Influence of Acidosis on Cardiotonic Effects of Colforsin and Epinephrine: A Dose-Response Study

<table>
<thead>
<tr>
<th>著者別名</th>
<th>高橋 宏(猪股 仲一) 田中 誠</th>
</tr>
</thead>
<tbody>
<tr>
<td>タイトル</td>
<td>呼吸器内気流の影響を考慮したカーディオトニック効果の研究</td>
</tr>
<tr>
<td>言語</td>
<td>日本語</td>
</tr>
</tbody>
</table>
| 権利 | この著作権は著者に帰属し、著作権者以外の個人または団体が、著作権者の許可なく著作権を侵害することを防止するため、著作権規定に従って著作権を保護するものとしています。

doi: 10.1053/j.jvca.2012.09.019
Title: Influence of Acidosis on Cardiotonic Effects of Colforsin and Epinephrine: A Dose-Response Study

Authors:

Keiichi Hagiya, MD.

- Affiliation: Department of Anesthesiology, University of Tsukuba
- E mail: hagiya916@yahoo.co.jp
- Attestation: Study design, Conduct of the study, Data collection, Data analysis, and Manuscript preparation

Hiroshi Takahashi, MD.

- Affiliation: Department of Anesthesiology, University of Tsukuba
- E mail: hirolin@md.tsukuba.ac.jp
- Attestation: Data collection, and Data analysis

Yumi Isaka, Chief Technical Official

- Affiliation: Technical Service Office for Medical Sciences, University of Tsukuba
- E mail: yumii@md.tsukuba.ac.jp
- Attestation: Data collection
Shinichi Inomata, MD.

- Affiliation: Department of Anesthesiology, University of Tsukuba
- E mail: inomatas@md.tsukuba.ac.jp
- Attestation: Data analysis, and Manuscript preparation

Makoto Tanaka, MD.

- Affiliation: Department of Anesthesiology, University of Tsukuba
- E mail: mtanaka@md.tsukuba.ac.jp
- Attestation: Study design, Data analysis, and Manuscript preparation

Corresponding Author: Keiichi Hagiya

Mailing address: Department of Anesthesiology, University of Tsukuba, Tsukuba City, Ibaraki 305-8575, Japan

Tel: +81-29-853-3285

Fax: +81-29-853-3092

E-mail: hagiya916@yahoo.co.jp

Conflict of interest: None of the authors or relatives in the third degree of kinship, department or institution had ever received financial gain such as direct monetary benefits, investments, stocks, funds or honoraria from Nippon Kayaku Co., Ltd, which kindly provided
colforsin alone. In addition, none ever had a consulting or lecturing relationship with Nippon Kayaku Co., Ltd.

Acknowledgements

We thank Tōru Nanmoku for assistance with measuring levels of cyclic adenosine monophosphate.
Abstract

Objective: Acidosis produces a negative inotropic effect on cardiac muscle against which catecholamines and phosphodiesterase III inhibitors have limited therapeutic effects. This study was designed to evaluate effects of colforsin, which directly activates adenylate cyclase without beta-receptor activation, in isolated Langendorff rat hearts in a pH- and concentration-dependent manner.

Design: Experimental animal study.

Setting: A university laboratory.

Participants: Sprague-Dawley rats.

Interventions: Hearts were isolated and perfused with HEPES-Tyrode solution (pH 7.4) in the Langendorff preparation. The hearts were randomly assigned to control (pH 7.4), mild (pH 7.0), and severe (pH 6.6) acidosis groups (n = 8 each) and were continuously perfused with 10^{-7} M, 10^{-6} M, and 10^{-5} M colforsin.

