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Abstract Stress transfer between earthquakes is recognized as a fundamental mechanism governing
aftershock sequences. A common approach to relate stress changes to seismicity rate changes is
the rate-and-state constitutive law developed by Dieterich: these elements are the foundation of
Coulomb-rate-and-state (CRS) models. Despite the successes of Coulomb hypothesis and of the
rate-and-state formulation, such models perform worse than statistical models in an operational forecasting
context: one reason is that Coulomb stress is subject to large uncertainties and intrinsic spatial
heterogeneity. In this study, we characterize the uncertainties in Coulomb stress inherited from different
physical quantities and assess their effect on CRS models. We use a Monte Carlo method and focus on the
following aspects: the existence of multiple receiver faults; the stress heterogeneity within grid cells, due to
their finite size; and errors inherited from the coseismic slip model. We study two well-recorded sequences
from different tectonic settings: the Mw = 6.0 Parkfield and the Mw = 9.0 Tohoku earthquakes. We find
that the existence of multiple receiver faults is the most important source of intrinsic stress heterogeneity,
and CRS models perform significantly better when this variability is taken into account. The choice of
slip model also generates large uncertainties. We construct an ensemble model based on published slip
models and find that it outperforms individual models. Our findings highlight the importance of
identifying sources of errors and quantifying confidence boundaries in the forecasts; moreover, we
demonstrate that consideration of stress heterogeneity and epistemic uncertainty has the potential to
improve the performance of operational forecasting models.

1. Introduction

Stress transfer between faults has been identified as a plausible mechanism for earthquake triggering, and
a correlation between positive Coulomb stress changes and seismicity rate has repeatedly been observed
[King et al., 1994; Harris, 1998]. While controversies exist on the relative importance of various processes
(such as coseismic slip, afterslip, and the redistribution of stresses by small events), all models are based
on the same physical concept: the elastic response of the Earth’s crust to one or more planar dislocations.
Okada [1992] gave a set of solutions to model the deformation and stress field in an homogeneous elas-
tic half-space, which has subsequently been extended to the more general case of a viscoelastic, layered
half-space [Wang et al., 2006]. In both cases, several simplifications are required to model the Coulomb stress
field (ΔCFS), and various sources of errors are present. These include the following: uncertainties and finite
resolution of the slip model, small-scale variability of elastic parameters in the crust, lack of knowledge of
the orientation of the faults that can accommodate future seismicity, and discretization of the crust into cells
of finite volume.

While a simple treatment may be sufficient to demonstrate a qualitative agreement between the distribu-
tion of seismicity and ΔCFS, careful consideration of uncertainties is required in order to construct models
which are useful in the context of operational earthquake forecasting. In this work, we focus in particular
on models which employ a rate-and-state seismicity evolution [Dieterich, 1994]: due to strong nonlinear-
ity, such models are very sensitive to variability in input stress values, and several authors have shown that
including stress variability leads to a significantly different spatiotemporal distribution of seismicity.

Marsan [2006] and Helmstetter and Shaw [2006] demonstrated that small-scale variability can lead to
the suppression of stress shadows in the short term, a result that can be understood from the fact that
according to the rate-and-state constitutive law, seismicity rate increases exponentially with stress change
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immediately after a stress step, and hence, the largest values of a distribution dominate at short times.
Therefore, small-scale variability can explain the observation of early aftershocks in areas which experience
an average negative stress, including the vicinity of the rupture area on the main shock fault. Stress variabil-
ity also affects the temporal evolution of seismicity. In the rate-and-state formulation, seismicity following a
positive stress step is predicted to decay following an Omori law with p = 1 and c dependent on the value
of stress change: due to the variability in c value, an effective value of p < 1 is observed when stresses of
different magnitude are included [Helmstetter and Shaw, 2006]. These results indicate that a careful treat-
ment of the variability in Coulomb stress may be a critical aspect for Coulomb-rate-and-state (CRS) models
aimed at forecasting aftershock sequences. In fact, Hainzl et al. [2009] showed that when Coulomb stress
uncertainties are included in CRS models of the Landers, 1992 Mw = 7.3 aftershock sequence, the correla-
tion with observed seismicity improves and the inversion of rate and state parameters is more stable. They
estimated uncertainties of ΔCFS by comparing the stress field obtained from existing published slip mod-
els, and they found the standard deviation of ΔCFS to be spatially similar to the absolute stress change;
therefore, they modeled uncertainties by assuming a spatially constant coefficient of variation (CV, the ratio
between standard deviation and absolute value). While this approach has the advantage of being simple to
implement, it has few drawbacks: it introduces a new parameter (CV), and it may not provide an accurate
spatial description of the variability of stress field, as pointed out by Woessner et al. [2012].

Our goal is to present methods by which uncertainties can be included into CRS models in a physically
meaningful way and to perform an assessment of the variability of ΔCFS and its effect on the forecasts
of aftershock sequences. We estimate uncertainties in input quantities by using prior information about
fault orientation and slip characteristics, and we explicitly propagate them through the model using Monte
Carlo simulations, thus without making any prior assumption on the distribution of ΔCFS. We focus on
three sources of uncertainty: (1) the choice of receiver faults on which the stress tensor is resolved; (2) the
existence of a range of stress values within each cell, due to its finite volume; and (3) uncertainties in the
slip models, due both to its finite resolution and to modeling assumptions such as choice of geometry or
inversion method. After outlining the modeling framework in section 2, we present methods to model the
variability of ΔCFS: to model the presence of multiple receiver fault orientations, we sample the distribu-
tion of past focal planes; we then consider the effect of finite resolution of the calculation grid and suggest
two techniques to reproduce this aspect of stress heterogeneity; finally, we outline methods to reproduce
the effect of slip model uncertainties by adding a synthetic, small-scale slip and by comparing the out-
put from different published slip models. In section 4, we study the effect of each source of uncertainty on
the forecast, focusing on two case studies from different tectonic settings: the Parkfield, Mw = 6.0, strike
slip earthquake and the Tohoku, Mw = 9.0, megathrust event, both of which have well-recorded after-
shock sequences and for which several input slip models are available. After describing the sensitivity of the
models to various sources of uncertainty, we discuss practical ways to combine this information into a sin-
gle model, in particular drawing a distinction between aleatoric and epistemic uncertainties. In section 5
we test how these techniques affect model performance; a physical interpretation of these results and
their significance in the context of medium term earthquake forecasting are discussed in the final part of
the article.

