A novel class of sticky peel and light green mutations causes cuticle deficiency in leaves and fruits of tomato (Solanum lycopersicum).

doi: 10.1007/s00425-012-1719-6
A novel class of sticky peel and light green mutations causes cuticle deficiency in leaves and fruits of tomato (Solanum lycopersicum)
Title:
A novel class of sticky peel and light green mutations causes cuticle deficiency in leaves and fruits of tomato (Solanum lycopersicum)

Authors:
Junji Kimbara¹, Miho Yoshida¹, Hirotaka Ito¹, Katsutoshi Hosoi¹, Miyako Kusano², Makoto Kobayashi², Tohru Ariizumi³, Erika Asamizu³, Hiroshi Ezura³

Corresponding author:
Junji Kimbara

Telephone number: +81-287-36-2935
Fax number: +81-287-39-1038
E-mail address: Junji_Kimbara@kagome.co.jp

Author’s address:
¹Research Institute, Kagome Co., Ltd., 17 NishiTomiyama, Nasushiobara 329-2762 Japan
²RIKEN Plant Science Center, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
³Gene Research Center, University of Tsukuba, Tenno-dai 1-1-1, Tsukuba 305-8572, Japan
Abstract

The plant cuticle consists of aliphatic wax and cutin, and covers all the aerial tissues, conferring resistance to both biotic and abiotic stresses. In this study, we performed phenotypic characterizations of tomato mutants having both sticky peel (pe) and light green (lg) mutations. Our genetic analysis showed that these two mutations are tightly linked and behave like a monogenic recessive mutation. The double mutant (pe lg) produced glossy soft fruits with light green leaves, most likely due to defects in cuticle formation. Cytological analysis revealed that the thickness of the fruit cuticle layer was dramatically reduced in the pe lg mutant. The epidermal cells of the leaves were also deformed in the pe lg mutant, suggesting that leaf cuticle formation was also disrupted in the mutant. Consistent with this, transmission electron microscopic analysis showed that the electron density of the cuticle layer of the adaxial surface of the leaf was reduced in the pe lg mutant compared to WT, suggesting that there are changes in cuticle structure and/or composition in the pe lg mutant. Both physiological analysis to measure the rate of transpiration, and staining of the fruits and leaves with toluidine blue, revealed that water permeability was enhanced in the pe lg mutant, consistent with the reduced thickness of its cuticle layer. Taken together the preliminary analyses of the cuticle components, the PE LG is most likely involved in proper cuticle formation.

Keywords: Cutin, Epidermis, Wax

Abbreviations

cv, cultivar
DMF, N,N-dimethylformamide
lg, light green
pe, sticky peel
TB, toluidine blue
SEM, scanning electron microscope
TEM, transmission electron microscopy analysis
TGRC, Tomato Genetic Resource Center
WT, wild type
Introduction

The epidermal tissues of plants play many important roles in protecting them from mechanical damage, drought, pests, and diseases caused by fungi and bacteria. (Riederer 2006). This protection is afforded by the cuticle, which consists of lipidic cuticular wax and polymeric cutin. Cuticular wax consists of epicuticular wax, which resides on the outer surface of the epidermis, and intracuticular wax, which is interspersed in the cutin (Jetter et al. 2006). Epicuticular wax provides resistance to biological stressors such as insects and fungi (Samuels et al. 2008), and intracuticular wax is thought to be involved in cuticular transpiration (Vogg et al. 2004; Leide et al. 2007). Biochemical analyses of cuticular wax show the presence of various alcohols, esters, aldehydes, alkanes, and ketones with long (>C20) straight aliphatic chains (Samuels et al. 2008).

Cutin, however, is a structural component of the epidermis and physically protects plant tissues against the entry of disease agents, while maintaining adequate cuticular transpiration and gas exchange (Pollard et al. 2008). Cutin has been shown to consist of fatty acids, dicarboxylic acids, and alcohols with C16 or C18 carbon chains linked to glycerol and acylglycerols (Graça et al. 2002; Li and Beisson 2009). Although the biological functions of cutin have been widely investigated, its biosynthesis is not still completely understood.

In *Arabidopsis*, forward and reverse genetic approaches have enabled a partial understanding of the biosynthetic pathways of wax and cutin, as well as their physical functions (Yephremov and Schreiber 2005). Mutants with defective wax biosynthesis typically show a decrease in the amount of wax and/or an alteration in wax composition (Samuels et al. 2008). Furthermore, a phenotype with fused postgenital organs is typically observed in these mutants (Lolle et al. 1998). Mutants showing defective cutin biosynthesis generally have decreased levels of cutin monomers (Xiao et al. 2004; Li et al. 2007), and altered levels of the various wax components (Schnurr et al. 2004), suggesting a biochemical interaction between cutin and wax synthesis. Several lines of evidence have suggested that a reduction in wax and cutin content is likely to be associated with increased cuticle permeability and susceptibility to pathogens (Xiao et al. 2004; Li et al. 2007). In contrast, disease resistance is enhanced in the *long-chain acyl-CoA synthetase2* (*lacs2*) and *sitiens* mutants which exhibit defective cutin biosynthesis (Bessire et al. 2007; Curvers et al. 2010), suggesting that the physical ability of the cuticle to resist disease is ambiguous and that different states of permeability may exist in plants.
In tomato fruit, cutin and wax play important roles in water permeability and physical protection, similar to that reported in Arabidopsis (Bargel et al. 2005). For example, the fruit of the delayed fruit deterioration (dfd) mutant is highly resistant to water loss, resulting in an extremely long shelf-life, although the ripening process appears to be normal (Saladié et al. 2007). Fruit of the dfd mutant is also resistant to fungal invasion. The cuticle layer in the dfd mutant is probably responsible for these phenotypes because physical damage (e.g. scratching) of its cuticle layer results in increased susceptibility to dehydration and fungal attack. The total wax content in the dfd mutant fruit is about 1.3-fold higher than that in the corresponding wild-type (WT) cultivar Ailsa-Craig and, particularly, the cutin content in the dfd mutant fruit is almost double that of WT. Unlike the dfd mutant, several tomato mutants show an increase in water permeability of the fruit. For example, the fruits of the Lycopersicum esculentum eceriferum6 (lecer6) mutant lack the C31 alkane component in the wax and exhibit increased water permeability and wrinkling of the fruit surface structure during ripening (Vogg et al. 2004; Leide et al. 2007). These observations suggest that the levels of waxes and/or cutin accumulation in fruit are correlated with the levels of water retention and shelf-life. However, the Cuticular water permeability1hir (Cwp1hir) gene derived from the wild species Solanum habrochaites is associated with increased water permeability of the fruit, even though the cuticular constituents, including waxes and cutin monomers, do not significantly differ from those of WT (Hovav et al. 2007). Similar to the Cwp1hir phenotype, the fruit cutin content does not seem to be correlated with the permeability of the cuticle to water in the cutin deficient (cd) 2 mutant (Isaacson et al. 2009). These conflicting results suggest the involvement of distinct mechanisms in the biosynthesis and function of the tomato fruit cuticle. The physical and molecular relationships between cutin and transpiration therefore require clarification.

