Generic dependence of the frequency-size distribution of earthquakes on depth and its relation to the strength profile of the crust.

Spada M., Tormann T., Wiemer S., Enescu B.

Geophysical Research Letters

Volume 40

Number 4

Page range 709-714

Year 2013

©2013. American Geophysical Union

URL http://hdl.handle.net/2241/119664

doi: 10.1029/2012GL054198
Generic dependence of the frequency-size distribution of earthquakes on depth and its relation to the strength profile of the crust

M. Spada,1,2 T. Tormann,1 S. Wiemer,1 and B. Enescu3,4

Received 11 October 2012; revised 10 December 2012; accepted 12 December 2012; published 28 February 2013.

[1] We explore the idea that the relative size distribution of earthquakes, quantified using the so-called b-value, is negatively correlated with differential stress. Because the maximum possible differential stress increases linearly in the brittle upper crust, we expect to find a decrease of b with depth. We test this expectation for seven continental areas around the world, each of which is described by a regional earthquake catalog. We find a monotonic decrease in b-value between 5 and 15 km depth. The decrease stops near the brittle-ductile transition. We specifically focus on the high-quality catalogs of earthquakes in California to perform a sensitivity test with respect to depth uncertainty; we also estimate the probability-depth gradient for the occurrence of a target magnitude event and study the behavior of b with depth in near- and off-fault zones. We also translate the observed b-depth gradients into b-differential stress gradients. Our findings suggest that b-values are negatively correlated with differential stress and have the potential to act as stress meters in the Earth’s crust. Citation: Spada, M., T. Tormann, S. Wiemer, and B. Enescu (2013), Generic dependence of the frequency-size distribution of earthquakes on depth and its relation to the strength profile of the crust, Geophys. Res. Lett., 40, 709–714, doi:10.1002/2012GL054198.

1. Introduction

[2] Several studies have suggested a relation between differential stress (Δσ) and the relative size distribution of earthquakes quantified by the b-value (e.g., Tormann et al. [2012] and references therein). The b-value is the slope of a frequency-magnitude distribution (FMD) when plotted in log-linear space and describes the relative frequency of small- versus large-magnitude earthquakes (Gutenberg and Richter [1944]): \(\log N = a - bM \), where N is the number of events greater or equal magnitude M and a describes the total number of earthquakes.

[3] Studies of b range in scale from laboratory rock specimens (e.g., Scholz [1968]) to observations in a variety of different tectonic regimes (e.g., Wiemer and Wyss [2002]). In the laboratory, acoustic emissions (AEs) from seismically active micro-cracks during different stages of fracture experiments follow a power law analogous to the Gutenberg-Richter (GR) relation with decreasing b-value for increasing Δσ (e.g., Scholz [1968], Amitrano [2003]).

[4] For induced and natural seismicity, the same relationship was suggested by numerous studies. The b-values of earthquakes induced by high-pressure injections in geothermal reservoirs have been documented to be high compared to the regional level (Bachmann et al. [2012]). Asperities—areas on a fault that are strong and therefore slip resistant—have been mapped with low b, indicating that they are highly stressed (e.g., Oncel and Wyss [2000], Tormann et al. [2012]). More evidence for this relationship was drawn from seismicity in different tectonic regimes, which according to the brittle failure criterion require different levels of Δσ (e.g., Scholz [2002]). Natural seismicity in California, Japan, Italy, and worldwide has been documented to exhibit increasing b-m, moving from thrust-to-strike-slip to normal regimes (Schorlemmer et al. [2005], Gulia and Wiemer [2010], Yang et al. [2012]), again consistent with an inverse b – Δσ relation.

[5] A generic and rather well-modeled gradient of Δσ is the strength profile of the lithosphere. Because in equilibrium Δσ cannot exceed the strength of rocks, profiles of maximum possible Δσ can be estimated, which increase linearly through the brittle upper crust down to about 15 km and start decreasing non-linearly at the brittle-ductile transition (Figure 1a) (e.g., Scholz [2002]).

[6] The signal of increasing Δσ with depth should be resolvable in the b-value distribution with depth, if the latter is indeed sensitive to the former. Some studies have addressed the depth dependence of b in California: Mori and Abercrombie [1997] found a systematic decrease of b with depth, which they explained by a possible decrease of heterogeneity with depth. Gerstenberger et al. [2001] studied the b-value variation with depth in California by mapping the ratio between the b estimated for a shallow layer (0–5 km depth) and the one estimated for a deep layer (7–15 km). Their maps show a strong local variation of the b-ratio, which the authors related to the differences in stress level, and about 32% of the area showed a decrease of the b-value with depth. Amorese et al. [2010] studied the variation of b-value with depth in seven selected areas in southern California, which according to Gerstenberger et al. [2001] showed b-ratio values higher than 1, i.e., a decrease of b with depth. In contrast to the previous studies, Amorese et al. [2010] did not find a statistically significant decrease of b with depth.

