Influences of diet using supplemental foods and aerobic exercise on segmental body composition, body fat distribution and physical fitness in middle-aged women with intra-abdominal fat obesity

Tomohiro Okura¹, Ryosuke Shigematsu², Yoshio Nakata³, Tomoaki Sakai⁴, Dong Jun Ree⁵ and Kiyoji Tanaka⁶

Abstract

A study was conducted to investigate the influences of diet using supplemental foods and aerobic exercise on segmental body composition, body fat distribution and physical fitness in middle-aged women with intra-abdominal fat (IF) obesity. Twenty-five women were randomly divided into two treatment groups; a group with a low-energy diet (D) and a group with D combined with exercise (DE). To ensure proper daily nutrition, the subjects were instructed to take every day a well-balanced supplemental food developed for very low-energy diets (170 kcal per pack). In addition to restricting energy intake, subjects from the DE group performed a bench-stepping exercise 3 days/wk for 75 min per session under in-hospital supervision. Whole-body fat mass (FM) and fat- and bone-free mass (FBFM) were assessed by dual energy x-ray absorptiometry. The intra-abdominal fat area (IFA) and subcutaneous fat area (SFA) were measured at the level of the umbilicus using computed tomography. Grip and leg extension strength, and maximal oxygen uptake were measured for eval-

1. Department of Epidemiology, National Institute for Longevity Sciences
 36-3 Gongo, Morioka-cho, Obu, Aichi 474-8522
2. Health & Sport Science, Department of Education, Mie University
 1515 Kamihama-cho, Tsu, Mie 514-8507
3. Doctoral Program in Health and Sport Sciences, University of Tsukuba
 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8574
4. Institute of Health and Sport Sciences, University of Tsukuba
 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8574
Corresponding author - okura@nls.go.jp

References

ulation of physical fitness. All assays and measurements were carried out before and after a 14-week intervention period. Weight and FM were significantly reduced in both the D (−7.7 kg and −5.8 kg, respectively) and DE (−8.9 kg and −7.3 kg, respectively) groups. All segmental FBFMs were significantly reduced in the D group, whereas FBFMs in the upper and lower limbs of the DE group remained unchanged. IFA and SFA were significantly reduced in both the D (−35 cm2 and −48 cm2) and DE (−32 cm2 and −51 cm2) groups. In the D group, changes in SFA were significantly and inversely correlated (r=−0.68) with initial values of IFA, but changes in IFA were not. Grip strength (+17%) and maximal oxygen uptake (+28%) were significantly increased in the DE group. No significant decreases were found between any physical fitness variables in the D group. These results suggest that (1) the DE treatment possibly diminished the reduction in the FBFMs in the upper and lower limbs, and that (2) less SFA was reduced in the D group with much more IFA at the baseline. Moreover, the D treatment did not induce decreases in physical fitness in response to the weight loss.

Key words: fat mass, fat- and bone-free mass, intra-abdominal fat, subcutaneous fat, muscular strength, maximal oxygen uptake

キーワード：体脂肪組織、除脂肪除骨塩組織、内臓脂肪、皮下脂肪、筋力、最大酸素摂取量

I 緒 言

日本肥満学会は1999年の「東京宣言」において、欧米の肥満基準に対応させるために日本人の肥満の定義を「body mass index (BMI)が25kg/m2以上」と改訂した（松澤ほか，2000）。同時に、肥満症の診断基準も提示することで、それまであいまいであった肥満と肥満症の関係（位置付け）を明確に区別した。肥満症は肥満かつ肥満を基盤とする様々な合併症（糖尿病・脂質代謝異常、循環器障害、動脈硬化など）を有する場合を指し、この中にはcomputed tomography (CT)スキャンによる臓位の内臓脂肪面積が100 cm2を超える場合（内臓脂肪型肥満）も含まれる。内臓脂肪型肥満はハイリスク肥満とも呼ばれ、現時点で肥満合併症を発症していないとしても将来的に発症する可能性が高いことから、減量治療の対象となる（松澤ほか，2000）。

