期血圧の変化を示
す。両者において、投与前値と比較して統計学的に有意差は認めなかった。
図4 ランジオロール投与前心拍数と心拍数低下

$r = 0.687, p < 0.001$

ランジオロール投与前の心拍数(回/分)
図4：ランジオロール投与前心拍数と心拍数低下

ランジオロール投与前心拍数と投与20分後の心拍数低下を示す。投与前心拍数が高値であるほど、心拍数低下効果は大きく、両者には正の相関を認めた（r = 0.687, P < 0.001）。
図5 ランジオロール投与20分後の維持投与量

![Bar graph showing the number of patients at different maintenance dosages of ranitidine.](image)
図 5：ランジオロール投与 20 分後の維持投与量

ランジオロール投与 20 分後の維持投与量。開始用量の 20 μg/kg/min を継続したのは 13 例（59%）であった。ランジオロール平均投与用量は 17.8 ± 6.0 μg/kg/min であった。
図6 不安定狭心症の一例

A
発作時 ランジオロール開始後
V1
V2
V3
V4
V5
V6

B
PCI治療前 PCI治療後

C
血压 mmHg

心拍数 回分

ランジオロール 20μg/kg/min

胸部症状

メトプロロール
図 6 : 不安定狭心症の一例（66 歳女性）。

A: 発作時（左）およびランジオロール開始後（右）の心電図を示す（いずれも前胸部誘導）。発作時には V3〜6 誘導に虚血性 ST 低下を認めたが，ランジオロール開始後に ST 低下の改善を認めた。

B: PCI 治療前（左）および治療後（右）の冠動脈造影所見を示す。左前下行枝に高度狭窄を認め，Taxus-Liberte® 薬剤溶出製冠動脈ステントを留置した。

C: 血圧および心拍数の変化を示す。ランジオロール 20 μg/kg/min を開始後速やかに心拍数は低下し，それに伴って狭心症症状は消失した。ランジオロール投与後はメトプロロール内服に変更した。sBP: systolic blood pressure（収縮期血圧）, dBP: diastolic blood pressure（拡張期血圧）, HR: heart rate（心拍数）
図7 心筋壊死とβ遮断薬の作用

再灌流療法

再灌流障害

細胞内Ca²⁺過負荷
活性酸素の産生
ミトコンドリア機能障害

心筋壊死の進行

心筋虚血

交感神経活性亢進

心拍数上昇

酸素消費量増加

心筋虚血の増悪

梗塞周辺部の心筋壊死

梗塞周辺部の心筋壊死

心筋リモデリング

β遮断薬

β遮断薬の効果

① 交感神経活性抑制
致死的不整脈の回避
② 梗塞サイズの縮小
左室リモデリングの抑制
心機能・生命予後改善効果
図 7：心筋壊死と β 遮断薬の作用

β 遮断薬は心拍数や後負荷の低下により心筋酸素需要を低下させる．梗塞部周辺虚血心筋の心筋酸素需要を低下させることで梗塞サイズを縮小させる効果が期待される．また β 遮断薬は，交感神経活性を抑制することで致死的不整脈を予防する効果が期待される．再灌流療法（PCI 治療や血栓溶解療法）は，梗塞サイズを縮小させるのに有意義であるが，時に血流の回復過程において再灌流障害を生じることがある．β 遮断薬が再灌流障害を抑制するかどうかについては，十分に明らかにされていない．
表3 急性心筋梗塞に対するβ遮断薬を検証した大規模比較試験

再灌流療法が施行される以前に施行された比較試験

<table>
<thead>
<tr>
<th>試験名・報告年</th>
<th>症例数</th>
<th>β遮断薬</th>
<th>投与開始時期</th>
<th>観察期間（平均）</th>
<th>総死亡率</th>
</tr>
</thead>
<tbody>
<tr>
<td>Norwegian(1981)</td>
<td>1884</td>
<td>チモロール</td>
<td>発症後7〜28日</td>
<td>(510日)</td>
<td>10.3% vs 16.1%*</td>
</tr>
<tr>
<td>BHAT(1982)</td>
<td>3837</td>
<td>プロプラノロール</td>
<td>入院後5〜21日</td>
<td>(510日)</td>
<td>7.2% vs 9.8%*</td>
</tr>
<tr>
<td>Goteborg(1983)</td>
<td>1395</td>
<td>メトプロロール</td>
<td>入院時</td>
<td>90日</td>
<td>5.7% vs 8.9%*</td>
</tr>
<tr>
<td>MIAMI(1985)</td>
<td>5778</td>
<td>メロプロロール</td>
<td>入院時</td>
<td>15日</td>
<td>4.3% vs 4.9%</td>
</tr>
<tr>
<td>ISIS-1(1986)</td>
<td>16027</td>
<td>アテノロール</td>
<td>入院時</td>
<td>7日</td>
<td>3.8% vs 4.5%*</td>
</tr>
</tbody>
</table>

再灌流法時代（血栓溶解療法）に施行された比較試験

<table>
<thead>
<tr>
<th>試験名</th>
<th>症例数</th>
<th>対象症例</th>
<th>β遮断薬</th>
<th>総死亡率</th>
</tr>
</thead>
<tbody>
<tr>
<td>CAPRICORN</td>
<td>1959</td>
<td>AMI, EF ≤40%退院時</td>
<td>カルベジロール経口</td>
<td>12% vs 15%*</td>
</tr>
<tr>
<td>COMMIT</td>
<td>45852</td>
<td>AMI早期,ルーチン</td>
<td>メトプロロール静注+経口</td>
<td>7.7% vs 7.8%</td>
</tr>
</tbody>
</table>

参考文献

[4]
[5]
[6]
[7]
[8]
第4章
研究2．経皮的冠動脈形成術を受ける症例に対するスタチン前治療の造影剤腎症予防効果：傾向スコアを用いた検討

1 はじめに

造影剤腎症は、冠動脈疾患に対するPCI治療後に発生しやすい合併症の一つであり、約7～15%の症例に発生すると報告されている[21–23]。造影剤腎症の発症は、短期予後のみでなく心血管イベントや死亡を含む長期予後にも関連しているため[23,27]、その発症予防は重要な課題である。確立された造影剤腎症の予防方法としては、生理食塩水を用いた補液、使用する造影剤量の低減、等浸透圧性もしくは低浸透圧性造影剤の使用が挙げられる[22,25,29,78,79]。本来、スタチンは脂質異常症の治療薬であるが、抗酸化作用、抗炎症作用、血管内皮機能改善作用などの多面的効果が報告されている[37,38]。造影剤腎症発症の予防効果に関して、スタチンの多面的効果が期待されている。少数例の研究ではスタチンの造影剤腎症に対する予防効果が報告されているが、予防効果が認められなかったという報告もあり、その結論は一致していない[80–86]。2014年にHanらは、約3000例を対象とした大規模比較試験（TRACK-D試験）の結果を報告し、慢性腎臓病を有する糖尿病患者において、ロスバスタチンが造影剤腎症の発症を抑制したことを報告した[87]。しかし欧米人と比較して、日本人は冠動脈疾患の罹患率やスタチン感受性が異なっており[42,43]、日本人においてはスタチント投与が造影剤腎症の発症を抑制するか否かが注目されている。
抑制するかどうかに関する報告はない。本研究の目的は、筑波大学を中心とする茨城県内のレジストリーを用いて、PCI治療に先行するスタチン前治療が造影剤腎症を低減する効果があるかどうかを検証することである。

