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The impurity-limited resistance in quasi-one dimensional nanowires is studied by the Nonequilibrium Green function
simulations and the Lippmann-Schwinger scattering theory under various spatial configurations of localized impurities.
It is shown explicitly that both phase interference and phase randomization simultaneously play a crucial role in
determining the impurity-limited resistance even under the fully coherent circumstances. Consequently, the ensemble
average resistance of multiple impurities under the uniform configuration of impurities becomes very close to the series
resistance due to single-impurity at room temperature and, thus, each impurity could be regarded as an independent
scattering center.

Semiconductor nanowires have been receiving great at-
tention in the past few decades because of their pos-
sible applications to future electronic and photonic de-
vices.1–3) Among others, the locality of ionized impuri-
ties plays a crucial role for optimizing the device pefor-
mance properly; the transport properties are greatly de-
pendent of where localized impurities are located inside
the nanoscale devices.4,5)

In most cases, the transport properties in nanowires
have been studied with large-scale numerical simulations
such as the Nonequilibrium Green function (NEGF).
However, because of the computational capability, the
incorporation of the whole device structure including the
dielectric surroundings is very difficult and the number of
impurities included in such calculations is rather limited.
In many cases, just one single-impurity is put at various
locations in the cross-sectional area of the quasi-one di-
mensional (quasi-1D) nanowire and the impurity-limited
resistance or equivalently the mobility is extracted.6–9)

There are indeed several theoretical reports in which
multiple impurities are introduced explicitly to evaluate
the transport properties in the tight-binding NEGF and
it has been demonstrated how the device characteristics
could actually fluctuate, depending on the spatial config-
uration of impurities.10–13) However, it is very difficult to
extract the distinct effects of phase interference due to
localized impurities among others from only such brute-
force simulations.
In the present Letter, we briefly report the first sys-

tematic investigations of the impurity-limited resistance
in quasi-1D nanowires by employing both the NEGF sim-
ulations and the Lippmann-Schwinger (LS) scattering
theory from the viewpoint of phase interference among
multiple impurities.
Following the Landauer approach, the conductance G

through the doped channel region of the nanowire is cal-
culated from the transmission coefficient of the in-coming
electrons from the reservoirs (source and drain). The
transmission coefficient is calculated from the Fisher-
Lee formula with the retarded Green function from the
NEGFs.14) In the theoretical analyses, the asymptotic
forms of the LS equation are employed to extract the
transmission and reflection coefficients.15) It should be
stressed that the total resistance given by the inverse of

G consists of two contributions; the contact and the chan-
nel resistances. The former is caused by the difference in
the number of modes between the reservoir and the lead,
whereas the latter is associated with the scattering po-
tential by ionized impurities, phonons, surface roughness,
and the long-range potential modulation. This potential
modulation is, further, attributed to the long-range part
of the Coulomb potential of ionized impurities/carriers as
well as the applied gate voltage. In order to extract the
impurity-limited resistance, we consider only impurity
scattering and the resistance induced by the long-range
potential modulation is eliminated by assuming that the
channel potential is flat along the wire axis. As a con-
sequence, the impurity-limited resistance Rs is obtained
by subtracting the contact resistance from the total re-
sistance, Rs = Rtot −R0, and, thus, given by

Rs =
πℏ
e2
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where gsub is the number of subband available for the
in-coming electrons in the nanowire and fFD(E) is the
Fermi-Dirac distribution of the reservoirs. RA(E) and
TA(E) (= 1−RA(E)) are, respectively, the reflection and
transmission coefficients for the electrons with energy E
through the subband A.
In the NEGF simulations, we employ a rectangular

nanowire with the side length of ac = 3.5 nm, as schemat-
ically drawn in top of Fig. 1. Ionized donor or acceptor
impurities are distributed at random in Si channel. The
average impurity density in the channel is fixed at 1019

cm−3 so that the channel length L varies according to
the number of impurities doped in the channel, namely,
L = 8 nm for a single impurity, 16 nm for two impu-
rities, etc. Since many simulations under various impu-
rity configurations are required to perform, the impurity
scattering potential is assumed to be a simple screened
Coulomb potential with the screening length of λsc = 1.3
nm along with the image charges associated with the
Si/Gate-Oxide interface.
We first show the impurity-limited resistances for two

