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Abstract 

We report preparation of polyaniline (PANI) with radicals on the N-positions. 

Chirality of a PANI having optically active substituent is retained even upon oxidation 

by m-chloroperoxybenzoic acid in chloroform to generate spin species. Electron spin 

resonance and circular dichroism spectroscopy measurements suggest that the chiral 

paramagnetic properties of PANIs are derived from the combination of chiral side 

chains and oxy-radicals in the structure of the polymer. This report focuses on a new 

synthetic approach for obtaining magneto-optically active polyanilines.  
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1. Introduction 

Synthesis and application of electrically conducting polymers is a basis for “plastic” 

electronic devices such as photovoltaics [1], organic transistors [2,3], and batteries 

[46]. The conducting polymers consist of a -conjugated sequence main chain. 

Recently, interest in the chemistry and physics of -conjugate polymers has extended 

from electro-conductivity to chirality and magnetism.  

Organic magnetic materials based on -conjugated skeletons have been reported 

[79]. Synthesis of -conjugated polymers with high spins has been achieved [10]. 

Furthermore, non-conjugated polymers bearing radical groups have been successfully 

prepared as electrodes for polymer batteries [11], and novel photovoltaic cells have 

been developed [12].  

Many helical conjugated polymers have been successfully prepared by introducing 

optically active side-chains [1315]. Optically active polyaniline (PANI) as a 

conjugated polymer can be prepared in the presence of optically active camphor 

sulfonic acid in a polymerization reaction [16]. Optically active camphor sulfonic 

(CSA) acid is electrostatically introduced onto the positions of the nitrogen atoms of 

PANI, inducing predominantly one-handed helicity [17]. Alternatively, introduction of 

an optically active substituent into polyaniline via covalent bonding for obtaining 
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helical PANI is possible [18]. However, these studies have not focused on optical 

activity and magnetism of the main chains.  

Multiple functionalities, such as magnetism and chirality, can be achieved through 

the introduction of both a radical moiety and an optically active compound into 

-conjugated polymers.  

In a previous study, optically active polythiophene derivatives were synthesized 

with a new asymmetric polymerization method using a cholesteric liquid crystal (CLC) 

medium derived from achiral monomers [19]. Although the polymers synthesized in the 

CLC do not bear asymmetric carbon atoms, the polymers display consistent chirality 

due to the formation of chiral aggregates under the influence of the CLC medium. The 

chirality is maintained by the molecular construction of the chiral aggregate. 

   In the present study, we prepared chiroptically active PANI with electrochemical 

polymerization and chemical polymerization. The PANI prepared with electrochemical 

polymerization is carried out in the presence of an excess amount of optically active 

CSA. The PANI thus prepared has CSA in the substituent via static interaction. 

Subsequent reduction releases CSA from PANI, and oxidation yields radicals at the 

N-position of PANI. In the next approach, PANI having both an optically active 

substituent and oxy-radicals is prepared for obtaining magneto-optically active 

-conjugated polymers. Electron magnetic resonance (ESR) and circular dichroism 

(CD) are used to evaluate functionality of the polymer in this study. Note that oxidation 

of PANI with m-chloroperoxybenzoic is based on the oxidation reaction of 

diphenylamine (Scheme 1) [20].  

 

2. Experimental 

2.1. Instruments 

Optical absorption spectra were obtained at room temperature using a HITACH U-3500 

spectrometer with a quartz cell. CD spectra were obtained using a JASCO J-720 

spectrometer. ESR measurements were carried out using a JEOL JES TE-200 

spectrometer with 100 kHz modulation. Spin concentrations of the samples were 

obtained with CuSO4∙5H2O as a standard. 

 

2.2. Chemicals  

Aniline (Wako Chemical, Japan) was purified by distillation. High-purity 

chloroform (Wako) was used without purification for optical measurements of the 

polymer. (+)-(S)-camphorsulfonic acid ((+)-CSA, Kanto Chemical, Japan), 

m-chloroperoxybenzoic acid (Wako Chemical), hydrazine (Tokyo Chemicals, TCI) 
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were used as received.  