2 方法

1) 研究デザインと対象

茨城心血管疾患評価研究（Ibaraki Cardiovascular Assessment Study – Coronary Artery Disease [ICAS-CAD] registry）は、茨城県内の筑波大学循環器内科関連病院12施設を中心とした多施設共同研究であり、PCI治療を施行した冠動脈疾患患者を対象とした観察研究である（後述の参考資料）。2007年4月から2010年4月にICAD-CAD registryに登録された2657例を対象として後ろ向き解析を行った。維持透析症例の83例、PCI治療後の7日以内に死亡した56例、血清クレアチニン値の得られなかった320例を除外し、最終的な解析対象となったのは2198例であった。PCI治療に先行するスタチン前治療の施行は839例、スタチン前治療の未施行は1359例であった（図8）。

2) 観察項目と定義

PCI治療に先行するスタチン内服が行われていたのをスタチン前治療と定義した。造影剤投与前、投与の24時間後、48時間後、72時間後の血清クレアチニン値を測定した。推定糸球体濾過率（estimated glomerular filtration rate, eGFR）の算出には、日本人用GFR推算式を用いた[88]。造影剤投与前に測定した血清クレアチニン値に基
づく eGFR < 60 ml/min/1.73 m²を慢性腎臓病と定義した。造影剤腎症の発症リスクの予測として，Mehran risk score を用いた[31]。また冠動脈病変の複雑性を示す指標として，SYNTAX スコアが用いられており，SYNTAX score calculator version 2.11（URL：http://www.syntaxscore.com/）を用いて算出した[89]。

3) エンドポイント

主要評価項目は造影剤腎症の発症とした。造影剤投与後 7 日以内に血清クレアチニン値が前値より 0.5 mg/dl 以上または 25%以上の上昇を造影剤腎症と定義した[29]。造影剤投与の 48 時間後もしくは 72 時間後の血清クレアチニン値が得られなかった症例が 25%にみられたため，造影剤投与後 7 日以内のデータを使用した。副次評価項目は，30 日，180 日，360 日後の透析導入もしくは死亡の発生とした。

4) 統計学的解析

本研究はレジストリーを用いた観察研究であるため，スタチン前治療の有無は主治医個人の判断によるものである。患者背景因子のバイアスを除去するために，傾向スコアを用いて解析を行った。スタチン前治療が行われる傾向スコアを多変量ロジスティック回帰分析にて算出した（SPSS Statistics においては，ロジスティック回帰にて「保存」→「予測値，確率」を☑する）。傾向スコアを算出するために用いた共変量は，年齢，性別，背景因子（高血圧，糖尿病，現在の喫煙状況，eGFR，Body Mass Index，心血管疾患の家族歴，心筋梗塞の既往，冠動脈バイパス術の既往，心不全の既往，脳梗塞の既往，末梢動脈疾患の既往，左室駆出率，SYNTAX スコア，左前下行枝病変，緊
急の手技）、内服薬の種類（アスピリン、クロピドグレル、β遮断薬、アンギオテンシンII受容体拮抗薬、カルシウム拮抗薬、硝酸薬）である。個々の症例毎に算出された傾向スコアは0〜1の間の値を示しており、これはスタチン前治療が行われている確率である。すなわち傾向スコアが高値であるほど、スタチン前治療が行われている確率が高いことを示す。すべての症例の傾向スコアを昇順にソートした後に、スタチン前治療の有無に関して、算出された同じ傾向スコアを有するサンプルをスタチン前治療の有無について1:1で手動によりマッチングを行った。対となるスタチン前治療の有および無の両群について、傾向スコアの差を0.015までを許容してマッチングを行った [90]。両群ともに565例をマッチングさせ、合計1130例を傾向スコア・マッチング症例とした。ロジスティック回帰モデルで算出された傾向スコアの適合度を検証するために、Hosmer-Lemeshow検定およびc-statisticsを用いた。

連続変数は平均値および標準偏差もしくは中央値および四分位範囲で示し、名義変数は標本数およびパーセンテージで示した。2群間の連続変数は、対応のないStudentのt検定もしくはMann-WhitneyのU検定を行った。名義変数はχ²検定もしくはFisher正確確率検定を行った。イベント発生に関しては、Kaplan-Meier曲線を作成し、log-rank検定を用いて有意差検定を行った。多変量ロジスティック回帰分析を用いて、造影剤腎症発症に関する独立規定因子を検討した。傾向スコア・マッチング症例については、共変量として年齢、性別、スタチン前治療、急性冠症候群、左室駆出率≤45%、
多枝病変, Mehran risk score を用いた。全症例については, 上記の共変量に傾向スコアを追加した多変量ロジスティック回帰分析を行った[90]。すべての検定は両側検定であり, 統計的有意水準を P<0.05 とした。統計学的解析には SPSS Statistics 18.0（IBM SPSS Statistics Inc.）を用いた。

3 結果

ICAS レジストリーから登録基準を満たした 2198 例（平均年齢 69.5 ± 10.7 歳, 男性 77%）を解析した。スタチン前治療は 839 例 (38%) で行われており, そのうち 82%は 4 週間以上前から内服が継続されていた。内服していたスタチンの内訳はロスバスタチン 329 例, アトロバスタチン 172 例, ビタバスタチン 97 例, プラバスタチ 79 例, シンバスタチン 22 例, フルバスタチン 16 例であり, スタチンの種類が不明であったのは 124 例であった。傾向スコアの適合度（Hosmer-Lemeshow 検定, \(\chi^2 = 4.99, P = 0.76 \)）および識別性（c-statistic, 0.80）は良好であった。傾向スコアの分布は, 全体症例においてはスタチン前治療群では有意に高値であったが (スタチン前治療群 : 0.568 [0.417 – 0.711] vs スタチン未治療群 : 0.207 [0.096 – 0.439], P < 0.001)。傾向スコア・マッチング後には有意差は消失した (スタチン前治療群 : 0.482 [0.326 – 0.609] vs スタチン未治療群 : 0.483 [0.326 - 0.609], P = 0.997)。

全体の症例および傾向スコア・マッチング症例の患者背景を表 4 に示す。全体では,スタチン前治療群においてスタチン未治療群と比較して, 年齢が若い (69 ± 10 歳 vs 70
±11歳）、糖尿病合併症例が多い（47% vs 35%）、PCI治療の既往が多い（32% vs 14%）、冠動脈バイパス手術の既往が多い（11% vs 4%）などの患者背景であった。しかし傾向スコア・マッチング症例では、患者背景の有意差は消失した。

血液生化学検査および手技関連因子を表5に示す。全体の症例において、使用造影剤量およびeGFRには有意差を認めず、CV/eGFR比も同様に有意差を認めなかった。これらは傾向スコア・マッチング症例でも同様に有意差を認めなかった。全体の症例において、PCI手技前の補液はスタチン前治療群において多く施行されていた（15% vs 10%, P=0.001）、傾向スコア・マッチング症例では有意差を認めなかった。