Measurements and Main Results: Left ventricular maximum rate of increase (LV dP/dtmax) were determined, and the concentration-response relationship were evaluated at each pH. Colforsin at 10^{-6} M increased LV dP/dtmax from 2592 ± 557 to 5189 ± 721 mmHg/s ($P < 0.001$) and from 1942 ± 325 to 3399 ± 608 mmHg/s ($P < 0.001$) in the control and mild acidosis groups, respectively, while 10^{-5} M colforsin significantly increased LV dP/dtmax even in the severe acidosis group. No significant difference was seen in LV dP/dtmax among the three groups after 10^{-5} M colforsin infusion.

Conclusion: In contrast with catecholamines and other inodilators, colforsin at high concentration restores diminished cardiac contractility against severe acidosis to the extent similar to the physiological pH.
Keywords: acidosis, adenylate cyclase, colforsin, cyclic AMP
Introduction

Acidosis produces a negative inotropic effect on cardiac muscle1-6 and diminishes the inotropic effects of catecholamines7-11 and of phosphodiesterase isozyme III (PDE III) inhibitor12. The inotropic effect of catecholamines and PDE III inhibitor results mainly from increased concentrations of intracellular cyclic adenosine monophosphate (cAMP) generated by stimulating beta-adrenergic receptors and by inhibiting PDE III, respectively. Although the cause of the diminished myocardial responses to catecholamines has not been completely elucidated, decreased cAMP production as a result of depressed adenylate cyclase activity7, decreased numbers of beta-adrenergic receptors7,8, decreased affinity for agonists9, decreased Ca2+ sensitivity of myofilaments1, and reducing opening of the sarcoplasmic reticulum Ca2+ release channel13 might be involved.

Colforsin (NKH477;6-(3-dimethyl-aminopropionyl) forskolin hydrochloride) is a water-soluble forskolin derivative that increases cardiac output and the maximum rate of increase in left ventricular pressure (LV dP/dtmax) in patients with left ventricular systolic dysfunction14. Colforsin exerts positive inotropic action by directly activating adenylate cyclase and might therefore increase heart contractility in acidosis. However, the influence of acidosis on inotropic effects of colforsin has not been evaluated.

We hypothesized that colforsin \textbf{augments the contractility of isolated rat heart as a result of concomitant increase in cAMP} in severe acidosis. Accordingly, this investigation was designed to evaluate cardiotonic effects of colforsin in a concentration-dependent manner at various degrees of acidosis, and determined cAMP concentrations to elucidate its possible contribution in an isolated rat heart preparation.
Methods

Experimental animals

The Animal Research Committee at University of Tsukuba approved this study. Nine-week-old male Sprague-Dawley rats (Japan SLC, Shizuoka, Japan), weighing 280 to 360 g, were housed in stainless-steel cages and maintained at 23.5 ± 2.5°C, 52.5 ± 12.5% humidity and a 14-h light and 10-h dark cycle with free access to food and water ad libitum.

Langendorff heart preparation

One hundred and two male Sprague-Dawley rats aged 10 weeks were first assigned to either experiment 1 (hemodynamic measurements, n = 66) or experiment 2 (cAMP measurement, n = 36). In both experiments, rat hearts were similarly prepared and perfused with Langendorff apparatus. They were anesthetized with an intraperitoneal injection of pentobarbital sodium (80 mg/kg). The hearts were isolated via thoracotomy and the aorta was connected to a Langendorff apparatus (RADNOTI LLC, Monrovia, CA, USA). The hearts were perfused at constant flow of approximately 10 mL/min for several minutes and then were gravity perfused at a constant pressure with HEPES-Tyrode solution (pH = 7.4) at 37.0 ± 0.3°C in a thermostatically controlled recirculating water bath (Harvard Apparatus Ltd, Edinbridge, Kent, UK). The HEPES-Tyrode solution comprised (mM) 137.0 NaCl, 6.0 KCl, 1.0 MgCl₂-6H₂O, 1.8 CaCl₂-2H₂O, 5.5 Glucose, 10 HEPES, and NaOH titrated to the required pH, and bubbled with 100% O₂. A fluid-filled balloon was inserted into the left ventricle via an incision in the left atrium and inflated at 2 to 5 mmHg of left ventricular end-diastolic pressure during the initial stabilization period. After stabilization and baseline measurements, we measured coronary perfusion flow (CPF), coronary perfusion pressure (CPP), and left ventricular pressure (LVP). Measurements of CPP were made using a
pressure transducer at the aortic level. The LV dP/dtmax, determined by differentiating LVP waveform, was computed using AcqKnowledge™ software (BIOPAC Systems, Goleta, CA, USA). All pressure data are digitized using a 16-bit analog-digital converter, stored at a sampling rate of 1000 Hz in a computer, and subsequently analyzed offline. For real-time smoothing transformation of LVP, dP/dtmax and HR data, smoothing factor of three was used in our study, i.e. an average was computed as the mean of three adjacent data of the moving “window” before moving on to the next data set. Ten values of CPP, LVP and LV dP/dtmax in each measurement period were averaged and reported as a representative of each heart at each pH and at each colforsin or adrenaline concentration. CPF was measured by collecting the perfusate draining from the perfused heart for a minute.