[7] This study presents b-depth gradients from seven continental areas around the world, each described by...
Figure 1. (a) Schematic and simplified illustration of the strength profile of the crust modified after Scholz [2002]. (b–h) The b-depth gradients observed for different catalogs. Open circle data points are not taken into account in this study since in those depth layers seismicity is sparse and likely influenced by, for example, geothermal related activity (see text). Vertical error bars: depth layer in which b is estimated. Horizontal error bars: formal uncertainty in b estimates following Shi and Bolt [1982]. (b) Switzerland, restricted to foreland (5.91°W–46.18°N; 6.145°E–46.886°N; 7.08°E–47.61°N; 8.58°E–47.86°N; 9.86°E–47.62°N; 6.08°E–46.08°N), b is computed using events above $M_c=2.0$, black: $N_{\text{min}}=50$ events, grey: $N_{\text{min}}=30$ events. (c) Northern California, $M_c=2.5$. (d) Southern California, $M_c=2.5$. (e) Greece, $M_c=4.5$. (f) Turkey, $M_c=3.7$. (g) Italy, $M_c=2.5$, restricted to mainland. (h) Japan, $M_c=2.5$.

2. Earthquake Catalogs

[8] We consider earthquake catalogs from different regions around the world. To ensure highest quality locations and completeness levels, we filter all catalogs to contain only onshore events within national boundaries and in the shallow part of the crust, i.e., maximum 20 km depth. In particular, we use catalogs from the seven regions described below.

[9] Northern and southern California: we use the double-difference relocated northern California catalog (NCAL) from Waldhauser and Schaff [2008], covering 1984–2009, and the waveform relocated southern California catalog (SCAL) from 1981 to 2011 [Hauksson et al. (2012)] both filtered to their respective authoritative regions (http://www.ncedc.org/anss/anss-detail.html). Based on the 3D description of California’s major fault structures (243 segments documented in the UCERF3 model), we separate the NCAL and SCAL into near-fault and off-fault seismicity in order to avoid possible mixing between near- and off-fault seismicity. To avoid possible mixing between near- and off-fault events within the seismic damage zone [Hauksson (2010)], we regard all events within 2 km of the fault plane as near-fault seismicity, as suggested by Powers and Jordan [2010], and following Hauksson [2010] we select events further than 10 km from the fault plane as off-fault seismicity.

[10] Switzerland: we use the instrumental seismicity record (1975–2009) of the ECOS09 earthquake catalog (Fäh et al. [2011]) restricted to the subset of the foreland region (CH For) (Figure 1).

[13] Turkey: we use the earthquake catalog compiled by the Kandilli Observatory and Earthquake Research Institute Department of Earthquake Engineering (KOERI) from 1990 to 2011 (available on http://www.koeri.boun.edu.tr/sismo/indexeng.htm).

3. Method

[15] The correct estimate of the b-value depends critically on the assessment of a catalog’s magnitude of completeness (M_c) (Wiener and Wyss [2002]): if M_c is underestimated, b will be biased toward lower values. M_c varies as a function of space and time throughout all earthquake catalogs. In this study, we estimate conservative completeness levels, i.e., we analyze M_c variation through time using the maximum curvature method with a correction factor of 0.2 (e.g., Wössner and Wiemer [2005]), and choose the maximum estimates of
each time series. Furthermore, we verify that this estimate is also greater than the maximum M_c observed with depth.

[16] We estimate b-values for sample sizes greater than 50 events ($N_{\text{min}} = 50$) above M_c, using the maximum likelihood method (Aki [1965]) and compute the formal uncertainty in b using the equation proposed by Shi and Bolt [1982]. This error estimate is mainly reflecting the total number of events.

[17] In this study, b-values are estimated for a given number of overlapping depth layers. We choose a layer width of 2.5 km and an overlap value of one fifth of the width. The influence of the choice of the layer width on the results is shown in Figures 3a and 3b for NCAL and SCAL.

[18] We also check the sensitivity of our analyses with respect to depth location uncertainty. For each depth location in the NCAL and SCAL catalogs, we simulate 1000 depth values from a Gaussian distribution with the catalog value treated as the mean and with various values of the standard deviation (0.5, 1, 2, 3, 4, and 5 km). From the resulting simulated catalogs, we estimate the mean and the standard deviation for the b-value with depth related to each uncertainty value (Figures 3c and 3d).

4. A Generic Depth Gradient

[19] For all considered earthquake catalogs, we observe similar depth gradients showing a generic decay of b with increasing depth from 5 to 15 km (Figures 1b–1h). The variation of the b-depth gradients between regions is strongly influenced by the magnitude scale used for the local earthquake catalogs as well as by the main tectonic regime acting in the study area. The b-value results are well constrained in this 5–15 km depth range (Figure 2 for NCAL and SCAL), uncertainties are small and, for NCAL and SCAL, 90% of the seismicity is shallower than ~17 km (~7 km depth, respectively), there is no remarkable separation for NCAL. In addition, these results are still different from the other cases (Figures 3g and 3h).