全体の2198症例のうち、造影剤腎症を発症したのは192例（8.7%）であった。全体では、スタチン前治療群では3.9%、スタチン未治療群では11.7%に造影剤腎症の発症が認められた（P<0.001）。傾向スコア・マッチングさせた症例でも同様にスタチン前治療群で造影剤腎症発症は有意に低率であった（3.5% vs 10.6%, P<0.001, 表6）。

Mehran risk scoreを用いて4群（低リスク、中リスク、高リスク、超高リスク）に層別化した場合には、超高リスク群を除くほとんどの群においてスタチン前治療は造影剤腎症発症の低下に関連していた（図9）。これはMehran risk score ≥16の超高リスク群においては症例数が少なく、同様の傾向はあるものの統計的に有意ではなかった。また造影剤腎症の発症に関わると考えられる複数の因子を用いて層別解析を行ったが、多くの因子においてスタチン前治療が行われていた群で造影剤腎症の発症が低率であることが示された（図10）。多変量ロジスティック回帰分析では、スタチン前治療は造影剤
腎症発症低下に関する独立規定因子であった（全体症例：オッズ比 0.62，95%信頼区间 0.40-0.97，P = 0.036，傾向スコア・マッチング症例：オッズ比 0.31，95%信頼区间 0.18-0.53，P<0.001，表7）。

副次評価項目（死亡もしくは維持透析導入）に関しては，全体症例ではスタチン前治療群で低率であり（30日以内：0.1% vs 1.3%，P= 0.002，180日以内：1.2% vs 3.4%，P= 0.002，360日以内：1.8% vs 4.6%，P< 0.001），副次評価項目の低下には死亡率低下が大きく寄与していた。しかしながら傾向スコア・マッチング症例では，副次評価項目の発生率は有意ではなかった。さらにスタチン前治療の有無と Mehran risk score（造影剤腎症発症のカットオフ値：≤7 もしくは>7）を用いて4群に分類して，Kaplan-Meier 曲線によるイベント発生の解析を行った。Mehran risk score >7 およびスタチン前治療なしの群において，透析導入もしくは死亡の複合イベント発生は高率であった（図11）。

4 考察

本研究において，全体症例で造影剤腎症の発症率は8.7%であった。傾向スコア・マッチング症例において，スタチン前治療群は造影剤腎症発症の低下に関連しており，多変量解析では独立規定因子であった（オッズ比 0.31，95%信頼区間 0.18-0.52，P < 0.001）。しかし傾向スコア・マッチング症例において，スタチン前治療と透析導入もしくは死亡の複合イベントには関連が認められなかった。

1996年にLevyらは造影剤腎症を発症した症例において，発症していない症例に比
比較して院内死亡率が約5.5倍にのぼると報告した[26]。その後に報告された研究においても造影剤腎症を発症した症例では、院内死亡のみでなく慢性期死亡や心血管イベントも増加することが示された[23,27,91,92]。また造影剤腎症を発症した場合には、入院期間の延長や維持透析を要することで医療費増大をもたらすため[93]、造影剤腎症の予防は医療経済的にも重要な課題である。

造影剤腎症の発症機序は十分には解明されていないが、造影剤投与直後に生じる血管収縮に伴う腎虚血と造影剤による尿細管障害の2つの機序が想定されている。前者については内皮傷害、NO産生低下などが影響し、後者については造影剤自体の細胞毒性、粘稠度、活性酸素などが影響していると考えられている[21,23,24]。その他の機序として、炎症も造影剤腎症の発症に関与していると考えられており、炎症が活性酸素を増加させることで、尿細管細胞のアポトーシスを惹起する機序が想定されている[94]。造影剤腎症の発症は、これらの複数の機序を介していることが想定される。本来、スタチンは脂質異常症の治療薬であるが、抗酸化作用、抗炎症作用、血管内皮機能改善作用などの多面的効果が報告されている[37,38]。動物実験においては、スタチンがNOの産生増加およびエンドセリンの産生低下を介して血管内皮機能を改善させることで造影剤腎症の発症を抑制する機序が考えられている[95,96]。また近年、アトロバスタチンが活性酸素を減少させることで腎尿細管細胞のアポトーシスを抑制し、造影剤腎症の発症を抑制する機序が報告された[94]。スタチンが造影剤腎症の発症を予防する機序は、十分に解明されていないが、これらの多面的効果が介在していると推察される。
慢性腎臓病の有無は、最も重要なリスク因子であり、造影剤使用量も重要な手技関連因子である[22,23,28]。近年、CV/eGFR比が造影剤腎症に関する有効な発症予測因子であり、CV/eGFR比が2.6〜3を超えると造影剤腎症の発症率が上昇することが報告された[29,30,32]。造影剤腎症に関連する他の因子としては、高齢、糖尿病、心不全、脱水状態、腎毒性を有する薬剤（NSAIDs）が挙げられる[22,23,28]。造影剤腎症の発症には、複数の機序や要因が関連している。Mehran risk scoreはPCIを施行する冠動脈疾患症例において、造影剤腎症の発症を予測する有効な手段である[31,97]。本研究では、Mehran risk scoreを用いて、リスク層別化を行い、スタチン前治療の造影剤腎症に関する有効性を検討した。超高リスク群（Mehran risk score≥16）においては症例数が少なく統計的有意ではなかったものの、それ以外の症例においてはスタチン前治療が造影剤腎症に対して予防的に寄与していることが示された。その他の造影剤腎症の発症に関わる因子の層別解析においても、同様にスタチン前治療が造影剤腎症に対して予防的に寄与していることが示された。