2. Modeling Procedure
2.1. Coulomb Stress
The theory of static Coulomb stress triggering considers aftershocks as the consequence of the stresses
induced by the static deformation of the crust following slip on a planar dislocation (main shock). Accord-
ing to the Coulomb-Mohr criterion, failure on a plane occurs when the sum of shear and frictional stress
equals or exceeds the cohesive strength; therefore, seismicity is promoted when Coulomb stress (CFS =
� − ��tot) increases and inhibited when it decreases. Here � is the shear stress in the direction of slip, � is
the coefficient of friction, and �tot is the total normal pressure on a plane; the latter is given by �tot = � − p,
where � is the direct effect of crust deformation and p the change in pore pressure due to the response of
fluids. According to the apparent friction poroelastic model [Cocco and Rice, 2002, and references therein]
Δp = −BΔ�, with B the Skempton coefficient which varies between 0 and 1. Hence, Coulomb stress changes
can be expressed as

ΔCFS = Δ� − �′Δ� (1)

with �′ = �(1 − B). Typical values of � are 0.6–0.8 [Byerlee, 1978].
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2.2. Rate and State Evolution of Seismicity
Dieterich [1994] derived a constitutive law for the evolution of seismicity on a populations of faults governed
by rate-and-state-dependent friction, subject to a stress perturbation. The seismicity rate R is given by

R =
r0

� ��r
(2)

where ��r is the constant shear stressing rate and � is a constitutive parameter which evolves according to

d� = 1
A�

[dt − �dS] (3)

with S = � − (� − �)�tot is a positive nondimensional constitutive parameter [Linker and Dieterich, 1992].
It should be noted that earthquake nucleation in rate-and-state framework is based on physically different
principles as the simple Coulomb failure criterion, in particular due to the dependence of friction on slip
and slip rate. However, the quantity S, a linear combination of shear and normal stress, is analogous to CFS,
and the concepts underling Coulomb stress transfer can be useful to interpret the spatial distribution of
seismicity. Note that ΔS can be written as ΔCFS with modified coefficient of friction �′ = (� − �)(1 − B)
instead of �′ = �(1 − B). We use �′ = 0.3 but also test the effect of choosing other values (Appendix A).

2.3. Model Implementation
When fitting the model to the catalog data, we determine the rate-and-state parameters A� and ta = A�∕ ��r

with the highest likelihood value by using a simple grid search algorithm, described in Hainzl et al. [2009]
(Appendix A). The background rate is fixed by the observed past seismicity (see section 2.4). In principle, a
spatially variable background rate r0 can be obtained from a smoothed, declustered catalog of past seismic-
ity. However, CRS models with a nonhomogeneous background rate have been shown to be more sensitive
to the details of the stress field [Cocco et al., 2010]; thus, the uncertainties in the background model may be
amplified. Moreover, using an homogeneous background rate facilitates the interpretation of the effect of
other uncertainties, which is the main focus of this study. Therefore, the background rate r0 is assumed to be
spatially homogeneous.

In order to study the effect of stress variability on a subgrid scale and the use of different slip models, we use
a Monte Carlo technique: we create 100 perturbed versions of the stress field and calculate the spatiotempo-
ral distribution of seismicity for each iteration from the rate-and-state equations. The perturbed stress fields
are obtained based on physical consideration of different sources of uncertainties, as described in section 3.
In order to avoid the singularities of the Okada solutions, we follow the common approach of imposing a
cutoff value for ΔCFS: we set a value of 10 MPa for Tohoku and 1 MPa for Parkfield.

2.4. Data
2.4.1. Parkfield
We use the Advanced National Seismic System (ANSS) catalog, combined with the more complete catalog
of Peng and Zhao [2009] for the first 2 days following the main shock. The combined catalog has a complete-
ness of Mc = 2.0 starting from 100 s after the main shock [Peng and Zhao, 2009]: we only fit data starting
from the time of completeness up to 250 days from the main shock. We estimate the background rate based
on the ANSS catalog from 1970 up to the main shock: rates are calculated for time windows of 30 days and
1 year, and the background rate is found visually ignoring increased values after large (Mw � 6.0) events,
as shown in the supporting information (A). Due to the ongoing aftershock sequence of the Simeon earth-
quake, the rate at the time of the Parkfield main shock is higher than the background rate; we test the effect
of this by starting the model with a nonsteady state rate of r(0) = 1.144 d−1 and find no significant differ-
ence in model behavior: the results presented here are based on a background rate of r0 = 0.22 d−1 for the
area indicated in Figure 1 and depth range between [0.5, 13.5] km (the calculation domain). We calculate
Coulomb stresses from the slip model of Wang et al. [2012], unless otherwise stated.
2.4.2. Tohoku
We use the catalog from the Japan Meteorological Agency. We estimate a completeness magnitude of Mc =
4.0 starting from 5 days after the main shock: also in this case, we limit our study to the time period in which
the catalog is complete, up to 250 days from the main shock. The background rate for the area in Figure 1
and depth between [3.0, 42.0] km is estimated from the Japan Meteorological Agency catalog from 2010
up to the main shock: we find a value of r0 = 0.2 d−1, as shown in the supporting information (A). Unless
otherwise stated, stress calculations are based on the slip model of Wang et al. [2013], which uses the same
geometry of Pollitz et al. [2011].
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Figure 1. Maps of focal mechanisms in the area of the two main shocks, which we used as a set of receiver faults on
which Coulomb stresses are resolved. (a) Focal mechanisms of Mw � 3.1 events in the area of the Tohoku earthquake,
between February 1997 and the main shock. Events are color coded by distance from the fault: red events are consid-
ered on fault (d < 20 km) and those in blue are the intraplate events. This selection has been done from the observed
clustering of focal mechanisms parameters (strike and dip) in Figure 2a. (b) Focal mechanisms of Mw � 2.0 events in
the Parkfield area, between 1 January 1981 and the time of the main shock. The box in the Parkfield map indicates the
model domain, and the depth range is [0.5, 13.5] km; for Tohoku, the entire area is the model domain, and the depth
range is [3.0, 42.0] km. The choice of these areas was dictated by the distance at which corresponding Coulomb stresses
are significant.