Experiment 1 (Figure 1)

Sixty-six rats were first assigned to either colforsin study (n = 24), adrenaline study (n = 24), or vehicle control (n = 18), and then, subsequently randomized to the control (pH = 7.4), mild acidosis (pH = 7.0), and severe acidosis (pH = 6.6) groups (n = 8 each for colforsin and adrenaline study, n=6 each for vehicle control). After 10 minutes of stabilization using HEPES-Tyrode solution of pH 7.4, LVP, CPP, and CPF were determined, and then the HEPES-Tyrode solution adjusted to the appropriate pH for each group was perfused continuously throughout the experiment. Ten minutes after the pH change, Langendorff hearts were continuously perfused with constant pressure with 10^{-7} M, 10^{-6} M, and 10^{-5} M colforsin or with 10^{-8} M, 10^{-7} M, and 10^{-6} M adrenaline for 10 minutes each. We measured LVP, CPP, and CPF 10 minutes after the pH change and at the end of each concentration of colforsin or adrenaline for 10 minutes. This time interval represented a peak contractile effect for all concentrations of cardiotonic drugs in our experiment (Figure 2). The concentration-
response relationships between these variables and colforsin (10^{-7} to 10^{-5} M) or adrenaline (10^{-8} to 10^{-6} M) were determined at each pH.

Experiment 2 (Figure 1)

The remaining 36 rats were randomly assigned to the following six groups: with 10^{-5} M colforsin at pH 7.4 and at pH 6.6, with 10^{-6} M adrenaline at pH 7.4 and at pH 6.6, and without cardiotonic drugs at pH 7.4 and pH 6.6 (n = 6 each). Ten minutes after connecting the Langendorff apparatus, hearts were perfused with pH 7.4 HEPES-Tyrode solution for 10 minutes, and then, at either pH 7.4 or 6.6 throughout the experiment. The colforsin and adrenaline groups of hearts at both pH were continuously infused with colforsin (10^{-7}, 10^{-6}, and 10^{-5} M) and adrenaline (10^{-8}, 10^{-7}, and 10^{-6} M) for 10 minutes in a similar manner to that of the experiment 1, and then, the hearts were immediately frozen in liquid nitrogen (-45°C). Vehicle control groups received 30 minutes of saline infusion instead of colforsin or adrenaline at both pH, and then hearts were similarly frozen. The left ventricular muscles were separated, disrupted in 5 ml of 5% trichloroacetic acid using a digital homogenizer (Iuchi, Osaka, Japan) and centrifuged at 2,000 × g for 15 minutes at 4°C. The supernatants were washed four times with 5 ml of diethyl ether saturated with water. The upper ether layer was discarded after each wash. The remaining aqueous extract was dried under a stream of nitrogen at 60°C. The dried extracts were dissolved in 300 μl of RPMI 1640 medium. Concentrations of cAMP were quantified using a dextran-coated charcoal radioimmunoassay (SRL, Inc., Tokyo, Japan). The sensitivity of this method (average binding ratio of 80 pmol/ml standard solution minus average binding ratio of 0 pmol/ml standard solution) is over 38%, detection limit is 0.62 pmol/ml, and coefficient of variation is 3.1 to 4.9%.
Chemicals