これまでの報告では、造影剤腎症の発症に関するスタチン前治療の予防効果に関しては、一致した結論が得られていない。2008年にPattiらは、待機的PCI治療を行った434例においてスタチン内服群で造影剤腎症が低率であったと報告している（スタチン内服群3% vs スタチン非内服群27%, P < 0.0001）[80]。Khanalらは29,409例の大規模コホートにおいて、同様の結果を報告している（スタチン内服群4.4% vs スタチン非内服群5.9%, P < 0.0001）[81]。一方でKandulaらは、傾向スコアを用いて調
整を行うと、スタチン内服による造影剤腎症予防効果は有意ではなかったと報告した（オッズ比 1.6, 95%信頼区間 0.86-3.22, \(P = 0.12 \)) [82]。これらはいずれも観察研究であり、スタチン前治療の選択に関してバイアスが存在している可能性がある。スタチンの造影剤腎症予防効果に関する無作為化比較試験の報告は多くない。PROMISS 試験では、腎機能障害を有する 274 例をシンバスタチン 40 mg もしくは対照群に無作為割付を行ったが、スタチンの造影剤腎症に対する予防効果は示されなかった（スタチン群 2.5% vs 対照群 3.4%） [83]。Toso らも、304 例をアトルバスタチン 80mg と対照群に無作為割付を行ったが、スタチンの造影剤腎症に対する予防効果は示されなかった（スタチン群 15% vs 対照群 16%） [84]。PCI を施行する急性冠症候群を対象とした ARMYDA-CI-AKI 試験では、高用量アトロバスタチン 80 mg と対照群に無作為化割付を行い、スタチン前治療の造影剤腎症発症に対する予防効果が示された（5% vs 13.2%, オッズ比 0.34, 95%信頼区間 0.12-0.97, \(P < 0.043 \)) [85]。また同様に急性冠症候群を対象とした PTATO-ACS 試験において、高用量ロスバスタチン（初回 40 mg, 以後は 1 日 20 mg）は対照群と比較して、スタチン前治療の造影剤腎症発症に対する予防効果が示された（6.7% vs 15.1%, オッズ比 0.38, 95%信頼区間 0.20-0.71, \(P = 0.003 \)) [86]。2014 年に Han らは、糖尿病および慢性腎障害を有する約 3000 例を対象とした大規模な無作為比較試験（TRACK-D 試験）の結果を報告しており、ロスバスタチン 10 mg 投与群において対照群と比較して、有意に造影剤腎症の発症は低率であった（ロスバスタチン群 2.3%, 対照群 3.9%, \(P = 0.01 \)) [87]。
造影剤腎症の発症予防に関して、スタチンのクラス効果であるのか、個々のスタチンにより異なるのかについては薬剤選択のうえで重要な問題である。またスタチンの用量に関しても、高用量スタチンが有効であるのか、もしくは低用量スタチンでも有効であるのか、十分なエビデンスはそろっていない。ロスバスタチンは、アトルバスタチンと比較して LDL コレステロール低下作用がより強く、肝機能障害などの薬剤副作用が少ない特徴を有している[98]。ロスバスタチンは親水性スタチンであり、アトルバスタチンよりも半減期が長く抗炎症作用も強いことが知られており[99]、スタチン間においてもその薬剤特性の違いが認められる。造影剤腎症の発症予防に関して、スタチン間の比較に関する報告は非常に少ない。Liu らは、1078 例の後ろ向き解析にて造影剤腎症の発症はロスバスタチン 5.9%、アトルバスタチン 5.2%であり、両群間での有意差は認めなかったと報告している[100]。また最近 Kaya らは、198 例の急性心筋梗塞症例を対象とした前向き無作為化比較試験（ROSA-cIN 試験）において、ロスバスタチンとアトルバスタチンの造影剤腎症の発症率は同等であったと報告した[101]。最近のメタ解析では、高容量のアトルバスタチンとロスバスタチンの両者のみが造影剤腎症の予防効果が示されたと報告している[102,103]。しかしながら、これまでの海外の臨床試験では、アトルバスタチン 80 mg もしくはロスバスタチン 10〜40 mg の高用量が投与されており、日本におけるスタチンの常用量とは大きく異なっている（海外の承認用量 アトルバスタチン 10〜80 mg、ロスバスタチン 5〜40 mg；日本の承認用量 アトルバスタチン 10〜20 mg、家族性高コレステロール血症では最大 40 mg まで、ロスバスタチン 2.5
家族性高コレステロール血症では最大 20 mg まで）。日本人と欧米人では血清コレステロール値や冠動脈疾患の罹患率が異なっており[42]、日本人は欧米人に比較してスタチン感受性が高いことが報告されているため[43]、特にスタチンの用量に関しては欧米人に投与される用量を日本人にそのまま適応することはできないと考えられる。本研究で得られた日本の日常診療で使用する常用量のスタチンが造影剤腎症の予防に有効であった結果は、日本人における治療戦略を考える上で重要なデータになると考えられる。

またスタチンの投与方法に関しても、それぞれの研究において相違が認められる。PROMISS 試験ではシンバスタチン 40 mg を造影剤投与の 1 日前と 1 日後に使用[83]、ARMYDA-CIN 試験ではアトルバスタチンを 12 時間前に 40 mg 投与し 2 時間後に 20 mg その後 20 mg を維持量として投与[85]、PRATO-ACS 試験ではロスバスタチン 40 mg を治療前に投与し維持量を 20 mg[86]、TRAK-D 試験ではロスバスタチン 10 mg を治療 48 時間前から治療後 72 時間まで投与を行った[87]。造影剤投与の何日前あるいは何時間前から開始するのがよいのか、造影剤投与後の何日後まで投与を継続するのがよいのか、今後の検討が必要と考えられる。

造影剤腎症を発症した症例では、死亡率が約 5 倍増加すると報告されているが[26]、造影剤腎症が慢性期生命予後に関する規定因子であるのか予後予測因子であるのか、現時点では明らかになっていない。造影剤腎症発症は長期予後の悪化に関連しているが、スタチン前治療と長期の臨床転帰に関する報告は少ない[24]。造影剤腎症の発症による
入院期間の延長や医療費増大を認めることから[93]、発症を予防することは医療経済的にも重要と考えられる。本研究では、傾向スコア・マッチング症例においてスタチン前治療が造影剤腎症の低減と関連していたものの、死亡率や維持透析導入の低減との関連はみられなかった。その理由は、PCI治療後の冠動脈疾患患者にはスタチン治療が標準的となっていることが考えられる。スタチン前治療が造影剤腎症の低減のみならず、長期予後を改善させうるかどうかについては、今後の良質な無作為比較試験で検証される必要がある。

傾向スコア（Propensity score）は観察研究で用いられる統計学的手法であり、1983年にRosenbaumとRubinの2人によって最初に発表された[104]。非ランダム化研究においては、比較群間（例えば治療群と対照群）で共変量（背景因子、リスク因子）の分布が異なっている可能性があり、治療効果を正確に推定するために共変量の分布に対する調整が必要である。傾向スコアはある治療が行われる確率（本研究ではスタチン前治療が行われる確率）を示しており、既知の複数の共変量を用いてロジスティック回帰モデルから推定される。同じ傾向スコアの得点の患者同士を比較することで、疑似的に観察研究のデータを無作為化割り付け試験のように解析可能であるというのが傾向スコアを用いた解析の大きな利点である[90]。傾向スコアを用いた解析方法として、マッチング、層別化、共分散分析の3つが一般的である。マッチングは最も一般的な手法であり、傾向スコアが等しいとみなせる患者同士をペアにして比較する方法である。層別化は、算出された傾向スコアをいくつかのサブクラス（例えば5階層など）に分類して
治療効果を比較する方法である。共分散分析は、得られた傾向スコアを多変量解析に投入して治療のバイアスを調整する方法である。しかしながら、傾向スコアを用いても厳密に同一の傾向スコア同士のマッチングを行うことは困難であり、群毎のサンプル数に偏りがある場合には片方の群のデータの多くが無駄になってしまう欠点もある。またロジスティック回帰分析による傾向スコアの推定を行うため、傾向スコアと目的変数が線形の関係になる必要があるが、傾向スコア自体は0から1の間の値をとるので、線形性を仮定するのは論理的に無理があることも指摘されている。傾向スコアを用いた解析は、非ランダム化研究におけるバイアスを低減するのに有用であるが、真のランダム化ではないため修正できない未知のバイアスが存在する可能性を念頭に置いておく必要がある[90]。