3. Treatment of Uncertainties
3.1. Receiver Fault Orientation
In principle, the total seismicity in a region of the crust should be obtained by adding the contribution from
each of the fault planes in that volume, assuming that earthquakes occur on preexisting planes. However, it
is in practice not possible to have a complete knowledge of all the faults. The two most commonly adopted
assumptions are the following: (1) all events have the same focal plane orientation as the main shock and
(2) earthquakes rupture along optimally oriented Coulomb failure planes, on which the total (background
+ coseismic) Coulomb stress is maximum. The first approach oversimplifies the geometry of most fault sys-
tems, in which faults exist with different orientation from the main shock. The second approach leads, in
general, to more successful forecasts [Cocco et al., 2010]; however, it relies on the assumption that faults exist
everywhere with the optimal orientation and that only these faults will produce earthquakes. Considering
only the contribution of the optimally oriented fault at each grid point is not consistent with rate-and-state
modeling: while in this framework seismicity is predicted to be dominated by the largest ΔCFS values
at short times (t � ta), the contribution of faults with lower ΔCFS would have an impact at later times
[Helmstetter and Shaw, 2006].

In order to account for the presence of multiple fault orientations, we use the catalog of past focal mecha-
nisms in the area of interest, assuming that past focal planes provide a reliable sample of the existing fault
structures. We use both possible planes from the catalog as possible rupture planes. Since the direction of
slip on a preexisting plane depends on the external field, we only use the strike and dip values from the
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Figure 2. Statistical distribution of focal planes parameters for the planes used as receiver faults shown in Figure 1.
(a) For Tohoku, we distinguish between three groups of events: within 20 km from the fault, more than 20 km above,
and more than 20 km below, based on changes in focal plane distributions displayed in Figure 2a (right). Figure 2a (left)
shows the distribution of strike and dip for on-fault and off-fault events (defined by the 20 km threshold); in particu-
lar, the distribution of dips shows a larger fraction of steep faults (dip = 40–90�) being activated further from the slab.
(b) For Parkfield, strike and dip do not show clear spatial variations, and we do not distinguish between different zones.

catalog and choose the rake for which shear stress � is highest. For Tohoku, we use a differential stress of
20 MPa [Hasegawa et al., 2011], with orientation such that the main shock mechanism (strike = 195�,
dip = 10�, and rake = 88�) is optimally oriented; for Parkfield, the differential stress is 10 MPa [King et al.,
1994], and the main shock plane (strike = 330�, dip = 89�, and rake = 180�) is optimally oriented.
3.1.1. Data
For Parkfield, we use the catalog of focal mechanisms from Yang, Haukkson, and Shearer [Yang et al., 2012].
We select events occurring between the start of the catalog (1 January 1981) and the time of the main
shock; we also perform spatial selection, using the spatial window corresponding to Figure 1 and use only
events with Mw � 2.0, giving a total of 81 focal mechanisms. We investigate whether spatial trends in
the orientation of these focal planes exists, and we find a rather homogeneous spatial distribution of focal
mechanisms (as confirmed by Figures 1b and 2b): therefore, we sample the entire set of focal planes at each
grid point.

For Tohoku, we use the F net moment tensor focal mechanisms solutions [Okada et al., 2004], determined
and provided by the National Research Institute for Earth Science and Disaster Prevention, Japan, and
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Figure 3. Synthetic test comparing the distribution of stress values due to finite cell size. (a, b) Mean and standard
deviation of the distributions obtained from subdividing each cell into 125 subcells, by reducing the size by a factor
of 5 in each dimension; (c, d) approximated values, obtained by first-order estimation of stress gradients described in
equation (4). (e) Approximated values (obtained from estimating gradients) as a function of the real values (obtained
from the subdividing the cells), with each point corresponding to a cell: for 95% of the points, the approximated values
differ from the true values by less than a factor of 2. The distributions are generated using a synthetic slip model of a
strike-slip event of Mw = 6.0 on a fault with strike = 90� , dip = 90� , and the depth interval for stress calculations of 4 km.

containing events of Mw � 3.1 from February 1997. The total number of focal mechanisms preceding
the Tohoku earthquake is 2626. Compared to the Parkfield case, we find here a nonuniform spatial dis-
tribution of focal mechanisms, due to the larger area considered and to the presence of a wider range of
fault structures, such as the subduction interface, splay faults, and intraplate faults in the hanging wall
and footwall [Asano et al., 2011]; in particular, we distinguish different distributions of strike and dip for
subduction-related events and intra plate events on each side of the subduction interface (Figure 2a). In
order to capture the local variability of receiver faults, we divide the catalog into three groups based on
Figure 2a: events in the footwall, at a distance d > 20 km below the fault (208 events); events in the hanging
wall, at d > 20 km from the fault (588 events); and subduction-related events, at d < 20 km (1830 events).
The latest group includes a larger variety of focal planes, reflecting the coexistence of different fault struc-
tures within few tens of kilometers from the main shock plane. At each grid point, receiver faults are sampled
from one of these groups, depending on the grid point location.

A caveat to this approach is that past seismicity did not occur uniformly on all existing faults but was higher
on those which were best oriented in the past stress field so that the catalog of focal planes may not be
a reliable proxy of existing faults. In the supporting information (B), we compare the distribution of focal
planes from past events and aftershocks: we find that aftershocks tend to take place on the same planes
which accommodated past seismicity, as opposed to the optimally oriented planes.

3.2. Finite Cell Volume
Uncertainties in CRS models also originate from discretization of the domain: the model expresses seismic-
ity rates in a cell of finite volume, assuming that the value calculated at the center is uniform throughout the
cell. This is not the case, especially in the vicinity of the faults where gradients in ΔCFS are highest. The most
direct method to address this problem is to sample each cell at multiple locations, by dividing the cell into
smaller subcells; while simple to implement, this method leads to a fast growth of problem size and com-
putational requirements. We therefore suggest an alternative method to obtain a first-order estimate of the
stress gradients within each cell and hence the range of possible stress values. For each cell, we estimate the
range of values as follows:

	j = (ΔCFSj − ΔCFS0)∕2

ΔCFSmin = ΔCFS0 + min
�
	j

�

ΔCFSmax = ΔCFS0 + max
�
	j

�
(4)

where ΔCFS0 is the value at the center of the cell and j = 0, 1, ...6 refers to the cell itself and the six neigh-
bor cells. For each Monte Carlo iteration, we draw a value from the uniform distribution in the interval
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Table 1. List of Input Slip Modelsa