Sodium pentobarbital (Nembutal injection), a product of Abbott Laboratories (Abbott Park, Chicago, IL, USA) was purchased from Dainippon Sumitomo Pharmaceutical Co. (Osaka, Japan), and adrenaline was purchased from Daiichi Sankyo Co., Ltd. (Tokyo, Japan). Colforsin was kindly provided from Nippon Kayaku, Co., Ltd.

Statistics

All data are expressed as mean ± SD. Statistical differences in LV dP/dtmax and CPF were assessed using repeated-measures ANOVA followed by unpaired t-test with Scheffé’s test to adjust for multiple comparisons, with a probability level of $P < 0.05$ being significant. Unpaired t-test was also used for comparison between variables with cardiotonic drugs at each pH and time- (vehicle-) control values. Concentrations of cAMP between two pH’s were compared using unpaired t-test with a probability level of $P < 0.05$ being significant. All data were analyzed using Stat-View software (SAS Inc., Cary, NC, USA).
Results

The CPP values remained stable from 62 to 63 mmHg throughout the experiment in all groups. The pH change decreased HR in the severe acidosis group from 200 ± 34 to 108 ± 24 bpm (P < 0.001), but not in the control and mild acidosis groups (from 218 ± 38 to 213 ± 43 bpm, and from 194 ± 19 to 171 ± 28 bpm, respectively). Colforsin at 10^{-5} M increased HR in the severe acidosis, mild acidosis, and control groups (to 215 ± 39, 235 ± 31, and 269 ± 26 bpm, respectively), but did not result in any significant differences among the three groups at 10^{-5} M colforsin. Similarly, adrenaline 10^{-6} M increased HR in the severe acidosis, mild acidosis, and control groups (from 110 ± 18 to 173 ± 24, from 172 ± 26 to 235 ± 35, and from 163 ± 16 to 231 ± 45 bpm, respectively), but did not result in any significant differences among the three groups.

Mild (pH 7.0) and severe (pH 6.6) acidosis groups developed significantly decreased LV dP/dtmax compared with pre-pH change (Figures 3). LV dP/dtmax at each pH were essentially unchanged without colforsin or adrenaline throughout the experiment. Therefore, LV dP/dtmax with colforsin or adrenaline at each concentration was also compared with these time control values without cardiotonic drugs. Colforsin (10^{-6} M and 10^{-5} M) significantly increased LV dP/dtmax compared with the post-pH change in all the groups. Although LV dP/dtmax values in the mild and severe acidosis groups at 10^{-6} M colforsin were significantly less than those of the control group, such difference dissipates at 10^{-5} M colforsin (Figure 4). The pH change also decreased CPF significantly in the severe acidosis group, but not in the mild acidosis group (Figure 5). CPF remained unchanged for the entire experiment after pH change without colforsin or adrenaline (time control, data not shown). All tested concentrations of colforsin increased CPF compared with the post pH change in the all the groups (Figure 5). At colforsin at 10^{-5} M, no significant difference was found in LV dP/dtmax, CPF or HR among the three groups.
Adrenaline 10^{-7} M and 10^{-6} M significantly increased LV dP/dtmax compared with the post-pH change in the control and mild acidosis groups (Figure 6). In the severe acidosis group, LV dP/dtmax increased significantly only by 10^{-6} M adrenaline. In contrast to colforsin, adrenaline at its maximum dose (10^{-6} M) did not restore LV dP/dtmax to the level similar to physiological pH (Figure 6). The pH change also decreased CPF significantly in the severe acidosis group, but not in the mild acidosis group (Figure 7). CPF increased significantly at all tested concentrations of adrenaline in the control and mild acidosis groups. In the severe acidosis group, however, CPF remained unchanged at all concentrations studied.

