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Abstract
Background: Core collections are important tools in genetic resources research and administration. At present,
most core collection selection criteria are based on one of the following item characteristics: passport data, genetic
markers, or morphological traits, which may lead to inadequate representations of variability in the complete
collection. The development of a comprehensive methodology that includes as much element data as possible has
been explored poorly. Using a collection of (Setaria italica sbsp. italica (L.) P. Beauv.) as a model, we developed a
method for core collection construction based on genotype data and numerical representations of
agromorphological traits, thereby improving the selection process.
Results: Principal component analysis allows the selection of the most informative discriminators among the various
elements evaluated, regardless of whether they are genetic or morphological, thereby providing an adequate
criterion for further K-mean clustering. Overall, the core collections of S. italica constructed using only genotype data
demonstrated overall better validation scores than other core collections that we generated. However, core collection
based on both genotype and agromorphological characteristics represented the overall diversity adequately.
Conclusions: The inclusion of both genotype and agromorphological characteristics as a comprehensive dataset in
this methodology ensures that agricultural traits are considered in the core collection construction. This approach will
be beneficial for genetic resources management and research activities for S. italica as well as other genetic resources.
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Background
The exploitation of genetic resources has been a primary
concern for several governmental and nongovernmen-
tal agricultural institutions around the world [1], where
the interest may vary from economically exploitable vari-
ant crops [2], to sociocultural [3], health-related [4],
and biological-related studies (phylogenetic relationships,
phenotype-genotype relationships, and physiological-en-
vironmental behaviors [1]). However, most researchers
must address the problem of data mining to obtain collec-
tions of an appropriate size [5].
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Due to the size of some collections, complete collec-
tion (MC) data mining may sometimes be too expensive
(both operative and monetary); therefore, core collections
(CC) [6] and mini-core collections have emerged in recent
decades [7].

Methods for obtaining an optimal CC have been
explored widely [8�11], and several algorithms and infor-
matics tools have been developed [12�15], but CCs still
have many different objectives and various evaluation
criteria [10].

Most CC-related studies are based on one or more
of three principal characteristics: a) passport data, b)
genotypic analysis, and c) morphological traits ([16]). As
new genetic information becomes available, CC selection
has increasingly used genotypic analysis as a good cri-
terion, but the efficiency of specific molecular markers
needs to be demonstrated for phenotypic traits of interest
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because both types of data are fundamental requirements
of genetic breeding programs [17]. Several studies have
utilized molecular markers in different collections, includ-
ing the development of CCs based on widely used simple
sequence repeats [11, 17, 18] and restriction fragment
length polymorphisms [19], which have demonstrated the
great potential of using genetic data for CC selection.

Foxtail millet (Setaria italica subsp. italica (L.) P.
Beauv.) is one of the oldest cereals consumed by people in
Eurasia, America, Africa, and Australia. Foxtail millet has
a relatively small genome size (515 M) and it is has been
adopted as a model organism [20, 21] because of its poten-
tial use in studies that involve grass species evolution, C3
and C4 photosynthesis, stress biology and biofuel [22�24].

Three recently active transposons (TE) have proved to
be suitable genome-wide markers for evolutionary studies
of S. italica [25]. We hypothesize that these markers may
also be useful for CC selection in this species.

In this study, we combined principal components anal-
ysis (PCA) and the K-means method for CC selec-
tion [18] based on evaluations of traditional and newly
described CC evaluation parameters [10]. This method-
ology allowed to include both genotypic and agromor-
phological traits (AT) in CC selection. Thus, we present
a proof of concept for the potential use of TE and AT
combined as selection criteria for CC construction in S.
italica.

Methods
Core collection selection
Dataset used
The accessions used in this study originated from 38
different countries, which encompassed the major tradi-
tional geographical distribution (Asia, Eurasia, and Africa)
of the study species. In order to obtain genomic infor-
mation, transposon display (TD), a modified form of
amplified fragment length polymorphism (AFLP) [26],
was performed with some modifications using three TEs:
TSI-1 [tourist miniature interspersed nuclear elements
(Tourist MITE)], TSI-7 [long terminal repeats (LTR)
retrotransposons], and TSI-10 [short interpersed nuclear
elements(SINE)], with different classes and characteris-
tics [27]. These TEs were identified in the mutant alleles
of Waxy (GBSS1), which controls the amylose content in
the starch endosperm [27]. The genomic dataset obtained
(data 0) comprised a total of 423 S. italica accessions,
which were genotyped by TD [25]. AT data was down-
loaded and categorized from the National Institute of
Agrobiological Sciences (NIAS) http://www.gene.affrc.go.
jp/databases-plant_search_char_en.php?type=9 for 141 of
the original 423 accessions. Eight ATs were categorized
and mapped to binary data, which were represented as 28
�m� characteristics (data II) for discrete variables, and any
possible phenotypic traits were treated as present/absent.