Index SRCMOD Identifier Reference

Tohoku

1 - Wang et al. [2013]

2 s2011HONSHU01SHAO Shao et al. [2011]
3 s2011HONSHU02SHAO Shao et al. [2011]
4 s2011HONSHU03SHAO Shao et al. [2011]
5 s2011HONSHU04SHAO Shao et al. [2011]
6 s2011TOHOKU01FUJI Fujii et al. [2011]
7 s2011TOHOKU01GUSM Gusman et al. [2012]
8 s2011TOHOKU01HAYE Hayes [2011]
9 s2011TOHOKU01IDEx Ide et al. [2011]
10 s2011TOHOKU01LAYx Lay et al. [2011]
11 s2011TOHOKU01SATA Satake et al. [2013]
12 s2011TOHOKU01WEIx Wei and Sladen (Caltech, Tohoku 2011)
13 s2011TOHOKU01YAMA Yamazaki et al. [2011]
14 s2011TOHOKU01YUEx Yue and Lay [2013]
15 s2011TOHOKU02FUJI Fujii et al. [2011]
16 s2011TOHOKU02GUSM Gusman et al. [2012]
17 s2011TOHOKU02SATA Satake et al. [2013]
18 s2011TOHOKU02WEIx Wei et al. (Caltech: Tohoku 2011)
19 s2011TOHOKU03SATA Satake et al. [2013]
20 s2011TOHOKU03WEIx Wei et al. [2012]

Parkfield
1 - Wang et al. [2012]
2 s2004PARKFI01DREG Dreger et al. [2005]
3 s2004PARKFI01CUST Custodio et al. [2005]
4 s2004PARKFI01JIxx Ji (Caltech, Parkfield 2004)

aFigures of all slip models can be found in the supporting information (C).

�
ΔCFSmin,ΔCFSmax

�
. A synthetic test (Figure 3) shows that the two methods yield similar distributions of

stress values: in the remaining part of the paper, results from the approximated method (equation (4))
will be presented. The grid resolutions have been chosen based on the slip model patch size and the
total domain size, so as to maintain computational costs reasonable. We used the following values: 0.1�

(horizontal), 3 km (vertical) for Tohoku and 0.025� (horizontal), 1 km (vertical) for Parkfield.

3.3. Slip Model Uncertainties
The reliability of slip models is an important aspect to consider when modeling Coulomb stresses [Hainzl
et al., 2009; Woessner et al., 2012]. Multiple sources of errors impact slip models, including the following:
(1) the nonuniqueness of the inversion; (2) incomplete and erroneous data; (3) inversion algorithm;
(4) choice of fixed parameters, including fault geometry, fault discretization, and smoothing; and (5) choice
of other physical quantities such as rupture speed and velocity structure. The sensitivity of slip models to
these aspects is the subject of several studies [Yagi and Fukahata, 2011; Hartzell et al., 2007; Beresnev, 2003],
and it is becoming more common to provide slip models with estimates of uncertainties [Sudhaus and
Jónsson, 2009]; techniques such as Bayesian inversion are increasingly being used to incorporate data errors
and obtain a family of possible models [Minson et al., 2013], which should be included in a forecasting model
to estimate confidence limits. We will distinguish between two types of errors: the finite resolution of an
individual slip model and the differences between published slip models.
3.3.1. Subpatch Scale Slip
The resolution of a slip model is limited by the patch size and smoothing, and even when a slip model
presents slip on isolated patches, it can be a modeling artifact and has large uncertainties [Hartzell et al.,
2007; Beresnev, 2003]. In order to consider small-scale slip, we create a set of possible slips by adding a ran-
dom high-frequency slip, while leaving the low frequencies unchanged. Several authors have suggested
that slip is fractal, with power spectrum characterized by a power law decay: P(k) ∝ k−2(4−D), with D the
fractal dimension and k the wave number. In this work, we used the procedure described in [Kieling et al.,
2014] to create a set of slip models with synthetic slip at small wavelengths while keeping the original slip
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Figure 4. Sensitivity test showing the cumulative number of events versus time, with fixed rate-and-state parameters (A� = 28 kPa, ta = 8000 d for Tohoku and
A� = 6 kPa, ta = 10000 d for Parkfield). Each thin line indicates a Monte Carlo iteration; the black line is their average; the red line is the observed seismicity; the
blue line is the forecast obtained without any source of uncertainty (hidden by the black line in Figures 4c and 4f ). Forecast for Tohoku, (a) including variability
in receiver faults, (b) including stress field gradients within each cell, (c) including subpatch scale slip in the slip model, and (d) using different published slip
models. (e–h) Same as above, for Parkfield. For this test, rate-and-state parameters are not optimized, leading to the tendency to underestimate the total number
of events.

distribution at wavelengths k > kc, where kc is the corner wave number given by kc = 101.82−0.5Mw [Causse
et al., 2010]; we chose a value of D = 2.
3.3.2. Choice of Slip Model
When adding synthetic, small wavelength slip, it is assumed that the original slip model is realistic in terms
of geometry and large-scale slip distribution. On the other hand, a number of different slip models exist for
each main shock, which can differ quite significantly. In order to study the sensitivity of CRS models to the
input slip, we use a set of slip models from the finite-source model database maintained by ETH Zürich: in
total, we compare a set of four models for Parkfield and 20 models for Tohoku (Table 1). Figures comparing
all the slip models can be found in the supporting information (C).

4. Impact of Uncertainties on Forecasted Seismicity

In order to assess the impact of different sources of uncertainty on the forecasted seismicity, we run mod-
els with each source of uncertainty included separately. We compare five models, with consideration of the
following: (1) uncertainties from receiver fault orientation; (2) uncertainties from finite cell volume; (3) uncer-
tainties from unresolved, small-scale slip; and (4) uncertainties from different published slip models and
finally a model without consideration of uncertainty. The goal of this exercise is to perform a sensitivity anal-
ysis and not to fit the best possible model to the data; therefore, we set the rate-state parameters to some
reasonable but not optimized values (A� = 6 kPa, ta = 10, 000 d for Parkfield and A� = 28 kPa, ta = 8000 d
for Tohoku). We run 100 iterations of the model, altering each of the sources of variability in turn. In models
which do not consider receiver fault uncertainty, we use the average main shock focal mechanism; in mod-
els which do not consider slip model uncertainty, we use the original slip model without addition of short
wavelength slip.