内臓脂肪型肥満者の減量治療の効果を判定する際、(1) 体組成における体脂肪と除脂肪組織、(2) 体脂肪分布における内臓脂肪と皮下脂肪、(3) 体力評価指標としての筋力や全身持久能（最大酸素摂取量）に着目することの重要性を疑う余地はないうちである。すなわち、除脂肪組織を維持しながら体脂肪と内臓脂肪を減少させ、筋力や全身持久能を維持または向上させることが理想的な減量方法と言え、それにもかかわらず我々の知る限り、内臓脂肪型肥満者を対象として上記の3要素の関連性を検討した研究はほとんど見当たらない。加えて、体組成や体脂肪分布、体力に好ましい変化をもたらすという観点からは、低エネルギー食療法（diet）のみによる減量よりはdietと有酸素性運動の併用が望ましいであろう。しかしながら、内臓脂肪型肥満者を対象にした研究ではDespres（1991）やRossの一連の研究（Ross et al., 1996；Ross, 1997；Janssen and Ross, 1999；Ross et al., 2000）で散見されるに過ぎない。

本研究ではdietと有酸素性運動が内臓脂肪型肥満者の体組成、体脂肪分布、体力に与える影響を明らかにするために、dietのみによる減量グループ（D）とdietと有酸素性運動の併用グループ（diet and exercise：DE）の2グループを設け、次の仮説を検証することにした。

(1) Ballor and Poehlman（1994）がおこなっ
表1 対象者の身体的特徴

<table>
<thead>
<tr>
<th>項目</th>
<th>D群</th>
<th>DE群</th>
<th>群間比較</th>
</tr>
</thead>
<tbody>
<tr>
<td>年齢</td>
<td>齢 48 ± 2</td>
<td>齢 52 ± 2</td>
<td>ns</td>
</tr>
<tr>
<td>【形態】</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>体重</td>
<td>kg 728 ± 18</td>
<td>kg 702 ± 21</td>
<td>ns</td>
</tr>
<tr>
<td>BMI</td>
<td>kg/m² 29.9 ± 0.7</td>
<td>kg/m² 29.9 ± 0.8</td>
<td>ns</td>
</tr>
<tr>
<td>ウエスト</td>
<td>cm 107.7 ± 1.9</td>
<td>cm 104.5 ± 2.2</td>
<td>ns</td>
</tr>
<tr>
<td>【体組織】</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>体脂肪率</td>
<td>% 37.5 ± 0.9</td>
<td>% 39.3 ± 1.0</td>
<td>ns</td>
</tr>
<tr>
<td>体脂肪量</td>
<td>kg 3.4 ± 0.3</td>
<td>kg 3.4 ± 0.4</td>
<td>ns</td>
</tr>
<tr>
<td>上肢</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>下肢</td>
<td>kg 8.5 ± 0.5</td>
<td>kg 8.2 ± 0.6</td>
<td>ns</td>
</tr>
<tr>
<td>体幹</td>
<td>kg 14.8 ± 0.5</td>
<td>kg 14.8 ± 0.6</td>
<td>ns</td>
</tr>
<tr>
<td>全身</td>
<td>kg 28.6 ± 1.2</td>
<td>kg 28.2 ± 1.4</td>
<td>ns</td>
</tr>
<tr>
<td>除脂肪除骨塚組織量</td>
<td>kg 4.3 ± 0.1</td>
<td>kg 4.1 ± 0.1</td>
<td>ns</td>
</tr>
<tr>
<td>上肢</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>下肢</td>
<td>kg 13.3 ± 0.4</td>
<td>kg 12.9 ± 0.4</td>
<td>ns</td>
</tr>
<tr>
<td>体幹</td>
<td>kg 20.7 ± 0.5</td>
<td>kg 19.8 ± 0.6</td>
<td>ns</td>
</tr>
<tr>
<td>全身</td>
<td>kg 41.1 ± 0.9</td>
<td>kg 39.6 ± 1.0</td>
<td>ns</td>
</tr>
<tr>
<td>【体脂肪分布】</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>内臓脂肪面積</td>
<td>cm² 143 ± 10</td>
<td>cm² 131 ± 11</td>
<td>ns</td>
</tr>
<tr>
<td>皮下脂肪面積</td>
<td>cm² 302 ± 18</td>
<td>cm² 290 ± 21</td>
<td>ns</td>
</tr>
<tr>
<td>内臓/皮下脂肪面積比</td>
<td>0.49 ± 0.05</td>
<td>0.49 ± 0.06</td>
<td>ns</td>
</tr>
<tr>
<td>【体力】</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>握力</td>
<td>kg 30.1 ± 1.4</td>
<td>kg 26.2 ± 1.5</td>
<td>ns</td>
</tr>
<tr>
<td>腕伸展力</td>
<td>kg 55.0 ± 3.3</td>
<td>kg 48.5 ± 3.8</td>
<td>ns</td>
</tr>
<tr>
<td>最大酸素摂取量</td>
<td>ml/kg/分 25.8 ± 1.0</td>
<td>ml/kg/分 24.1 ± 1.2</td>
<td>ns</td>
</tr>
</tbody>
</table>