In this study we report the characterization of a novel tomato cuticle mutant called sticky peel (pe), which was first reported in Texas in 1938 (Young 1941). The fruit of the ‘sticky peel’ tomato resembles that of a cherry in texture; it is much softer than the fruit of WT parental cultivars, and the skin is extremely thin and elastic. The pe mutation produces a more elastic fruit surface, which is highly resistant to cracking (Ho and Hewitt 1986), and this trait appears to be related to the cuticular development process. The light green (lg) mutation is responsible for giving a bright pale green color to the leaves (Kerr 1982). Although previous genetic studies have suggested that both pe and lg are independent, monogenic recessive mutations (Butler 1952), our genetic analysis indicates that the pe
and lg mutations are tightly linked. Our cytological and physiological analyses show that the pe lg mutant belongs to a novel class of cuticular-related mutants which cause defects in both fruit and leaf cuticle layers, resulting in thinner cuticles and increased rates of transpiration.
Materials and methods

Plant materials

We used *Solanum lycopersicum* cv. KGM942, into which both the *pe* and the *lg* mutations have been introduced during breeding. Both mutations were introduced from an accession LA0759 that was obtained from the Tomato Genetic Resource Center (TGRC) (http://tgrc.ucdavis.edu/). The F$_2$ populations were created by crossing KGM942 (*pe/pe, lg/lg*) with the corresponding wild type Rejina (*PE/PE, LG/LG*, Sakata Seeds, Yokohama, Japan). Other wild-type breeding lines K091, RC17 and Ec-1 were also used as controls to compare cuticle phenotypes. Genotypes in all cultivars are *PE/PE, LG/LG*. Besides, K091 carries the y mutation known to influence epidermis color due to a lack of naringenin chalcone (Adato et al. 2009; Ballester et al. 2010).

Histological observations

Epidermis sections of ripe red fruits of the *pe lg* mutant were prepared for histological analysis by slicing the fruit horizontally with a sharp scalpel. The sections were observed under a scanning electron microscope (SEM, x 500, TM-1000, Hitachi High-technologies) without fixation and coating, according to the manufacturer’s protocols. The cuticle layer was observed after staining with Sudan IV as described by Buda et al. (2009). For leaf cytological analysis, the fourth or fifth leaves were removed and cut into small pieces (1 cm x 1 cm) and the transverse leaf sections were observed under SEM (x 1000) to examine the ultrastructure of the leaf surface. In this experiment, the wild-type cultivar RC17 was used as a control.

Transmission electron microscopy analysis

Tenth to thirteenth leaves were pre-fixed in solution A (2% paraformaldehyde, 2% glutaraldehyde in 50 mM sodium phosphate, pH 7.0) on ice. The leaves were washed with 50 mM sodium phosphate (pH 7.0) for 1 h. Post-fixation was conducted in 2% osmium tetroxide in 50 mM sodium phosphate (pH 7.0) for 3 h on ice. Dehydration was performed via a series of graded ethanol solutions (30% x1, 50% x1, 70% x1, 80% x1, 90% x1, 95% x1, 100% x3) for 30 min each, followed by substitution with propylene oxide for 30 min and a mixture of propylene oxide and epoxy resin for 1 h. The leaves were embedded into a gelatin capsule and incubated with Quetol651 Epoxy resin at 60°C for 2 days. 60–80 nm ultrathin
sections were made using a Leica-UCT ultramicrotome. The ultrathin sections were mounted on copper
grids (200 mesh) and stained with 2% uranyl acetate in dionized water for 5 min, followed by
incubation with lead staining solution for 5 min. Microscopic observations were carried out using a
JEM1200EX (Jeol) at 80 kV.

Chlorophyll measurements
Chlorophyll contents were measured as described by Porra et al. (1989). Five pieces from the fifth
leaves of five different plants grown under 16-h light/8-h dark conditions in a greenhouse were
collected. The leaves were immersed in 3 ml of N,N-dimethylformamide (DMF) at 4°C overnight. We
calculated the concentration of total chlorophyll in the fresh leaf tissue, using the following equations:
total micrograms of chlorophyll a per gram = 12.00(A664) - 3.11(A647); total micrograms of
chlorophyll b per gram = 20.78(A647) - 4.88(A664).

Toluidine-blue (TB) tests
To examine water permeability of the plant surface, TB tests were carried out as described by Tanaka
et al. (2004). The TB test enables detection of surface defects in a leaf. Second or third leaves and
mature green stage fruits were prepared from plants grown in a greenhouse. The fruits and leaves of
cultivar RC17 were used as WT.

Transpiration measurements
Transpiration rates were measured to evaluate the water permeability of the leaf epidermis. Five
pieces of the tenth to fifteenth leaves from the top of 80-day-old plants were used for this transpiration
analysis. The intact leaves were treated with 500 mg/l abscisic acid (ABA) for 1 h before sampling to
promote stomatal closure (Freitas et al. 2011), and they were then incubated under constant dark
conditions at 25°C as described by Willkinson et al. (1998). Leaves treated with ABA were checked
under a stereomicroscope (SZX7, Olympus) to confirm stomatal closure. The transpiration
measurements were conducted over 4 h, and the fresh weights were determined hourly. After the
measurements, all leaves were oven dried, and dry matter contents (dry weight divided by fresh weight)
determined for each sample. The rate of fresh weight loss was compared between the pe lg mutant and
WT. The leaves of cultivars K091, RC-17, and Ec-1 were used as controls. To compare the rate of
water loss in fruits, five ripe red fruits were prepared and incubated at 40°C for 6 days. The fruit weights were measured at 1, 2, and 6 days after incubation. Eventually all samples were completely oven dried, and dry matter contents determined for each sample.