The hemodynamic status of all groups in the cAMP study (experiment 2) was similar to those of the experiment 1 (data not shown). Severe acidosis decreased the amount of cAMP, whereas colforsin 10^{-5} M increased cAMP concentrations to the level similar to that of pH 7.4 (Figure 8). On the other hand, even though adrenaline 10^{-6} M increased cAMP contents compared with no adrenaline at both pH 7.4 and 6.6, that of pH 6.6 was significantly less than that of pH 7.4.
Discussion

This is the first study which demonstrated concentration-dependent changes in cardiotonic effects by colforsin on a background of various degrees of acidosis. The present findings show that colforsin restores diminished cardiac contractility by severe acidosis to the level similar to the physiologic pH in isolated rat hearts, which has never been reported in the past using catecholamines or PDE III inhibitors. Indeed, maximum cardiotonic response even with the largest dose of adrenaline could not be attained in our study. These results suggest greater relative inotropic potency of colforsin in the acidotic environment. Therefore, colforsin could be theoretically useful in clinical situations where other inotropic drugs have failed to restore contractility, when acidosis is rigid and severe. However, further in vivo studies are warranted to confirm its cardiotonic effects under various degrees of acidosis using clinically relevant concentrations of colforsin.

One may argue that the maximum contractile response was not attained using 10^{-6} M adrenaline and larger adrenaline dose might have produced cardiotonic effects to an extent similar to that at physiological pH, as seen with the largest concentration of colforsin. In our pilot study15, however, 10^{-5} M adrenaline resulted in frequent occurrence of ventricular ectopic contractions in more than half of the preparations, and stable hemodynamics could not be obtained for further analysis of LV dP/dtmax. On the other hand, unlike other cardiotonic drugs including catecholamines and PDE III inhibitors, colforsin has been shown to suppress digitalis- and adrenaline-induced arrhythmia in canine model16, and indeed, ventricular arrhythmia was not observed in our preparation even with the largest colforsin concentration. Although colforsin has been clinically available since 1999, similar hemodynamic profile as an inodilator to PDE III inhibitors and relatively longer half-life (t_{1/2β} = 1.9±0.7 hour, t_{1/2γ} = 95.3±15.2 hour) in actual surgical patients hampered its clinical popularity17. In in vivo canine preparation, colforsin has been reported to increase myocardial...
oxygen consumption18, while small dose of colforsin appears to produce improved cardiac performance without increases in myocardial oxygen demand in humans after coronary artery bypass grafting. More importantly, its anti-arrhythmogenic property together with restored cardiotonic effect during severe acidosis suggests its superiority when use of other inotropic agents is limited for unsatisfactory inotropic effects due to severe acidosis or arrhythmogenic property19.

Colforsin at 10^{-7} and 10^{-6} M failed to demonstrate improved cardiac performance at pH 6.6 to a level equivalent to that of pH 7.4. In contrast, 10^{-5} M colforsin restored LV dP/dt max even at pH 6.6. These results indicate that the inotropic effects of colforsin are decreased in the severely acidotic heart, but irrespective of catecholamines and PDE III inhibitors increasing colforsin concentration negates the deleterious effect of acidosis on its cardiotonic effect. Acidosis depresses cardiac performance1-6 and the inotropic effect of catecholamines7-11. Several factors are considered to play a role in diminished myocardial responses to catecholamines, such as reduction in the numbers of beta-adrenergic receptors7,8, reduced affinity for agonists9, depressed adenylate cyclase activity7, decreased cAMP production7, inhibition of calcium ion exchange20, and decreased affinity of calcium ions for myofilaments11,21,22. Decreased cAMP turnover is also important in the deleterious effect of acidosis on pharmacologic action of milrinone12. Because colforsin exerts positive inotropic action by directly activating adenylate cyclase, a reduction in the numbers and affinity of beta-adrenergic receptors would not have affected the inotropic property of colforsin.