D群：低エネルギー食療法群
DE群：低エネルギー食療法+有酸素性運動群
ns：D群とDE群の間で有意差なし

（3）DEでは有酸素性運動の実践に伴い筋力および全身持久能は向上すると考えられる。一方，Dでは運動による効果は得られないことから，除脂肪組織の減少に伴い筋力や全身持久能は低下すると考えられる。

II 対象者と方法

1. 対象者

対象者は，筆者らが主催する14週間の減量教室に参加した茨城県および千葉県に在住する34 〜 44歳の女性30名であった。対象者の選定条件は，日本肥満学会の肥満症の診断基準「BMI
が25kg/m²以上かつCTスキャンによる臓位の内
臓脂肪面積が100cm²以上（松沢ほか、2000）」を
満たす内臓脂肪型肥満者であった。対象は15名
ずつ無作為にD群とDE群に割り振られた。その
うちの5名（D群1名、DE群4名）は個人的な理
由により一部の検査、測定、減量プログラムを遂
行できなかったため、D群14名、DE群11名の
データが本研究の検討に供された。なお、検査や
測定に先立ち、詳細な問診と病歴調査をおこない、
ホルモン補充療法を受けている者および調査内容
に影響を与える恐れのある薬物服用者はあらかじ
め対象から除外した。また、最終月経の発来以降
1年を経過している者を閉経者と定義したここ
ろ、その数と割合はD群7名（50%）、DE群7名
（64%）であり、両群間の閉経者数および割合に
有意差はみられなかった。研究参加に際しては本
研究の内容および目的を詳細に説明し、特にCT
スキャンや二重エネルギーX線吸収法（dual en-
ergy X-ray absorptiometry：DXA）による放射
能被曝の人体への影響を十分理解させた上で研究
参加の同意を得た。
対象者の身体的特徴は表1に
示した。

2. 検査項目および測定方法
以下の検査および測定は減量教室の前後でおこ
なわれ、原則として同一検者が同一の方法でおこ
なった。
1）体組織の評価
本研究では、人体は体脂肪組織（fat mass：
FM）、骨組織、除脂肪除骨塩組織（fat- and
bone-free mass：FBFM）からなると仮定し、
DXA（DPX-L, Lunar社製）によりセグメント
ごと（頭部、上肢、下肢、体幹）のFMおよび
FBFMを測定した。体脂肪率（percentage fat
mass：% FM）は頭部、上肢、下肢、体幹にお
けるFMの合計値を体重（FM, FBM, 骨塩量
の合計値）で除した値に100を乗じて求めた。
FBFMは除脂肪組織量と高い相関関係にあるこ
とが確認されている（Heymsfield et al., 1990）
以上、除脂肪組織より体力（筋力）と関連が強いと
考えられる。なお、BMIは体重（kg）を身長
（m）の2乗で除することで求めた。本研究で使
用したDXAの信頼性は我々の研究グループがお
こなった別の論文（中田ほか、2002）で確認され
ている。
2）体脂肪分布の評価
体脂肪分布は、臓位における内臓脂肪面積
（intra-abdominal fat area：IFA）、皮下脂肪面積
（subcutaneous fat area：SFA）およびIFAと
SFAの比（IFA-to-SFA ratio：ISR）から評価し
た。仰臥位にて腹部（臓位：第4〜5腰椎）の
CT画像を撮影した後、Yoshizumi et al.（1999）
の方法に基づき、撮影した25名分の腹部横断面
画像を各々について脂肪組織の最大（平均値+2
SD）CT値（X線吸収度）および最小（平均
値−2SD）CT値を決定した。実際の面積の算出
には、この理論を用いた専用のコンピュータソフト
トウエア（FatScan、N2システム社製）を利用
した。無作為に抽出した10名について、IFAお
よびSFAを各々2回繰り返し算出した際の信頼
性係数は、いずれも0.99と高かった。
3）体力の評価
体力評価指標として握力、脚伸展力（以上、筋
力）、最大酸素摂取量（全身持続能）を測定した。
握力は左右2回ずつ測定し、左右の最高値の平均
値とした。脚伸展力は座位姿勢にて膝を90度に
曲げた状態から両脚を同時に伸展する時の力を脚
筋力計（GF-300、ヤガミ社製）にて測定した。
最大酸素摂取量の決定には、Monark社製の自転
車エルゴメータ（818E）を使用し、症候性限界
を示した時点の酸素摂取量と定義した（大蔵・田
中、1999）。