Measurement of density in stomata and trichome

To calculate the density of stomata and trichomes, fifth leaves were observed under the SEM. Images of 0.23 mm² leaf area were taken from 5 distinct leaves from both adaxial and abaxial surfaces of each cultivar.

Chlorophyll leaching assays

The barrier function of the epidermis is often disrupted in mutants with defective cuticular development. This dysfunction can be easily evaluated using a chlorophyll leaching assay (Lolle et al. 1998) and we conducted chlorophyll leaching assays following Lolle et al. (1997). We collected five pieces of fourth or fifth leaves (approximately 0.2 g each) from plants grown under 16-h light/8-h dark conditions in a greenhouse. The intact leaf samples were soaked in 30 ml of 80% ethanol at room temperature, agitating them in a dark room for 8 h at 37°C (200 rpm). During the immersion, 400 µl of supernatant were taken after 1, 2, 3, 4, 5, 6, and 8 h. The absorption spectrum of each supernatant at 664 and 647 nm was examined to determine the chlorophyll content following Hiscox and Israelstam (1979). We calculated the concentration of total chlorophyll in the fresh leaf tissue, using the following equation: total micromoles of chlorophyll per gram = 7.93(A664) + 19.53(A647).

Measurement of naringenin and naringenin chalcone

Naringenin and naringenin chalcone were measured as described by Kraus and Galensa (1992), using a L7420 UV-VIS detector (Hitachi) and SUMIPAX ODS-D-05-4615 (SCAS).

Metabolite fingerprinting of cuticular wax and cutin monomer fractions

Metabolite fingerprinting of cuticular wax and cutin monomer fractions was performed as described in Adato et al. (2009) with modifications. Tomato fruits of the pe lg mutant and the three breeding lines (Ec-1, RC17 and K091) were boiled and peeled because the peels of the mutant were too fragile for typical enzymatic extraction. To obtain the chloroform-soluble cuticular wax fractions, the manually
dissected peel (approx. 20 mg) per sample was put into a 5-ml vial and extracted three times in 2 ml of chloroform (HPLC grade; Wako Pure Chemical Industries) for 1 h at room temperature. Solutions were combined and 0.9 µg of \(n \)-heptacosane was added to each solution as an internal standard at a final concentration of 15 ng/µl per injection of gas chromatography–electron ionization-time-of-flight–mass spectrometry (GC-EI-TOF-MS), and then the extracts were evaporated to dryness under a stream of nitrogen gas and the dried residue was dissolved in 1 ml of chloroform. Two-hundred-µl aliquot (ca. 4 mg of the peel sample) was prepared for GC-EI-TOF-MS analysis by derivatization using \(N \)-methyl-\(N \)-(trimethylsilyl) trifluoroacetamide (MSTFA).

After the wax extraction, we added 1.8 µg of \(n \)-heptacosane as an internal standard (a final concentration, 15 ng/µl per GC-EI-TOF-MS injection) to the remaining peels, respectively. Then the cutin samples were depolymerized by adding 1 ml of 10% Boron trifluoride-methanol solution (Fluka) for 1 h at 70°C. After cooling the vials to room temperature, we added 1 ml of Milli Q water. The cutin monomer faction was extracted three times with diethylether (Wako Pure Chemical Industries). The solvent of the combined extracts was removed under a stream of nitrogen gas and the dried residue was dissolved in 1 ml of chloroform. One-hundred-µl aliquot (ca. 2 mg of the peel sample) was prepared for GC-EI-TOF-MS analysis by derivatization using MSTFA.

For the fraction solutions containing wax and cutin monomers, chloroform was evaporated from the samples under a stream of nitrogen gas. Subsequently, the wax or cutin fractions were trimethylsilylated for 1 h by 30 µl of MSTFA in pyridine (30 µl) at 37°C with shaking. We conducted metabolite fingerprinting of wax and cutin factions by using GC-MS as described in Kusano et al. (2007b). The chromatograms were pre-processed using the HDA method (Jonsson et al. 2006) and the normalized responses of peak areas were corrected using a constant amount of the internal standard compound (\(n \)-heptacosane). Structural estimation of cutin and wax monomers was performed by comparing mass fragmentation patterns and the corresponding retention indices of monomers with those in the NIST/EPA/NIH mass spectral library (NIST08), Golm Metabolome Database or our custom library (Stein et al.1999; Kopka et al. 2005) as described in Kusano et al.(2007a).

Statistical analysis

All comparisons among means (ANOVA and Tukey’s test; \(P=0.05 \)) were used to determine differences between the cultivars. Data are presented as means and the standard deviation (SD) with a
level of significance of 5% ($P = 0.05$).

Results

Genetic linkage between the lg and pe phenotypes

In a previous study it was reported that the pe phenotype could be segregated from the lg phenotype (Kerr 1982). In order to confirm whether the pe and lg mutations could in fact be segregated, 334 F_2 populations from a cross between KGM942 ($pe\ lg$) and Rejina (corresponding WT) were sown in a greenhouse and their phenotypic segregation was examined. We found 252 plants to be completely normal, while 82 showed visible mutant phenotypes derived from both the pe and lg mutations, indicating that pe and lg are in fact tightly linked. This co-segregation ratio was estimated as $0.754:0.246 = 3.07:1$, suggesting that the $pe\ lg$ double mutations behave as a monogenic recessive mutation (Table 1). In addition, our preliminary genetic observations showed that, out of more than 1,000 F_2 populations, none of the plants showed either the pe phenotype without the lg phenotype, or the lg phenotype without the pe phenotype (data not shown). Our results did not support the claim that both the pe and the lg mutations are independent monogenic mutations (Kerr 1982). We therefore decided to investigate the double pe and lg mutant further. We first determined the overall plant phenotype of the $pe\ lg$ double mutant. As far as we are aware, the genetic background of the $pe\ lg$ mutant is unknown and not referred to in any of the literature. We therefore used three wild-type (WT) breeding lines, K091, RC17 and Ec-1 because these cultivars show similar morphological features overall. It is most likely that the $pe\ lg$ mutations do not directly influence fresh weight and the size of leaves and fruits (Supplemental Fig. S1), but other differences in genetic background do seem to exert effects on these traits. In addition, like WT cultivars, the $pe\ lg$ mutant does not cause an organ fusion phenotype and sterility (data not shown).