Although changing the pH from 7.4 to 6.6 decreased the amount of cAMP, 10^{-5} M colforsin restored cAMP concentration at pH 6.6 to that similar to pH 7.4 in the present study, suggesting that an increase in myocardial cAMP concentration may, in part, account for the inotropic effects of colforsin in severe acidosis. Further studies are required to understand the
more precise mechanisms of restored inotropic effect of colforsin, such as calcium ion exchange and calcium affinity to myofilaments.

In our study, cardiotonic effects of colforsin under mild acidosis appear to be augmented at a concentration-dependent manner, though to a less extent, than those at physiological pH. Previous literature showed that mechanical function to isoproterenol during acidosis (pH 6.8) was not different from control condition (pH 7.4) in isolated arterially perfused heart of the newborn rabbits7. Similarly, decreasing cellular pH from 7.4 to 6.8 resulted in a decline in contractile amplitude to isoproterenol only by 20% in cultured myocardial cells from chick embryo ventricle8. In a canine in vivo preparation, on the other hand, significant and profound depressions of LV dP/dtmax in response to 2 and 5 µg/kg/min of milrinone under mild acidosis (pH 7.0) compared with the physiological pH were observed12. These discrepant observations of myocardial contractile responses to various cardiotonic drugs under relatively mild acidotic condition may arise from the differences in animals, drugs, as well as in experimental models.

We examined how acidosis affects the cardiotonic effect of colforsin up to 10^{-5} M, which is approximately 100-fold greater than the clinically applied concentration23. Since the isolated heart model was used in this investigation, effect of colforsin on blood pressure and the vascular system could not be evaluated. Colforsin stimulates mainly cardiac adenyl cyclase, and in part, other tissue adenyl cyclases (lung, brain, and kidney) type II, III and V24. Colforsin produces systemic and pulmonary vasodilation and increases renal blood flow25, 26. These factors may contribute to decreasing afterload and preload in vivo, which may ultimately lead to hypotension. In addition, chronic exposure to a high concentration of colforsin might cause hypertrophy of the heart, myocardial fibrosis, and myocardial degeneration27-29. Therefore, further studies using an in vivo model are warranted to evaluate
the relationships between acidosis and colforsin in a situation similar to the actual clinical environment as well as short-term toxicity of colforsin before a large dose is recommended in clinical situations.

Study limitations include significant decreases in CPF during acidosis, and thus, the change in hemodynamics might have involved an effect of the decreased CPF, especially with adrenaline. However, colforsin 10^{-7} and 10^{-6} M in the severe acidosis resulted in significant increases in CPF with limited effects on LV dP/dtmax, suggesting that CPF was not a sole mechanism to explain depressed cardiac performance in severe acidosis. Secondly, we did not enzymatically confirm the absence of severe myocardial damage by the experimental preparation. Therefore, the possibility that severe hypoxic or mechanical injury to the myocardium at the time of isolation of rat hearts contributed to the altered hemodynamic responses to colforsin and adrenaline in the severe acidosis groups cannot be ruled out. However, similar hemodynamics (LV dP/dtmax and CBF) before the pH change among the three groups as well as stable time control preparations do not support the presence of severe myocardial damage in our preparation.

In conclusion, 10^{-5} M colforsin increased the LV contractility of isolated Langendorff rat hearts at pH 6.6 to a level similar to that at pH 7.4, whereas 10^{-6} M adrenaline did not produce cardiac contractility similar to the physiological level. As opposed to currently available cardiotonic drugs, increasing dose of colforsin restored depressed cardiotonic effect induced by severe acidosis without increasing the incidence of ventricular arrhythmia. Thus, colforsin may be considered as an inotropic agent of choice when severe acidosis limits hemodynamic management in clinical settings.
References

Figure legends

Figure 1: Experimental protocols for measuring hemodynamics (Experiment 1) and tissue cAMP contents (Experiment 2) with or without colforsin or adrenaline at pH 7.4, 7.0 and 6.6.