correlated donor or acceptor impurities located inside the
nanowire in Fig. 1. The spatial configuration of two im-
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Fig. 1. (Top) Rectangular nanowire employed in this study. Two
localized impurities are located at random inside the channel re-

gion. (Bottom) Impurity-limited resistance Rs of two correlated
(a) donors and (b) acceptors as a function of the impurity separa-
tion ∆ along the wire axis direction. The resistances are calculated
from the tight-binding NEGF and plotted for 500 different con-

figurations of two impurities. The horizontal (green) dashed line
shows the value of the series resistance of two impurities, 2Rsingle.

purities are generated at random and the resistances for
500 different impurity configurations are shown. There
are some distinct features in the two results: The magni-
tude of Rs is very different for the cases of donors and ac-
ceptors, as already noted.8,9) This indicates the fact that
the scattering is so strong under nanostructures and the
Born approximation, in which impurity scattering is in-
dependent of the type of ionized impurities, breaks down.
Also, Rs in the case of donors is greatly reduced as the
impurity separation ∆ becomes very close to zero, com-
pared with that of acceptors. This is attributed to the
different behavior of the long-range part of the screened
Coulomb potential. Namely, the scattering potential of
acceptors behaves as potential barriers, whereas that of
donors behaves as potential depressions. When ∆ is very
small, the potential depressions due to two closely lo-
cated donors entirely lower the potential and the total
resistance is greatly reduced.
Nevertheless, there are some common features in these

two cases: There is a peak in Rs at small ∆ and then Rs

approaches some constant value at large ∆. Surprisingly,
this constant value is found to be quite close to the re-
sistance of two impurities, 2Rsingle, with Rsingle being
the space-average resistance of single-impurity. In other
words, the correlated Rs of two impurities approaches
the series resistance at large ∆ and, thus, an uncorrelated
limit, although no phase breaking scattering is involved
in the present NEGF simulations.
In order to clarify the physical origin of these common

features, the impurity-limited resistance is theoretically
calculated from the LS equation under the same nanowire
structure with the same dimensions. The only difference
is that we employ a simplified short-range scattering po-
tential V (R) defined by

V (R) =
2∑

r=1

(vcaS) δ
(3) (R−R0r) , (2)

where vc is the scattering potential energy, a is the
characteristic length along the axis direction over which
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Fig. 2. Impurity-limited resistances Rs of two impurities ob-
tained from the LS equation. The resistances for 5000 different

impurity configurations are shown. The resistances of acceptor im-
purities from the NEGF are also shown with solid symbols. The
horizontal (green) dashed line shows the value of 2Rsingle for the
cases of both the LS and NEGF.

the scattering potential is effective, and S is the cross-
sectional area of the wire. The position of the r-th im-
purity is denoted by R0r = (r0r, z0r). For simplicity, we
assume that each impurity has the same scattering po-
tential energy of vc = 282 meV, corresponding to the
screening length of λsc = 1.3 nm. The reflection coeffi-
cient RA(E) for two correlated impurities is analytically
obtained under the extreme quantum limit, where only
the lowest subband is involved in the electron transport,
and expressed by

RA (E) =
ΓA (E)

1 + ΓA (E)
(3)

with

ΓA (E) = γ1
2 + γ2

2 + 2γ1
2γ2

2

+ 2γ1γ2 {(1− γ1γ2) cos (2k∆) + (γ1 + γ2) sin (2k∆)} ,
(4)

where k is the electron wavevector in the axis direction
and ∆ = |z01 − z02|. The scattering parameter γr for the
r-th impurity (r = 1, 2) is given by