Abnormal epidermis formed in the fruit and leaf of the $pe\ lg$ mutant

The fruit surface of the $pe\ lg$ mutant was shiny and glossy, with increased elasticity compared with WT (Fig. 1a and 1b). In addition, the fruit peel of the $pe\ lg$ lacked the yellow-colored pigment of WT (Fig. 1c and 1d). The lack of yellow pigment is known to be caused by decreased accumulation of the yellow flavonoid pigment, naringenin chalcone, which also influences the physical function of the
cuticle layer (Adato et al. 2009; Ballester et al. 2010). We then analysed whether naringenin accumulation was modified in the pe lg mutant. Three WT cultivars were used for comparison. K091 produces yellow-deficient peel due to the presence of a y mutation that reduces accumulation of both naringenin and naringenin chalcone (Adato et al. 2009; Ballester et al. 2010). The experiment showed that the naringenin concentration in the pe lg mutant was much lower than in WT, but was not significantly different from K091 carrying the y mutation, indicating that the pe lg mutations affect flavonoid accumulation (Supplemental Fig. S2).

In order to discover whether the difference in fruit surface phenotype was due to differences in the structure of the epidermal cell layers, the surface of the fruit peel of WT plant and the pe lg mutant were observed using SEM (Fig. 1e, 1f). A smooth epidermis was formed in WT plants (Fig. 1e). In contrast, the partitions between each epidermal cell (Fig. 1f) were visible in the pe lg fruit. When horizontal sections of the fruit epidermis were observed, the fruit epidermis of WT plants consisted of epidermal cells embedded in the cuticle layer (Fig. 1g, arrowhead). In contrast, the epidermis of the pe lg fruit consisted of epidermal cells alone (Fig. 1h, arrowhead) and the cuticle layer appeared to be much thinner than that in WT. To examine the thickness of the cuticle layer, we attempted to stain the lipidic cuticle layer using SudanIV (Buda et al. 2009). In WT fruit, a thick cuticle layer was visible on the epidermal cells (Fig. 1i, see arrowhead). However, a much thinner cuticle layer was observed on the epidermal cells in the pe lg mutant (Fig. 1j, see arrowhead), most likely due to reduced cuticular components.

To examine the effect of the lg mutation on leaf phenotypes, the leaf surfaces of the pe lg mutant and WT cultivar (RC17) were observed (Fig. 2). The leaf color of the pe lg mutant was a paler light green compared with that of WT (Fig. 2a and 2b), suggesting that the quantity of chlorophyll was reduced in the pe lg mutant. To examine this possibility, we measured the chlorophyll contents of the pe lg mutant and WT plant. However, we found no significant differences in chlorophyll a content between the mutant and the two WT cultivars (K091, RC17), whereas chlorophyll b content was slightly higher in the pe lg mutant compared with that in the three WT cultivars (Supplemental Fig. S3). This suggested that the paler leaf color in the pe lg mutant was not caused by decreased levels of chlorophyll content. It is known that some cuticular defects alter the reflection of light at the leaf and the stem surface (Aarts et al. 1995; Tarumoto 2004). More research is needed to clarify whether the pale leaf color of the pe lg mutant results from a difference in light reflectance due to the thinner cuticle layer, changes in
We next observed the abaxial surface of leaves using SEM to examine whether there were any structural differences between the mutant and WT. The guard cells of WT plants were half moon-shaped (Fig. 2c), whereas those of the pe lg mutant were crescent-shaped (Fig. 2d). In addition, the guard cells and the epidermal cells appeared twisted in the mutant. Some Arabidopsis mutants with defective cuticles show similar structural differences in their epidermal cells (Chen et al. 2003; Schnurr et al. 2004; Xiao et al. 2004; Kurdyukov et al. 2006; Li et al. 2007) and in their guard cells (Li et al. 2007). These results implied that the leaf cuticular structure might be altered in the pe lg mutant. To examine this further, leaf cross-sections were prepared and observed using light and transmission electron microscopy (TEM) (Fig. 3). Under light microscopy, no differences were observed between the cellular structure of three WT cultivars (Fig. 3a, 3b, 3c) and the pe lg mutant (Fig. 3d). From the adaxial surface of the leaf, the adaxial epidermis, palisade parenchyma, spongy mesophyll (parenchyma), and abaxial epidermis were similarly observed in both WT cultivars and the pe lg mutant. When the sections were observed using TEM, the adaxial surface of the leaf was seen to consist of an electron-translucent layer (the so-called “cuticle proper”; Fig. 3e-h, black arrowhead), and an electron-dense layer, (the cuticle layer; Fig. 3e-h, white arrowhead) in all three WT cultivar plants and the mutant, as reported by Chen et al. (2003). Interestingly, the cuticle layer on the adaxial surface of the leaf was apparently bolder in WT (Fig.3e, 3f, 3g), compared with the pe lg mutant (Fig. 3h). In contrast, the electron densities of the cuticle layer on the abaxial surface were the same for WT plants and the pe lg mutant (Fig. 3i-l). These results suggested that the cuticle layer might be thinner in the pe lg mutant compared to WT only on the adaxial surface. Alternatively, it is possible that the cuticle components on the adaxial surface of the mutant leaf were somewhat altered.

Water permeability enhancement in the pe lg mutant

In general, Arabidopsis mutants with a thinner cuticular layer are more water permeable, most likely due to an increase in the permeability of the leaves in particular (Samuels 2008). If the cuticle layer of the pe lg mutant is thinner or distorted, we would expect the mutant leaves to be more water permeable, as has been reported previously (Xiao et al. 2004; Li et al. 2007). We therefore carried out aqueous TB staining tests as described previously, to evaluate the water permeability due to surface deficiency (Tanaka et al. 2004). In this experiment, the fifth leaf and fruit at the mature green stage were incubated...
with TB solution for 5 min, and the staining intensities were compared. The abaxial sides were similarly stained in WT and the mutant (data not shown). However, in the adaxial sides, we found that WT leaf was barely stained (Fig. 4a), whereas the mutant leaf stained more quickly (Fig. 4b), supporting the idea that the cuticular layer of the leaf on the adaxial side is thinner and that water permeability of the leaves is greater in the pe lg mutant than in WT. Similarly, WT fruit was barely stained (Fig. 4c) while the mutant fruit was well stained, in a spotty pattern (Fig. 4d). In the pe lg mutant, TB dye actually penetrated into the outer surface of the fruits (Fig. 4e). These results showed that the pe lg mutant had a higher water permeability than WT.