Figure 4 shows the effect of uncertainties on the forecasted temporal evolution of seismicity. In Figures 4a
and 4e, each line corresponds to the choice of a different receiver focal plane; it is clear, for both case studies,
that this choice has a more profound effect on the forecast than the other sources of uncertainty. We find
that considering the finite volume of cells has very limited impact on the temporal evolution of seismicity
for Tohoku and a moderate effect for Parkfield (Figures 4b and 4f); the effect of small-scale slip is also very
small (Figures 4c and 4g) and negligible compared to the impact of using different published slip models
(Figures 4d and 4h).
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Figure 5. Maps of forecasted seismicity for Tohoku. The color scale indicates the number of events forecasted between 5 and 250 days (N), divided by the back-
ground number of events (N0), on a logarithmic scale. (a) Uncertainties not included; mean forecast obtained including uncertainties from (b) receiver fault
orientation, (c) finite cell volume, (d) small-scale slip in the slip model, and (e) different published slip models. (f–i) Standard deviation corresponding to the figures
above, calculated at each grid point from the set of Monte Carlo iterations.

We find that the spatial distribution is also affected most significantly by the choice of receiver fault
(Figures 5–7). In particular, in the average map, the seismicity lows in the area of coseismic slip disappear
for both main shocks (Figures 5b and 7b). The variation of the forecast across iterations is large not only in
the vicinity of the fault but also in the far field. For Tohoku, in the offshore region at lat ∼ 38�, lon ∼ 144�

presents a large standard deviation (Figure 5f ), in an area which is quiescent when uncertainties are not
included (Figure 5a). This indicates that faults exist with orientations on which seismicity is promoted, as
confirmed by the observed aftershocks in these areas.

When considering the finite cell size, a smoother forecast is obtained (Figures 5c and 7c); moreover, the
on-fault area of reduced seismicity has a smaller size compared to the case in which uncertainties are

Figure 6. Maps of forecasted seismicity for Parkfield. Individual maps correspond to those in Figure 5.
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Figure 7. Forecasted seismicity for Parkfield, projected on the main shock fault plane; patches correspond to those in the
slip model. Individual plots correspond to those in Figures 5 and 6.

negligible. This results indicate that sharp boundaries between areas of increased and decreased seismic-
ity is an artifact due to coarse grid size with respect to the near-field gradients and that the area of stress
shadows can be overestimated due to discrete sampling of the stress field.

Comparison of spatial forecasts obtained with and without slip model uncertainty (Figures 5d, 5a, 6d, and
6a) indicates that the impact of small-scale slip is very small. For both main shocks, a significant decrease in
seismicity (stress shadow) is observed on the main shock fault; the standard deviation is also small in this
area, indicating that this feature is consistent across most of the Monte Carlo iterations obtained from dif-
ferent perturbed slip models. This results indicates that slip heterogeneity, as simulated in our model, is not
sufficient to induce seismicity close to the largest patch of coseismic slip on fixed receiver faults. On the
other hand, the differences between published slip models are significant: we find that the standard devia-
tion in the expected number of events across models obtained from different published slip distributions is
similar to the absolute value of their average (Figures 5e, 5i, 7e, and 7i).

The two main shocks significantly differ in terms of size and complexity; however, we find that the same
sources of uncertainties among those analyzed in this work are most significant in both cases. We see a par-
ticularly large variability due to receiver fault orientation for the Tohoku sequence, with the total number
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of events varying by a factor of ∼ 4.5; this result reflects the higher structural complexity of a subduction
zone, in which a wider range of receiver fault orientations is present. The differences due to the choice of
slip model are also larger for Tohoku, but this result may simply be due to the larger number of slip mod-
els compared. The effect of finite cell volume depends on the grid resolution compared to the scale of the
stress field: this aspect is slightly more important for Parkfield (Figures 4b and 4f), due to the fact that the
grid used for Tohoku produced a smoother forecast than the one used for Parkfield (Figures 5 and 6).

4.1. Combining Models
Having analyzed the distribution of forecasts arising from different factors in the input data, the following
question arises: how to combine the forecasts from each Monte Carlo iteration into a single forecast? To
handle variability in the input data correctly, it is important to draw a distinction between the physical inter-
pretation of different types of uncertainties. With subgrid variability, we refer to the spatial heterogeneity
of physical properties in a crustal volume, for example, the presence of faults with different orientations or
inhomogeneous elastic properties. These spatial variations, which can be interpreted as aleatoric uncertain-
ties, cause a real variability in Coulomb stress values, which gives rise to physically observable characteristics
of seismic sequences: an example of such phenomena is the observation of increased seismicity rates
in“stress shadows,” i.e., areas with negative average ΔCFS. In this context, each Monte Carlo iteration can
be viewed as representative of a small cell subvolume, the exact location of which cannot be resolved.
With these assumptions, the resulting forecast should not be considered as the average of the several
possible and alternative forecasts but instead as a simulation of the behavior emerging from real hetero-
geneity within each grid cell. We consider the sampling of a set of existing receiver faults, as well as the
consideration of heterogeneity due to finite cell volume, as ways to reproduce this physical heterogeneity.

The use of a set of possible slip models is an example of epistemic uncertainties, and it requires a different
interpretation: the forecasts obtained in this case are alternative to each others, and their average does not
have a clear physical meaning. The distribution of such forecasts, on the other hand, can be used to estimate
the sensitivity of the model to the input slip model and therefore to provide an estimation of the final uncer-
tainty of the forecast. Additionally, ensemble models can be constructed by combining models based on
alternative assumptions or input data; and while such procedure may not have an obvious physical interpre-
tation, recent studies [Marzocchi et al., 2012] have proven it to be a valuable tool from the point of view of
operational earthquake forecasting. In their study, the authors use Bayesian averaging to combine models
from the 5 year Regional Earthquake Likelihood Models for California: these are statistical models submitted
by different authors and based on different modeling strategies. Here we test whether the same approach
can also be effective to combine forecasts from alternative input data within a single model class.