Continuous variables were categorized arbitrarily into
three groups and then treated as discrete variables using
the same present/absent criteria. The original phenotypic
values and their numerical representations are summa-
rized in Additional file 1 (Online Resource 1). To facilitate
comparisons of data II behavior, we created data I, which
comprised the same 141 accessions used in data II, but
with the genotypic information for data 0. In order to
determine the feasibility of analyzing phenotypic traits
with genotypic markers in a single step, we merged the
data I and data II sets to obtain (data III), where each m
element was treated as equal regardless of its TD or AT
origin.

Principal component analysis - K-means analysis
Because the informativeness is different for each m ele-
ment of data, PCA was performed in order to rearrange
data into a new matrix. This procedure decreases the
informativeness of subsequent elements and it discards
elements with a variance that is equal to 0. This process
generated two new matrices: one containing the original
m characteristics mapped vectors (x) and the rearranged
variance value matrix (X). Thus, matrix X contained n
samples, which were formed of a numerical vector with
m=m-(non-informative m). m can also be determined
arbitrarily in order to work with only the most informa-
tive elements of data. To select the CCs, we performed
PCA to arrange the data from the most significant to the
least significant elements in terms of the difference infor-
mation discriminator, but without affecting the element
associations [28]. After rearranging the data, the score
that represented each value was subjected to K-means
clustering according to [29], which is an implementation
that enhances the K-means algorithm in order to avoid
empty clusters. For each K cluster, the sample with the
lowest Euclidean distance from the cluster centromere
was selected as a representative. The newly generated CC
was evaluated according to several validation parameters,
which have been used widely [8, 9] and reviewed in recent
studies [10].

Evaluation of the selected core collections
The selected CCs were analyzed based on their distribu-
tion according to a phylogenetic reconstruction. A genetic
distance matrix and a neighbor-joining dendrogram were
obtained using AFLP-SURV 1.0 [30] and the Phylogeny
Inference Package (PHYLIP) 3.69 [31], respectively, for
the 141 accessions present in data I. The data I dendro-
gram and the visualization of the CCs were obtained using
MEGA 5.2 [32]. The geographical distributions of the CCs
were digitalized and visualized using DIVA GIS http://
www.diva-gis.org/.

According to [10], the best method for evaluating a CC
depends on the purpose of the CC and ideally different
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datasets should be used in the evaluation, although it can
be performed with the same data. Thus, they established
three criteria based on the CC data dispersion: a) aver-
age distance between each MC sample and the nearest
CC sample (ANE), b) average distance between each CC
sample and the nearest CC sample (ENE), and c) average
distance between CC samples (E), which are calculated as:

ANEtot =
1
L

K�

k=1

J�

j=1

D(k � cMCj), (1)

where K is the total of CC elements, k is each CC element,
and D is the alignment-free genomic distance (GAFD) [33]
between k and each jth cMC element, for which the clos-
est CC element is k, including itself, thereby yielding L
comparisons in total.

ENEtot =
1
L

K�

k=1

D(k � cCC), (2)

where K is the total of CC elements, k is each CC ele-
ment, and D is the GAFD distance between k and its
closest CC element cCC, excluding itself, thereby yielding
L comparisons in total.

Etot =
1
L

K�

k=1

J�

j=1

D(k � cCCj), (3)

where K is the total of CC elements, k is each CC ele-
ment, and D is the GAFD distance between k and all other
jth CC elements, cCC, excluding itself, thereby yielding L
comparisons in total.

The ideal value for ANE is 0, where each sample of CC
represents itself and others exactly like it. It is useful to
evaluate CCs where the objective is a homogeneous rep-
resentation of the diversity in the MC. In addition, ENE
and E are used to evaluate the data dispersion for the CC,
where higher values indicate the better representation of
extreme values.

Evaluation criteria based on statistical parameter com-
parisons between the CC and the MC are used mainly
to determine whether the CC adequately represents the
identity of the MC as well as its distribution. Widely
used evaluation parameters that meet these criteria were
applied as follows.

A homogeneity test was performed on each trait for CC
and MC based on the means and variances. For each com-
parison, a global value was represented as the percentage
of traits that were statistically different (� = 0.05) accord-
ing to a t � test for means (MD) and the F � test for
variances (VD) [8].