研究の限界

本研究にはいくつかの限界がある。1点目はレジストリーを用いた観察研究であること。スタチン前治療の有無は、医師個人の判断によるものであって、スタチン前治療について無作為化が行われていない。本研究では患者背景因子のバイアスを低減するために傾向スコアを用いた解析を行ったが、すべてのバイアスを排除することは困難と考えられる。また傾向スコア・マッチングを行うと、マッチングしない症例は除外されるため症例数の減少は不可避である。本研究ではスタチン前治療群から32%の症例を除外して傾向スコア・マッチングによる解析を行った。2点目はPCI治療の48〜72時間後
に血清クレアチニン値の測定が行われていない症例が25%に認められ，PCI後1週間以内の血清クレアチニン値を使用した。3点目は投与されたスタチンの用量，忍容性，安全性に関する情報が不足している点である。4点目は腎機能評価が血清クレアチニン値に基づいているため，とくに高齢女性では筋肉量が少ないため正確な腎機能を反映していない可能性が考えられる。5点目はNSAIDsなどの腎毒性を有する薬剤に関連するデータが不足している。

5 小括

PCI治療を施行する冠動脈疾患患者において，傾向スコアを用いた解析ではスタチン前治療は造影剤腎症発症の低減に関連していた。しかし透析導入や死亡率の低減との関連は認められなかった。
表4. 患者背景

<table>
<thead>
<tr>
<th></th>
<th>全症例 (N=2198)</th>
<th>傾向スコア・マッチ症例 (N=1130)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>スタチン(+)</td>
<td>スタチン(-)</td>
</tr>
<tr>
<td></td>
<td>(n=839)</td>
<td>(n=1359)</td>
</tr>
<tr>
<td>年齢, 歳</td>
<td>69 ± 10</td>
<td>70 ± 11</td>
</tr>
<tr>
<td>男性</td>
<td>629 (75%)</td>
<td>1064 (78%)</td>
</tr>
<tr>
<td>高血圧症</td>
<td>650 (78%)</td>
<td>887 (65%)</td>
</tr>
<tr>
<td>糖尿病</td>
<td>392 (47%)</td>
<td>471 (35%)</td>
</tr>
<tr>
<td>喫煙</td>
<td>179 (21%)</td>
<td>389 (29%)</td>
</tr>
<tr>
<td>慢性腎臓病</td>
<td>295 (35%)</td>
<td>475 (35%)</td>
</tr>
<tr>
<td>心血管疾患の家族歴</td>
<td>100 (12%)</td>
<td>113 (8.3%)</td>
</tr>
<tr>
<td>PCIの既往</td>
<td>264 (32%)</td>
<td>184 (14%)</td>
</tr>
<tr>
<td>冠動脈バイパスの既往</td>
<td>89 (11%)</td>
<td>49 (4%)</td>
</tr>
<tr>
<td>心筋梗塞の既往</td>
<td>197 (24%)</td>
<td>136 (10%)</td>
</tr>
<tr>
<td>心不全の既往</td>
<td>64 (7.6%)</td>
<td>62 (4.6%)</td>
</tr>
<tr>
<td>脳卒中の既往</td>
<td>81 (9.7%)</td>
<td>108 (7.9%)</td>
</tr>
<tr>
<td>末梢動脈疾患の既往</td>
<td>37 (4.4%)</td>
<td>36 (2.6%)</td>
</tr>
<tr>
<td>Body mass index, kg/m²</td>
<td>24.9 ± 3.4</td>
<td>24.0 ± 3.5</td>
</tr>
<tr>
<td>急性冠症候群</td>
<td>174 (21%)</td>
<td>852 (63%)</td>
</tr>
<tr>
<td>責任血管</td>
<td>376 (45%)</td>
<td>605 (45%)</td>
</tr>
<tr>
<td>多枝病変</td>
<td>232 (28%)</td>
<td>453 (33%)</td>
</tr>
<tr>
<td>SYNTAXスコア</td>
<td>10 [6-16]</td>
<td>11 [7-19]</td>
</tr>
<tr>
<td>左室駆出率, %</td>
<td>64 [53–69]</td>
<td>60 [49–66]</td>
</tr>
<tr>
<td>左室駆出率 ≤45%</td>
<td>96 (11%)</td>
<td>207 (15%)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>造影剤投与前の内服薬</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>アスピリン</td>
<td>572 (68%)</td>
<td>537 (40%)</td>
<td><0.001</td>
<td>333 (59%)</td>
</tr>
<tr>
<td>クロピドグレル</td>
<td>405 (48%)</td>
<td>320 (24%)</td>
<td><0.001</td>
<td>221 (39%)</td>
</tr>
<tr>
<td>チクロピジン</td>
<td>108 (13%)</td>
<td>97 (7.1%)</td>
<td><0.001</td>
<td>70 (12%)</td>
</tr>
<tr>
<td>β遮断薬</td>
<td>248 (30%)</td>
<td>231 (17%)</td>
<td><0.001</td>
<td>144 (26%)</td>
</tr>
<tr>
<td>ACEI and/or ARB</td>
<td>372 (44%)</td>
<td>389 (29%)</td>
<td><0.001</td>
<td>206 (37%)</td>
</tr>
<tr>
<td>カルシウム拮抗薬</td>
<td>196 (23%)</td>
<td>175 (13%)</td>
<td><0.001</td>
<td>119 (21%)</td>
</tr>
<tr>
<td>硝酸薬</td>
<td>157 (19%)</td>
<td>214 (16%)</td>
<td>0.07</td>
<td>104 (18%)</td>
</tr>
</tbody>
</table>

Values are mean ± SD, median [first and third quartiles] or n (%).
ACEI = angiotensin converting enzyme inhibitor; ARB = angiotensin II receptor blocker; PCI = percutaneous coronary intervention.
表 5. 血液生化学検査および手技関連因子