Figure 2: Temporal changes in left ventricular pressure and left ventricular dP/dtmax of a typical representative heart, showing depressions in these variables after introduction of pH 6.6 and enhancement of these variables by escalating doses of colforsin. Note that peak and stable responses are obtained within 10 min after initiation of a new pH as well as three concentrations of colforsin.

Figure 3: Changes in left ventricular dP/dt max (LV dP/dtmax) without colforsin or adrenaline at pH 7.4, 7.0 and 6.6. Data are shown as means±SD (n=6 each). LV dP/dtmax significantly decreased with pH change in the mild and severe acidosis groups, and remained depressed throughout the experiment. LV dP/dtmax values at each pH were essentially unchanged over time after pH change. *P < 0.05 vs. pre-pH change.

Figure 4: Changes in left ventricular dP/dtmax (LV dP/dtmax) with or without colforsin at pH 7.4, 7.0 and 6.6. Data are shown as means ± SD (n=8 each). LV dP/dtmax decreased with pH change in the mild and severe acidosis groups. Colforsin significantly increased dP/dtmax in all groups at 10⁻⁶ M and 10⁻⁵ M.*P < 0.05 vs. pre-pH change. †P < 0.05 vs. post-pH change and time (vehicle) control values at corresponding pH (Figure 3). ‡P < 0.05 vs. control (pH 7.4) group. No significant difference was found among the three groups at colforsin 10⁻⁵.
Figure 5: Changes in coronary perfusion flow (CPF) with or without colforsin at pH 7.4, 7.0 and 6.6. Data are shown as means ± SD (n=8 each). Change in pH decreased CPF in the severe acidosis group. Colforsin significantly increased CPF in all group at all concentrations compared with the post-pH change and the time control values (data not shown). *$P < 0.05$ vs. pre-pH change. †$P < 0.05$ vs. post-pH change and time (vehicle) control values at corresponding pH. No significant difference was found among the three groups.

Figure 6: Changes in left ventricular dP/dtmax (LV dP/dtmax) with or without adrenaline at pH 7.4, 7.0 and 6.6. Data are shown as means ± SD (n=8 each). LV dP/dtmax decreased with pH change in the mild and severe acidosis groups. Adrenaline significantly increased dP/dtmax in control and mild acidosis groups at 10^{-7} M and in all groups at 10^{-6} M. *$P < 0.05$ vs. pre-pH change. †$P < 0.05$ vs. post-pH change and time (vehicle) control values at corresponding pH (Figure 3). ‡$P < 0.05$ vs. control (pH 7.4) group. Although LV dP/dtmax significantly increased with 10^{-6} M adrenaline in the severe acidosis group, it was significantly less than that of the control group.

Figure 7: Changes in coronary perfusion flow (CPF) with or without adrenaline at pH 7.4, 7.0 and 6.6. Data are shown as means ± SD (n=8 each). Change in pH decreased CPF in severe acidosis group. Adrenaline significantly increased CPF in the control and mild acidosis groups at all concentrations studied, but not in the severe acidosis group. *$P < 0.05$ vs. pre-pH change. †$P < 0.05$ vs. post-pH change and time (vehicle) control values at corresponding pH.
Figure 8: Cyclic adenosine monophosphate (cAMP) contents in isolated left ventricular muscles perfused with or without colforsin or adrenaline at pH 7.4 and 6.6. Data are shown as means ± SD (n=6 each). Colforsin or adrenaline was given in the identical sequence as the experiment 1 (Figure 1). Decrease in pH from 7.4 to 6.6 resulted in significantly less cAMP without cardiotonic drugs. Colforsin significantly increased cAMP contents at pH 7.4 and 6.6. Similarly, adrenaline also increased cAMP contents both at pH 7.4 and 6.6, but resulted in significant difference between pH 7.4 and 6.6 after 10^{-6} M adrenaline. *$P < 0.05$ between pH 7.4 and 6.6. †$P < 0.05$ vs. without colforsin or adrenaline at corresponding pH.
Fig. 1