The coincidence rate (CR) and variable rate (VR) were
used to evaluate the properties of the CCs in terms of the
MC, which are defined by:

CR =
1
M

M�

m=1

RCC

RMC
� 100 (4)

and

VR =
1
M

M�

m=1

CVCC

CVMC
� 100, (5)

respectively, where R is the range and CV is the coefficient
of variation for each m trait in the CC and MC, and M
is the number of traits. According to ([9]), a valid CC has
CR > 80 and MD < 20, which are the limits for the ideal
representation of the MC identity and distribution. The
coverage of alleles (CA) in a CC measures the percentage
of alleles from the MC that are present in the CC, which is
given by:

CA = [|1 � (|1 � ACC|/AMC)|] � 100, (6)

where ACC is the set of alleles in the CC and AMC is the
set of alleles present in the MC [12].

Excluding the phylogenetic reconstruction and geo-
graphical distribution, all of the methodological pro-
cedures were performed using FREEMAT v4.2 www.
freemat.sourceforge.net.

The FREEMAT codes are available in Additional file 2
(Online Resource 2).

Results and discussion
Usefulness of transposon display markers for CC selection
Locus-specific molecular marker systems, such as SNPs
[21, 34], microsatellites [35] and other indel events [34]
are available for foxtail millet. These markers may pro-
vide useful information for CC selection, but the full
coverage of the complete genome with these markers has
some conceptual and methodological limitations. SNPs
and indels provide relatively less information per locus
due to their bi-allelic nature and over 10,000 SNPs may
be required to discriminate a closely related populations
[36]. Microsatellites may overcome these limitations, but
testing microsatellites that cover the complete genome
distribution also incur high laboratory expenses and time-
consuming procedures [1].

The use of TEs as an alternative to locus-specific molec-
ular marker systems is based on the assumption that a
significant fraction of plant genomes comprise TEs [37],
i.e., recently active display higher polymorphisms [38]. A
considerably large number of alleles can be detected using
TEs as genetic markers with a small number of primer
sets. CC selection using TEs combined with the recently
released foxtail millet genome sequence [21] will consider-
ably increase the number of polymorphic markers. Thus,

www.freemat.sourceforge.net
www.freemat.sourceforge.net
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we proposed a method that does not require genomic
information, or a large number of locus-specific genetic
markers, which is based on an AFLP-like technique that
could easily be transferred to other biological systems.
This method will enhance the reliability of CC selection
considerably, thereby refining the exploitation of genetic
resources.

To demonstrate the efficiency of ATs and TEs as
CC selection criteria, we used K-means as a practi-
cal approach to clustering based on Kai et al. [11],
who stated that the use of the principal coordinates
instead of raw data (i.e., microsatellite genotype data)
before K-means clustering makes the clustering step less
sensitive to changes in the noisiness of the raw data. We

Table 1 Core Collection evaluation scores for different K selected elements
Group A Group B