<table>
<thead>
<tr>
<th></th>
<th>全症例 (N=2198)</th>
<th>傾向スコア・マッチ症例 (N=1130)</th>
<th>P 値</th>
<th>スタチン(+) (n=839)</th>
<th>スタチン(-) (n=1359)</th>
<th>P 値</th>
<th>スタチン(+) (n=565)</th>
<th>スタチン(-) (n=565)</th>
<th>P 値</th>
</tr>
</thead>
<tbody>
<tr>
<td>検査データ</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>白血球数</td>
<td>6813 ± 2477</td>
<td>8248 ± 4153</td>
<td><0.001</td>
<td>6967 ± 2731</td>
<td>7242 ± 4757</td>
<td>0.24</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ヘモグロビン, g/dl</td>
<td>13.6 ± 1.8</td>
<td>13.6 ± 1.9</td>
<td>0.33</td>
<td>13.7 ± 1.8</td>
<td>13.5 ± 1.9</td>
<td>0.07</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>随時血糖, mg/dl</td>
<td>142 ± 60</td>
<td>157 ± 79</td>
<td><0.001</td>
<td>142 ± 62</td>
<td>148 ± 71</td>
<td>0.10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hb A1c, %</td>
<td>6.3 ± 1.2</td>
<td>6.2 ± 1.4</td>
<td>0.05</td>
<td>6.2 ± 1.1</td>
<td>6.2 ± 1.3</td>
<td>0.89</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TC, mg/dl</td>
<td>178 ± 40</td>
<td>192 ± 39</td>
<td><0.001</td>
<td>178 ± 42</td>
<td>189 ± 36</td>
<td>0.002</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TG, mg/dl</td>
<td>152 ± 106</td>
<td>139 ± 125</td>
<td>0.01</td>
<td>147 ± 92</td>
<td>145 ± 104</td>
<td>0.74</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HDL-C, mg/dl</td>
<td>49.0 ± 17.7</td>
<td>48.1 ± 15.4</td>
<td>0.29</td>
<td>48.8 ± 19.7</td>
<td>48.1 ± 13.4</td>
<td>0.53</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LDL-C, mg/dl</td>
<td>104 ± 33</td>
<td>119 ± 33</td>
<td><0.001</td>
<td>105 ± 33</td>
<td>115 ± 33</td>
<td><0.001</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>尿素窒素, mg/dl</td>
<td>16.9 ± 6.5</td>
<td>17.2 ± 7.5</td>
<td>0.40</td>
<td>16.9 ± 5.9</td>
<td>17.1 ± 8.2</td>
<td>0.63</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>クレアチニン, mg/dl</td>
<td>0.90 ± 0.38</td>
<td>0.90 ± 0.36</td>
<td>0.95</td>
<td>0.89 ± 0.27</td>
<td>0.91 ± 0.40</td>
<td>0.24</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>eGFR, ml/min/1.73m²</td>
<td>60.5 ± 12.3</td>
<td>57.4 ± 13.6</td>
<td>0.08</td>
<td>66.6 ± 18.3</td>
<td>66.0 ± 19.1</td>
<td>0.61</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>手技関連因子</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>造影剤量, ml</td>
<td>177 ± 66</td>
<td>180 ± 64</td>
<td>0.34</td>
<td>176 ± 65</td>
<td>174 ± 66</td>
<td>0.62</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CV/eGFR 比</td>
<td>2.9 ± 1.5</td>
<td>2.9 ± 1.6</td>
<td>0.57</td>
<td>2.8 ± 1.3</td>
<td>2.9 ± 1.4</td>
<td>0.62</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>補液</td>
<td>15%</td>
<td>10%</td>
<td>0.001</td>
<td>14%</td>
<td>13%</td>
<td>0.60</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N-アセチルシテイン</td>
<td>1.9%</td>
<td>1.3%</td>
<td>0.22</td>
<td>1.4%</td>
<td>2.3%</td>
<td>0.27</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>予防的透析</td>
<td>0.2%</td>
<td>0.3%</td>
<td>0.81</td>
<td>0.2%</td>
<td>0.4%</td>
<td>0.56</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mehran risk score</td>
<td>5.6 ± 3.6</td>
<td>6.1 ± 4.1</td>
<td>0.006</td>
<td>5.6 ± 3.7</td>
<td>6.0 ± 3.7</td>
<td>0.07</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Values are mean ± SD or n (%).
CV/eGFR = contrast volume/estimated glomerular filtration rate; eGFR = estimated glomerular filtration rate; HDL-C = high-density lipoprotein cholesterol; LDL-C = low-density lipoprotein cholesterol.
表6. 臨床転帰発生率

<table>
<thead>
<tr>
<th></th>
<th>全症例 (N=2198)</th>
<th>傾向スコア・マッチ症例 (N=1130)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>スタチン(+) (n=839)</td>
<td>スタチン(-) (n=1341)</td>
</tr>
<tr>
<td>主要評価項目</td>
<td></td>
<td></td>
</tr>
<tr>
<td>造影剤腎症</td>
<td>33 (3.9%)</td>
<td>159 (11.7%)</td>
</tr>
<tr>
<td>副次評価項目</td>
<td></td>
<td></td>
</tr>
<tr>
<td>死亡または透析導入</td>
<td></td>
<td></td>
</tr>
<tr>
<td>30日以内</td>
<td>1 (0.1%)</td>
<td>18 (1.3%)</td>
</tr>
<tr>
<td>180日以内</td>
<td>10 (1.2%)</td>
<td>46 (3.4%)</td>
</tr>
<tr>
<td>360日以内</td>
<td>15 (1.8%)</td>
<td>63 (4.6%)</td>
</tr>
<tr>
<td>死亡</td>
<td></td>
<td></td>
</tr>
<tr>
<td>30日以内</td>
<td>1 (0.1%)</td>
<td>16 (1.2%)</td>
</tr>
<tr>
<td>180日以内</td>
<td>9 (1.1%)</td>
<td>43 (3.2%)</td>
</tr>
<tr>
<td>360日以内</td>
<td>14 (1.7%)</td>
<td>58 (4.5%)</td>
</tr>
<tr>
<td>透析導入</td>
<td></td>
<td></td>
</tr>
<tr>
<td>30日以内</td>
<td>0 (0%)</td>
<td>2 (0.1%)</td>
</tr>
<tr>
<td>180日以内</td>
<td>1 (0.1%)</td>
<td>4 (0.3%)</td>
</tr>
<tr>
<td>360日以内</td>
<td>1 (0.1%)</td>
<td>6 (4.4%)</td>
</tr>
</tbody>
</table>

Values are n (%).
NA = not applicable
表7 造影剤腎症の発症に関する多変量解析

<table>
<thead>
<tr>
<th></th>
<th>全症例</th>
<th>傾向スコア・マッチ症例</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>オッズ比</td>
<td>P値</td>
</tr>
<tr>
<td></td>
<td>(95%信頼区間)</td>
<td></td>
</tr>
<tr>
<td>スタチン前治療</td>
<td>0.62 (0.40-0.97)</td>
<td>0.036</td>
</tr>
<tr>
<td>急性冠症候群</td>
<td>1.94 (1.15-3.27)</td>
<td>0.013</td>
</tr>
<tr>
<td>左室駆出率 ≤45%</td>
<td>1.97 (1.36-2.85)</td>
<td><0.001</td>
</tr>
<tr>
<td>Mehran risk score*</td>
<td>1.10 (1.06-1.14)</td>
<td><0.001</td>
</tr>
</tbody>
</table>

*per increase
共変量: 年齢, 性別, スタチン前治療, 急性冠症候群, 左室駆出率 ≤45%, 多枝病变, Mehran risk score
図8 フロー・チャート

レジストリーへの登録症例, n=2657

除外基準
✓ 維持透析, n=83
✓ PCI治療後7日以内の死亡, n=56
✓ クレアチニン値の欠損, n=320

解析症例, n=2198

スタチン前治療あり
(n=839)

スタチン前治療なし
(n=1359)

傾向スコア・マッチ
スタチン前治療あり
(n=565)

傾向スコア・マッチ
スタチン前治療なし
(n=565)
図8：フローチャート

2007年4月から2010年4月に茨城心血管疾患評価研究（Ibaraki Cardiovascular Assessment Study – Coronary Artery Disease [ICAS-CAD] registry）に登録された2657例を対象として後ろ向き解析を行った。維持透析症例、PCI治療後7日以内に死亡した症例、血清クレアチニン値の得られなかった症例を除外し、最終的な解析対象は2198例であった。PCI治療に先行するスタチン前治療の施行は839例、スタチン前治療の未施行は1359例であった。傾向スコアを利用して各群565例のマッチングを行った。
図9.A 全体症例における造影剤腎症発症率