3. 低エネルギー食療法
ベースラインにおける体重や体脂肪量を考慮し
て、体重の5〜15％程度の減量となるよう個人
ごとに目標体重を設定し、運動中のエネルギー消
費量も考慮した上で、1日のエネルギー摂取量の
目安を示した。低エネルギー食療法期間中の良好
な栄養バランスの保持を目的として、対象者に対
して減量補助食品（マイクロダイエット、サニー
ヘルス社製）の使用を勧めた。マイクロダイエッ
肥満者における食事制限と運動の影響

表2 各項目の教室前後における比較および変化量の群間比較

<table>
<thead>
<tr>
<th></th>
<th>D群</th>
<th>DE群</th>
<th>教室前後の比較</th>
<th>群間比較</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>平均値±標準誤差</td>
<td>平均値±標準差</td>
<td>D群</td>
<td>DE群</td>
</tr>
<tr>
<td>【形態】</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>体重</td>
<td>kg</td>
<td>-7.7±0.9</td>
<td>-8.9±1.0</td>
<td>***</td>
</tr>
<tr>
<td>BMI</td>
<td>kg/m²</td>
<td>-3.6±0.4</td>
<td>-4.0±0.4</td>
<td>***</td>
</tr>
<tr>
<td>ウエスト</td>
<td>cm</td>
<td>-8.1±1.5</td>
<td>-8.6±1.7</td>
<td>***</td>
</tr>
<tr>
<td>【体組成】</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>体脂肪量</td>
<td>kg</td>
<td>-0.8±0.2</td>
<td>-1.0±0.2</td>
<td>***</td>
</tr>
<tr>
<td>上肢</td>
<td>kg</td>
<td>-1.7±0.3</td>
<td>-2.0±0.4</td>
<td>***</td>
</tr>
<tr>
<td>下肢</td>
<td>kg</td>
<td>-3.1±0.4</td>
<td>-3.9±0.5</td>
<td>***</td>
</tr>
<tr>
<td>体幹</td>
<td>kg</td>
<td>-5.8±0.8</td>
<td>-7.3±0.9</td>
<td>***</td>
</tr>
<tr>
<td>全身</td>
<td>kg</td>
<td>-1.5±0.3</td>
<td>-1.6±0.4</td>
<td>***</td>
</tr>
<tr>
<td>除去脂肪除骨髄組織量</td>
<td>kg</td>
<td>-0.2±0.1</td>
<td>-0.1±0.1</td>
<td>*</td>
</tr>
<tr>
<td>上肢</td>
<td>kg</td>
<td>-0.4±0.1</td>
<td>-0.2±0.2</td>
<td>**</td>
</tr>
<tr>
<td>下肢</td>
<td>kg</td>
<td>-1.4±0.3</td>
<td>-1.4±0.3</td>
<td>***</td>
</tr>
<tr>
<td>体幹</td>
<td>kg</td>
<td>-1.9±0.3</td>
<td>-1.6±0.4</td>
<td>***</td>
</tr>
<tr>
<td>全身</td>
<td>kg</td>
<td>-35±6</td>
<td>-32±7</td>
<td>***</td>
</tr>
<tr>
<td>内蔵脂肪面積</td>
<td>cm²</td>
<td>-48±12</td>
<td>-51±13</td>
<td>***</td>
</tr>
<tr>
<td>皮下脂肪面積</td>
<td>cm²</td>
<td>-0.06±0.03</td>
<td>-0.03±0.06</td>
<td>**</td>
</tr>
<tr>
<td>内蔵/皮下脂肪面積比</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>握力</td>
<td>kg</td>
<td>-1.0±0.6</td>
<td>-0.6±0.7</td>
<td>ns</td>
</tr>
<tr>
<td>脚伸展力</td>
<td>kg</td>
<td>-1.5±0.3</td>
<td>-1.7±0.4</td>
<td>ns</td>
</tr>
<tr>
<td>最大酸素摂取量</td>
<td>ml/kg/min</td>
<td>-0.06±0.03</td>
<td>-0.03±0.06</td>
<td>**</td>
</tr>
</tbody>
</table>

D群：低エネルギー食療法群
DE群：低エネルギー食療法 + 有酸素性運動群
*教室後有意に減少 (p<0.05), ** p<0.01, *** p<0.001
†††教室後有意に増加 (p<0.001), †††† p<0.001
ns:有意差なし