Transpiration experiments

Next we measured the transpiration rate of the leaves over a 4 h period because it is known that disruption of the leaf cuticle layer leads to increased transpiration (Chen et al. 2003; Aharoni et al. 2004; Bessire et al. 2007). Consistent with our prediction, the pe lg mutant showed a significantly higher transpiration rate than any of the three WT cultivars (Fig. 5a). Figure 5b shows the leaf morphology after 4 h of transpiration assay; the pe lg leaf was more wilted compared with WT cultivars. The transpiration rate of the fruits was also measured to evaluate water permeability of the thinner cuticle layer of the pe lg mutant (Fig. 6). Contrary to our prediction, the transpiration rate of the pe lg fruit was significantly lower than WT cultivars K091 and RC17 (Fig. 6a). After 6 days incubation, the fruit surface of K091 and RC17 became wrinkled due to water loss (Fig. 6b). However, consistent with the transpiration measurement, the fruit surface of KGM942 and Ec-1 was almost unchanged after the experiment (Fig. 6b). The dry matter contents of the leaves and fruits were not significantly different between the pe lg mutant and WT cultivars (Supplemental Fig. S4), suggesting that the water content of these tissues did not differ between the pe lg mutant and WT cultivars. These results are consistent with the fact that cuticular mutants with reduced amounts of cuticular components generally exhibit enhanced water permeability and transpiration rates due to the thinner cuticle layer (Chen et al. 2003; Xiao et al. 2004).

We then examined the density of leaf stomata and trichomes on the abaxial surface of the leaves to examine the possibility that the enhanced transpiration rate is due to a difference in leaf surface structure (Supplemental Figs. S5 and S6). Although the stomatal density varied according to the genetic makeup, even in WT cultivars, the pe lg mutant had fewer stomata on the adaxial surface of the leaf
compared to the two WT cultivars (K091, RC17) (Supplemental Fig. S5). In contrast, the stomatal
density of the abaxial surface of the leaf did not differ significantly between the two WT cultivars
(RC17, Ec-1) and the pe lg mutant. The density of trichomes did not differ among all the genotypes
(Supplemental Fig. S6). These results suggest that the differences in transpiration rate resulted from
water leakage from the thinner cuticle membranes of the leaf, rather than from the increased numbers
of stomata.

Chlorophyll leaching assays
To investigate other cuticle properties, a chlorophyll leaching assay was performed. In this
experiment, the leaves were immersed in organic solvent for 8 h, and the degree of chlorophyll
leaching was determined. It is known that cuticular mutants show increased leaching (Aharoni et al.
2004; Schnurr et al. 2004; Curvers et al. 2010). In contrast to our prediction, we observed no significant
difference in the chlorophyll leaching rates between WT and the pe lg mutant (Supplemental Fig. S7).
To date, we have not been able to find any convincing reasons why the mutant did not show a higher
rate of chlorophyll leaching. However, using an organic solvent represents a more aggressive treatment
than using an aqueous solvent, and this may interfere more strongly with plant tissues. Thus, it is
possible that the leaf epidermis of the pe lg mutant is partially distorted, making it more permeable to
water, but that it exhibits the same properties as WT when treated with an organic solvent.

Metabolite fingerprinting of cutin and wax fractions
The cutin and the wax composition at the ripe red stage was estimated by metabolite fingerprinting.
Supplemental Fig. S8a-d show typical chromatograms obtained from the cutin extracts. Overall total
ion chromatograms (TICs) of cutin extracts were similar between WT lines (Supplemental Fig. S8a,
S8b, S8c). On the other hand, the TIC of the cutin extracts of pe lg mutant showed that the peaks
detected at the region from retention index at 2,000 to retention index at 2,600, where contains a peak
identified as 16-hydroxyhexadecanoic acid, were dramatically decreased (Supplemental Fig. S8d).
Although a part of metabolites were identified or annotated (Supplemental Table 1), we could not
conduct complete identification of these peaks because we could not purchase some of the chemical
standards such as 10,16-dihydroxypalmitate. Further extensive analysis of cutin component will be
required to elucidate aberrant cuticle formation of the pe lg mutant.
The TICs obtained from wax extracts are shown in Supplemental Fig. S9. Unlike in the case of the fingerprint of the cutin fraction, the fingerprint of the wax fraction looked similar among these cultivars. This phenomena is also observed in the cutin mutants in tomato (Isaacson et al. 2009), supporting that the pe lg mutation is probably related to cutin formation.
Discussion

Thin cuticle layer is formed in *pe lg* fruit

In this study, the cytological and physiological properties of the *pe lg* epidermis structure were investigated. It appears that the fruit cuticle of the *pe lg* mutant was thinner than that of WT (Fig. 1e-j) and contained less cutin components than WT (Supplemental Fig. S8). Furthermore, it is likely that the accumulation of flavonoids such as naringenin is suppressed in the *pe lg* mutant fruit epidermis (Fig. 1c, 1d, Supplemental Fig. S2). Since the *pe lg* mutant produced an extremely thin fruit cuticle layer, the absence of flavonoids could be due to a failure in flavonoid accumulation in the cuticle, where pigment is accumulated (Hunt and Baker 1980). To date, an absence of flavonoids from the fruit epidermis has only been reported in the *y* and *dfd* mutants (Saladié et al. 2007; Adato et al. 2009; Ballester et al. 2010). However, unlike the *pe lg* mutant, these two mutants do not show reduced cuticular formation. In addition, a previous genetic study has shown that the *pe* mutation is epistatic to the *y* mutation (Kerr 1982). Therefore, it is most likely that the *pe lg* mutant is distinct from these mutants and that *pe lg* should be recognized as a novel type of mutation affecting flavonoid biosynthesis in fruit.