 

Synthesis of PANI with no optical activity and generation of radicals 

  Chiroptically active polyaniline was prepared by the previously reported method 

[17,18]. Quantity used: aniline (1.0 g, 10 mmol), HCl (1.0 g, 27 mmol), water (25 mL), 

ammonium persulfate (APS, 1.0 g, 3.5 mmol) in 5 mL of distilled water. After the 

polymerization, the resultant polymer was treated with ammonia (28 % solution, 20 

mL), and hydrazine monohydrate (20 mL). Next, m-chloroperoxybenzoic (1.85 g, 10 

mmol) was added to the reduced PANI in chloroform solution. After 1 h, the solution 

was filtered off, and the product was dried in vacuum to afford 0.11 g of polyradicals. 

This polymer is abbreviated as NA-PANI-oxyl (NA = not optically active). 

 

2.3. Electrochemical polymerization of aniline in the presence of optically active 

camphor sulfonic acid and generation of radicals  

Polyanilines deposited on ITO were prepared by the previously reported method (as- 

prepared polyaniline is abbreviated as PANI-S). PANI-S was treated with hydrazine to 

yield a reduced form of polyaniline (abbreviated as PANI-RE). The synthetic routes are 

described in Scheme 2. Next, the PANI-RE prepared by electrochemical polymerization 

was treated with m-chloroperoxybenzoic acid in chloroform solution to generate 

oxyradicals at the N-position. The polyaniline thus obtained is abbreviated as 

PANI-oxyl. 

Scheme 2. 

 

2.4. Synthesis of PANI with optically active substituents and generation of radicals 

PANI with optically active substituents (C-PANI, Scheme 3) was prepared by the 

previously reported method [18]. Subsequently, m-chloroperoxybenzoic acid (10 mg, 

0.05 mmol) was added to the PANI with optically active substituents in 1 mL of 

chloroform solution. After stirring for 1 h, the solution was poured into a large volume 

of methanol, filtered, and dried in vacuum to yield optically active polyradicals 

(abbreviated as C-PANI-oxyl).  

Scheme 3. 

 

3. Results and Discussion 

3.1. ESR 

ESR measurements of NA-PANI-oxyl were carried out at room temperature. A 

g-value of 2.00459 was observed. Relaxation of the ESR signals of the PANI-oxyl 
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resulted in one broad signal due to the radicals. The unimodal signals (Hpp = 0.68 mT, 

spin concentration = 8.27 x 1018 spin/g) is suggestive of a locally high-spin 

concentration within the molecules [17]. This result indicates oxidation of PANI with 

m-chloroperoxybenzoic acid produces polyradicals specifically, according to the 

method reported for preparation of diaryl nitroxides [20].  

Fig. 1 shows ESR spectra of PANI-S (prepared with electrochemical 

polymerization) and PANI-oxyl. PANI-S, as prepared, displays a g-value of the center 

signal of 2.00217 (2.7 x 1018 spins/g) with asymmetry Dysonian line-shape. Radicals of 

the PANI-ES are derived from radical cations (polarons, conduction species) on the 

main chain generated by the doping. This is due to the fact that, as prepared, PANI is 

doped with the APS and CSA during the polymerization reaction. The Dysonian line- 

shape of the PANI-S comes from the conduction species. In this case, microwave 

signals can not intrude inside of the sample, resulting in an asymmetric pattern. On the 

other hand, PANI-oxyl shows a broad signal (g = 2.00378, spin concentration is 4.7 x 

1018 spin/g). Changes in g-value, line shape, and spin concentration suggest that the spin 

species of PANI-oxyl (oxy-radicals) is different from that of PANI-S (polarons). 

However, surface treatment of hydrazine followed by treatment of 

m-chloroperoxybenzoic acid for the polymer does not affect the interior of the film on 

ITO glass. Therefore, the PANI-oxyl may have both oxy-radicals and polarons. 

C-PANI-oxyl having chiral substituents shows triple signals with a g-value of the 

center signal at 2.00516 (Hpp1 = 0.49 mT, Hpp2 = 0.48 mT, spin concentration = 7.69 

x 1017 spin/g) in the ESR measurements, as shown in Fig. 2. The spectrum form of the 

triple signal confirms generation of nitroxyl radicals of the PANI [21,22]. The spin 

concentration is somewhat low because treatment of the polyaniline after oxidation in 

air decreases spins at the main chains, while radicals were specifically produced at the 

N-position of the polyanilines. The g-values of the C-PANI-oxyl (g = 2.00516) in bulk 

indicates that the ESR signal of the C-PANI-oxyl is not derived from the charged 

species on the main chain. 