†減少量を変数とした共分散分析により検討した
§減少量を体重を変数とした共分散分析により検討した
DE>D (p<0.05)
インパクト／ミドルインパクトのベンチステッピングエクササイズ（Hayakawa et al., 1996）を試験内実施において実践させた。実施に際しては2〜3名の専門運動指導員が安全性等を監視した。ベンチステッピングエクササイズは個人の体力に合わせてステップ台（ベンチ）の高さを調節することができるエアロビクマスの1つである。上肢の動きも多くとり入れているため、下肢のみならず上肢の筋群（上腕三頭筋、上腕二頭筋、三角筋）も十分活動させることが可能である。75分間の中には、ウォーミングアップ（徒手体操）とクーリングダウン（ストレッチング）も含まれている。ベンチステッピングエクササイズ中の運動強度は、その日の体調などによって15段階（6〜20）のボルダーフラグ（Borg, 1973）で13〜17に相当する「ややきつい」から「かなりきつい」に感じる強さであり、目標心拍数は原則として130〜150/分の範囲となるよう指示した。心拍数から推定された運動強度は最高心拍数の70〜90％に相当すると考えられた。運動中のエネルギー消費量を代謝測定装置（Oxycon Alpha, Mijnheart社製）によって測定したところ、1セッション（75分間）あたりの平均値は約350kcalであった。

5. 統計解析
すべての測定データは平均値±標準誤差で記した。ベースラインにおける各項目の平均値の差についてはStudent t-testを行った。減量に伴う教室前の各項目の変化は対応のあるt-testで検討した。セグメントごとのFMおよびFBFMの変化量の群間（D群 vs. DE群）比較には、体重の変化量を調整変数としての共分散分析を適用した。また、IFAとSFAの変化量の群間比較には、FMの変化量を調整変数とした共分散分析を用いた。IFAとSFAの変化に影響する因子を特定するために、体重の変化量を調整変数とした偏相関係数を算出した。FBFMの変化量と体力項目の変化量との関連性は各々のベースライン値を調整変数とした偏相関係数から検討した。2項目間の関連性はPearsonの積率相関係数から検討した。以上の検討には統計解析ソフトウエアSAS 6.12

表3 体重の減少率を調整変数とした内臓脂肪面積および皮下脂肪面積の変化量と各項目のベースライン値との相関関係を示す

<table>
<thead>
<tr>
<th></th>
<th>内臓脂肪面積</th>
<th>皮下脂肪面積</th>
<th>体重</th>
<th>体脂量</th>
<th>除脂肪除骨塩組織量</th>
</tr>
</thead>
<tbody>
<tr>
<td>【D群】</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>内臓脂肪面積の変化量</td>
<td>-0.06</td>
<td>-0.04</td>
<td>-0.29</td>
<td>-0.17</td>
<td>-0.27</td>
</tr>
<tr>
<td>皮下脂肪面積の変化量</td>
<td>-0.68a</td>
<td>0.30</td>
<td>-0.23</td>
<td>-0.29</td>
<td>0.00</td>
</tr>
<tr>
<td>【DE】</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>内臓脂肪面積の変化量</td>
<td>0.63b</td>
<td>-0.18</td>
<td>-0.33</td>
<td>-0.17</td>
<td>-0.37</td>
</tr>
<tr>
<td>皮下脂肪面積の変化量</td>
<td>0.02</td>
<td>0.41</td>
<td>0.28</td>
<td>0.27</td>
<td>0.31</td>
</tr>
</tbody>
</table>

a: p=0.0108
b: p=0.0497
表4 ベースラインにおける体力とセグメントごとの除脂肪除骨髄組織量との相関係数

<table>
<thead>
<tr>
<th></th>
<th>上肢のFFBM</th>
<th>下肢のFFBM</th>
<th>胸体のFFBM</th>
<th>全身のFFBM</th>
</tr>
</thead>
<tbody>
<tr>
<td>握力</td>
<td>0.41a</td>
<td>0.38</td>
<td>0.32</td>
<td>0.39</td>
</tr>
<tr>
<td>足伸展力</td>
<td>0.17</td>
<td>0.30</td>
<td>0.08</td>
<td>0.06</td>
</tr>
<tr>
<td>最大酸素摂取量</td>
<td>0.34</td>
<td>0.38</td>
<td>0.45b</td>
<td>0.43c</td>
</tr>
</tbody>
</table>