K 6 12 24 48 6 12 24 48

ANE data 0 0.7924 0.7451 0.6851 0.6159 N/A N/A N/A N/A

data I 0.7167 0.6478 0.574 0.4294 0.5283 0.4047 0.3218 0.2279

data II 0.5212 0.3944 0.3262 0.2007 0.7145 0.6496 0.5692 0.4367

data III 0.7338 0.6683 0.5725 0.4322 0.4978 0.4164 0.3126 0.2199

ENE data 0 0.1911 0.2646 0.2574 0.2735 N/A N/A N/A N/A

data I 0.2463 0.2886 0.2961 0.3584 0.4925 0.5548 0.6139 0.7087

data II 0.4204 0.5183 0.574 0.6379 0.2703 0.289 0.3065 0.3519

data III 0.1355 0.2516 0.3109 0.3145 0.4761 0.5329 0.6265 0.6776

E data 0 0.9113 0.8894 0.9059 0.9069 N/A N/A N/A N/A

data I 0.8851 0.888 0.8917 0.8879 0.7604 0.7767 0.7576 0.74

data II 0.7415 0.7671 0.7593 0.7587 0.8905 0.893 0.8815 0.8818

data III 0.9272 0.8957 0.894 0.8915 0.7603 0.7357 0.7395 0.7501

MD data 0 16.5192 4.7198 2.6549 1.7699 N/A N/A N/A N/A

data I 18.3746 9.894 2.1201 0.3534 0 0 0 0

data II 22.2615 13.7809 6.0071 1.4134 22.2615 13.0742 6.0071 1.4134

data III 24.7588 12.8617 1.9293 1.2862 7.1429 0 0 0

VD data 0 27.4336 36.8732 41.0029 46.3127 N/A N/A N/A N/A

data I 33.9223 45.2297 51.2367 53.3569 67.8571 67.8571 57.1429 50

data II 31.8021 38.8693 45.9364 56.1837 30.742 37.4558 44.1696 55.477

data III 35.6913 42.4437 53.6977 54.0193 50 53.5714 67.8571 67.8571

CR data 0 29.7935 46.0177 57.8171 69.9115 N/A N/A N/A N/A

data I 37.1025 55.1237 68.9046 81.9788 71.4286 85.7143 89.2857 100

data II 36.7491 47.7032 62.1908 77.7385 34.2756 45.9364 60.0707 77.0318

data III 41.4791 54.0193 73.6334 81.672 71.4286 85.7143 96.4286 96.4286

VR data 0 27.6275 41.3319 54.425 66.2917 N/A N/A N/A N/A

data I 32.6321 48.6972 63.4782 80.4787 76.7938 86.7248 91.9404 102.2757

data II 34.9972 46.2934 58.241 75.3076 30.9728 43.7712 55.211 74.2049

data III 38.7036 51.9165 70.2887 77.0397 78.3303 93.7485 96.6503 94.5884

CA data 0 64.8968 73.0088 78.9086 84.9558 N/A N/A N/A N/A

data I 68.5512 77.5618 84.4523 90.9894 85.7143 92.8571 94.6429 100

data II 68.3746 73.8516 81.0954 88.8693 67.1378 72.9682 80.0353 88.5159

data III 70.7395 77.0096 86.8167 90.836 85.7143 92.8571 98.2143 98.2143

ANE, average distance between each original collection (MC) and nearest core collection (CC) sample; ENE, average distance between each CC sample and nearest CC
sample; E, average distance between CC samples; MD, homogeneity test for means; VD, homogeneity test for variance; CR, coincidence rate; VR, variable rate; CA, coverage of
allele. N/A, not possible to perform diferent-set comparison. With the exception of ANE and MD, higher values suggest better representation. Detailed description of the
scoring system is provided in the text. Group A core collections where compared with their original collection dataset; contrarily, when possible, core collections in group B
where compared to another equivalent original collection dataset
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agree that dimensionality reduction can enhance clus-
tering process and it is possible to reduce the number
of dimensions analyzed during this methodological step.
However, to avoid more variables in the ATs and TEs eval-
uation, we used all of the informative data and we will
explore the significance of dimension reduction in future
implementations.

Validation of the CCs selected by different datasets
The validation scores (VS) for different K values are pre-
sented in Table 1. As expected, the scores obtained by the
CCs improved as their K values increased, which strongly
suggests that the VSs are consistent with those reported
previously [9, 10]. Interestingly, the VSs agreed with the
data I, data II, and data III distributions (Fig. 1). When
the CCs were constructed and evaluated using the same
data (Figs. 2 (left), 3 (center) and 4 (right)), data II obtained
better ANE and ENE results because these values should
be affected considerably by the relationship between the
data distribution and K value. This effect was supported
when the CCs were constructed and evaluated using dif-
ferent data (Figs. 2 (center & right), 3 (left & right) and
4 (left & center)). Thus, the CCs constructed using data
I and evaluated with data II obtained better results in
terms of most of the VSs, but not vice versa. Initially, this

may suggest that genotypic data are better for CC con-
struction, but a genotype-based CC cannot ensure the
inclusion of interesting agricultural traits. In general, the
data III VS values were as expected between data I and
data II, but there were some interesting exceptions. When
they were compared using the same data, the ANE and
ENE values with data III were lower than those obtained
with the other datasets. This may be explained by the
data distribution pattern (Figs. 2 (left), 3 (center) and 4
(right)). The data distribution of data III was wider, which
would lead to poorer ANE values with the same k than
when the data distribution is more compact. The same
distribution effect obtained the opposite result when com-
pared with different data, where in some cases data III
obtained even better ANE values than data I and data
II. The ENE values were also affected by the data dis-
tribution because wider distributions generated extreme
value representations, which were more difficult to han-
dle under the k-mere representations implemented in this
study (i.e., the closest element to the centromere). A better
ENE score may be obtained using different selection crite-
ria, which will be addressed in future implementations of
this concept.