図9.B 傾向スコア・マッチング症例における造影剤腎症発症率
図 9A：全体症例における造影剤腎症の発症率を示す。Mehran risk score 16 点以上の超高リスク群を除いて、スタチン前治療群で有意に造影剤腎症の発症は低率であった。

図 9B：傾向スコア・マッチング症例における造影剤腎症の発症率を示す。Mehran risk score 16 点以上の超高リスク群を除いて、スタチン前治療群で有意に造影剤腎症の発症は低率であった。
図10 造影剤腎症の発症に関するスタチン前治療

全体症例

年齢 < 75歳
≥ 75歳
性別 男性
女性
糖尿病 なし
あり
CKD なし
あり
CV/eGFR < 2
2 ～ 2.9
≥ 3
AMI なし
あり
EF > 45%
≤ 45%
全体

Statins better
Statins worse

傾向スコア・マッチ

Statins better
Statins worse
図 10：造影剤腎症の発症に関するスタチン前治療

造影剤腎症の発症に関わるリスク因子に関して層別解析を行った。全体症例では急性心筋梗塞症例を除くほとんどのサブグループにおいてスタチン前治療群において造影剤腎症の発症は低率であった。傾向スコア・マッチング症例では慢性腎臓病を除くほとんどのサブグループにおいてスタチン前治療群において造影剤腎症の発症は低率であった。

CKD: chronic kidney disease （慢性腎臓病，定義：推定糸球体濾過率 < 60 ml/min/1.73 m²），CV/eGFR: contrast volume / estimated glomerular filtration rate（造影剤量 / 推定糸球体濾過率），AMI: acute myocardial infarction（急性心筋梗塞），EF: ejection fraction（左室駆出率）
図11. A 全体症例におけるイベント回避率

図11. B 傾向スコア・マッチング症例におけるイベント回避率
図11A：全体症例における死亡もしくは透析導入のイベント回避曲線を示す。Mehran risk score を中央値7で分類、スタチン前治療の有無で分類し、合計4群のKaplan-Meier曲線を示す。

図11B：傾向スコア・マッチング症例における死亡もしくは透析導入のイベント回避曲線を示す。Mehran risk score を中央値7で分類、スタチン前治療の有無で分類し、合計4群のKaplan-Meier曲線を示す。
表8. スタチンの造影剤腎症予防効果を検証した無作為化比較試験

<table>
<thead>
<tr>
<th>試験名(著者)-報告年</th>
<th>症例数</th>
<th>対象</th>
<th>スタチン種類</th>
<th>造影剤腎症の発症率</th>
<th>P値</th>
<th>参考文献</th>
</tr>
</thead>
<tbody>
<tr>
<td>PROMIS (2008)</td>
<td>236</td>
<td>CAG</td>
<td>シンバスタチン 40 mg 対照群</td>
<td>2.5% 3.4%</td>
<td>NS</td>
<td>[83]</td>
</tr>
<tr>
<td>Toso et al. (2010)</td>
<td>304</td>
<td>CAG/PCI</td>
<td>アトルバスタチン 80 mg 対照群</td>
<td>15% 16%</td>
<td>NS</td>
<td>[84]</td>
</tr>
<tr>
<td>ARMYDA CI-AKI (2011)</td>
<td>221</td>
<td>NSTEMI</td>
<td>アトルバスタチン 80 mg 対照群</td>
<td>5.0%* 13.2%</td>
<td>0.043</td>
<td>[85]</td>
</tr>
<tr>
<td>PRATO-ACS (2014)</td>
<td>504</td>
<td>NSTE-ACS</td>
<td>ロスバスタチン 40 mg 対照群</td>
<td>6.7%* 15.1%</td>
<td>0.003</td>
<td>[86]</td>
</tr>
<tr>
<td>TRACK-D (2014)</td>
<td>2998</td>
<td>DM + CKD CAG/PCI</td>
<td>ロスバスタチン 10 mg 対照群</td>
<td>2.3%* 3.9%</td>
<td>0.01</td>
<td>[87]</td>
</tr>
</tbody>
</table>

CAG: Coronary angiogram (冠動脈造影), PCI: Percutaneous Coronary Intervention (経皮的冠動脈インターベンション), NSTEMI: non-ST segment elevation myocardial infarction (非ST上昇型心筋梗塞), NSTE-ACS: non-ST segment elevation acute coronary syndrome (非ST上昇型急性冠症候群), DM: diabetes mellitus (糖尿病), CKD: chronic kidney disease (慢性腎臓病, 定義: 推定糸球体濾過率 < 60 ml/min/1.73 m²)
第5章 総合考察と今後の展望

虚血性心疾患に対する血行再建治療は、狭心症症状および生命予後を改善させるのに有効であり、現在では確立された治療法である。PCI治療は、機器の進歩と手技の確立により治療成績が向上しており、近年では薬剤溶出性ステントの登場により慢性期再狭窄は著しく低減した。PCI治療は冠動脈疾患の治療に重要な役割を担っているが、PCI治療は局所療法であるため、再発を予防するためには生活習慣の改善や薬物治療を含む二次予防が重要である。

研究1では、急性冠症候群のPCI治療中に投与するランジオロールの急性期効果を検討した。ランジオロールは、急性冠症候群の症例に対して速やかに心拍数を低下させる効果があり、安全に投与可能であることが確認された。ランジオロールは、高いβ₁遮断作用と超短時間作用型という特徴を有しており、心拍数低下効果により、虚血心筋の酸素需要を低下させる効果が期待できる。本研究では急性期血行動態を評価したのみであり、ランジオロールを投与することにより慢性期予後を改善できるかどうかを検証する必要がある。本研究の結果を受けて、2009年4月より前向き無作為化比較試験である「ST上昇型急性心筋梗塞に対するランジオロールの梗塞サイズ縮小効果試験（Effect of Landiolol as an adjunct to Primary Percutaneous Coronary Intervention in ST-segment Elevation Myocardial Infarction; Ibaraki Landiolol for AMI study, i-LAND study）」（UMIN-ID: UMIN000001872）を計画し、遂行中である。

研究2では多施設共同研究であるICAS-CAD registryを用いて、スタチン前治療
の造影剤腎症予防効果について検討した。ICAS-CAD registry は観察研究であるため、スタチン前治療に関するバイアスを低減する目的で、傾向スコアを用いた統計解析を行った。傾向スコア・マッチング症例において、スタチン前治療は造影剤腎症の低減に関与していたが、透析導入および死亡率といった慢性期転機については有意な効果が示されなかった。欧米人と比較して、日本人は冠動脈疾患の罹患率やスタチンの感受性が異なることが知られており[42,43]、日本人においてスタチン前治療の造影剤腎症に対する有効性が示唆された本研究のデータは非常に重要であると考えられる。しかし本研究は観察研究であるため、治療医師の独自の判断が治療の選択肢に影響する可能性がある。傾向スコアを用いても完全にはバイアスを排除できない可能性があるため、今後これらの結果は前向きの無作為化比較試験で検証する必要があると考えられる。
第6章 総括