We follow the approach of Marzocchi et al. [2012] in creating an ensemble model based on a weighted aver-
age of forecasts from all available slip models. We weigh models using the Score Model Averaging method
[Marzocchi et al., 2012]:

Rens =
J�

j

wjRj (5)

with weights given by

wj =
	corr

j Sj

�J
k

�
	corr

k Sk

� (6)

where 	corr
j is a factor accounting for the correlation between models and Sj is given by Sj = 1∕�LL − LL∗�,

where LL is the model LogLikelihood, and LL∗ is the LogLikelihood of a reference model, in this case a uni-
form Poisson model with seismicity rate given by the background rate. For more details about the method,
see Marzocchi et al. [2012]. Due to the logarithmic scaling with Likelihood, this weighting scheme tends not
to favor the best performing model as strongly as other schemes. In light of the fact that small-scale slip
variability plays a secondary role compared to the differences between published slip models, we do not
include this aspect, for computational efficiency: the individual models in our ensemble are all obtained
from the original slip model, without addition of small-scale slip.
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Table 2. Comparison of Rate and State Parameters and Model Performancea

Model A� (kPa) ta (d) ΔLL N (Nobs = 2266)

Tohoku
Without uncertainties 100 19,500 0 547
With uncertainties 18 18,000 5.65 2,547

Parkfield
A� (kPa) ta (d) ΔLL N (Nobs = 674)

Without uncertainties 8 10,000 0 254
With uncertainties 4 10,000 14.43 526

aThe last column is the total number of forecasted aftershocks and Nobs is
the observed number.

5. Model Performance

We quantify the performance of various models: first, we assess the effect of including aleatoric uncertain-

ties (due to finite cell size and variable receiver fault orientations); second, we present a comparison of the

performance of models obtained from the slip models listed in Table 1; finally, we study an ensemble model

obtained combining the forecasts from alternative slip models.

Model performance can be evaluated by using the LogLikelihood, which is defined as the probability of

the observed outcome (the observed earthquake catalog) given a specified model; given equal a priori

Figure 8. Comparison of the modeled seismicity (c, d) with and (a, b) without aleatoric uncertainty, for Tohoku. Figures
8a and 8c show temporal decay of seismicity; red line: observed decay, black line: modeled seismicity, and grey lines:
individual Monte Carlo iterations. Figures 8b and 8d show spatial distribution of modeled number of events divided
by background number of events in 250 days, on a logarithmic scale. (e) Map of individual aftershocks, color coded by
change in LogLikelihood when aleatoric uncertainties are included: the large majority of events is better modeled by
including uncertainties. In the background, in black and white: the slip model (saturated at slip = 20 m).
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Figure 9. Comparison of the modeled seismicity (b, d) with and (a, c) without aleatoric uncertainty, for Parkfield. Lines and colors scales correspond to those
in Figure 8. (e) Also in this case, most of the events are better modeled when aleatoric uncertainties are included; comparison with the underlying slip model
(saturated at slip = 0.3 m) shows that in particular, the events occurring on the rupture area are better explained by including stress heterogeneity.

probability, Bayes theorem implies that models with higher LogLikelihood are more likely to be correct
[Ogata, 1983]. For a stationary Poisson process, the LogLikelihood is defined as

LL =
N�

j

log
�
R(xj, tj)

�
− �

t1

t0
�volume

R (x, t) dxdt (7)

where R is the rate at the time tj and locations xj of the observed earthquakes (with index j) and t0 and
t1 are the start time and end time of the forecast. The values of Rj depend on the exact location of the
observed events; in order to account for the uncertainty in earthquake location, we smooth the position
over a set of grid points, assuming a Gaussian distribution with standard deviation in the horizontal and
vertical position as given in the catalog. We compare models against each other using the change in Log-
Likelihood per event, given by ΔLL = (LL − LL0)∕N, where LL0 is the lowest LogLikelihood among the
models tested.

5.1. Performance of Models Including Stress Heterogeneity
We compare the LogLikelihood of a model which includes stress variability to a simple model which
assumes optimally oriented planes and does not account for finite volume of the cells; both models use
the same slip distribution [Wang et al., 2012, 2013], without the addition of synthetic slip. We invert for
rate-and-state parameters using the entire period of the forecast (250 days). As previously observed by
Hainzl et al. [2009], we find that overall model performance improved significantly when we account for
the heterogeneity of the stress field (Table 2): the change in LogLikelihood per event is 5.65 for Tohoku and
14.43 for Parkfield. We find that models which consider aleatoric uncertainty provide a better description
of both the spatial and temporal distribution of seismicity (Figures 8 and 9). Moreover, these models better
estimate the total number of events for both sequences (Table 2 and Figures 8 and 9).

5.2. Performance of the Available Slip Models
We evaluate the ability of published slip models to reproduce the observed seismicity. We perform two
types of tests: (1) nonprospective mode, we allow the model to find the best set of parameters to fit the data
in the entire modeled period: the inversion of model parameters is done by maximizing the LogLikelihood
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Figure 10. Comparison of ΔLL for Tohoku, in (a) nonprospective mode and (b) pseudo-prospective mode. Comparison
of ΔLL for Parkfield: (c) nonprospective mode and (d) pseudo-prospective mode. Each histogram corresponds to a slip
model, in the order in which they are listed in Table 1. The dotted line indicates the performance of the ensemble model.

for the test period of 250 days. (2) Pseudo-prospective mode, we use the first 5 days of complete catalog to
fit rate-and-state parameters and model the seismicity for the remaining time. The goal of the first tests is to
compare the performance across slip models in the ideal case in which the best parameters are known; the
second test, on the other hand, reproduces the condition of a forecast scenario. For each model, we include
aleatoric uncertainties from receiver fault and grid size and use the average value.

Model performance results are summarized in Figure 10. We do not find a clear correlation between slip
model complexity (as indicated by number of fault segments or number of patches) and model perfor-
mance. We find that for Tohoku, both in the nonprospective and the pseudo-prospective case, the ensemble
model has a higher LogLikelihood than any of the models in the sample. For Parkfield, we find that the
ensemble model outperforms all the individual models in the pseudo-prospective test; only one model
outperforms the ensemble model in the nonprospective test.

6. Discussion

We performed a sensitivity analysis of CRS models to identify the most important sources of uncertainties in
Coulomb stress calculations; furthermore, we suggested practical methods to include these uncertainties in
the model, by considering their physical origin and drawing a distinction between aleatoric and epistemic
sources of errors.