Experiment 1

- **Constant pressure**
- **Constant flow**
- **pre-pH change**
 - pH 7.4
 - pH 7.0
 - pH 6.6

- **post-pH change**
 - T1
 - T2
 - T3

- **10^-7 M colforsin, 10^-8 M adrenaline or no drug**
- **10^-6 M colforsin, 10^-7 M adrenaline or no drug**
- **10^-5 M colforsin, 10^-6 M adrenaline or no drug**

- **> 10 min**

Experiment 2

- **Constant pressure**
- **Constant flow**
- **pre-pH change**
 - pH 7.4
 - pH 6.6

- **post-pH change**
 - T1
 - T2
 - T3

- **cAMP measurement**

- **10^-7 M colforsin, 10^-8 M adrenaline or no drug**
- **10^-6 M colforsin, 10^-7 M adrenaline or no drug**
- **10^-5 M colforsin, 10^-6 M adrenaline or no drug**

- **> 10 min**
Fig. 3

![Graph showing left ventricular dP/dtmax (mmHg/s) for different pH conditions and time points.](image)

- Control (pH 7.4)
- Mild acidosis (pH 7.0)
- Severe acidosis (pH 6.6)

left ventricular dP/dtmax (mmHg/s)

<table>
<thead>
<tr>
<th>Condition</th>
<th>Pre</th>
<th>Post</th>
<th>T1</th>
<th>T2</th>
<th>T3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control (pH 7.4)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mild acidosis (pH 7.0)</td>
<td>*</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Severe acidosis (pH 6.6)</td>
<td>*</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Indicates significant difference from control.
Control (pH 7.4)

Pre pH change Colforsin

Mild acidosis (pH 7.0)

Severe acidosis (pH 6.6)

0 1000 2000 3000 4000 5000 6000 7000

Left ventricular dP/dt max (mmHg/s)

* §

10^{-7} M 10^{-6} M 10^{-5} M

‡

Fig. 4
Coronary perfusion flow (ml/min)

- Control (pH 7.4)
- Mild acidosis (pH 7.0)
- Severe acidosis (pH 6.6)

Fig. 5

- Pre pH change
- Post pH change
- 10^-7 M Colforsin
- 10^-6 M Colforsin
- 10^-5 M Colforsin
Fig. 6

- Control (pH 7.4)
- Mild acidosis (pH 7.0)
- Severe acidosis (pH 6.6)

Left ventricular dP/dt\(_{\text{max}}\) (mmHg/s)

- Pre
- Post
- 10\(^{-8}\) M
- 10\(^{-7}\) M
- 10\(^{-6}\) M

Adrenaline

- *: Statistical significance
- †: Significant difference from control
- ‡: Significant difference from mild acidosis
Coronary perfusion flow (ml/min)

- Control (pH 7.4)
- Mild acidosis (pH 7.0)
- Severe acidosis (pH 6.6)

<table>
<thead>
<tr>
<th>pH change</th>
<th>Pre</th>
<th>Post</th>
<th>10^{-8} M</th>
<th>10^{-7} M</th>
<th>10^{-6} M</th>
</tr>
</thead>
<tbody>
<tr>
<td>pH change</td>
<td></td>
<td></td>
<td></td>
<td>†</td>
<td>†</td>
</tr>
<tr>
<td>Adrenaline</td>
<td></td>
<td></td>
<td></td>
<td>†</td>
<td>†</td>
</tr>
</tbody>
</table>
Fig. 8

Cyclic AMP content (pmol/wet weight)

- pH 7.4 pH 6.6
 without colforsin or adrenaline

- pH 7.4 pH 6.6
 after colforsin 10^{-5}

- pH 7.4 pH 6.6
 after adrenaline 10^{-6}

* †