The discreteness of the 141 accessions used in the CC
selection procedures was confirmed by displaying their

Fig. 1 Principal component distributions for data I (blue), data II (black), and data III (red) in the first three (left) and two (right) principal components,
respectively
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Fig. 2 Principal component distributions of data I (left), data II (center), and data III (right) in data I for the first two principal components

distribution on the phylogenic dendrogram based on data
0 presented in Additional file 3 (Online Resource 3). In
order to evaluate whether the CC was representative, a
phylogenetic dendrogram was constructed based on the
genotypic distances among the MCs data I. The phyloge-
netic reconstruction obtained eight groups, which agreed
with previously reported groupings [25]. Thus, the select-
ed CCs were identified according to this dendrogram.

The distribution pattern of the dendrogram demon-
strated that data I CC covered the largest number of
branches, followed by data III and data II (Fig. 5). This
may be because the tree itself was constructed using com-
plete data, which differed from data I only in terms of
the number of accessions included in each dataset. How-
ever, data II CC also covered over half of the branches
when K > 12. Data III CCs covered as many different
branches as data I CC (except K = 48). This suggests
that the data III-based CCs successfully integrated phe-
notypic information into the genotypic information, but
without altering the distribution in the dendrogram. The
geographical distributions of the selected CCs were also
displayed on a world map and the results are shown in

Fig. 6 Data II CCs represented the widest geographical
distribution range. The CCs include accessions from both
the longitudinal and latitudinal range edges, even small K
CCs (Fig. 6). This clearly indicates that the data II CCs
represent accessions that are adapted to different envi-
ronmental conditions. As the number of K increased, the
distribution range became wider for all the CCs in terms
of both the longitude and latitude. Interestingly, several
accessions were selected from different datasets. Among
these accessions, two were included in 100 % of the CCs
irrespective of their original dataset (12 times in 12 CCs),
and 5 accessions were present in 66.7 % (8 times out of
12 CCs) to 91.7 % (11 times out of 12 CCs) of the CCs.
These accessions may be distantly related to other acces-
sions in terms of both their genetic and phenotypic traits,
although the establishment of a phenotype/genotype cor-
relation would require a different approach. Thus, we
demonstrated that it is possible to generate adequate CCs
using both phenotypic and genotypic information, and
it is important to remember that the phenotypic traits
employed in this study were selected and mapped arbi-
trarily only to establish a proof-of-concept with respect to

Fig. 3 Principal component distributions of data I (left), data II (center), and data III (right) in data II for the first two principal components
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Fig. 4 Principal component distributions of data I (left), data II (center), and data III (right) in data III for the first two principal components

the feasibility of constructing a comprehensive CC based
on both genotypic and AT information. Further studies
based on the optimization of phenotypic numerical repre-
sentations are needed to enhance the accurate representa-
tion of the available information. We believe that the use
of adequate AT mappings and the inclusion of different
molecular markers will improve the CC selection process.
This methodology could be used to infer ancestry, partic-
ularly with low K when the algorithm is expected to favor
the selection of polyphyletic taxons that would represent
unique ancestry for each element in the CC. However, it
needs to be taken into consideration that phenotypic traits
may affect this expected outcome, and that the algorithm
was not designed nor tested for ancestries establishment.

To the best of our knowledge, the present study is the
first attempt to combine genotypic and morphological
information during CC construction with this approach. It
was possible to construct CCs based on both information
types using the proposed methodology. As demonstrated
by the VS values, the PCA distribution (Figs. 2, 3, and 4),

phylogenetic representations (Fig. 5), and geographic dis-
tributions (Fig. 6), the phenotypic data provided useful
and potentially important information. We believe that
genotypic information alone should not be used to gener-
ate CCs. In general, morphological information is used to
include variation in the CC [11, 18]. Our evaluation of the
PCA distribution suggests that both phenotypic and geno-
typic information have important effects on the selected
CCs.

Conclusions
Our approach was successful in capturing most of the
genotypic, phenotypic, and geographical diversity in a
small set of individuals. Data III CCs were highly repre-
sentative in terms of both genetic and phenotypic vari-
ations. The use of this approach for CC selection may
provide beneficial materials in terms of biochemical, mor-
phological, agronomic, and phylogenetic traits, which
can be combined with genomic information. The pre-
cise definition of phenotypic numerical representations

Fig. 5 Distribution of the selected CCs (k = 12) from data I (solid circles-left), data II (solid triangles-center), and data III (solid squares-right) based on the
dendrogram obtained using 141 foxtail millet individuals. The dashed lines represent groups of clusters
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Fig. 6 Geographical distribution of k=12 CCs from data I (top), data II (center), and data III (bottom). The colored dots represent the geographical
origin of each CC member and the crosses represent the geographical origin of each accession included in the analysis. Maps were generated with
Diva-GIS 7.5 http://www.diva-gis.org/ based on GADM v.1.0 http://www.gadm.org/
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