We find that various uncertainties in Coulomb stress have a profound impact on CRS models; in particular,
the orientation of receiver faults and the choice of input slip model have a predominant effect.
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The heterogeneity of stress field due to the presence of multiple receiver fault orientation plays a first-order
role in both spatial distribution and temporal evolution of the forecast. This is not surprising considering
that resolving the stress tensor on different planes can give rise to very different stress fields, both in the
near field and in the far field (see supporting information (D)); on the other hand, the perturbations in the
stress fields due to finite cell size and by small-scale slip act on a smaller scale and are overall less significant.

We find that some important features of the forecast, such as the existence of stress shadows, are altered if
we consider seismicity as emerging from the contribution of faults at different orientations which respond
independently to the stress field. As previously suggested by various authors [Marsan, 2006; Helmstetter and
Shaw, 2006], variability of the stress field in the context of rate-and-state models can provide an explanation
for the observation of seismicity in regions of average negative stress change. Our results indicate that the
complexity of fault systems, with faults of different orientations coexisting in a crustal volume, can generate
enough stress heterogeneity to explain these observations, and they are in agreement with the results from
Toda and Enescu [2011] and Enescu et al. [2012], who noticed that receiver fault variability plays an impor-
tant role for the Tohoku aftershock sequence. The suppression of stress shadows also accounts for the better
performance of the models in which aleatoric uncertainty is taken into account: in such models seismic-
ity does not shut down completely in the area of the coseismic rupture, or other areas of negative average
stress change, and seismicity observed at these locations is better explained. Due to definition of LogLikeli-
hood (which becomes singular if an event is observed in an area where the seismicity rate is predicted to be
exactly 0), this reduction of stress shadows has a dramatic effect on the results of LogLikelihood-based tests.

We also observe that models which do not include aleatoric uncertainty underestimate the total number of
events by a factor of 3–4, while better estimations are obtained when stress variability is taken into account.
This difference can be understood from the values of A�, the frictional resistance parameter which deter-
mines how strongly seismicity is enhanced by positive ΔCFS or inhibited by negative ΔCFS. The parameter
search yields higher values of A� for models which do not include uncertainties (Table 2). This result is due
to the presence of stress shadows: since the LogLikelihood heavily penalizes models with areas of almost
complete seismicity shutdown, high values of A� will be favored so that stress shadows are less effective at
inhibiting seismicity. At the same time, higher values of A� cause positive stress changes to produce fewer
earthquakes, leading to the underestimation of total the number of aftershocks.

These findings have important implications for physics-based operational forecasting models. The most
common choices of receiver fault orientation (the use of a fixed receiver or of optimally oriented planes)
vastly underestimate the variability of Coulomb stress, and our sensitivity study shows that these assump-
tions have a dramatic effect in forecasted distribution of seismicity. Another approach consists of including
information about the local geology by use of a gridded fault model [Steacy et al., 2005; Segou et al., 2013;
Toda and Enescu, 2011]; however, this method also assumes a single fault orientation at each grid point and
therefore neglects the aleatoric uncertainty associated with receiver faults. The performance comparison
indicates that considering this aspect leads to significantly higher LogLikelihood scores.

Woessner et al. [2011] compared the performance of statistical and physical models for the 1992 Landers
sequence, and they also found that physics-based models perform significantly better when they include
a stochastic component; however, they observed that CRS models including uncertainties exhibited an
excessive increase in seismicity in areas of large, negative stress changes. This behavior is due to the assump-
tion that the standard deviation of ΔCFS at each grid point is directly proportional to its absolute value
[Hainzl et al., 2009]: since the distribution of ΔCFS values is wide in areas of large and negative stress, large
and positive values are likely to be sampled in the Monte Carlo iterations, and they dominate early seis-
micity. On the other hand, stress variability is most likely underestimated in regions where the average
stress field is close to 0. The models presented here do not make a priori assumptions on the distribution
of ΔCFS: this approach is physically more consistent, and it does not lead to increased seismicity in stress
shadows (Figure 6).

In CRS models, a distinction between the treatment of aleatoric and epistemic uncertainties has not previ-
ously been made. While the methods used in the two cases are similar (averaging in the first case, weighted
averaging in the second), the difference should be kept in mind. When dealing with aleatoric uncertain-
ties, the focus should be on realistically reproducing the physical stress variability; on the other hand, the
combination of models with epistemic uncertainties is guided by an attempt to obtain the best model
performance, as done in the ensemble models.
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We find that the model ensemble generally outperforms all individual models. In particular, the results of the
pseudo-prospective experiment (Figure 10) indicate that ensemble models are promising in the context of
operational earthquake forecasting: without knowing a priori which model will perform best, the ensemble
model allows to obtain a better performance than each model, including the best.

The LogLikelihood of a forecast can be very sensitive to the occurrence of events in areas with very low fore-
casted seismicity: this implies that the better performance of ensemble models may be due to fact that by
overlaying a set of alternative forecast maps, both areas of high and low seismicity are reduced. However,
by comparing the Likelihood of individual events, we verify that the improvement in LogLikelihood is not
driven by a small number of events located in stress shadows.

In this work we attempt to address some of the limitations of CRS models and to better describe the spa-
tial complexity of the stress field. However, a number of simplifications still exist in the model. We fitted
rate-and-state parameters A�, ta to the data by maximizing the LogLikelihood and therefore did not con-
sider them as a source or error; however, in a forecasting setting the values of these parameters are not
constrained a priori. In Appendix A, we estimate the sensitivity of the model to these parameters and
also test the effect of the coefficient of friction �. We find that in the time domain, the uncertainty due
to unknown parameters A� and ta is comparable to the variability of receiver fault and to the input slip
model; however, the spatial variability introduced by these parameters is minor compared to the effect of
uncertainties in the stress calculations.

Our approach to estimating fault orientation is arguably rather crude. We performed some spatial selection
for the Tohoku area, in order to account for different faulting style being predominant in each of the tectonic
areas (wedge, fault interface, and outer rise). However, we did not make an attempt to describe smaller-scale
spatial variations of fault structures, which could, for example, be achieved by weighting the focal planes
from the catalog by distance to each grid point or by complementing the information from focal mecha-
nisms with that from mapped faults [Steacy et al., 2005; Segou et al., 2013]. Focal planes in a volume of few
kilometers (i.e., within a grid cell) are more homogeneous than on the entire scale of our domain [Hardebeck,
2006], and therefore, the variability of ΔCFS may have been overestimated in our study.