γr (E, r0r) = vc
a

ℏ

√
m

2 (E − εA)
S|ξA (r0r)|2, (5)

where εA is the lowest subband energy and ξA (r0r) is
the subband wavefunction. The impurity-limited resis-
tance Rs is then calculated from Eq. (1). Figure 2 shows
the resistances Rs thus calculated from the LS theory for
5000 different configurations of two impurities. For com-
parison, the resistances of acceptor impurities obtained
from the NEGF simulations are also shown. The mag-
nitude of Rs from the NEGF is adjusted such that the
value of 2Rsingle from the NEGF coincides with that
from the LS theory. The similarity of the ∆-dependence
in Rs between the two results is clear, though the results
from the LS theory scatter over much greater ranges due
to the short-range nature of the scattering potential.
The fluctuations of Rs at fixed ∆ result from the vari-

ations in magnitude of the subband wavefunctions and,
thus, have nothing to do with the phase interference.
In order to eliminate such fluctuations, we calculate Rs

of two impurities located on the wire axis from the LS
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Fig. 3. Impurity-limited resistance Rs of two impurities located
on the wire axis from the LS theory as a function of the impurity
separation ∆ along the wire axis. Rs is evaluated for T = 300, 150,

and 30 K and R0 is the quantum resistance. The horizontal dashed
lines show the uncorrelated limit, 2Rsingle.

theory and the results are shown in Fig. 3 for the three
different temperatures. R0 is the quantum resistance and
given by R0 = πℏ/e2. The oscillatory behavior is clearly
seen at small ∆. This results from the trigonometric de-
pendence in the reflection coefficient and, thus, repre-
sents the constructive phase interference between the two
impurities. This oscillation, however, damps at large ∆
and Rs approaches to a constant value at high temper-
ature (T = 300 and 150 K). This asymptotic value at
large ∆ is indeed close to 2Rsingle where Rsingle is the
resistance of the single-impurity placed on the wire axis
and, thus, approaches the uncorrelated limit. We would
like to stress that neither spatial averaging with respect
to impurity configurations nor energy dissipating scat-
tering such as phonon interaction is involved. Therefore,
the phase randomization, which leads to the uncorrelated
limit, takes place even under the fully coherent circum-
stances. From Fig. 3, this phase randomization is clearly
related with temperature of the reservoirs and equiva-
lent to the so-called “self-averaging” in impurity scatter-
ing.16) This part will be discussed elsewhere.
Thanks to the phase randomization, the ensemble av-

erage resistance is expected to be close to the uncorre-
lated value of 2Rsingle. This is indeed true and even holds
true over the great ranges of the coupling strength of im-
purity scattering. Figure 4 shows the ensemble average
impurity-limited resistance of two impurities from the
LS equation as a function of the scattering potential en-
ergy vc. The resistance is averaged over various impurity
configurations under the uniform distribution. The ex-
act Rs is well approximated with the uncorrelated value
of 2Rsingle. It does not imply that the coupling is weak
so that higher-order corrections could be ignored. But
rather, the coupling is so strong that the Born approx-
imation entirely breaks down except at very small vc,
as clearly seen in Fig. 4. Therefore, as far as the space-
average resistance is concerned, each impurity could be
regarded as uncorrelated. This is also confirmed by the
more elaborate NEGF simulations. Figure 5 shows the
impurity-limited resistance for 300 patterns of impurity
configurations from the NEGF simulations as a func-
tion of the number of donors or acceptors. Rs greatly
varies depending on the position of impurities, but the
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Fig. 4. Ensemble average resistance of two impurities under uni-
form distribution as a function of the scattering potential energy
vc, Rs is calculated with the exact formula and the Born approxi-
mation from the LS equation. 2Rsingle represents the uncorrelated

limit, where Rsingle is the ensemble average resistance of single-im-
purity.
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Fig. 5. Impurity-limited resistance Rs from the NEGF simula-

tions as a function of the number of donors or acceptors. Rs for
300 different impurity configurations are shown. The large solid
symbols represent the ensemble average of the resistances.

average value of Rs follows the linear relationship with
the number of impurities (or equivalently the channel
length). Therefore, the space-average Rs obeys the clas-
sical Ohm’s law and each impurity could be regarded as
an independent scattering center.
We have investigated the spatial correlation effects of

ionized impurities under the quasi-1D nanowire. We have
explicitly shown how the phase interference and phase
randomization take place simultaneously in the impurity-
limited resistance Rs at room temperature. Also, we have
found that the space-average resistance of multiple impu-
rities under the uniform distribution becomes very close
to the series resistance of single-impurity and, thus, fol-
lows the classical Ohm’s law.
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