Fig. 1. 

Fig. 2.  

 

3.2. Optical measurements 

PANI-S shows an absorption maximum at 416 nm in UV-vis absorption spectrum. 

Broad absorption at long wavelengths of the doping band (polarons) was observed. 

PANI-RE displays an absorption band at around 600 nm (shoulder) [23]. No intense 
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absorption at long wavelengths is observed. PANI-oxyl shows broad-band absorption 

centered around 430 nm. This absorption may be due to the oxy-radicals. The PANI-S 

is dark green, but the color is turned to gray with treatment of hydrazine, and to brown 

by the oxidation.  

Fig. 3 displays CD spectra of PANI-S, PANI-RE. PANI-S exhibits a sharp negative 

signal at 468 nm, and a broad positive signal at long wavelengths. PANI-RE shows a 

positive signal at 346 nm, a weak negative signal at 478 nm, and a broad negative signal 

at long wavelengths. Intensity of the CD signals after reduction is weakened. This can 

be due to the reduction process removing the CSA from the main chain, with helicity of 

the main chain depressed. PANI-oxyl shows no Cotton effect in the CD, resulting in no 

maintenance of helical structure after oxidation.   

Fig. 3. 

On the other hand, for C-PANI-oxyl a positive signal at 441 nm and a negative 

signal at 654 nm are observed in the CD (Fig. 4). The Cotton effect indicates that the 

chirality of the polymers was maintained upon oxidation with m-chloroperoxybenzoic 

acid and that the polymers are inherently chiral. The results from the ESR and the CD 

suggest that the C-PANI-oxyl shows chiral paramagnetic properties, which derive from 

a combination of chirality and paramagnetism. The sign of the Cotton effect of the 

C-PANI-oxyl changes from positive to negative at around 590 nm. The peak (shoulder) 

of the absorption spectrum is located at the inflection point observable in the CD. The 

ESR, the CD and the optical absorption spectroscopy results suggest that the nitroxyl 

radicals of C-PANI-oxyl are arranged in helical manner accompanied by the helical 

structure of the main chain. 

Fig. 4. 

 

4. Plausible structure 

Fig. 5 shows a plausible structure of PANI bearing chiral substituents. Chiral side 

chains induce main-chain helical structure of the PANI. Each nitroxyl radical (spin), as 

a diphenyl nitroxyl radical unit, distributes along the main chain. The spins of the 

polymer exist along the helical structure of the main chain. As a consequence, the 

polymer shows macroscopic paramagnetism.  

 

5. Conclusions  

We attempted synthesis of magneto-optically active polyanilines via a newly 

proposed method. The polymer displays Cotton effect in the CD measurements. The 
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ESR and the CD results indicate that the radicals of C-PANI-oxyl can be arranged in a 

helical manner.  

The polymer thus synthesized in this study is magneto-optically active, although 

chiroptical activity is weak in the present stage. However, this can be the first example 

of helical polyaniline-bearing radicals. An introduction of chiral compounds having 

several stereogenic centers (i.e., natural optically active compounds) should enhance the 

helicity of the PANI. The present preparation method for generation of nitroxyl radicals 

from chiroptically active PANIs is a new approach for the synthesis of chiral organic 

polymers with magnetic properties. 
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Scheme 1. Generation of nitroxy radical form diphenylamine 
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Scheme 2. Oxidation of polyaniline and chiral polyaniline to generate radicals. CSA = 

(+)-(S)-camphorsulfonic acid. 
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Scheme 3. Oxidation of chiral a PANI to generate radicals. 
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Figure 1. ESR spectra of PANI-S (dashed line) and PANI-oxyl (solid line). 
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Figure 2. ESR spectrum of C-PANI-oxyl in chloroform. 
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Figure 3. CD spectra of PANI-S prepared with the electrochemical polymerization 

method (a) and PANI-RE (b). The spectra are obtained from polymer films on 

indium-tin-oxide (ITO) glass electrodes. 
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Figure 4. (a) CD spectrum of C-PANI-oxy in chloroform solution. (b) UV-Vis 

absorption spectrum of C-PANI-oxy in chloroform solution.  
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Figure 5. Plausible structure of helical polyaniline with paramagnetism. R* = chiral 

substituents.  
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