虚血性心疾患の治療において、血行再建治療のみならず薬物治療の役割は重要である。急性冠症候群のPCI治療中にランジオロール投与を行い、速やかな心拍数低下効果が確認された。超短時間作用型というランジオロールの特徴は、心筋虚血を呈する急性期治療に有効であると考えられた。またPCI治療を施行する冠動脈疾患患者に対して、スタチン前治療は造影剤腎症発症の低減に関連していた。
参考文献

1. 厚生労働省人口動態調査. 平成 24 年(2012)人口動態統計(確定数)の概況.; Available at:

33. ACT Investigators. Acetylcysteine for prevention of renal outcomes in patients undergoing coronary and peripheral vascular angiography: main
results from the randomized Acetylcysteine for Contrast-induced nephropathy

34. Weisberg LS, Kurnik PB, Kurnik BR. Risk of radiocontrast nephropathy in

35. Kurnik BR, Allgren RL, Genter FC, Solomon RJ, Bates ER, Weisberg LS.
Prospective study of atrial natriuretic peptide for the prevention of

36. Morikawa S, Sone T, Tsuboi H, et al. Renal protective effects and the
prevention of contrast-induced nephropathy by atrial natriuretic peptide. J Am

208-17.

39. Scandinavian Simvastatin Survival Study Group. Randomised trial of
cholesterol lowering in 4444 patients with coronary heart disease: the

55. Sakamoto A, Kitakaze M, Takamoto S, Namiki A, Kasanuki H, Hosoda S, JL-KNIGHT study group. Landiolol, an ultra-short-acting beta(1)-blocker, more effectively terminates atrial fibrillation than diltiazem after open heart surgery:
prospective, multicenter, randomized, open-label study (JL-KNIGHT study).

参考資料

茨城心血管疾患評価研究（Ibaraki Cardiac Assessment Study – Coronary Artery Disease [ICAS-CAD] registry）について

今回我々は茨城県内において、筑波大学病院循環器内科とその関連施設が協力し、冠動脈疾患患者の診断、治療、予後に関する大規模な調査を行った。詳細は下記のとおりである。

1. 対象

PCI治療を施行した20歳以上の冠動脈疾患患者（心筋梗塞、狭心症、陳旧性心筋梗塞など）。

除外基準：

1) 20歳未満の症例

2) 担当医師が医学上、不適当と判断した患者

除外基準のいずれにも該当しない場合を適格とする。

2. 方法

筑波大学循環器内科の関連病院においてPCI治療を施行した症例を登録する。調査は施設担当者（医師）がICAS用の専用端末を用いてデータ入力を行う。
3. 調査項目

診断名、基礎疾患の有無、PCI 治療の部位、治療方法、内服薬、慢性期予後を調査する。

1) PCI 治療を施行した時点での調査項目

- 診断名（急性心筋梗塞、狭心症、陳旧性心筋梗塞など）
- 急性冠症候群の発症時間、来院時間、再灌流時間
- 背景調査（生年月日、性別、診断名、合併疾患、既往歴、冠動脈疾患家族歴）
- 理学的検査（身長、体重、血圧、心拍数、Killip 分類、NYHA 分類）
- 生理検査・画像検査（心電図、心エコー図、冠動脈造影所見）
- 治療内容（内服薬の種類、PCI 治療の手技）

2) 追跡調査項目

初回登録時から 1 年毎に下記イベントを調査する。

- 主要評価項目 全死亡、心血管死亡
● 副次評価項目 心筋梗塞・脳血管障害・心不全・再狭窄・造影剤腎症・腎不全・出血性合併症・致死的不整脈の有無

4. 調査時期
症例登録期間 2007 年 4 月〜2017 年 12 月 31 日

5. 予想される医学上の貢献、および本研究課題の出口
得られた結果を論文公表および学会発表する。茨城県における冠動脈疾患の診断、予後の現状を知ることにより、ハイリスク患者の判別や治療介入の必要性など、今後の循環器診療に役立つ情報を得ること、さらに先進的な診断の確立を目指す。

6. 症例数
目標症例数 約 5000 例。
筑波大学では年間 150 例程度の PCI 治療が行われている。他の各施設にて年間 100〜500 例の PCI 治療が行われており、年間 1000 件前後の症例登録が可能と考えられる。

7. 症例数の統計学的根拠
先行研究の症例数が5000〜10000例であり、参加施設数、登録期間を考慮し、5000例と設定した。先行の研究報告から、主要評価項目の発生率は年間約3〜5%と推察される。5000例を登録すると、3年の経過観察期間で約500例前後のイベント発生が予測される。

8. 症例・検体の収集方法とインフォームド・コンセントを受ける手続き

人体から採取された試料等（検体）を用いない

当該臨床研究計画を登録し公開する（被験者からインフォームド・コンセントを受けること）

【公開方法】：筑波大学循環器内科のホームページ上で公開する

【公開内容】：1）研究の意義・目的・方法

2）研究機関名・研究者名

3）保有する個人情報に関する利用目的

4）保有する個人情報の開示手続

5）保有する個人情報の問い合わせ・苦情等の連絡先

9. 研究に参加した場合に被験者の受ける利益・不利益、危険性

1）利益 なし

2）不利益 なし
3）危険性 なし

10. 保有する個人情報の開示

研究結果の公開

1）公開の有無：公開の方法 研究結果を公開する

☑論文発表 ☑学会発表 ☑インターネット掲載

2）個人情報等 研究結果公開の際、被験者を特定できる個人情報等を開示しない。
学会発表

1. Hoshi T, Sato A, Aonuma K. Dose Statin Pretreatment Prevent Contrast-Induced Nephropathy in Patients Undergoing Coronary Angioplasty? 第22回日本心血管インターベンション治療学会学術集会，2013年7月11日（神戸）

3. 星智也, 仁科秀崇, 掛札雄基, 橘賢廣, 春成智彦, 月居信子, 戸田直, 文藏優子, 平沼ゆり, 野口祐一, 佐藤明, 青沼和隆: 急性冠症候群の経皮的冠動脈形成術中に投与したランジオロールの急性期効果について，第57回日本心臓病学会学術集会，2009年9月18日（札幌）

発表論文

6 Hoshi T, Sato A, Nishina H, Kakefuda Y, Noguchi Y, Aonuma K. Fatal Ostial Right Coronary Artery Coronary Stent Fracture and Perforation Induced by Mechanical Stress between the Sternum and Dilated Aortic Root. Circulation 2011;123(15);1679-1682. (IF 15.202)
謝辞

本論文の作成に当たり、御指導・御校閲を賜りました青沼和隆教授・佐藤明准教授に深謝いたします。また今回の ICAS-CAD レジストリーのデータ収集・調査にあたって多大なる御協力・御指導をいただいたすべての筑波大学循環器内科教室の方々に深謝いたします。
参考論文
参考論文

本論文については学術雑誌掲載論文から構成されていますが、著作権者（出版社）の許諾を得ていないため、筑波大学では電子化・公開しておりません。

なお下記については電子ジャーナルとして出版社から公開されています。契約している場合には全文を読むことができます。詳しくは下記リンク先をご覧ください。

論文 1) DOI: 10.1016/j.jcc.2012.06.010.

また、この論文の著者最終原稿は、つくばリポジトリから公開されています。