The *lecer6* mutant lacks C31 alkane in its fruit waxes, resulting in increased water permeability, and the *lecer6* fruit finally becomes wrinkled at the mature ripe red stage (Vogg et al. 2004; Leide et al. 2007). This suggests that long chain alkanes in fruit waxes are critical for water permeability and for maintaining adequate transpiration in fruit. Other tomato mutants showing defective fruit cuticle formation have been reported, such as the three *cd* mutants (*cd1*-3) which have thinner cuticle layers, similar to the *pe lg* phenotype (Isaacson et al. 2009). However, it has been reported that these *cd* mutations affect only the fruit cuticle layer, but not the leaf cuticle layer, unlike the *pe lg* mutant. Despite the thinner cuticle layer, the water transpiration rate of the *cd2* fruit is similar to that of WT. Biochemical analysis has shown that total cutin acid monomer levels in fruits of the *cd* mutants are dramatically reduced, whereas total wax loads are not affected compared to the corresponding WT cultivar M82. These results suggest that both wax and polymeric cutin play important roles in water permeability and shelf-life, and that complex physical interactions between wax and cutin, or other physical or biochemical factors, might be involved in control of fruit epidermis permeability. Unlike the *lecer6* mutant, the *pe lg* mutant fruits did not become wrinkled at the ripe red stage (Fig. 1b), indicating that resistance to water dehydration is sustained in spite of the thinner cuticle layer, whereas water permeability of the leaf was enhanced (Fig. 6a, 6b). In contrast, the TB test showed enhanced...
water permeability in the *pe lg* mutant fruit (Fig. 4d). It is possible that water transpiration rates may
differ between the two sides of the fruit surface. In fact, it seems likely that water invaded
progressively from outside (Fig. 4e), whereas there is less water transmission from the inside of the *pe
lg* fruit surface (Fig. 6). Further research is needed to clarify this issue.

Leaf cuticle is also disrupted in the *pe lg* mutant

The cuticle properties of leaves were examined in WT cultivars and the *pe lg* mutant using TEM. The
electron density of the cuticle layer in the mutant was lower compared with that of WT plants (Fig. 3h).

Similar to the *pe lg* mutant, TEM observations have often shown reduced electron density of the cuticle
layer in *lacs2*, *gpat4/8*, *wax2*, and *cyp86a2* mutants of *Arabidopsis* (Chen et al. 2003; Schnurr et al.
2004; Xiao et al. 2004; Li et al. 2007). Among these, only the *lacs2* mutant has a reduced cuticle layer
on the abaxial surface of the leaf, but not on the adaxial surface. A defect in the leaf cuticle was also
observed in the *pe lg* mutant, but only on the adaxial surface (Fig. 3h), whereas cuticle formation on the
abaxial surface was similar to that of WT (Fig. 3l). However, observation of the abaxial surface of the
leaf revealed that the shapes of guard cells and epidermal cells were deformed on this surface (Fig. 2c,
2d), as was also observed in the *lacs2* mutant in *Arabidopsis* (Schnurr et al. 2004), indicating that the
pe lg mutations affect both surfaces of the leaf structure. It is possible that the *pe lg* mutations directly
affect epidermal structure as well as cuticular structure.

Changes in physiological properties, such as increased water permeability (Fig. 4) or enhanced
transpiration rates (Fig. 5), have also been observed among the *gpat4/gpat8*, *lacs2*, *cyp86a2*, and *pe lg
mutants. It is therefore most likely that the decreased barrier properties in the *pe lg* mutant resulted
from disorders in the cuticle (Figs. 1 and 3). It is also possible that changes in the barrier properties
were in part due to disorders in the epidermal structure (Fig. 2).

While previous report observed enhanced chlorophyll leaching in the *lacs2* mutant when treated with
an organic solvent, our experiment showed no difference between WT and the *pe lg* mutant
(Supplemental Fig. S7). These conflicting results suggest that the effects of the tomato *pe lg* mutation
on cuticular formation and cellular leaf structure are not totally consistent with those observed in
Arabidopsis cuticular-related mutations. Taken together with the fact that the *pe lg* mutant is
phenotypically different from previously reported tomato cuticle mutants (i.e. *lecer6* mutant, *dfd
mutant, and the three *cd* mutants), we suggest that the *pe lg* mutant should be placed into a novel class
of tomato cuticle-defective mutants.

Acknowledgement

We thank prof. Endo TR (Laboratory of Plant Genetics, Graduate School of Agriculture, Kyoto University, Kyoto, Japan) for revising the manuscript.

References

Butler L (1952) Sticky peel (pe), a new character in the seventh linkage group. TGC report 2:2-3

Hiscox JD, Israelstam GF (1979) A method for the extraction of chlorophyll from leaf tissue without maceration. Can J Bot 57:1332-1334

Porra RJ, Thompson WA, Kriedemann PE (1989) Determination of accurate extinction coefficients and simultaneous equations for assaying chlorophyll *a* and *b* extracted with four different solvents: verification of the concentration of chlorophyll standards by atomic absorption spectroscopy. Biochim Biophys Acta 975:384-394

reevaluation of the key factors that influence tomato fruit softening and integrity. Plant Physiol 144:1012-1028

Young PA (1941) New Genetic Characters of the Tomato. Am Nat 75: 280
Figure legends

Fig. 1 Comparison of fruit phenotypes in WT and pe lg mutant. Ripe red stage of WT (RC17) fruit (a) and pe lg (KGM942) fruit (b). Epidermis detached from WT fruit (c) and pe lg ripe red fruit (d). Microscopic images of the fruit surface of WT (e) and pe lg (f). SEM images of epidermal sections of WT fruit (g) and pe lg fruit (h). Microscopic images of epidermal sections of WT fruit (i) and pe lg fruit (j). Arrowheads and arrows indicate epidermal cells and cuticle membrane, respectively. Scale bars = 1 cm (a-d), 50 µm (e-j)

Fig. 2 Comparison of leaf phenotypes in WT (RC17) and pe lg mutant. Photographic images of the fifth leaf in WT (a) and pe lg (b). SEM images of leaf surface of WT (c) and pe lg (d). Insets indicate magnified images of stomata. Scale bars = 1cm (a-b), 20 µm (c-d)