FFBM: fat-and bone-free mass (除脂肪除骨髄組織量)

a: p=0.0405
b: p=0.0257
c: p=0.0321

（1997）を使用し、有意水準は5%未満とした。

III 結 果

表1に示したように、いずれの測定項目もD群とDE群の間で有意差を認めず、ベースラインの身体的特徴にグループ間の違いはないと確認した。

表2には減量プログラム前後の各項目の変化量を示した。形態項目においては、D群とDE群はともにすべての項目で有意な減少がみられた。体重の減少量に群間差異（D群vs. DE群）はみられなかった。体成分においてはDE群の上肢と下肢のFFBMが維持されたことや、その他すべての項目が有意に減少した。体重の減少量で調整された変化量に群間差異はみられなかった。体脂肪分布においてはすべての項目が有意に減少し、その減少量に群間差異は見られなかった。体成分についてみると、D群ではいずれの項目も顕著な変化はなかったが、DE群では脚伸展力と最大酸素摂取量が有意に増加した。また、両群間で脚伸展力と最大酸素摂取量の変化量に有意差が認められた。

図1には減量に伴うIFAとSFAの減少量の割合（平均値±標準誤差）をD群、DE群ごとに示した。D群のIFAの減少率（27.7±5.0%）はSFAの減少率（16.1±3.9%）より有意に高く、DE群においてもIFAの減少率（22.9±5.7%）はSFAの減少率（16.9±4.4%）より有意に高かった。

表3には体重の減少量を調整変数としたIFAおよびSFAの変化量と各項目のベースライン値との偏相関数を示した。D群において、IFAの変化量はいずれも有意に相関しなかったが、SFAの変化量はIFAのベースライン値と有意な負の相関を呈した（r = -0.68）。DE群においてはIFAの変化量はIFAのベースライン値と有意に正相関した（r = 0.63）が、SFAの変化量はいずれも有意な関連性がみられなかった。

表4はベースラインにおける体力項目とセグメントごとのFFBMの相関係数を示した。握力は上肢のFFBMと（r = 0.41）、最大酸素摂取量は胸幹（r = 0.45）および全身（r = 0.43）のFFBMと有意に相関した。脚伸展力はいずれのFFBMとも有意に相関しなかった。さらに、各体力項目の変化量とFFBMの変化量との関連性について、各々のベースライン値を調整変数とした偏相関係数から検討したが、すべての組合せで有意な相関関係はみられなかった。

IV 考 察

近年の研究から、有酸素性運動は体重（体脂肪）の減少に必ずしも効果的に働くないことが確認されつつある（Ross and Janssen, 1999; Ross et al., 2000; Westerterp, 1999; Donnelly et al., 2000; Mertens et al., 1998）。中年の肥満男性（Mertens et al., 1998）や肥満女性（Donnelly et al., 2000）を対象とした検討によると、dietを伴わない週あたり1500〜2000kcalの有酸素性運動による体重の減少は、低強度運動（ウォーキング）と中強度運動（室内自転車）のいずれであっても、3カ月間で初期体重の1％前後（約1kg）でしかなかった。この理由として、運動期間中の食事量が以前より僅かに増加したことも（Mertens et al., 1998）やエクササイズとして処方された以外の場面（日常）での不活動性（Leon et al., 1996）が挙げられている。本研究ではこのような成果を踏まえた上で、肥満症患者（内臓脂肪型肥満）である本研究の対象者が確実に減量を成し遂げられ
るよう，有酸素性運動のみの群は設定せず，Dと
DEの2群を設定した。