Figure 2. Cumulative FMDs above M_c for (a) NCAL and (b) SCAL for four depth layers together with the estimated b-values. Inset: b-depth gradients as shown in Figure 1; in color, the depth layers corresponding to the FMDs.
Figure 3. NCAL (left column) and SCAL (right column). (a and b) b-depth gradients for different choices of layer width. (c and d) b-depth gradients for different levels of assumed depth location uncertainty. (e and f) Numbers of observed events at depth (in steps of 0.5 km). Grey lines: percentiles for the numbers of observed events. (g and h) Probability-depth gradient for the occurrence of one or more events of magnitude M_{targ}, derived from the a- and b-values estimated in each depth layer. (i and j) b-depth gradients for near-fault (blue) and off-fault seismicity (red).
and 3i). In southern California (Figure 3i), they appear to be undistinguishable, although the bulk b-values using all depths reproduce the differences documented by Page et al. [2011], that is, the near-fault b-value is 1.04, while the off-fault value is 1.13. The difference in the bulk values is similar in northern California, 0.98 and 1.06, near-fault and off-fault, respectively. However, the gradients here suggest consistently lower b-values at all depths along faults compared to off-fault seismicity, which agrees with the suggestion that larger magnitude events are more likely to occur on major faults than off-fault.

[23] Assuming hydrostatic pressures and Byerlee friction coefficient ($\mu = 0.75$), the $\Delta \sigma$ gradient for a strike-slip regime is approximately -20 MPa/km, which agrees with in situ measurements of stress gradients in several boreholes with maximum depths of ~ 8 km (e.g., Zoback and Townend [2001]). Merging this $\Delta \sigma$-depth gradient and the resolved b-depth gradients (Figure 1) by assigning to a b-value at a given depth the corresponding $\Delta \sigma$ at the same depth, we can translate the b-depth into a $b - \Delta \sigma$ gradient. In this setting, the amplitude of b is unimportant, so we normalize all b-values to the first point below 5 km depth and consider these normalized $b - \Delta \sigma$ gradients for depths from 5 to 15 km, which suggest a possibly linear inverse relationship $b - \Delta \sigma$ (Figure 4). These results are in agreement with the previously suggested negative correlation $b - \Delta \sigma$ for natural earthquakes (e.g., Schorlemmer et al. [2005]). This generic $b - \Delta \sigma$ relationship for natural earthquakes is thus consistent with findings from laboratory experiments (Amitrano [2003]).

[24] Even if we find a generic decrease of b with $\Delta \sigma$ for all considered earthquake catalogs, we only consider the high-quality relocated earthquake catalogs of northern and southern California to try to quantify the possibly linear relationship between the two parameters. Stacking the two gradients, the general slope, fit by a least squares method, suggests that b might be negatively correlated to $\Delta \sigma$ as -10^{-3} MPa. We note, though, that this is a damped value: this relation could be much flatter if more localized data would be used, as this could resolve a stronger local b-value variation.

5. Conclusions

[25] The general inverse relation $b - \Delta \sigma$ suggested by laboratory experiments holds true for tectonic earthquakes. By applying a bulk analysis of regional catalogs we eliminate local variations; we do this because Gerstenberger et al. [2001] and Amorese et al. [2010] showed that lateral variations of b may in their amplitude dominate over a generic depth gradient. This bulk analysis also reveals a generic decrease of b with depth through the brittle part of the crust.

[26] For all studied regions except the Swiss foreland, we find a turning point in the gradient at depths of ~ 15 km, which we interpret as the brittle-ductile transition. The b-value derived transition depth for the Swiss foreland is deeper and with ~ 25 km depth consistent with former suggestions strengthening the robustness of our interpretation. Our observation thus confirms the potential of b-values to act as a stress meter in the Earth’s crust.

[27] Acknowledgments. The presented work was supported by the Swiss Federal Nuclear Safety Inspectorate (ENSI) and the Swiss National Foundation (SNSF) grant P300P2_134174. We would like to thank A. Mignan, T. H. W. Göbel and J. Zechar for helping to improve the manuscript and J. Wössner for useful discussions. We thank J. Townend and an anonymous reviewer for their helpful comments. We thank the Japan Meteorological Agency (JMA) for providing the earthquake catalog used in this study.

Figure 4. Normalized b-value to the first point (deeper than 5 km depth) in percentage versus $\Delta \sigma$ for the seven considered earthquake catalogs. Bold lines correspond to the high-quality relocated earthquake catalogs for northern and southern California.

References

Hauksson, E. (2010), Spatial separation of large earthquakes, aftershocks, and background seismicity: Analysis of interseismic and coseismic