Fig. 3 Leaf cross-sections of WT and pe lg mutant. a-d Leaf cross-sections observed by light microscopy. e-l TEM images of the adaxial surface (e-h) and the abaxial surface (i-l). K091 (WT, a, e, i); RC17 (WT, b, f, j); Ec-1 (WT, c, g, k); KGM942 (pe lg, d, h, l). The cuticle proper is indicated by black arrowheads and the cuticle layer is indicated by white arrowheads (e-l). Scale bars = 50 µm (a-d), 500 nm (e-l)

Fig. 4 Water permeability of the leaf and fruit cuticle. TB staining pattern of WT cultivar RC17 (a, c) and pe lg (b, d). Inset shows a magnified image of a TB stained spot (e). Scale bars = 1 cm (a-d), 50 µm (e)

Fig. 5 Comparison of transpiration rates of the leaves between WT and pe lg mutant. a Leaf transpiration rate of three wild-type cultivars (K091, RC17, Ec-1) and the pe lg cultivar (KGM942). Vertical bars indicate SD (n=5). Differently lettered columns indicate significant differences. b Intact leaves of three wild type cultivars and pe lg cultivar. Scale bar = 1 cm

Fig. 6 Comparison of water permeability of ripe red fruit between WT and pe lg mutant. a Fruit transpiration rate of three WT cultivars (K091, RC17, Ec-1) and the pe lg cultivar (KGM942). Vertical bars indicate SD (n=5). Differently lettered columns indicate significant differences. b Fruits of three wild type cultivars and the pe lg cultivar. Scale bar = 1 cm
Table 1 Segregation test for the *pe* and the *lg* phenotypes

Fruits were picked at the red ripe stage. *pe* fruits were determined by their appearance. Similarly, *lg* leaves were determined by observing appearance of mature leaves.

<table>
<thead>
<tr>
<th>Phenotype</th>
<th>N</th>
<th>Probability</th>
</tr>
</thead>
<tbody>
<tr>
<td>PE LG</td>
<td>252</td>
<td>0.754</td>
</tr>
<tr>
<td>pe LG</td>
<td>0</td>
<td>0.000</td>
</tr>
<tr>
<td>PE lg</td>
<td>0</td>
<td>0.000</td>
</tr>
<tr>
<td>pe lg</td>
<td>82</td>
<td>0.246</td>
</tr>
<tr>
<td>Total</td>
<td>334</td>
<td></td>
</tr>
</tbody>
</table>

\[x^2 \text{-value for single gene, 3:1 ratio} \] 3.2E-05

\[\text{Probability of } x^2 \] 1.00
nec.
Comparison of fruit phenotypes in WT and pe lg mutant. Ripe red stage of WT (RC17) fruit (a) and pe lg (KGM942) fruit (b). Epidermis detached from WT fruit (c) and pe lg ripe red fruit (d). Microscopic images of the fruit surface of WT (e) and pe lg (f). SEM images of epidermal sections of WT fruit (g) and pe lg fruit (h). Microscopic images of epidermal sections of WT fruit (i) and pe lg fruit (j). Arrowheads and arrows indicate epidermal cells and cuticle membrane, respectively. Scale bars = 1 cm (a-d), 50 µm (e-j)
83x147mm (300 x 300 DPI)
Comparison of leaf phenotypes in WT (RC17) and pe lg mutant.

Photographic images of the fifth leaf in WT (a) and pe lg (b). SEM images of leaf surface of WT (c) and pe lg (d). Insets indicate magnified images of stomata. Scale bars = 1cm (a-b), 20 µm (c-d)

83x57mm (300 x 300 DPI)
Leaf cross-sections of WT and pe lg mutant.

a-d Leaf cross-sections observed by light microscopy. **e-l** TEM images of the adaxial surface (**e-h**) and the abaxial surface (**i-l**). K091 (WT, **a, e, i**); RC17 (WT, **b, f, j**); Ec-1 (WT, **c, g, k**); KGM942 (**pe lg, d, h, l**). The cuticle proper is indicated by black arrowheads and the cuticle layer is indicated by white arrowheads (**e-l**). Scale bars = 50 µm (**a-d**), 500 nm (**e-l**)

173x109mm (300 x 300 DPI)
Water permeability of the leaf and fruit cuticle.

TB staining pattern of WT cultivar RC17 (a, c) and pe lg (b, d). Inset shows a magnified image of a TB stained spot (e). Scale bars = 1 cm (a-d), 50 µm (e)

83x139mm (300 x 300 DPI)
Comparison of transpiration rates of the leaves between WT and pe lg mutant.

a Leaf transpiration rate of three wild-type cultivars (K091, RC17, Ec-1) and the pe lg cultivar (KGM942). Vertical bars indicate SD (N=5). Differently lettered columns indicate significant differences. b Intact leaves of three wild type cultivars and pe lg cultivar. Scale bar = 1 cm

83x199mm (300 x 300 DPI)
Comparison of water permeability of ripe red fruit between WT and *pe lg* mutant.

a Fruit transpiration rate of three WT cultivars (K091, RC17, Ec-1) and the *pe lg* cultivar (KGM942). Vertical bars indicate SD (N=5). Differently lettered columns indicate significant differences.

b Fruits of three wild type cultivars and the *pe lg* cultivar. Scale bar = 1 cm
Title:

A novel class of sticky peel and light green mutations causes cuticle deficiency in leaves and fruits of tomato (Solanum lycopersicum)

Authors:

Junji Kimbara\(^{13}\), Miho Yoshida\(^1\), Hirotaka Ito\(^1\), Katsutoshi Hosoi\(^1\), Miyako Kusano\(^2\), Makoto Kobayashi\(^2\), Tohru Ariizumi\(^3\), Erika Asamizu\(^3\), Hiroshi Ezura\(^3\)
Supplemental Fig. S1 Fresh weight and size of leaflet and fruit of three WT cultivars and the pe lg mutant. **a** Fresh weight of the leaflets. **b** Fresh weight of the fruits. **c** The leaflet length and the fruit diameter. Three WT cultivars K091, RC17, and Ec-1, were used as controls. Breeding line KGM942 carries pe lg mutations. Vertical bars indicate SD (n=3). Differently lettered columns indicate significant differences.
Supplemental Fig. S2 Naringenin accumulation in ripe red fruits of WT and pe lg mutant.