1. 体組成の変化
体重の減少量はD群（−7.7kg），DE群
（−8.9kg）とも有意であり，本研究の減量プロガ
ラムが内臓脂肪型肥満女性に対して有効であった
ことが確認できた。体重の減少量に対するFMお
よびFBFMの減少量の割合は，D群でそれぞれ
75％と25％，DE群でそれぞれ82％と18％であり
，これらの2要素で体重減少の概ね100％を説
明していた。Ballor and Poehlman（1994）は，
メタアナリシスにおいて減量による除脂肪組織の
変化量をD群とDE群で比較している。これによ
ると女性の除脂肪組織の減少率はDの24％に対
して，DEでは11％と半分以下であり，減量期間
中に運動することで除脂肪組織の減少を抑制する
ことが可能と述べている。本研究ではFBFMで
除脂肪組織を代表していることから，彼らの報告
と単純に比較することは注意を要するが，本研
究におけるD群のFBFMの減少率（25％）は彼
らの報告と同程度にあると言える。一方，DE群
のFBFMの減少率は彼らの報告より大きかった。
その理由として，上肢と下肢のFBFMは減量後
も維持されていたにもかかわらず，体幹ではD
群と同量（1.4kg）のFBFMが減少したためと考
えられる。体幹におけるFBFMの内訳（筋，臓
器，循環組織など）を考えた場合，上肢や下肢に
比べてFBFMに占める筋の割合は少ないために，
相対的にも絶対的にも運動による効果（この場合
はFBFMの維持）を受けにくい部位と言える。
加えて，DEで指導されたベンチステッピングエ
クサイズでは，下肢や上肢への運動刺激に比べ
て，体幹の筋群（腹直筋，腹斜筋群，脊柱起立筋
など）への刺激が少なく，トレーニング後に筋
（筋力）の超回復を引き起こすまでには至らなか
ったためかもしれない。最近では減量（diet）期
間中，筋量を維持または増大させることを目的と
してレジスタンス運動を実施する試みもなされて
いるが，その有効性については意見が分かれら
Garrow and Summerbell（1995）によると，diet
をおこなうことなくレジスタンス運動を指導した
ところ，体重は変化せず除脂肪組織量が増加した
（FMが減少した）と報告している。一方，減量
（diet）を伴う場合には，レジスタンス運動によ
って除脂肪組織量は維持されたとする報告（Sale
et al., 1995；Rice et al., 1999）と増加したとす
る報告（Ross et al., 1996）の両方が見受けら
れる。前者は対象が女性であり，後者は男性である
ことから，減量期間中に実践するレジスタンス運
動が除脂肪組織に与える効果には性差が存在する
可能性がある。本研究において，DE群では上肢
と下肢のFBFMは維持できたが，体幹のFBFM
がD群と同程度の減少を呈したことから，当初
の仮説（1）は部分的に棄却される結果となった。
今後，本研究で指導した運動内容にレジスタンス
運動を加えることによって，特に体幹の筋量を維
持（または増大）できるよう工夫する余地がある
と考えられた。

2. 体脂肪分布の変化
IFA，SFA，ISRは減量プログラムの実施によ
って有意に減少し（表2），いずれの項目の変化
量もD群とDE群の間に差異はみられなかった。
また本研究のデータからは，体重減少1kgあたり
のIFA減少量はD群とDE群でそれぞれ4.5cm²
と3.6cm²と計算された（群間有意差はなし）。
Ross（1997）の検証によると，体重減少1kgに
ついてIFAは3～4cm²減少し，DとDEの間に差
異はなかったことから，運動は内臓脂肪に対して
特異的には作用しないと結論づけている。これら
の知見は我々の結果と一致するものである
が，Rossは同論文の中で「今回の結果は，生物
学的事実を正確に反映しているものなのか，もし
くは対象者の“free-living”な状況におけるエネ
ルギー摂取量と消費量を厳密にコントロールでき
ていないという方法論的な問題を含んでいるのか
は定かではない」と述べている。我々の検討にお
いても同様の問題（限界）があることに留意しな
ければならない。この点に関する詳細な研究が待
たれる。
体重減少1kgあたりのSFAの減少量はIFAに
比えて大きく、D群とDE群でそれぞれ6.2cm²と5.7cm²であった（群間有意差はなし）。しかし、図1が示すように初期値で減少量を除した相対値（減少率、％）でみると、IFAの減少率の方がSFAの減少率より有意に大きいことがわかる。介入方法にかかわらず、減量によって内臓脂肪が皮下脂肪より優先的に減少することは過去の研究からも伺える（Leenen et al., 1992; Ross et al., 1996）。内臓脂肪が優先的（選択的）に減少する理由として、安静時（Arner, 1995）と運動時（Arner et al., 1990）のいずれであっても内臓脂肪組織のlipolysis（脂質分解）が皮下脂肪組織より高レベルにあることが挙げられる。これは各種ホルモン（性ホルモン、インスリン、アドレナリンなど）に対する感受性の違い（Abate and Garg, 1995）や内臓脂肪組織のサイズが皮下脂肪組織よりも大きい傾向にあるためと考えられている（Rebuffe-Scrive et al., 1990）。