We find that considering small-scale variation of main shock slip does not affect the distribution of the fore-
cast significantly; in particular, the effect is much smaller than the variability due to the differences between
published slip models. The effect of small-scale slip variability may have been underestimated for two rea-
sons: (1) the grid size we used limits our definition of near field, and it may be too large to be affected by
slip below a similar length and (2) the heterogeneity in fault geometry, or fault roughness, has not been
included: the fault was always treated as a uniform plane. However, this aspect should also be taken into
account: our treatment of slip heterogeneity could be extended to include fault roughness by creating syn-
thetic slip models. Our results indicate that the orientation of receiver planes plays a first-order role, also
in the vicinity of the fault: by symmetry, this suggests that including variability in the orientation of the
rupturing faults may also enhance stress heterogeneity.

Another simplification of the model is the assumption that faults are uniformly distributed, while in real-
ity they tend to cluster around major fault structures: the model could be improved by including the major
existing faults on which seismicity concentrates. This could be achieved, within the rate-and-state frame-
work, by estimating a spatially variable background rate, based on smoothed seismicity. However, such
background rate calculation may suffer from large uncertainties due to limited sample size and is very sen-
sitive to the spatial pattern of Coulomb stress [Cocco et al., 2010]. Another simplification in our model is
the choice of spatially uniform rate-and-state parameters: while a simple 1-D depth dependence could be
introduced, the consideration of the full 3-D spatially varying parameters would require a large number of
parameters and lead to potentially unstable results. Finally, we point out that the model has intrinsic lim-
itations due to the underlying physical assumptions. Various physical processes are neglected, including
secondary triggering, afterslip, viscoelastic relaxation, and redistribution of stresses by fluids: all these pro-
cesses can modify the stress field postseismically, while we assume a stationary field after each earthquake.
We verified that the improvement in model performance obtained by including aleatoric uncertainties is
a robust feature that persists when afterslip is also taken into account; a more detailed treatment of the
role of time-dependent processes, which are particularly large following the Parkfield earthquake, will be
addressed in a future investigation. The existence of afterslip should especially be kept in mind when evalu-
ating the performance of different published slip models: since some of the earthquakes may be triggered
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Figure A1. Sensitivity of the forecast to rate-and-state parameters A� and ta, for the Tohoku sequence. (a) Temporal
evolution of seismicity for typical values of ta and A� = 28 kPa. (b) Temporal evolution with variable A� and ta = 8000 d.
The red line is the observed cumulative number of events. (c and d) Standard deviation of forecasted number of events
(�(N)), divided by the background seismicity, on a log scale. ta and A� are in the same range as in Figures A1a and A1b;
ta was varied in intervals of 500 d and A� in intervals of 10 kPa. In all cases, stresses were resolved on a fixed plane given
by the average main shock focal plane; other sources of uncertainty were not included.

by postseismic stresses, the ranking of the slip models in their ability to explain observed seismicity may not
reflect how accurately they describe coseismic slip.

7. Conclusions

In this work, we study the impact of different physical sources of uncertainties on CRS models of aftershock
sequences, and we introduce a consistent framework to propagate epistemic and aleatoric uncertainties
through such models.

We find that variability in ΔCFS gives rise to a large spread in the forecast, both in terms of spatial location
and total number of events; in particular, receiver fault orientation plays a first-order role. By incorporating
the stress heterogeneity due to variable receiver faults, we obtain a significant performance improve-
ment. These results indicate that a careful consideration of receiver fault orientation, combined with a
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Figure A2. Sensitivity of the forecast to the coefficient of friction �, for the Tohoku sequence. (a) Temporal evolution
of seismicity with � between 0.1 and 0.9. The red lines is the observed seismicity. (b) Standard deviation of forecasted
number of events (�(N)), divided by the background seismicity, on a log scale.

stochastic treatment of its variability, is an important aspect of CRS models and should be implemented in
future applications.

We find that the choice of slip model is also an important source of uncertainty, and we explore the possibil-
ity of using ensemble averaging to combine models based on alternative slip distributions. This technique
has previously been used to combine aftershock models based on entirely different principles [Marzocchi et
al., 2012]; here we suggest that the same methods can be used to address epistemic uncertainties within a
single model class. In agreement with Marzocchi et al. [2012], we find that also in this case ensemble models
systematically outperform the individual models, and they are a promising tool in the context of operational
earthquake forecasting.

Appendix A: Model Sensitivity to A� , ta, and �

The main focus of this study is the sensitivity of CRS models to uncertainties in the input data and model
discretization, while the model parameters A� and ta are optimized by maximum likelihood estimation.
However, in the case of prospective forecast, the uncertainty of these parameters will matter. A detailed dis-
cussion of the sensitivity of CRS models to the background rate, and the rate-and-state parameters A� and
ta, can be found in Cocco et al. [2010]. In order to estimate the role of model parameters compared to the
uncertainties discussed above, we estimate the spread of the forecast for the Tohoku sequence, due to three
parameters: A�, ta, and the friction coefficient �.

Typical values of the frictional resistance parameter A� are between 10 and 100 kPa [Hainzl et al., 2010].
The parameter ta, the aftershock duration time, is typically of the order of tens of years; here we used val-
ues between 5000 and 20,000 days (13.7–54.8 years). Figures A1a and A1b show that variations of A� and ta

within these ranges lead to significant differences in forecasted number of events, comparable to the varia-
tion due to the different published slip models or to the variability from receiver fault uncertainty (Figure 4).
These values give a measure of the variability of the forecasts when A� and ta are completely unknown;
on the other hand, these values can be better constrained during the aftershock sequence. Considering a
narrower range of A� between 80 and 100 kPa and ta between 8000 and 13,000 days, the sensitivity of the
model to the parameters has a smaller impact than the receiver fault and the differences between published
slip models. In the spatial domain, we find that the variability due to these parameters is modest compared
to the effect of the variable receiver fault and to the choice of slip model (comparison between Figures A1c,
A1d, and 5); this can be expected since these parameters only affect the seismic productivity at each grid
point, but they do not modify the spatial features of the stress field.

We also tested the effect of the coefficient of friction �. Figure A2 shows that for � between 0.1 and 0.9, the
impact of this parameter on the model is comparable to the variation due to small-scale slip or to finite grid
resolution but modest compared to the most significant sources of uncertainty (Figures 4 and 5).
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