Vertical bars indicate SD (n=3). Differently lettered columns indicate significant differences
Supplemental Fig. S3 Chlorophyll contents of WT and \textit{pe lg} mutant. Vertical bars indicate SD ($n=5$). Differently lettered columns indicate significant differences.
Supplemental Fig. S4 Dry matter contents of mature leaves and ripe red fruits in the WT and pe lg mutant. Vertical bars indicate SD (n=5). Differently lettered columns indicate significant differences.
Supplemental Fig. S5 Stomatal density of WT and *pe lg* mutant. Vertical bars indicate SD (n=5). Differently lettered columns indicate significant differences.
Supplemental Fig. S6 Trichome density of WT and pe lg mutant. Vertical bars indicate SD (n=5). Differently lettered columns indicate significant differences.
Supplemental Fig. S7 Chlorophyll leaching assay using leaves of the WT and pe lg mutant.

The leaves of WT (RC17) and pe lg mutant were treated for 1-8 h with 80% EtOH. Vertical bars indicate SD (n=5). Differently lettered columns indicate significant differences.
Supplemental Fig. S8 Total ion chromatograms (TICs) of cutin extracts of Ec-1 (a), K091 (b), RC17 (c) and KGM942 (d)
Supplemental Fig. S9 Total ion chromatograms (TICs) of cuticular wax extracts of Ec-1 (a), K091 (b), RC17 (c) and KGM942 (d).
Supplemental Table 1 List of identified or annotated metabolites

<table>
<thead>
<tr>
<th>Metabolite</th>
<th>Retention Index</th>
<th>Identified (I) or Annotated (A)</th>
</tr>
</thead>
<tbody>
<tr>
<td>n-Tritriacontane</td>
<td>3300.0</td>
<td>I</td>
</tr>
<tr>
<td>Triacontane</td>
<td>2999.4</td>
<td>I</td>
</tr>
<tr>
<td>alpha-Tocopherol</td>
<td>3152.4</td>
<td>I</td>
</tr>
<tr>
<td>D-Sucrose</td>
<td>2613.0</td>
<td>I</td>
</tr>
<tr>
<td>Oleate</td>
<td>2205.0-2227.0</td>
<td>I</td>
</tr>
<tr>
<td>n-Octadecanoic acid</td>
<td>2236.0</td>
<td>I</td>
</tr>
<tr>
<td>Linoleic acid</td>
<td>2208.0</td>
<td>I</td>
</tr>
<tr>
<td>n-Nonacosane</td>
<td>2900.1</td>
<td>I</td>
</tr>
<tr>
<td>n-Hentriacontane</td>
<td>3100.2</td>
<td>I</td>
</tr>
<tr>
<td>n-Hexadecanoic acid</td>
<td>2039.2</td>
<td>I</td>
</tr>
<tr>
<td>n-Dotriacontane</td>
<td>3199.8</td>
<td>I</td>
</tr>
<tr>
<td>Citric acid</td>
<td>1800.4</td>
<td>I</td>
</tr>
<tr>
<td>16-Hydroxyhexadecanoic acid</td>
<td>2379.5</td>
<td>I</td>
</tr>
<tr>
<td>πEudesmol</td>
<td>1765.3</td>
<td>A</td>
</tr>
<tr>
<td>n-Tetradecanoic acid methyl ester</td>
<td>1721.5</td>
<td>A</td>
</tr>
<tr>
<td>n-Tetracosanoic acid</td>
<td>2828.7</td>
<td>A</td>
</tr>
<tr>
<td>n-Tetracosanoic acid methyl ester</td>
<td>2729.5</td>
<td>A</td>
</tr>
<tr>
<td>Stigmasterol</td>
<td>3316.8</td>
<td>A</td>
</tr>
<tr>
<td>beta-Sitosterol</td>
<td>3382.1</td>
<td>A</td>
</tr>
<tr>
<td>Phosphoric acid</td>
<td>1261.6</td>
<td>A</td>
</tr>
<tr>
<td>4-Oxo-pentanoic acid, ethyl ester</td>
<td>1061.5</td>
<td>A</td>
</tr>
<tr>
<td>Mannose, 6-deoxy-</td>
<td>1608.6</td>
<td>A</td>
</tr>
<tr>
<td>Hexanoic acid</td>
<td>1070.5</td>
<td>A</td>
</tr>
<tr>
<td>16-hydroxy-hexadecanoic acid, methyl ester</td>
<td>2272.9</td>
<td>A</td>
</tr>
<tr>
<td>n-Hexadecanoic acid methyl ester</td>
<td>1924.3</td>
<td>A</td>
</tr>
<tr>
<td>n-Heptadecanoic acid methyl ester</td>
<td>2024.9</td>
<td>A</td>
</tr>
<tr>
<td>Glycine</td>
<td>1227.9</td>
<td>A</td>
</tr>
<tr>
<td>1,6-Anhydro-beta-D-Glucose</td>
<td>1693.6</td>
<td>A</td>
</tr>
<tr>
<td>1-O-methyl-, alpha-D-Glucopyranoside</td>
<td>1864.9</td>
<td>A</td>
</tr>
<tr>
<td>Ethyl Laurate</td>
<td>1990.5</td>
<td>A</td>
</tr>
<tr>
<td>n-Eicosanoic acid methyl ester</td>
<td>2326.5</td>
<td>A</td>
</tr>
<tr>
<td>Linolenic acid methyl ester</td>
<td>2107.3</td>
<td>A</td>
</tr>
<tr>
<td>7-Hexadecenoic acid methyl ester</td>
<td>1904.5</td>
<td>A</td>
</tr>
<tr>
<td>Eremophil-1(10)-ene</td>
<td>1707.4, 1750.2</td>
<td>A</td>
</tr>
<tr>
<td>1-Propene-1,2,3-tricarboxylic acid, trimethyl ester</td>
<td>1437.7</td>
<td>A</td>
</tr>
<tr>
<td>Trimethyl 12-hydroxy-1,2,3-propanetricarboxylic acid</td>
<td>1540.4</td>
<td>A</td>
</tr>
</tbody>
</table>