本研究の体脂肪分布に関する新たな知見の1つには、D群のSFAの変化量がIFAの初期値と負（逆）相関したことが挙げられる。つまり、ベースラインにおいて内臓脂肪が多く蓄積しているほど、皮下脂肪は減少しにくいことを意味している。その理由として、内臓脂肪が優先的に減少したためと推測されたが、D群では内臓脂肪面積の初期値と変化値とは有意に相関しておらず、必ずしも内臓脂肪が皮下脂肪に優先して減少したという理由では説明できない。従来、仮説（2）で掲げたように内臓脂肪はベースラインにおける内臓脂肪量が多い者ほど多く減少するとわれてきた（Fujikawa et al., 1991; Leenen et al., 1992）が、本検討により減量方法によって内臓脂肪の減少の仕方に違いの生じ可能性が示唆されたと言えよう。

3. 体力の変化および除脂肪除骨塩量との関係
仮説（3）に反して、D群では全長またはセグメントごとのFBFMが減少したにもかかわらず、体力は低下しなかった。すなわち、dietはFBFMを減少させるものの、体力に悪影響を与えるほどではないと考えられる。このことは運動に慣れていない、または運動が苦手な肥満者への減量治療の導入として、dietを単独で処方することの有効性を示唆している。一方、DE群では脚伸展力 (+17％) と最大酸素摂取量 (+28％) が向上した。本研究と同様の有酸素性運動を3週間実践させたところ、脚伸展パワーや13.2％向上したとの報告がなされている（Sartorio et al., 2001）。また、dietおよび最大酸素摂取量の60〜70％強度の有酸素性運動（週3回、1回30分間）を実践させたところ、大幅な体重減少がみられ、最大酸素摂取量は24％増大したとの報告（Cox et al., 1996）もされている。本研究の結果はこれらの報告を支持するものと言える。本研究では集中（専門）的なリジェンス運動をおこなわなかったにもかかわらず、脚伸展力が向上した。これは高さ10〜30cmのステップ台を昇り降りする中に肥満である対象者の体重そのものが負荷となり、疲労の記録の向上や、動員される運動単位の増加などにより、筋力は変化することなく筋力が増大したものと考えられる。

表1で示したように、握力および最大酸素摂取量はそれぞれ腕と体幹および全身のFBFMと有意に相関したことから、体力はFBFMによって部分的に説明されることがわかった。しかし、体力の変化量とFBFMの変化量は有意に相関せず、「FBFMの減少＝体力の低下」といった単純な図式は成り立たなかった。これは、前述したようにD群やDE群においてFBFMが減少したにもかかわらず、体力は維持または向上したことからもわかる。今後は、FBFMと体力との関連性について、介入方法や運動様式の違いを考慮に入れた詳細な検討が待たれる。

V 結 論

本研究では、中年の内臓脂肪型肥満女性を対象としてdietと有酸素性運動による減量が、（1）体組成、（2）体脂肪分布、（3）体力にいかなる影響を与えるかについて検討した。以下に本研究の結果を仮説に沿って示した。

（1）D群ではDE群に比べてFBFMが大幅に減
少すると予想されたが、全身の変化量でみればDE群と有意な違いはなかった。DE群では上肢と下肢のFBFMの減少は抑えられたが、体幹のFBFMの減少は抑えられなかった。

（2）DE群では、ベースラインにおいて内臓脂肪が多い者ほど減量に伴う内臓脂肪の減少量が大きかった。D群ではベースラインにおいて内臓脂肪が多く蓄積している者ほど皮下脂肪は減少しにくくなることが示唆された。

（3）体力の変化量とFBFMの変化量は有効に相関しなかったことから、FBFMの減少が体力の低下に直接影響するとは言えなかった。D群においてFBFMが減少したにもかかわらず、筋力や全身持久能は維持した。

以上より、本研究で観察された低エネルギー食療法と有酸素性運動の組合せは、内臓脂肪型肥満女性の内臓脂肪を顕著に減少させ、減量に伴う上肢と下肢の除脂肪切除組織の減少を抑制する可能性が示された。一方、低エネルギー食療法は内臓脂肪型肥満女性の内臓脂肪を顕著に減少させるだけでなく、減量に伴う体力低下を引き起こさなかったことから、運動を実施しつづけた条件下（環境、身体状況、性格）の者にとって減量治療の導入として有効であると考えられた。

文献

Borg, G. (1973) Perceived exertion: a note on “histo-
肥満者における食事制限と運動の影響

大蔵倫博・和田実千・上原一・中西とも子・田中喜代次（2000b）有酸素性運動およびエネルギー摂取制限による減量プログラムの評価：冠動脈硬化性心疾患の危険因子への影響. 健康支援 2：12–21.